1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "btree_locking.h" 5 #include "btree_update.h" 6 #include "btree_update_interior.h" 7 #include "btree_write_buffer.h" 8 #include "error.h" 9 #include "journal.h" 10 #include "journal_io.h" 11 #include "journal_reclaim.h" 12 13 #include <linux/prefetch.h> 14 15 static int bch2_btree_write_buffer_journal_flush(struct journal *, 16 struct journal_entry_pin *, u64); 17 18 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *); 19 20 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 21 { 22 return (cmp_int(l->hi, r->hi) ?: 23 cmp_int(l->mi, r->mi) ?: 24 cmp_int(l->lo, r->lo)) >= 0; 25 } 26 27 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 28 { 29 #ifdef CONFIG_X86_64 30 int cmp; 31 32 asm("mov (%[l]), %%rax;" 33 "sub (%[r]), %%rax;" 34 "mov 8(%[l]), %%rax;" 35 "sbb 8(%[r]), %%rax;" 36 "mov 16(%[l]), %%rax;" 37 "sbb 16(%[r]), %%rax;" 38 : "=@ccae" (cmp) 39 : [l] "r" (l), [r] "r" (r) 40 : "rax", "cc"); 41 42 EBUG_ON(cmp != __wb_key_ref_cmp(l, r)); 43 return cmp; 44 #else 45 return __wb_key_ref_cmp(l, r); 46 #endif 47 } 48 49 /* Compare excluding idx, the low 24 bits: */ 50 static inline bool wb_key_eq(const void *_l, const void *_r) 51 { 52 const struct wb_key_ref *l = _l; 53 const struct wb_key_ref *r = _r; 54 55 return !((l->hi ^ r->hi)| 56 (l->mi ^ r->mi)| 57 ((l->lo >> 24) ^ (r->lo >> 24))); 58 } 59 60 static noinline void wb_sort(struct wb_key_ref *base, size_t num) 61 { 62 size_t n = num, a = num / 2; 63 64 if (!a) /* num < 2 || size == 0 */ 65 return; 66 67 for (;;) { 68 size_t b, c, d; 69 70 if (a) /* Building heap: sift down --a */ 71 --a; 72 else if (--n) /* Sorting: Extract root to --n */ 73 swap(base[0], base[n]); 74 else /* Sort complete */ 75 break; 76 77 /* 78 * Sift element at "a" down into heap. This is the 79 * "bottom-up" variant, which significantly reduces 80 * calls to cmp_func(): we find the sift-down path all 81 * the way to the leaves (one compare per level), then 82 * backtrack to find where to insert the target element. 83 * 84 * Because elements tend to sift down close to the leaves, 85 * this uses fewer compares than doing two per level 86 * on the way down. (A bit more than half as many on 87 * average, 3/4 worst-case.) 88 */ 89 for (b = a; c = 2*b + 1, (d = c + 1) < n;) 90 b = wb_key_ref_cmp(base + c, base + d) ? c : d; 91 if (d == n) /* Special case last leaf with no sibling */ 92 b = c; 93 94 /* Now backtrack from "b" to the correct location for "a" */ 95 while (b != a && wb_key_ref_cmp(base + a, base + b)) 96 b = (b - 1) / 2; 97 c = b; /* Where "a" belongs */ 98 while (b != a) { /* Shift it into place */ 99 b = (b - 1) / 2; 100 swap(base[b], base[c]); 101 } 102 } 103 } 104 105 static noinline int wb_flush_one_slowpath(struct btree_trans *trans, 106 struct btree_iter *iter, 107 struct btree_write_buffered_key *wb) 108 { 109 struct btree_path *path = btree_iter_path(trans, iter); 110 111 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 112 113 trans->journal_res.seq = wb->journal_seq; 114 115 return bch2_trans_update(trans, iter, &wb->k, 116 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: 117 bch2_trans_commit(trans, NULL, NULL, 118 BCH_TRANS_COMMIT_no_enospc| 119 BCH_TRANS_COMMIT_no_check_rw| 120 BCH_TRANS_COMMIT_no_journal_res| 121 BCH_TRANS_COMMIT_journal_reclaim); 122 } 123 124 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter, 125 struct btree_write_buffered_key *wb, 126 bool *write_locked, size_t *fast) 127 { 128 struct btree_path *path; 129 int ret; 130 131 EBUG_ON(!wb->journal_seq); 132 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq); 133 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq); 134 135 ret = bch2_btree_iter_traverse(iter); 136 if (ret) 137 return ret; 138 139 /* 140 * We can't clone a path that has write locks: unshare it now, before 141 * set_pos and traverse(): 142 */ 143 if (btree_iter_path(trans, iter)->ref > 1) 144 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_); 145 146 path = btree_iter_path(trans, iter); 147 148 if (!*write_locked) { 149 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); 150 if (ret) 151 return ret; 152 153 bch2_btree_node_prep_for_write(trans, path, path->l[0].b); 154 *write_locked = true; 155 } 156 157 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) { 158 *write_locked = false; 159 return wb_flush_one_slowpath(trans, iter, wb); 160 } 161 162 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); 163 (*fast)++; 164 return 0; 165 } 166 167 /* 168 * Update a btree with a write buffered key using the journal seq of the 169 * original write buffer insert. 170 * 171 * It is not safe to rejournal the key once it has been inserted into the write 172 * buffer because that may break recovery ordering. For example, the key may 173 * have already been modified in the active write buffer in a seq that comes 174 * before the current transaction. If we were to journal this key again and 175 * crash, recovery would process updates in the wrong order. 176 */ 177 static int 178 btree_write_buffered_insert(struct btree_trans *trans, 179 struct btree_write_buffered_key *wb) 180 { 181 struct btree_iter iter; 182 int ret; 183 184 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), 185 BTREE_ITER_CACHED|BTREE_ITER_INTENT); 186 187 trans->journal_res.seq = wb->journal_seq; 188 189 ret = bch2_btree_iter_traverse(&iter) ?: 190 bch2_trans_update(trans, &iter, &wb->k, 191 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); 192 bch2_trans_iter_exit(trans, &iter); 193 return ret; 194 } 195 196 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb) 197 { 198 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer); 199 struct journal *j = &c->journal; 200 201 if (!wb->inc.keys.nr) 202 return; 203 204 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin, 205 bch2_btree_write_buffer_journal_flush); 206 207 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr)); 208 darray_resize(&wb->sorted, wb->flushing.keys.size); 209 210 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) { 211 swap(wb->flushing.keys, wb->inc.keys); 212 goto out; 213 } 214 215 size_t nr = min(darray_room(wb->flushing.keys), 216 wb->sorted.size - wb->flushing.keys.nr); 217 nr = min(nr, wb->inc.keys.nr); 218 219 memcpy(&darray_top(wb->flushing.keys), 220 wb->inc.keys.data, 221 sizeof(wb->inc.keys.data[0]) * nr); 222 223 memmove(wb->inc.keys.data, 224 wb->inc.keys.data + nr, 225 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr)); 226 227 wb->flushing.keys.nr += nr; 228 wb->inc.keys.nr -= nr; 229 out: 230 if (!wb->inc.keys.nr) 231 bch2_journal_pin_drop(j, &wb->inc.pin); 232 else 233 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin, 234 bch2_btree_write_buffer_journal_flush); 235 236 if (j->watermark) { 237 spin_lock(&j->lock); 238 bch2_journal_set_watermark(j); 239 spin_unlock(&j->lock); 240 } 241 242 BUG_ON(wb->sorted.size < wb->flushing.keys.nr); 243 } 244 245 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans) 246 { 247 struct bch_fs *c = trans->c; 248 struct journal *j = &c->journal; 249 struct btree_write_buffer *wb = &c->btree_write_buffer; 250 struct btree_iter iter = { NULL }; 251 size_t skipped = 0, fast = 0, slowpath = 0; 252 bool write_locked = false; 253 int ret = 0; 254 255 bch2_trans_unlock(trans); 256 bch2_trans_begin(trans); 257 258 mutex_lock(&wb->inc.lock); 259 move_keys_from_inc_to_flushing(wb); 260 mutex_unlock(&wb->inc.lock); 261 262 for (size_t i = 0; i < wb->flushing.keys.nr; i++) { 263 wb->sorted.data[i].idx = i; 264 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree; 265 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos)); 266 } 267 wb->sorted.nr = wb->flushing.keys.nr; 268 269 /* 270 * We first sort so that we can detect and skip redundant updates, and 271 * then we attempt to flush in sorted btree order, as this is most 272 * efficient. 273 * 274 * However, since we're not flushing in the order they appear in the 275 * journal we won't be able to drop our journal pin until everything is 276 * flushed - which means this could deadlock the journal if we weren't 277 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail 278 * if it would block taking a journal reservation. 279 * 280 * If that happens, simply skip the key so we can optimistically insert 281 * as many keys as possible in the fast path. 282 */ 283 wb_sort(wb->sorted.data, wb->sorted.nr); 284 285 darray_for_each(wb->sorted, i) { 286 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx]; 287 288 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++) 289 prefetch(&wb->flushing.keys.data[n->idx]); 290 291 BUG_ON(!k->journal_seq); 292 293 if (i + 1 < &darray_top(wb->sorted) && 294 wb_key_eq(i, i + 1)) { 295 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx]; 296 297 skipped++; 298 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq); 299 k->journal_seq = 0; 300 continue; 301 } 302 303 if (write_locked) { 304 struct btree_path *path = btree_iter_path(trans, &iter); 305 306 if (path->btree_id != i->btree || 307 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) { 308 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 309 write_locked = false; 310 } 311 } 312 313 if (!iter.path || iter.btree_id != k->btree) { 314 bch2_trans_iter_exit(trans, &iter); 315 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p, 316 BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS); 317 } 318 319 bch2_btree_iter_set_pos(&iter, k->k.k.p); 320 btree_iter_path(trans, &iter)->preserve = false; 321 322 do { 323 if (race_fault()) { 324 ret = -BCH_ERR_journal_reclaim_would_deadlock; 325 break; 326 } 327 328 ret = wb_flush_one(trans, &iter, k, &write_locked, &fast); 329 if (!write_locked) 330 bch2_trans_begin(trans); 331 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); 332 333 if (!ret) { 334 k->journal_seq = 0; 335 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { 336 slowpath++; 337 ret = 0; 338 } else 339 break; 340 } 341 342 if (write_locked) { 343 struct btree_path *path = btree_iter_path(trans, &iter); 344 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 345 } 346 bch2_trans_iter_exit(trans, &iter); 347 348 if (ret) 349 goto err; 350 351 if (slowpath) { 352 /* 353 * Flush in the order they were present in the journal, so that 354 * we can release journal pins: 355 * The fastpath zapped the seq of keys that were successfully flushed so 356 * we can skip those here. 357 */ 358 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr); 359 360 darray_for_each(wb->flushing.keys, i) { 361 if (!i->journal_seq) 362 continue; 363 364 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin, 365 bch2_btree_write_buffer_journal_flush); 366 367 bch2_trans_begin(trans); 368 369 ret = commit_do(trans, NULL, NULL, 370 BCH_WATERMARK_reclaim| 371 BCH_TRANS_COMMIT_no_check_rw| 372 BCH_TRANS_COMMIT_no_enospc| 373 BCH_TRANS_COMMIT_no_journal_res| 374 BCH_TRANS_COMMIT_journal_reclaim, 375 btree_write_buffered_insert(trans, i)); 376 if (ret) 377 goto err; 378 } 379 } 380 err: 381 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret)); 382 trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0); 383 bch2_journal_pin_drop(j, &wb->flushing.pin); 384 wb->flushing.keys.nr = 0; 385 return ret; 386 } 387 388 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq) 389 { 390 struct journal *j = &c->journal; 391 struct journal_buf *buf; 392 int ret = 0; 393 394 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) { 395 ret = bch2_journal_keys_to_write_buffer(c, buf); 396 mutex_unlock(&j->buf_lock); 397 } 398 399 return ret; 400 } 401 402 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq) 403 { 404 struct bch_fs *c = trans->c; 405 struct btree_write_buffer *wb = &c->btree_write_buffer; 406 int ret = 0, fetch_from_journal_err; 407 408 do { 409 bch2_trans_unlock(trans); 410 411 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq); 412 413 /* 414 * On memory allocation failure, bch2_btree_write_buffer_flush_locked() 415 * is not guaranteed to empty wb->inc: 416 */ 417 mutex_lock(&wb->flushing.lock); 418 ret = bch2_btree_write_buffer_flush_locked(trans); 419 mutex_unlock(&wb->flushing.lock); 420 } while (!ret && 421 (fetch_from_journal_err || 422 (wb->inc.pin.seq && wb->inc.pin.seq <= seq) || 423 (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq))); 424 425 return ret; 426 } 427 428 static int bch2_btree_write_buffer_journal_flush(struct journal *j, 429 struct journal_entry_pin *_pin, u64 seq) 430 { 431 struct bch_fs *c = container_of(j, struct bch_fs, journal); 432 433 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq)); 434 } 435 436 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) 437 { 438 struct bch_fs *c = trans->c; 439 440 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_); 441 442 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal)); 443 } 444 445 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans) 446 { 447 struct bch_fs *c = trans->c; 448 struct btree_write_buffer *wb = &c->btree_write_buffer; 449 int ret = 0; 450 451 if (mutex_trylock(&wb->flushing.lock)) { 452 ret = bch2_btree_write_buffer_flush_locked(trans); 453 mutex_unlock(&wb->flushing.lock); 454 } 455 456 return ret; 457 } 458 459 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans) 460 { 461 struct bch_fs *c = trans->c; 462 463 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer)) 464 return -BCH_ERR_erofs_no_writes; 465 466 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans); 467 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 468 return ret; 469 } 470 471 static void bch2_btree_write_buffer_flush_work(struct work_struct *work) 472 { 473 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work); 474 struct btree_write_buffer *wb = &c->btree_write_buffer; 475 int ret; 476 477 mutex_lock(&wb->flushing.lock); 478 do { 479 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans)); 480 } while (!ret && bch2_btree_write_buffer_should_flush(c)); 481 mutex_unlock(&wb->flushing.lock); 482 483 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 484 } 485 486 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c, 487 struct journal_keys_to_wb *dst, 488 enum btree_id btree, struct bkey_i *k) 489 { 490 struct btree_write_buffer *wb = &c->btree_write_buffer; 491 int ret; 492 retry: 493 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL); 494 if (!ret && dst->wb == &wb->flushing) 495 ret = darray_resize(&wb->sorted, wb->flushing.keys.size); 496 497 if (unlikely(ret)) { 498 if (dst->wb == &c->btree_write_buffer.flushing) { 499 mutex_unlock(&dst->wb->lock); 500 dst->wb = &c->btree_write_buffer.inc; 501 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin, 502 bch2_btree_write_buffer_journal_flush); 503 goto retry; 504 } 505 506 return ret; 507 } 508 509 dst->room = darray_room(dst->wb->keys); 510 if (dst->wb == &wb->flushing) 511 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 512 BUG_ON(!dst->room); 513 BUG_ON(!dst->seq); 514 515 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys); 516 wb_k->journal_seq = dst->seq; 517 wb_k->btree = btree; 518 bkey_copy(&wb_k->k, k); 519 dst->wb->keys.nr++; 520 dst->room--; 521 return 0; 522 } 523 524 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq) 525 { 526 struct btree_write_buffer *wb = &c->btree_write_buffer; 527 528 if (mutex_trylock(&wb->flushing.lock)) { 529 mutex_lock(&wb->inc.lock); 530 move_keys_from_inc_to_flushing(wb); 531 532 /* 533 * Attempt to skip wb->inc, and add keys directly to 534 * wb->flushing, saving us a copy later: 535 */ 536 537 if (!wb->inc.keys.nr) { 538 dst->wb = &wb->flushing; 539 } else { 540 mutex_unlock(&wb->flushing.lock); 541 dst->wb = &wb->inc; 542 } 543 } else { 544 mutex_lock(&wb->inc.lock); 545 dst->wb = &wb->inc; 546 } 547 548 dst->room = darray_room(dst->wb->keys); 549 if (dst->wb == &wb->flushing) 550 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 551 dst->seq = seq; 552 553 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin, 554 bch2_btree_write_buffer_journal_flush); 555 } 556 557 void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst) 558 { 559 struct btree_write_buffer *wb = &c->btree_write_buffer; 560 561 if (!dst->wb->keys.nr) 562 bch2_journal_pin_drop(&c->journal, &dst->wb->pin); 563 564 if (bch2_btree_write_buffer_should_flush(c) && 565 __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) && 566 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work)) 567 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); 568 569 if (dst->wb == &wb->flushing) 570 mutex_unlock(&wb->flushing.lock); 571 mutex_unlock(&wb->inc.lock); 572 } 573 574 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf) 575 { 576 struct journal_keys_to_wb dst; 577 int ret = 0; 578 579 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq)); 580 581 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) { 582 jset_entry_for_each_key(entry, k) { 583 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k); 584 if (ret) 585 goto out; 586 } 587 588 entry->type = BCH_JSET_ENTRY_btree_keys; 589 } 590 591 spin_lock(&c->journal.lock); 592 buf->need_flush_to_write_buffer = false; 593 spin_unlock(&c->journal.lock); 594 out: 595 bch2_journal_keys_to_write_buffer_end(c, &dst); 596 return ret; 597 } 598 599 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size) 600 { 601 if (wb->keys.size >= new_size) 602 return 0; 603 604 if (!mutex_trylock(&wb->lock)) 605 return -EINTR; 606 607 int ret = darray_resize(&wb->keys, new_size); 608 mutex_unlock(&wb->lock); 609 return ret; 610 } 611 612 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size) 613 { 614 struct btree_write_buffer *wb = &c->btree_write_buffer; 615 616 return wb_keys_resize(&wb->flushing, new_size) ?: 617 wb_keys_resize(&wb->inc, new_size); 618 } 619 620 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) 621 { 622 struct btree_write_buffer *wb = &c->btree_write_buffer; 623 624 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) && 625 !bch2_journal_error(&c->journal)); 626 627 darray_exit(&wb->sorted); 628 darray_exit(&wb->flushing.keys); 629 darray_exit(&wb->inc.keys); 630 } 631 632 int bch2_fs_btree_write_buffer_init(struct bch_fs *c) 633 { 634 struct btree_write_buffer *wb = &c->btree_write_buffer; 635 636 mutex_init(&wb->inc.lock); 637 mutex_init(&wb->flushing.lock); 638 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work); 639 640 /* Will be resized by journal as needed: */ 641 unsigned initial_size = 1 << 16; 642 643 return darray_make_room(&wb->inc.keys, initial_size) ?: 644 darray_make_room(&wb->flushing.keys, initial_size) ?: 645 darray_make_room(&wb->sorted, initial_size); 646 } 647