1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "bkey_buf.h" 5 #include "btree_locking.h" 6 #include "btree_update.h" 7 #include "btree_update_interior.h" 8 #include "btree_write_buffer.h" 9 #include "disk_accounting.h" 10 #include "error.h" 11 #include "extents.h" 12 #include "journal.h" 13 #include "journal_io.h" 14 #include "journal_reclaim.h" 15 16 #include <linux/prefetch.h> 17 #include <linux/sort.h> 18 19 static int bch2_btree_write_buffer_journal_flush(struct journal *, 20 struct journal_entry_pin *, u64); 21 22 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *); 23 24 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 25 { 26 return (cmp_int(l->hi, r->hi) ?: 27 cmp_int(l->mi, r->mi) ?: 28 cmp_int(l->lo, r->lo)) >= 0; 29 } 30 31 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 32 { 33 #ifdef CONFIG_X86_64 34 int cmp; 35 36 asm("mov (%[l]), %%rax;" 37 "sub (%[r]), %%rax;" 38 "mov 8(%[l]), %%rax;" 39 "sbb 8(%[r]), %%rax;" 40 "mov 16(%[l]), %%rax;" 41 "sbb 16(%[r]), %%rax;" 42 : "=@ccae" (cmp) 43 : [l] "r" (l), [r] "r" (r) 44 : "rax", "cc"); 45 46 EBUG_ON(cmp != __wb_key_ref_cmp(l, r)); 47 return cmp; 48 #else 49 return __wb_key_ref_cmp(l, r); 50 #endif 51 } 52 53 static int wb_key_seq_cmp(const void *_l, const void *_r) 54 { 55 const struct btree_write_buffered_key *l = _l; 56 const struct btree_write_buffered_key *r = _r; 57 58 return cmp_int(l->journal_seq, r->journal_seq); 59 } 60 61 /* Compare excluding idx, the low 24 bits: */ 62 static inline bool wb_key_eq(const void *_l, const void *_r) 63 { 64 const struct wb_key_ref *l = _l; 65 const struct wb_key_ref *r = _r; 66 67 return !((l->hi ^ r->hi)| 68 (l->mi ^ r->mi)| 69 ((l->lo >> 24) ^ (r->lo >> 24))); 70 } 71 72 static noinline void wb_sort(struct wb_key_ref *base, size_t num) 73 { 74 size_t n = num, a = num / 2; 75 76 if (!a) /* num < 2 || size == 0 */ 77 return; 78 79 for (;;) { 80 size_t b, c, d; 81 82 if (a) /* Building heap: sift down --a */ 83 --a; 84 else if (--n) /* Sorting: Extract root to --n */ 85 swap(base[0], base[n]); 86 else /* Sort complete */ 87 break; 88 89 /* 90 * Sift element at "a" down into heap. This is the 91 * "bottom-up" variant, which significantly reduces 92 * calls to cmp_func(): we find the sift-down path all 93 * the way to the leaves (one compare per level), then 94 * backtrack to find where to insert the target element. 95 * 96 * Because elements tend to sift down close to the leaves, 97 * this uses fewer compares than doing two per level 98 * on the way down. (A bit more than half as many on 99 * average, 3/4 worst-case.) 100 */ 101 for (b = a; c = 2*b + 1, (d = c + 1) < n;) 102 b = wb_key_ref_cmp(base + c, base + d) ? c : d; 103 if (d == n) /* Special case last leaf with no sibling */ 104 b = c; 105 106 /* Now backtrack from "b" to the correct location for "a" */ 107 while (b != a && wb_key_ref_cmp(base + a, base + b)) 108 b = (b - 1) / 2; 109 c = b; /* Where "a" belongs */ 110 while (b != a) { /* Shift it into place */ 111 b = (b - 1) / 2; 112 swap(base[b], base[c]); 113 } 114 } 115 } 116 117 static noinline int wb_flush_one_slowpath(struct btree_trans *trans, 118 struct btree_iter *iter, 119 struct btree_write_buffered_key *wb) 120 { 121 struct btree_path *path = btree_iter_path(trans, iter); 122 123 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 124 125 trans->journal_res.seq = wb->journal_seq; 126 127 return bch2_trans_update(trans, iter, &wb->k, 128 BTREE_UPDATE_internal_snapshot_node) ?: 129 bch2_trans_commit(trans, NULL, NULL, 130 BCH_TRANS_COMMIT_no_enospc| 131 BCH_TRANS_COMMIT_no_check_rw| 132 BCH_TRANS_COMMIT_no_journal_res| 133 BCH_TRANS_COMMIT_journal_reclaim); 134 } 135 136 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter, 137 struct btree_write_buffered_key *wb, 138 bool *write_locked, 139 bool *accounting_accumulated, 140 size_t *fast) 141 { 142 struct btree_path *path; 143 int ret; 144 145 EBUG_ON(!wb->journal_seq); 146 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq); 147 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq); 148 149 ret = bch2_btree_iter_traverse(iter); 150 if (ret) 151 return ret; 152 153 if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) { 154 struct bkey u; 155 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u); 156 157 if (k.k->type == KEY_TYPE_accounting) 158 bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k), 159 bkey_s_c_to_accounting(k)); 160 } 161 *accounting_accumulated = true; 162 163 /* 164 * We can't clone a path that has write locks: unshare it now, before 165 * set_pos and traverse(): 166 */ 167 if (btree_iter_path(trans, iter)->ref > 1) 168 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_); 169 170 path = btree_iter_path(trans, iter); 171 172 if (!*write_locked) { 173 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); 174 if (ret) 175 return ret; 176 177 bch2_btree_node_prep_for_write(trans, path, path->l[0].b); 178 *write_locked = true; 179 } 180 181 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) { 182 *write_locked = false; 183 return wb_flush_one_slowpath(trans, iter, wb); 184 } 185 186 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); 187 (*fast)++; 188 return 0; 189 } 190 191 /* 192 * Update a btree with a write buffered key using the journal seq of the 193 * original write buffer insert. 194 * 195 * It is not safe to rejournal the key once it has been inserted into the write 196 * buffer because that may break recovery ordering. For example, the key may 197 * have already been modified in the active write buffer in a seq that comes 198 * before the current transaction. If we were to journal this key again and 199 * crash, recovery would process updates in the wrong order. 200 */ 201 static int 202 btree_write_buffered_insert(struct btree_trans *trans, 203 struct btree_write_buffered_key *wb) 204 { 205 struct btree_iter iter; 206 int ret; 207 208 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), 209 BTREE_ITER_cached|BTREE_ITER_intent); 210 211 trans->journal_res.seq = wb->journal_seq; 212 213 ret = bch2_btree_iter_traverse(&iter) ?: 214 bch2_trans_update(trans, &iter, &wb->k, 215 BTREE_UPDATE_internal_snapshot_node); 216 bch2_trans_iter_exit(trans, &iter); 217 return ret; 218 } 219 220 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb) 221 { 222 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer); 223 struct journal *j = &c->journal; 224 225 if (!wb->inc.keys.nr) 226 return; 227 228 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin, 229 bch2_btree_write_buffer_journal_flush); 230 231 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr)); 232 darray_resize(&wb->sorted, wb->flushing.keys.size); 233 234 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) { 235 swap(wb->flushing.keys, wb->inc.keys); 236 goto out; 237 } 238 239 size_t nr = min(darray_room(wb->flushing.keys), 240 wb->sorted.size - wb->flushing.keys.nr); 241 nr = min(nr, wb->inc.keys.nr); 242 243 memcpy(&darray_top(wb->flushing.keys), 244 wb->inc.keys.data, 245 sizeof(wb->inc.keys.data[0]) * nr); 246 247 memmove(wb->inc.keys.data, 248 wb->inc.keys.data + nr, 249 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr)); 250 251 wb->flushing.keys.nr += nr; 252 wb->inc.keys.nr -= nr; 253 out: 254 if (!wb->inc.keys.nr) 255 bch2_journal_pin_drop(j, &wb->inc.pin); 256 else 257 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin, 258 bch2_btree_write_buffer_journal_flush); 259 260 if (j->watermark) { 261 spin_lock(&j->lock); 262 bch2_journal_set_watermark(j); 263 spin_unlock(&j->lock); 264 } 265 266 BUG_ON(wb->sorted.size < wb->flushing.keys.nr); 267 } 268 269 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans) 270 { 271 struct bch_fs *c = trans->c; 272 struct journal *j = &c->journal; 273 struct btree_write_buffer *wb = &c->btree_write_buffer; 274 struct btree_iter iter = { NULL }; 275 size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0; 276 bool write_locked = false; 277 bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags); 278 int ret = 0; 279 280 bch2_trans_unlock(trans); 281 bch2_trans_begin(trans); 282 283 mutex_lock(&wb->inc.lock); 284 move_keys_from_inc_to_flushing(wb); 285 mutex_unlock(&wb->inc.lock); 286 287 for (size_t i = 0; i < wb->flushing.keys.nr; i++) { 288 wb->sorted.data[i].idx = i; 289 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree; 290 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos)); 291 } 292 wb->sorted.nr = wb->flushing.keys.nr; 293 294 /* 295 * We first sort so that we can detect and skip redundant updates, and 296 * then we attempt to flush in sorted btree order, as this is most 297 * efficient. 298 * 299 * However, since we're not flushing in the order they appear in the 300 * journal we won't be able to drop our journal pin until everything is 301 * flushed - which means this could deadlock the journal if we weren't 302 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail 303 * if it would block taking a journal reservation. 304 * 305 * If that happens, simply skip the key so we can optimistically insert 306 * as many keys as possible in the fast path. 307 */ 308 wb_sort(wb->sorted.data, wb->sorted.nr); 309 310 darray_for_each(wb->sorted, i) { 311 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx]; 312 313 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++) 314 prefetch(&wb->flushing.keys.data[n->idx]); 315 316 BUG_ON(!k->journal_seq); 317 318 if (!accounting_replay_done && 319 k->k.k.type == KEY_TYPE_accounting) { 320 slowpath++; 321 continue; 322 } 323 324 if (i + 1 < &darray_top(wb->sorted) && 325 wb_key_eq(i, i + 1)) { 326 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx]; 327 328 if (k->k.k.type == KEY_TYPE_accounting && 329 n->k.k.type == KEY_TYPE_accounting) 330 bch2_accounting_accumulate(bkey_i_to_accounting(&n->k), 331 bkey_i_to_s_c_accounting(&k->k)); 332 333 overwritten++; 334 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq); 335 k->journal_seq = 0; 336 continue; 337 } 338 339 if (write_locked) { 340 struct btree_path *path = btree_iter_path(trans, &iter); 341 342 if (path->btree_id != i->btree || 343 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) { 344 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 345 write_locked = false; 346 347 ret = lockrestart_do(trans, 348 bch2_btree_iter_traverse(&iter) ?: 349 bch2_foreground_maybe_merge(trans, iter.path, 0, 350 BCH_WATERMARK_reclaim| 351 BCH_TRANS_COMMIT_journal_reclaim| 352 BCH_TRANS_COMMIT_no_check_rw| 353 BCH_TRANS_COMMIT_no_enospc)); 354 if (ret) 355 goto err; 356 } 357 } 358 359 if (!iter.path || iter.btree_id != k->btree) { 360 bch2_trans_iter_exit(trans, &iter); 361 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p, 362 BTREE_ITER_intent|BTREE_ITER_all_snapshots); 363 } 364 365 bch2_btree_iter_set_pos(&iter, k->k.k.p); 366 btree_iter_path(trans, &iter)->preserve = false; 367 368 bool accounting_accumulated = false; 369 do { 370 if (race_fault()) { 371 ret = -BCH_ERR_journal_reclaim_would_deadlock; 372 break; 373 } 374 375 ret = wb_flush_one(trans, &iter, k, &write_locked, 376 &accounting_accumulated, &fast); 377 if (!write_locked) 378 bch2_trans_begin(trans); 379 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); 380 381 if (!ret) { 382 k->journal_seq = 0; 383 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { 384 slowpath++; 385 ret = 0; 386 } else 387 break; 388 } 389 390 if (write_locked) { 391 struct btree_path *path = btree_iter_path(trans, &iter); 392 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 393 } 394 bch2_trans_iter_exit(trans, &iter); 395 396 if (ret) 397 goto err; 398 399 if (slowpath) { 400 /* 401 * Flush in the order they were present in the journal, so that 402 * we can release journal pins: 403 * The fastpath zapped the seq of keys that were successfully flushed so 404 * we can skip those here. 405 */ 406 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr); 407 408 sort(wb->flushing.keys.data, 409 wb->flushing.keys.nr, 410 sizeof(wb->flushing.keys.data[0]), 411 wb_key_seq_cmp, NULL); 412 413 darray_for_each(wb->flushing.keys, i) { 414 if (!i->journal_seq) 415 continue; 416 417 if (!accounting_replay_done && 418 i->k.k.type == KEY_TYPE_accounting) { 419 could_not_insert++; 420 continue; 421 } 422 423 if (!could_not_insert) 424 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin, 425 bch2_btree_write_buffer_journal_flush); 426 427 bch2_trans_begin(trans); 428 429 ret = commit_do(trans, NULL, NULL, 430 BCH_WATERMARK_reclaim| 431 BCH_TRANS_COMMIT_journal_reclaim| 432 BCH_TRANS_COMMIT_no_check_rw| 433 BCH_TRANS_COMMIT_no_enospc| 434 BCH_TRANS_COMMIT_no_journal_res , 435 btree_write_buffered_insert(trans, i)); 436 if (ret) 437 goto err; 438 439 i->journal_seq = 0; 440 } 441 442 /* 443 * If journal replay hasn't finished with accounting keys we 444 * can't flush accounting keys at all - condense them and leave 445 * them for next time. 446 * 447 * Q: Can the write buffer overflow? 448 * A Shouldn't be any actual risk. It's just new accounting 449 * updates that the write buffer can't flush, and those are only 450 * going to be generated by interior btree node updates as 451 * journal replay has to split/rewrite nodes to make room for 452 * its updates. 453 * 454 * And for those new acounting updates, updates to the same 455 * counters get accumulated as they're flushed from the journal 456 * to the write buffer - see the patch for eytzingcer tree 457 * accumulated. So we could only overflow if the number of 458 * distinct counters touched somehow was very large. 459 */ 460 if (could_not_insert) { 461 struct btree_write_buffered_key *dst = wb->flushing.keys.data; 462 463 darray_for_each(wb->flushing.keys, i) 464 if (i->journal_seq) 465 *dst++ = *i; 466 wb->flushing.keys.nr = dst - wb->flushing.keys.data; 467 } 468 } 469 err: 470 if (ret || !could_not_insert) { 471 bch2_journal_pin_drop(j, &wb->flushing.pin); 472 wb->flushing.keys.nr = 0; 473 } 474 475 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret)); 476 trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0); 477 return ret; 478 } 479 480 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq) 481 { 482 struct journal *j = &c->journal; 483 struct journal_buf *buf; 484 int ret = 0; 485 486 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) { 487 ret = bch2_journal_keys_to_write_buffer(c, buf); 488 mutex_unlock(&j->buf_lock); 489 } 490 491 return ret; 492 } 493 494 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq) 495 { 496 struct bch_fs *c = trans->c; 497 struct btree_write_buffer *wb = &c->btree_write_buffer; 498 int ret = 0, fetch_from_journal_err; 499 500 do { 501 bch2_trans_unlock(trans); 502 503 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq); 504 505 /* 506 * On memory allocation failure, bch2_btree_write_buffer_flush_locked() 507 * is not guaranteed to empty wb->inc: 508 */ 509 mutex_lock(&wb->flushing.lock); 510 ret = bch2_btree_write_buffer_flush_locked(trans); 511 mutex_unlock(&wb->flushing.lock); 512 } while (!ret && 513 (fetch_from_journal_err || 514 (wb->inc.pin.seq && wb->inc.pin.seq <= seq) || 515 (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq))); 516 517 return ret; 518 } 519 520 static int bch2_btree_write_buffer_journal_flush(struct journal *j, 521 struct journal_entry_pin *_pin, u64 seq) 522 { 523 struct bch_fs *c = container_of(j, struct bch_fs, journal); 524 525 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq)); 526 } 527 528 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) 529 { 530 struct bch_fs *c = trans->c; 531 532 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_); 533 534 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal)); 535 } 536 537 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans) 538 { 539 struct bch_fs *c = trans->c; 540 struct btree_write_buffer *wb = &c->btree_write_buffer; 541 int ret = 0; 542 543 if (mutex_trylock(&wb->flushing.lock)) { 544 ret = bch2_btree_write_buffer_flush_locked(trans); 545 mutex_unlock(&wb->flushing.lock); 546 } 547 548 return ret; 549 } 550 551 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans) 552 { 553 struct bch_fs *c = trans->c; 554 555 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer)) 556 return -BCH_ERR_erofs_no_writes; 557 558 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans); 559 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 560 return ret; 561 } 562 563 /* 564 * In check and repair code, when checking references to write buffer btrees we 565 * need to issue a flush before we have a definitive error: this issues a flush 566 * if this is a key we haven't yet checked. 567 */ 568 int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans, 569 struct bkey_s_c referring_k, 570 struct bkey_buf *last_flushed) 571 { 572 struct bch_fs *c = trans->c; 573 struct bkey_buf tmp; 574 int ret = 0; 575 576 bch2_bkey_buf_init(&tmp); 577 578 if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) { 579 bch2_bkey_buf_reassemble(&tmp, c, referring_k); 580 581 if (bkey_is_btree_ptr(referring_k.k)) { 582 bch2_trans_unlock(trans); 583 bch2_btree_interior_updates_flush(c); 584 } 585 586 ret = bch2_btree_write_buffer_flush_sync(trans); 587 if (ret) 588 goto err; 589 590 bch2_bkey_buf_copy(last_flushed, c, tmp.k); 591 ret = -BCH_ERR_transaction_restart_write_buffer_flush; 592 } 593 err: 594 bch2_bkey_buf_exit(&tmp, c); 595 return ret; 596 } 597 598 static void bch2_btree_write_buffer_flush_work(struct work_struct *work) 599 { 600 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work); 601 struct btree_write_buffer *wb = &c->btree_write_buffer; 602 int ret; 603 604 mutex_lock(&wb->flushing.lock); 605 do { 606 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans)); 607 } while (!ret && bch2_btree_write_buffer_should_flush(c)); 608 mutex_unlock(&wb->flushing.lock); 609 610 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 611 } 612 613 static void wb_accounting_sort(struct btree_write_buffer *wb) 614 { 615 eytzinger0_sort(wb->accounting.data, wb->accounting.nr, 616 sizeof(wb->accounting.data[0]), 617 wb_key_cmp, NULL); 618 } 619 620 int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree, 621 struct bkey_i_accounting *k) 622 { 623 struct btree_write_buffer *wb = &c->btree_write_buffer; 624 struct btree_write_buffered_key new = { .btree = btree }; 625 626 bkey_copy(&new.k, &k->k_i); 627 628 int ret = darray_push(&wb->accounting, new); 629 if (ret) 630 return ret; 631 632 wb_accounting_sort(wb); 633 return 0; 634 } 635 636 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c, 637 struct journal_keys_to_wb *dst, 638 enum btree_id btree, struct bkey_i *k) 639 { 640 struct btree_write_buffer *wb = &c->btree_write_buffer; 641 int ret; 642 retry: 643 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL); 644 if (!ret && dst->wb == &wb->flushing) 645 ret = darray_resize(&wb->sorted, wb->flushing.keys.size); 646 647 if (unlikely(ret)) { 648 if (dst->wb == &c->btree_write_buffer.flushing) { 649 mutex_unlock(&dst->wb->lock); 650 dst->wb = &c->btree_write_buffer.inc; 651 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin, 652 bch2_btree_write_buffer_journal_flush); 653 goto retry; 654 } 655 656 return ret; 657 } 658 659 dst->room = darray_room(dst->wb->keys); 660 if (dst->wb == &wb->flushing) 661 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 662 BUG_ON(!dst->room); 663 BUG_ON(!dst->seq); 664 665 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys); 666 wb_k->journal_seq = dst->seq; 667 wb_k->btree = btree; 668 bkey_copy(&wb_k->k, k); 669 dst->wb->keys.nr++; 670 dst->room--; 671 return 0; 672 } 673 674 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq) 675 { 676 struct btree_write_buffer *wb = &c->btree_write_buffer; 677 678 if (mutex_trylock(&wb->flushing.lock)) { 679 mutex_lock(&wb->inc.lock); 680 move_keys_from_inc_to_flushing(wb); 681 682 /* 683 * Attempt to skip wb->inc, and add keys directly to 684 * wb->flushing, saving us a copy later: 685 */ 686 687 if (!wb->inc.keys.nr) { 688 dst->wb = &wb->flushing; 689 } else { 690 mutex_unlock(&wb->flushing.lock); 691 dst->wb = &wb->inc; 692 } 693 } else { 694 mutex_lock(&wb->inc.lock); 695 dst->wb = &wb->inc; 696 } 697 698 dst->room = darray_room(dst->wb->keys); 699 if (dst->wb == &wb->flushing) 700 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 701 dst->seq = seq; 702 703 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin, 704 bch2_btree_write_buffer_journal_flush); 705 706 darray_for_each(wb->accounting, i) 707 memset(&i->k.v, 0, bkey_val_bytes(&i->k.k)); 708 } 709 710 int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst) 711 { 712 struct btree_write_buffer *wb = &c->btree_write_buffer; 713 unsigned live_accounting_keys = 0; 714 int ret = 0; 715 716 darray_for_each(wb->accounting, i) 717 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) { 718 i->journal_seq = dst->seq; 719 live_accounting_keys++; 720 ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k); 721 if (ret) 722 break; 723 } 724 725 if (live_accounting_keys * 2 < wb->accounting.nr) { 726 struct btree_write_buffered_key *dst = wb->accounting.data; 727 728 darray_for_each(wb->accounting, src) 729 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k))) 730 *dst++ = *src; 731 wb->accounting.nr = dst - wb->accounting.data; 732 wb_accounting_sort(wb); 733 } 734 735 if (!dst->wb->keys.nr) 736 bch2_journal_pin_drop(&c->journal, &dst->wb->pin); 737 738 if (bch2_btree_write_buffer_should_flush(c) && 739 __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) && 740 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work)) 741 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 742 743 if (dst->wb == &wb->flushing) 744 mutex_unlock(&wb->flushing.lock); 745 mutex_unlock(&wb->inc.lock); 746 747 return ret; 748 } 749 750 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf) 751 { 752 struct journal_keys_to_wb dst; 753 int ret = 0; 754 755 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq)); 756 757 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) { 758 jset_entry_for_each_key(entry, k) { 759 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k); 760 if (ret) 761 goto out; 762 } 763 764 entry->type = BCH_JSET_ENTRY_btree_keys; 765 } 766 767 spin_lock(&c->journal.lock); 768 buf->need_flush_to_write_buffer = false; 769 spin_unlock(&c->journal.lock); 770 out: 771 ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret; 772 return ret; 773 } 774 775 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size) 776 { 777 if (wb->keys.size >= new_size) 778 return 0; 779 780 if (!mutex_trylock(&wb->lock)) 781 return -EINTR; 782 783 int ret = darray_resize(&wb->keys, new_size); 784 mutex_unlock(&wb->lock); 785 return ret; 786 } 787 788 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size) 789 { 790 struct btree_write_buffer *wb = &c->btree_write_buffer; 791 792 return wb_keys_resize(&wb->flushing, new_size) ?: 793 wb_keys_resize(&wb->inc, new_size); 794 } 795 796 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) 797 { 798 struct btree_write_buffer *wb = &c->btree_write_buffer; 799 800 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) && 801 !bch2_journal_error(&c->journal)); 802 803 darray_exit(&wb->accounting); 804 darray_exit(&wb->sorted); 805 darray_exit(&wb->flushing.keys); 806 darray_exit(&wb->inc.keys); 807 } 808 809 int bch2_fs_btree_write_buffer_init(struct bch_fs *c) 810 { 811 struct btree_write_buffer *wb = &c->btree_write_buffer; 812 813 mutex_init(&wb->inc.lock); 814 mutex_init(&wb->flushing.lock); 815 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work); 816 817 /* Will be resized by journal as needed: */ 818 unsigned initial_size = 1 << 16; 819 820 return darray_make_room(&wb->inc.keys, initial_size) ?: 821 darray_make_room(&wb->flushing.keys, initial_size) ?: 822 darray_make_room(&wb->sorted, initial_size); 823 } 824