1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "btree_locking.h" 5 #include "btree_update.h" 6 #include "btree_update_interior.h" 7 #include "btree_write_buffer.h" 8 #include "error.h" 9 #include "journal.h" 10 #include "journal_io.h" 11 #include "journal_reclaim.h" 12 13 #include <linux/prefetch.h> 14 #include <linux/sort.h> 15 16 static int bch2_btree_write_buffer_journal_flush(struct journal *, 17 struct journal_entry_pin *, u64); 18 19 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *); 20 21 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 22 { 23 return (cmp_int(l->hi, r->hi) ?: 24 cmp_int(l->mi, r->mi) ?: 25 cmp_int(l->lo, r->lo)) >= 0; 26 } 27 28 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 29 { 30 #ifdef CONFIG_X86_64 31 int cmp; 32 33 asm("mov (%[l]), %%rax;" 34 "sub (%[r]), %%rax;" 35 "mov 8(%[l]), %%rax;" 36 "sbb 8(%[r]), %%rax;" 37 "mov 16(%[l]), %%rax;" 38 "sbb 16(%[r]), %%rax;" 39 : "=@ccae" (cmp) 40 : [l] "r" (l), [r] "r" (r) 41 : "rax", "cc"); 42 43 EBUG_ON(cmp != __wb_key_ref_cmp(l, r)); 44 return cmp; 45 #else 46 return __wb_key_ref_cmp(l, r); 47 #endif 48 } 49 50 static int wb_key_seq_cmp(const void *_l, const void *_r) 51 { 52 const struct btree_write_buffered_key *l = _l; 53 const struct btree_write_buffered_key *r = _r; 54 55 return cmp_int(l->journal_seq, r->journal_seq); 56 } 57 58 /* Compare excluding idx, the low 24 bits: */ 59 static inline bool wb_key_eq(const void *_l, const void *_r) 60 { 61 const struct wb_key_ref *l = _l; 62 const struct wb_key_ref *r = _r; 63 64 return !((l->hi ^ r->hi)| 65 (l->mi ^ r->mi)| 66 ((l->lo >> 24) ^ (r->lo >> 24))); 67 } 68 69 static noinline void wb_sort(struct wb_key_ref *base, size_t num) 70 { 71 size_t n = num, a = num / 2; 72 73 if (!a) /* num < 2 || size == 0 */ 74 return; 75 76 for (;;) { 77 size_t b, c, d; 78 79 if (a) /* Building heap: sift down --a */ 80 --a; 81 else if (--n) /* Sorting: Extract root to --n */ 82 swap(base[0], base[n]); 83 else /* Sort complete */ 84 break; 85 86 /* 87 * Sift element at "a" down into heap. This is the 88 * "bottom-up" variant, which significantly reduces 89 * calls to cmp_func(): we find the sift-down path all 90 * the way to the leaves (one compare per level), then 91 * backtrack to find where to insert the target element. 92 * 93 * Because elements tend to sift down close to the leaves, 94 * this uses fewer compares than doing two per level 95 * on the way down. (A bit more than half as many on 96 * average, 3/4 worst-case.) 97 */ 98 for (b = a; c = 2*b + 1, (d = c + 1) < n;) 99 b = wb_key_ref_cmp(base + c, base + d) ? c : d; 100 if (d == n) /* Special case last leaf with no sibling */ 101 b = c; 102 103 /* Now backtrack from "b" to the correct location for "a" */ 104 while (b != a && wb_key_ref_cmp(base + a, base + b)) 105 b = (b - 1) / 2; 106 c = b; /* Where "a" belongs */ 107 while (b != a) { /* Shift it into place */ 108 b = (b - 1) / 2; 109 swap(base[b], base[c]); 110 } 111 } 112 } 113 114 static noinline int wb_flush_one_slowpath(struct btree_trans *trans, 115 struct btree_iter *iter, 116 struct btree_write_buffered_key *wb) 117 { 118 struct btree_path *path = btree_iter_path(trans, iter); 119 120 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 121 122 trans->journal_res.seq = wb->journal_seq; 123 124 return bch2_trans_update(trans, iter, &wb->k, 125 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: 126 bch2_trans_commit(trans, NULL, NULL, 127 BCH_TRANS_COMMIT_no_enospc| 128 BCH_TRANS_COMMIT_no_check_rw| 129 BCH_TRANS_COMMIT_no_journal_res| 130 BCH_TRANS_COMMIT_journal_reclaim); 131 } 132 133 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter, 134 struct btree_write_buffered_key *wb, 135 bool *write_locked, size_t *fast) 136 { 137 struct btree_path *path; 138 int ret; 139 140 EBUG_ON(!wb->journal_seq); 141 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq); 142 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq); 143 144 ret = bch2_btree_iter_traverse(iter); 145 if (ret) 146 return ret; 147 148 /* 149 * We can't clone a path that has write locks: unshare it now, before 150 * set_pos and traverse(): 151 */ 152 if (btree_iter_path(trans, iter)->ref > 1) 153 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_); 154 155 path = btree_iter_path(trans, iter); 156 157 if (!*write_locked) { 158 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); 159 if (ret) 160 return ret; 161 162 bch2_btree_node_prep_for_write(trans, path, path->l[0].b); 163 *write_locked = true; 164 } 165 166 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) { 167 *write_locked = false; 168 return wb_flush_one_slowpath(trans, iter, wb); 169 } 170 171 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); 172 (*fast)++; 173 return 0; 174 } 175 176 /* 177 * Update a btree with a write buffered key using the journal seq of the 178 * original write buffer insert. 179 * 180 * It is not safe to rejournal the key once it has been inserted into the write 181 * buffer because that may break recovery ordering. For example, the key may 182 * have already been modified in the active write buffer in a seq that comes 183 * before the current transaction. If we were to journal this key again and 184 * crash, recovery would process updates in the wrong order. 185 */ 186 static int 187 btree_write_buffered_insert(struct btree_trans *trans, 188 struct btree_write_buffered_key *wb) 189 { 190 struct btree_iter iter; 191 int ret; 192 193 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), 194 BTREE_ITER_CACHED|BTREE_ITER_INTENT); 195 196 trans->journal_res.seq = wb->journal_seq; 197 198 ret = bch2_btree_iter_traverse(&iter) ?: 199 bch2_trans_update(trans, &iter, &wb->k, 200 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); 201 bch2_trans_iter_exit(trans, &iter); 202 return ret; 203 } 204 205 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb) 206 { 207 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer); 208 struct journal *j = &c->journal; 209 210 if (!wb->inc.keys.nr) 211 return; 212 213 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin, 214 bch2_btree_write_buffer_journal_flush); 215 216 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr)); 217 darray_resize(&wb->sorted, wb->flushing.keys.size); 218 219 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) { 220 swap(wb->flushing.keys, wb->inc.keys); 221 goto out; 222 } 223 224 size_t nr = min(darray_room(wb->flushing.keys), 225 wb->sorted.size - wb->flushing.keys.nr); 226 nr = min(nr, wb->inc.keys.nr); 227 228 memcpy(&darray_top(wb->flushing.keys), 229 wb->inc.keys.data, 230 sizeof(wb->inc.keys.data[0]) * nr); 231 232 memmove(wb->inc.keys.data, 233 wb->inc.keys.data + nr, 234 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr)); 235 236 wb->flushing.keys.nr += nr; 237 wb->inc.keys.nr -= nr; 238 out: 239 if (!wb->inc.keys.nr) 240 bch2_journal_pin_drop(j, &wb->inc.pin); 241 else 242 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin, 243 bch2_btree_write_buffer_journal_flush); 244 245 if (j->watermark) { 246 spin_lock(&j->lock); 247 bch2_journal_set_watermark(j); 248 spin_unlock(&j->lock); 249 } 250 251 BUG_ON(wb->sorted.size < wb->flushing.keys.nr); 252 } 253 254 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans) 255 { 256 struct bch_fs *c = trans->c; 257 struct journal *j = &c->journal; 258 struct btree_write_buffer *wb = &c->btree_write_buffer; 259 struct btree_iter iter = { NULL }; 260 size_t skipped = 0, fast = 0, slowpath = 0; 261 bool write_locked = false; 262 int ret = 0; 263 264 bch2_trans_unlock(trans); 265 bch2_trans_begin(trans); 266 267 mutex_lock(&wb->inc.lock); 268 move_keys_from_inc_to_flushing(wb); 269 mutex_unlock(&wb->inc.lock); 270 271 for (size_t i = 0; i < wb->flushing.keys.nr; i++) { 272 wb->sorted.data[i].idx = i; 273 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree; 274 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos)); 275 } 276 wb->sorted.nr = wb->flushing.keys.nr; 277 278 /* 279 * We first sort so that we can detect and skip redundant updates, and 280 * then we attempt to flush in sorted btree order, as this is most 281 * efficient. 282 * 283 * However, since we're not flushing in the order they appear in the 284 * journal we won't be able to drop our journal pin until everything is 285 * flushed - which means this could deadlock the journal if we weren't 286 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail 287 * if it would block taking a journal reservation. 288 * 289 * If that happens, simply skip the key so we can optimistically insert 290 * as many keys as possible in the fast path. 291 */ 292 wb_sort(wb->sorted.data, wb->sorted.nr); 293 294 darray_for_each(wb->sorted, i) { 295 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx]; 296 297 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++) 298 prefetch(&wb->flushing.keys.data[n->idx]); 299 300 BUG_ON(!k->journal_seq); 301 302 if (i + 1 < &darray_top(wb->sorted) && 303 wb_key_eq(i, i + 1)) { 304 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx]; 305 306 skipped++; 307 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq); 308 k->journal_seq = 0; 309 continue; 310 } 311 312 if (write_locked) { 313 struct btree_path *path = btree_iter_path(trans, &iter); 314 315 if (path->btree_id != i->btree || 316 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) { 317 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 318 write_locked = false; 319 320 ret = lockrestart_do(trans, 321 bch2_btree_iter_traverse(&iter) ?: 322 bch2_foreground_maybe_merge(trans, iter.path, 0, 323 BCH_WATERMARK_reclaim| 324 BCH_TRANS_COMMIT_journal_reclaim| 325 BCH_TRANS_COMMIT_no_check_rw| 326 BCH_TRANS_COMMIT_no_enospc)); 327 if (ret) 328 goto err; 329 } 330 } 331 332 if (!iter.path || iter.btree_id != k->btree) { 333 bch2_trans_iter_exit(trans, &iter); 334 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p, 335 BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS); 336 } 337 338 bch2_btree_iter_set_pos(&iter, k->k.k.p); 339 btree_iter_path(trans, &iter)->preserve = false; 340 341 do { 342 if (race_fault()) { 343 ret = -BCH_ERR_journal_reclaim_would_deadlock; 344 break; 345 } 346 347 ret = wb_flush_one(trans, &iter, k, &write_locked, &fast); 348 if (!write_locked) 349 bch2_trans_begin(trans); 350 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); 351 352 if (!ret) { 353 k->journal_seq = 0; 354 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { 355 slowpath++; 356 ret = 0; 357 } else 358 break; 359 } 360 361 if (write_locked) { 362 struct btree_path *path = btree_iter_path(trans, &iter); 363 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 364 } 365 bch2_trans_iter_exit(trans, &iter); 366 367 if (ret) 368 goto err; 369 370 if (slowpath) { 371 /* 372 * Flush in the order they were present in the journal, so that 373 * we can release journal pins: 374 * The fastpath zapped the seq of keys that were successfully flushed so 375 * we can skip those here. 376 */ 377 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr); 378 379 sort(wb->flushing.keys.data, 380 wb->flushing.keys.nr, 381 sizeof(wb->flushing.keys.data[0]), 382 wb_key_seq_cmp, NULL); 383 384 darray_for_each(wb->flushing.keys, i) { 385 if (!i->journal_seq) 386 continue; 387 388 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin, 389 bch2_btree_write_buffer_journal_flush); 390 391 bch2_trans_begin(trans); 392 393 ret = commit_do(trans, NULL, NULL, 394 BCH_WATERMARK_reclaim| 395 BCH_TRANS_COMMIT_journal_reclaim| 396 BCH_TRANS_COMMIT_no_check_rw| 397 BCH_TRANS_COMMIT_no_enospc| 398 BCH_TRANS_COMMIT_no_journal_res , 399 btree_write_buffered_insert(trans, i)); 400 if (ret) 401 goto err; 402 } 403 } 404 err: 405 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret)); 406 trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0); 407 bch2_journal_pin_drop(j, &wb->flushing.pin); 408 wb->flushing.keys.nr = 0; 409 return ret; 410 } 411 412 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq) 413 { 414 struct journal *j = &c->journal; 415 struct journal_buf *buf; 416 int ret = 0; 417 418 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) { 419 ret = bch2_journal_keys_to_write_buffer(c, buf); 420 mutex_unlock(&j->buf_lock); 421 } 422 423 return ret; 424 } 425 426 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq) 427 { 428 struct bch_fs *c = trans->c; 429 struct btree_write_buffer *wb = &c->btree_write_buffer; 430 int ret = 0, fetch_from_journal_err; 431 432 do { 433 bch2_trans_unlock(trans); 434 435 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq); 436 437 /* 438 * On memory allocation failure, bch2_btree_write_buffer_flush_locked() 439 * is not guaranteed to empty wb->inc: 440 */ 441 mutex_lock(&wb->flushing.lock); 442 ret = bch2_btree_write_buffer_flush_locked(trans); 443 mutex_unlock(&wb->flushing.lock); 444 } while (!ret && 445 (fetch_from_journal_err || 446 (wb->inc.pin.seq && wb->inc.pin.seq <= seq) || 447 (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq))); 448 449 return ret; 450 } 451 452 static int bch2_btree_write_buffer_journal_flush(struct journal *j, 453 struct journal_entry_pin *_pin, u64 seq) 454 { 455 struct bch_fs *c = container_of(j, struct bch_fs, journal); 456 457 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq)); 458 } 459 460 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) 461 { 462 struct bch_fs *c = trans->c; 463 464 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_); 465 466 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal)); 467 } 468 469 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans) 470 { 471 struct bch_fs *c = trans->c; 472 struct btree_write_buffer *wb = &c->btree_write_buffer; 473 int ret = 0; 474 475 if (mutex_trylock(&wb->flushing.lock)) { 476 ret = bch2_btree_write_buffer_flush_locked(trans); 477 mutex_unlock(&wb->flushing.lock); 478 } 479 480 return ret; 481 } 482 483 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans) 484 { 485 struct bch_fs *c = trans->c; 486 487 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer)) 488 return -BCH_ERR_erofs_no_writes; 489 490 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans); 491 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 492 return ret; 493 } 494 495 static void bch2_btree_write_buffer_flush_work(struct work_struct *work) 496 { 497 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work); 498 struct btree_write_buffer *wb = &c->btree_write_buffer; 499 int ret; 500 501 mutex_lock(&wb->flushing.lock); 502 do { 503 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans)); 504 } while (!ret && bch2_btree_write_buffer_should_flush(c)); 505 mutex_unlock(&wb->flushing.lock); 506 507 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 508 } 509 510 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c, 511 struct journal_keys_to_wb *dst, 512 enum btree_id btree, struct bkey_i *k) 513 { 514 struct btree_write_buffer *wb = &c->btree_write_buffer; 515 int ret; 516 retry: 517 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL); 518 if (!ret && dst->wb == &wb->flushing) 519 ret = darray_resize(&wb->sorted, wb->flushing.keys.size); 520 521 if (unlikely(ret)) { 522 if (dst->wb == &c->btree_write_buffer.flushing) { 523 mutex_unlock(&dst->wb->lock); 524 dst->wb = &c->btree_write_buffer.inc; 525 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin, 526 bch2_btree_write_buffer_journal_flush); 527 goto retry; 528 } 529 530 return ret; 531 } 532 533 dst->room = darray_room(dst->wb->keys); 534 if (dst->wb == &wb->flushing) 535 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 536 BUG_ON(!dst->room); 537 BUG_ON(!dst->seq); 538 539 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys); 540 wb_k->journal_seq = dst->seq; 541 wb_k->btree = btree; 542 bkey_copy(&wb_k->k, k); 543 dst->wb->keys.nr++; 544 dst->room--; 545 return 0; 546 } 547 548 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq) 549 { 550 struct btree_write_buffer *wb = &c->btree_write_buffer; 551 552 if (mutex_trylock(&wb->flushing.lock)) { 553 mutex_lock(&wb->inc.lock); 554 move_keys_from_inc_to_flushing(wb); 555 556 /* 557 * Attempt to skip wb->inc, and add keys directly to 558 * wb->flushing, saving us a copy later: 559 */ 560 561 if (!wb->inc.keys.nr) { 562 dst->wb = &wb->flushing; 563 } else { 564 mutex_unlock(&wb->flushing.lock); 565 dst->wb = &wb->inc; 566 } 567 } else { 568 mutex_lock(&wb->inc.lock); 569 dst->wb = &wb->inc; 570 } 571 572 dst->room = darray_room(dst->wb->keys); 573 if (dst->wb == &wb->flushing) 574 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 575 dst->seq = seq; 576 577 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin, 578 bch2_btree_write_buffer_journal_flush); 579 } 580 581 void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst) 582 { 583 struct btree_write_buffer *wb = &c->btree_write_buffer; 584 585 if (!dst->wb->keys.nr) 586 bch2_journal_pin_drop(&c->journal, &dst->wb->pin); 587 588 if (bch2_btree_write_buffer_should_flush(c) && 589 __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) && 590 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work)) 591 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 592 593 if (dst->wb == &wb->flushing) 594 mutex_unlock(&wb->flushing.lock); 595 mutex_unlock(&wb->inc.lock); 596 } 597 598 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf) 599 { 600 struct journal_keys_to_wb dst; 601 int ret = 0; 602 603 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq)); 604 605 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) { 606 jset_entry_for_each_key(entry, k) { 607 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k); 608 if (ret) 609 goto out; 610 } 611 612 entry->type = BCH_JSET_ENTRY_btree_keys; 613 } 614 615 spin_lock(&c->journal.lock); 616 buf->need_flush_to_write_buffer = false; 617 spin_unlock(&c->journal.lock); 618 out: 619 bch2_journal_keys_to_write_buffer_end(c, &dst); 620 return ret; 621 } 622 623 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size) 624 { 625 if (wb->keys.size >= new_size) 626 return 0; 627 628 if (!mutex_trylock(&wb->lock)) 629 return -EINTR; 630 631 int ret = darray_resize(&wb->keys, new_size); 632 mutex_unlock(&wb->lock); 633 return ret; 634 } 635 636 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size) 637 { 638 struct btree_write_buffer *wb = &c->btree_write_buffer; 639 640 return wb_keys_resize(&wb->flushing, new_size) ?: 641 wb_keys_resize(&wb->inc, new_size); 642 } 643 644 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) 645 { 646 struct btree_write_buffer *wb = &c->btree_write_buffer; 647 648 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) && 649 !bch2_journal_error(&c->journal)); 650 651 darray_exit(&wb->sorted); 652 darray_exit(&wb->flushing.keys); 653 darray_exit(&wb->inc.keys); 654 } 655 656 int bch2_fs_btree_write_buffer_init(struct bch_fs *c) 657 { 658 struct btree_write_buffer *wb = &c->btree_write_buffer; 659 660 mutex_init(&wb->inc.lock); 661 mutex_init(&wb->flushing.lock); 662 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work); 663 664 /* Will be resized by journal as needed: */ 665 unsigned initial_size = 1 << 16; 666 667 return darray_make_room(&wb->inc.keys, initial_size) ?: 668 darray_make_room(&wb->flushing.keys, initial_size) ?: 669 darray_make_room(&wb->sorted, initial_size); 670 } 671