1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "bkey_buf.h" 5 #include "btree_locking.h" 6 #include "btree_update.h" 7 #include "btree_update_interior.h" 8 #include "btree_write_buffer.h" 9 #include "disk_accounting.h" 10 #include "enumerated_ref.h" 11 #include "error.h" 12 #include "extents.h" 13 #include "journal.h" 14 #include "journal_io.h" 15 #include "journal_reclaim.h" 16 17 #include <linux/prefetch.h> 18 #include <linux/sort.h> 19 20 static int bch2_btree_write_buffer_journal_flush(struct journal *, 21 struct journal_entry_pin *, u64); 22 23 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 24 { 25 return (cmp_int(l->hi, r->hi) ?: 26 cmp_int(l->mi, r->mi) ?: 27 cmp_int(l->lo, r->lo)) >= 0; 28 } 29 30 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 31 { 32 #ifdef CONFIG_X86_64 33 int cmp; 34 35 asm("mov (%[l]), %%rax;" 36 "sub (%[r]), %%rax;" 37 "mov 8(%[l]), %%rax;" 38 "sbb 8(%[r]), %%rax;" 39 "mov 16(%[l]), %%rax;" 40 "sbb 16(%[r]), %%rax;" 41 : "=@ccae" (cmp) 42 : [l] "r" (l), [r] "r" (r) 43 : "rax", "cc"); 44 45 EBUG_ON(cmp != __wb_key_ref_cmp(l, r)); 46 return cmp; 47 #else 48 return __wb_key_ref_cmp(l, r); 49 #endif 50 } 51 52 static int wb_key_seq_cmp(const void *_l, const void *_r) 53 { 54 const struct btree_write_buffered_key *l = _l; 55 const struct btree_write_buffered_key *r = _r; 56 57 return cmp_int(l->journal_seq, r->journal_seq); 58 } 59 60 /* Compare excluding idx, the low 24 bits: */ 61 static inline bool wb_key_eq(const void *_l, const void *_r) 62 { 63 const struct wb_key_ref *l = _l; 64 const struct wb_key_ref *r = _r; 65 66 return !((l->hi ^ r->hi)| 67 (l->mi ^ r->mi)| 68 ((l->lo >> 24) ^ (r->lo >> 24))); 69 } 70 71 static noinline void wb_sort(struct wb_key_ref *base, size_t num) 72 { 73 size_t n = num, a = num / 2; 74 75 if (!a) /* num < 2 || size == 0 */ 76 return; 77 78 for (;;) { 79 size_t b, c, d; 80 81 if (a) /* Building heap: sift down --a */ 82 --a; 83 else if (--n) /* Sorting: Extract root to --n */ 84 swap(base[0], base[n]); 85 else /* Sort complete */ 86 break; 87 88 /* 89 * Sift element at "a" down into heap. This is the 90 * "bottom-up" variant, which significantly reduces 91 * calls to cmp_func(): we find the sift-down path all 92 * the way to the leaves (one compare per level), then 93 * backtrack to find where to insert the target element. 94 * 95 * Because elements tend to sift down close to the leaves, 96 * this uses fewer compares than doing two per level 97 * on the way down. (A bit more than half as many on 98 * average, 3/4 worst-case.) 99 */ 100 for (b = a; c = 2*b + 1, (d = c + 1) < n;) 101 b = wb_key_ref_cmp(base + c, base + d) ? c : d; 102 if (d == n) /* Special case last leaf with no sibling */ 103 b = c; 104 105 /* Now backtrack from "b" to the correct location for "a" */ 106 while (b != a && wb_key_ref_cmp(base + a, base + b)) 107 b = (b - 1) / 2; 108 c = b; /* Where "a" belongs */ 109 while (b != a) { /* Shift it into place */ 110 b = (b - 1) / 2; 111 swap(base[b], base[c]); 112 } 113 } 114 } 115 116 static noinline int wb_flush_one_slowpath(struct btree_trans *trans, 117 struct btree_iter *iter, 118 struct btree_write_buffered_key *wb) 119 { 120 struct btree_path *path = btree_iter_path(trans, iter); 121 122 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 123 124 trans->journal_res.seq = wb->journal_seq; 125 126 return bch2_trans_update(trans, iter, &wb->k, 127 BTREE_UPDATE_internal_snapshot_node) ?: 128 bch2_trans_commit(trans, NULL, NULL, 129 BCH_TRANS_COMMIT_no_enospc| 130 BCH_TRANS_COMMIT_no_check_rw| 131 BCH_TRANS_COMMIT_no_journal_res| 132 BCH_TRANS_COMMIT_journal_reclaim); 133 } 134 135 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter, 136 struct btree_write_buffered_key *wb, 137 bool *write_locked, 138 bool *accounting_accumulated, 139 size_t *fast) 140 { 141 struct btree_path *path; 142 int ret; 143 144 EBUG_ON(!wb->journal_seq); 145 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq); 146 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq); 147 148 ret = bch2_btree_iter_traverse(trans, iter); 149 if (ret) 150 return ret; 151 152 if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) { 153 struct bkey u; 154 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u); 155 156 if (k.k->type == KEY_TYPE_accounting) 157 bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k), 158 bkey_s_c_to_accounting(k)); 159 } 160 *accounting_accumulated = true; 161 162 /* 163 * We can't clone a path that has write locks: unshare it now, before 164 * set_pos and traverse(): 165 */ 166 if (btree_iter_path(trans, iter)->ref > 1) 167 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_); 168 169 path = btree_iter_path(trans, iter); 170 171 if (!*write_locked) { 172 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); 173 if (ret) 174 return ret; 175 176 bch2_btree_node_prep_for_write(trans, path, path->l[0].b); 177 *write_locked = true; 178 } 179 180 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) { 181 *write_locked = false; 182 return wb_flush_one_slowpath(trans, iter, wb); 183 } 184 185 EBUG_ON(!bpos_eq(wb->k.k.p, path->pos)); 186 187 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); 188 (*fast)++; 189 return 0; 190 } 191 192 /* 193 * Update a btree with a write buffered key using the journal seq of the 194 * original write buffer insert. 195 * 196 * It is not safe to rejournal the key once it has been inserted into the write 197 * buffer because that may break recovery ordering. For example, the key may 198 * have already been modified in the active write buffer in a seq that comes 199 * before the current transaction. If we were to journal this key again and 200 * crash, recovery would process updates in the wrong order. 201 */ 202 static int 203 btree_write_buffered_insert(struct btree_trans *trans, 204 struct btree_write_buffered_key *wb) 205 { 206 struct btree_iter iter; 207 int ret; 208 209 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), 210 BTREE_ITER_cached|BTREE_ITER_intent); 211 212 trans->journal_res.seq = wb->journal_seq; 213 214 ret = bch2_btree_iter_traverse(trans, &iter) ?: 215 bch2_trans_update(trans, &iter, &wb->k, 216 BTREE_UPDATE_internal_snapshot_node); 217 bch2_trans_iter_exit(trans, &iter); 218 return ret; 219 } 220 221 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb) 222 { 223 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer); 224 struct journal *j = &c->journal; 225 226 if (!wb->inc.keys.nr) 227 return; 228 229 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin, 230 bch2_btree_write_buffer_journal_flush); 231 232 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr)); 233 darray_resize(&wb->sorted, wb->flushing.keys.size); 234 235 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) { 236 swap(wb->flushing.keys, wb->inc.keys); 237 goto out; 238 } 239 240 size_t nr = min(darray_room(wb->flushing.keys), 241 wb->sorted.size - wb->flushing.keys.nr); 242 nr = min(nr, wb->inc.keys.nr); 243 244 memcpy(&darray_top(wb->flushing.keys), 245 wb->inc.keys.data, 246 sizeof(wb->inc.keys.data[0]) * nr); 247 248 memmove(wb->inc.keys.data, 249 wb->inc.keys.data + nr, 250 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr)); 251 252 wb->flushing.keys.nr += nr; 253 wb->inc.keys.nr -= nr; 254 out: 255 if (!wb->inc.keys.nr) 256 bch2_journal_pin_drop(j, &wb->inc.pin); 257 else 258 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin, 259 bch2_btree_write_buffer_journal_flush); 260 261 if (j->watermark) { 262 spin_lock(&j->lock); 263 bch2_journal_set_watermark(j); 264 spin_unlock(&j->lock); 265 } 266 267 BUG_ON(wb->sorted.size < wb->flushing.keys.nr); 268 } 269 270 int bch2_btree_write_buffer_insert_err(struct btree_trans *trans, 271 enum btree_id btree, struct bkey_i *k) 272 { 273 struct bch_fs *c = trans->c; 274 struct printbuf buf = PRINTBUF; 275 276 prt_printf(&buf, "attempting to do write buffer update on non wb btree="); 277 bch2_btree_id_to_text(&buf, btree); 278 prt_str(&buf, "\n"); 279 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k)); 280 281 bch2_fs_inconsistent(c, "%s", buf.buf); 282 printbuf_exit(&buf); 283 return -EROFS; 284 } 285 286 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans) 287 { 288 struct bch_fs *c = trans->c; 289 struct journal *j = &c->journal; 290 struct btree_write_buffer *wb = &c->btree_write_buffer; 291 struct btree_iter iter = {}; 292 size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0; 293 bool write_locked = false; 294 bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags); 295 int ret = 0; 296 297 ret = bch2_journal_error(&c->journal); 298 if (ret) 299 return ret; 300 301 bch2_trans_unlock(trans); 302 bch2_trans_begin(trans); 303 304 mutex_lock(&wb->inc.lock); 305 move_keys_from_inc_to_flushing(wb); 306 mutex_unlock(&wb->inc.lock); 307 308 for (size_t i = 0; i < wb->flushing.keys.nr; i++) { 309 wb->sorted.data[i].idx = i; 310 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree; 311 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos)); 312 } 313 wb->sorted.nr = wb->flushing.keys.nr; 314 315 /* 316 * We first sort so that we can detect and skip redundant updates, and 317 * then we attempt to flush in sorted btree order, as this is most 318 * efficient. 319 * 320 * However, since we're not flushing in the order they appear in the 321 * journal we won't be able to drop our journal pin until everything is 322 * flushed - which means this could deadlock the journal if we weren't 323 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail 324 * if it would block taking a journal reservation. 325 * 326 * If that happens, simply skip the key so we can optimistically insert 327 * as many keys as possible in the fast path. 328 */ 329 wb_sort(wb->sorted.data, wb->sorted.nr); 330 331 darray_for_each(wb->sorted, i) { 332 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx]; 333 334 if (unlikely(!btree_type_uses_write_buffer(k->btree))) { 335 ret = bch2_btree_write_buffer_insert_err(trans, k->btree, &k->k); 336 goto err; 337 } 338 339 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++) 340 prefetch(&wb->flushing.keys.data[n->idx]); 341 342 BUG_ON(!k->journal_seq); 343 344 if (!accounting_replay_done && 345 k->k.k.type == KEY_TYPE_accounting) { 346 slowpath++; 347 continue; 348 } 349 350 if (i + 1 < &darray_top(wb->sorted) && 351 wb_key_eq(i, i + 1)) { 352 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx]; 353 354 if (k->k.k.type == KEY_TYPE_accounting && 355 n->k.k.type == KEY_TYPE_accounting) 356 bch2_accounting_accumulate(bkey_i_to_accounting(&n->k), 357 bkey_i_to_s_c_accounting(&k->k)); 358 359 overwritten++; 360 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq); 361 k->journal_seq = 0; 362 continue; 363 } 364 365 if (write_locked) { 366 struct btree_path *path = btree_iter_path(trans, &iter); 367 368 if (path->btree_id != i->btree || 369 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) { 370 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 371 write_locked = false; 372 373 ret = lockrestart_do(trans, 374 bch2_btree_iter_traverse(trans, &iter) ?: 375 bch2_foreground_maybe_merge(trans, iter.path, 0, 376 BCH_WATERMARK_reclaim| 377 BCH_TRANS_COMMIT_journal_reclaim| 378 BCH_TRANS_COMMIT_no_check_rw| 379 BCH_TRANS_COMMIT_no_enospc)); 380 if (ret) 381 goto err; 382 } 383 } 384 385 if (!iter.path || iter.btree_id != k->btree) { 386 bch2_trans_iter_exit(trans, &iter); 387 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p, 388 BTREE_ITER_intent|BTREE_ITER_all_snapshots); 389 } 390 391 bch2_btree_iter_set_pos(trans, &iter, k->k.k.p); 392 btree_iter_path(trans, &iter)->preserve = false; 393 394 bool accounting_accumulated = false; 395 do { 396 if (race_fault()) { 397 ret = bch_err_throw(c, journal_reclaim_would_deadlock); 398 break; 399 } 400 401 ret = wb_flush_one(trans, &iter, k, &write_locked, 402 &accounting_accumulated, &fast); 403 if (!write_locked) 404 bch2_trans_begin(trans); 405 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); 406 407 if (!ret) { 408 k->journal_seq = 0; 409 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { 410 slowpath++; 411 ret = 0; 412 } else 413 break; 414 } 415 416 if (write_locked) { 417 struct btree_path *path = btree_iter_path(trans, &iter); 418 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 419 } 420 bch2_trans_iter_exit(trans, &iter); 421 422 if (ret) 423 goto err; 424 425 if (slowpath) { 426 /* 427 * Flush in the order they were present in the journal, so that 428 * we can release journal pins: 429 * The fastpath zapped the seq of keys that were successfully flushed so 430 * we can skip those here. 431 */ 432 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr); 433 434 sort_nonatomic(wb->flushing.keys.data, 435 wb->flushing.keys.nr, 436 sizeof(wb->flushing.keys.data[0]), 437 wb_key_seq_cmp, NULL); 438 439 darray_for_each(wb->flushing.keys, i) { 440 if (!i->journal_seq) 441 continue; 442 443 if (!accounting_replay_done && 444 i->k.k.type == KEY_TYPE_accounting) { 445 could_not_insert++; 446 continue; 447 } 448 449 if (!could_not_insert) 450 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin, 451 bch2_btree_write_buffer_journal_flush); 452 453 bch2_trans_begin(trans); 454 455 ret = commit_do(trans, NULL, NULL, 456 BCH_WATERMARK_reclaim| 457 BCH_TRANS_COMMIT_journal_reclaim| 458 BCH_TRANS_COMMIT_no_check_rw| 459 BCH_TRANS_COMMIT_no_enospc| 460 BCH_TRANS_COMMIT_no_journal_res , 461 btree_write_buffered_insert(trans, i)); 462 if (ret) 463 goto err; 464 465 i->journal_seq = 0; 466 } 467 468 /* 469 * If journal replay hasn't finished with accounting keys we 470 * can't flush accounting keys at all - condense them and leave 471 * them for next time. 472 * 473 * Q: Can the write buffer overflow? 474 * A Shouldn't be any actual risk. It's just new accounting 475 * updates that the write buffer can't flush, and those are only 476 * going to be generated by interior btree node updates as 477 * journal replay has to split/rewrite nodes to make room for 478 * its updates. 479 * 480 * And for those new acounting updates, updates to the same 481 * counters get accumulated as they're flushed from the journal 482 * to the write buffer - see the patch for eytzingcer tree 483 * accumulated. So we could only overflow if the number of 484 * distinct counters touched somehow was very large. 485 */ 486 if (could_not_insert) { 487 struct btree_write_buffered_key *dst = wb->flushing.keys.data; 488 489 darray_for_each(wb->flushing.keys, i) 490 if (i->journal_seq) 491 *dst++ = *i; 492 wb->flushing.keys.nr = dst - wb->flushing.keys.data; 493 } 494 } 495 err: 496 if (ret || !could_not_insert) { 497 bch2_journal_pin_drop(j, &wb->flushing.pin); 498 wb->flushing.keys.nr = 0; 499 } 500 501 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret)); 502 trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0); 503 return ret; 504 } 505 506 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf) 507 { 508 struct journal_keys_to_wb dst; 509 int ret = 0; 510 511 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq)); 512 513 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) { 514 jset_entry_for_each_key(entry, k) { 515 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k); 516 if (ret) 517 goto out; 518 } 519 520 entry->type = BCH_JSET_ENTRY_btree_keys; 521 } 522 out: 523 ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret; 524 return ret; 525 } 526 527 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 max_seq) 528 { 529 struct journal *j = &c->journal; 530 struct journal_buf *buf; 531 bool blocked; 532 int ret = 0; 533 534 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, max_seq, &blocked))) { 535 ret = bch2_journal_keys_to_write_buffer(c, buf); 536 537 if (!blocked && !ret) { 538 spin_lock(&j->lock); 539 buf->need_flush_to_write_buffer = false; 540 spin_unlock(&j->lock); 541 } 542 543 mutex_unlock(&j->buf_lock); 544 545 if (blocked) { 546 bch2_journal_unblock(j); 547 break; 548 } 549 } 550 551 return ret; 552 } 553 554 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 max_seq, 555 bool *did_work) 556 { 557 struct bch_fs *c = trans->c; 558 struct btree_write_buffer *wb = &c->btree_write_buffer; 559 int ret = 0, fetch_from_journal_err; 560 561 do { 562 bch2_trans_unlock(trans); 563 564 fetch_from_journal_err = fetch_wb_keys_from_journal(c, max_seq); 565 566 *did_work |= wb->inc.keys.nr || wb->flushing.keys.nr; 567 568 /* 569 * On memory allocation failure, bch2_btree_write_buffer_flush_locked() 570 * is not guaranteed to empty wb->inc: 571 */ 572 mutex_lock(&wb->flushing.lock); 573 ret = bch2_btree_write_buffer_flush_locked(trans); 574 mutex_unlock(&wb->flushing.lock); 575 } while (!ret && 576 (fetch_from_journal_err || 577 (wb->inc.pin.seq && wb->inc.pin.seq <= max_seq) || 578 (wb->flushing.pin.seq && wb->flushing.pin.seq <= max_seq))); 579 580 return ret; 581 } 582 583 static int bch2_btree_write_buffer_journal_flush(struct journal *j, 584 struct journal_entry_pin *_pin, u64 seq) 585 { 586 struct bch_fs *c = container_of(j, struct bch_fs, journal); 587 bool did_work = false; 588 589 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq, &did_work)); 590 } 591 592 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) 593 { 594 struct bch_fs *c = trans->c; 595 bool did_work = false; 596 597 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_); 598 599 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal), &did_work); 600 } 601 602 /* 603 * The write buffer requires flushing when going RO: keys in the journal for the 604 * write buffer don't have a journal pin yet 605 */ 606 bool bch2_btree_write_buffer_flush_going_ro(struct bch_fs *c) 607 { 608 if (bch2_journal_error(&c->journal)) 609 return false; 610 611 bool did_work = false; 612 bch2_trans_run(c, btree_write_buffer_flush_seq(trans, 613 journal_cur_seq(&c->journal), &did_work)); 614 return did_work; 615 } 616 617 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans) 618 { 619 struct bch_fs *c = trans->c; 620 struct btree_write_buffer *wb = &c->btree_write_buffer; 621 int ret = 0; 622 623 if (mutex_trylock(&wb->flushing.lock)) { 624 ret = bch2_btree_write_buffer_flush_locked(trans); 625 mutex_unlock(&wb->flushing.lock); 626 } 627 628 return ret; 629 } 630 631 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans) 632 { 633 struct bch_fs *c = trans->c; 634 635 if (!enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_btree_write_buffer)) 636 return bch_err_throw(c, erofs_no_writes); 637 638 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans); 639 enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_write_buffer); 640 return ret; 641 } 642 643 /* 644 * In check and repair code, when checking references to write buffer btrees we 645 * need to issue a flush before we have a definitive error: this issues a flush 646 * if this is a key we haven't yet checked. 647 */ 648 int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans, 649 struct bkey_s_c referring_k, 650 struct bkey_buf *last_flushed) 651 { 652 struct bch_fs *c = trans->c; 653 struct bkey_buf tmp; 654 int ret = 0; 655 656 bch2_bkey_buf_init(&tmp); 657 658 if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) { 659 if (trace_write_buffer_maybe_flush_enabled()) { 660 struct printbuf buf = PRINTBUF; 661 662 bch2_bkey_val_to_text(&buf, c, referring_k); 663 trace_write_buffer_maybe_flush(trans, _RET_IP_, buf.buf); 664 printbuf_exit(&buf); 665 } 666 667 bch2_bkey_buf_reassemble(&tmp, c, referring_k); 668 669 if (bkey_is_btree_ptr(referring_k.k)) { 670 bch2_trans_unlock(trans); 671 bch2_btree_interior_updates_flush(c); 672 } 673 674 ret = bch2_btree_write_buffer_flush_sync(trans); 675 if (ret) 676 goto err; 677 678 bch2_bkey_buf_copy(last_flushed, c, tmp.k); 679 ret = bch_err_throw(c, transaction_restart_write_buffer_flush); 680 } 681 err: 682 bch2_bkey_buf_exit(&tmp, c); 683 return ret; 684 } 685 686 static void bch2_btree_write_buffer_flush_work(struct work_struct *work) 687 { 688 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work); 689 struct btree_write_buffer *wb = &c->btree_write_buffer; 690 int ret; 691 692 mutex_lock(&wb->flushing.lock); 693 do { 694 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans)); 695 } while (!ret && bch2_btree_write_buffer_should_flush(c)); 696 mutex_unlock(&wb->flushing.lock); 697 698 enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_write_buffer); 699 } 700 701 static void wb_accounting_sort(struct btree_write_buffer *wb) 702 { 703 eytzinger0_sort(wb->accounting.data, wb->accounting.nr, 704 sizeof(wb->accounting.data[0]), 705 wb_key_cmp, NULL); 706 } 707 708 int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree, 709 struct bkey_i_accounting *k) 710 { 711 struct btree_write_buffer *wb = &c->btree_write_buffer; 712 struct btree_write_buffered_key new = { .btree = btree }; 713 714 bkey_copy(&new.k, &k->k_i); 715 716 int ret = darray_push(&wb->accounting, new); 717 if (ret) 718 return ret; 719 720 wb_accounting_sort(wb); 721 return 0; 722 } 723 724 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c, 725 struct journal_keys_to_wb *dst, 726 enum btree_id btree, struct bkey_i *k) 727 { 728 struct btree_write_buffer *wb = &c->btree_write_buffer; 729 int ret; 730 retry: 731 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL); 732 if (!ret && dst->wb == &wb->flushing) 733 ret = darray_resize(&wb->sorted, wb->flushing.keys.size); 734 735 if (unlikely(ret)) { 736 if (dst->wb == &c->btree_write_buffer.flushing) { 737 mutex_unlock(&dst->wb->lock); 738 dst->wb = &c->btree_write_buffer.inc; 739 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin, 740 bch2_btree_write_buffer_journal_flush); 741 goto retry; 742 } 743 744 return ret; 745 } 746 747 dst->room = darray_room(dst->wb->keys); 748 if (dst->wb == &wb->flushing) 749 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 750 BUG_ON(!dst->room); 751 BUG_ON(!dst->seq); 752 753 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys); 754 wb_k->journal_seq = dst->seq; 755 wb_k->btree = btree; 756 bkey_copy(&wb_k->k, k); 757 dst->wb->keys.nr++; 758 dst->room--; 759 return 0; 760 } 761 762 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq) 763 { 764 struct btree_write_buffer *wb = &c->btree_write_buffer; 765 766 if (mutex_trylock(&wb->flushing.lock)) { 767 mutex_lock(&wb->inc.lock); 768 move_keys_from_inc_to_flushing(wb); 769 770 /* 771 * Attempt to skip wb->inc, and add keys directly to 772 * wb->flushing, saving us a copy later: 773 */ 774 775 if (!wb->inc.keys.nr) { 776 dst->wb = &wb->flushing; 777 } else { 778 mutex_unlock(&wb->flushing.lock); 779 dst->wb = &wb->inc; 780 } 781 } else { 782 mutex_lock(&wb->inc.lock); 783 dst->wb = &wb->inc; 784 } 785 786 dst->room = darray_room(dst->wb->keys); 787 if (dst->wb == &wb->flushing) 788 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 789 dst->seq = seq; 790 791 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin, 792 bch2_btree_write_buffer_journal_flush); 793 794 darray_for_each(wb->accounting, i) 795 memset(&i->k.v, 0, bkey_val_bytes(&i->k.k)); 796 } 797 798 int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst) 799 { 800 struct btree_write_buffer *wb = &c->btree_write_buffer; 801 unsigned live_accounting_keys = 0; 802 int ret = 0; 803 804 darray_for_each(wb->accounting, i) 805 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) { 806 i->journal_seq = dst->seq; 807 live_accounting_keys++; 808 ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k); 809 if (ret) 810 break; 811 } 812 813 if (live_accounting_keys * 2 < wb->accounting.nr) { 814 struct btree_write_buffered_key *dst = wb->accounting.data; 815 816 darray_for_each(wb->accounting, src) 817 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k))) 818 *dst++ = *src; 819 wb->accounting.nr = dst - wb->accounting.data; 820 wb_accounting_sort(wb); 821 } 822 823 if (!dst->wb->keys.nr) 824 bch2_journal_pin_drop(&c->journal, &dst->wb->pin); 825 826 if (bch2_btree_write_buffer_should_flush(c) && 827 __enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_btree_write_buffer) && 828 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work)) 829 enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_write_buffer); 830 831 if (dst->wb == &wb->flushing) 832 mutex_unlock(&wb->flushing.lock); 833 mutex_unlock(&wb->inc.lock); 834 835 return ret; 836 } 837 838 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size) 839 { 840 if (wb->keys.size >= new_size) 841 return 0; 842 843 if (!mutex_trylock(&wb->lock)) 844 return -EINTR; 845 846 int ret = darray_resize(&wb->keys, new_size); 847 mutex_unlock(&wb->lock); 848 return ret; 849 } 850 851 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size) 852 { 853 struct btree_write_buffer *wb = &c->btree_write_buffer; 854 855 return wb_keys_resize(&wb->flushing, new_size) ?: 856 wb_keys_resize(&wb->inc, new_size); 857 } 858 859 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) 860 { 861 struct btree_write_buffer *wb = &c->btree_write_buffer; 862 863 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) && 864 !bch2_journal_error(&c->journal)); 865 866 darray_exit(&wb->accounting); 867 darray_exit(&wb->sorted); 868 darray_exit(&wb->flushing.keys); 869 darray_exit(&wb->inc.keys); 870 } 871 872 void bch2_fs_btree_write_buffer_init_early(struct bch_fs *c) 873 { 874 struct btree_write_buffer *wb = &c->btree_write_buffer; 875 876 mutex_init(&wb->inc.lock); 877 mutex_init(&wb->flushing.lock); 878 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work); 879 } 880 881 int bch2_fs_btree_write_buffer_init(struct bch_fs *c) 882 { 883 struct btree_write_buffer *wb = &c->btree_write_buffer; 884 885 /* Will be resized by journal as needed: */ 886 unsigned initial_size = 1 << 16; 887 888 return darray_make_room(&wb->inc.keys, initial_size) ?: 889 darray_make_room(&wb->flushing.keys, initial_size) ?: 890 darray_make_room(&wb->sorted, initial_size); 891 } 892