1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "bkey_buf.h" 5 #include "btree_locking.h" 6 #include "btree_update.h" 7 #include "btree_update_interior.h" 8 #include "btree_write_buffer.h" 9 #include "disk_accounting.h" 10 #include "enumerated_ref.h" 11 #include "error.h" 12 #include "extents.h" 13 #include "journal.h" 14 #include "journal_io.h" 15 #include "journal_reclaim.h" 16 17 #include <linux/prefetch.h> 18 #include <linux/sort.h> 19 20 static int bch2_btree_write_buffer_journal_flush(struct journal *, 21 struct journal_entry_pin *, u64); 22 23 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 24 { 25 return (cmp_int(l->hi, r->hi) ?: 26 cmp_int(l->mi, r->mi) ?: 27 cmp_int(l->lo, r->lo)) >= 0; 28 } 29 30 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) 31 { 32 #ifdef CONFIG_X86_64 33 int cmp; 34 35 asm("mov (%[l]), %%rax;" 36 "sub (%[r]), %%rax;" 37 "mov 8(%[l]), %%rax;" 38 "sbb 8(%[r]), %%rax;" 39 "mov 16(%[l]), %%rax;" 40 "sbb 16(%[r]), %%rax;" 41 : "=@ccae" (cmp) 42 : [l] "r" (l), [r] "r" (r) 43 : "rax", "cc"); 44 45 EBUG_ON(cmp != __wb_key_ref_cmp(l, r)); 46 return cmp; 47 #else 48 return __wb_key_ref_cmp(l, r); 49 #endif 50 } 51 52 static int wb_key_seq_cmp(const void *_l, const void *_r) 53 { 54 const struct btree_write_buffered_key *l = _l; 55 const struct btree_write_buffered_key *r = _r; 56 57 return cmp_int(l->journal_seq, r->journal_seq); 58 } 59 60 /* Compare excluding idx, the low 24 bits: */ 61 static inline bool wb_key_eq(const void *_l, const void *_r) 62 { 63 const struct wb_key_ref *l = _l; 64 const struct wb_key_ref *r = _r; 65 66 return !((l->hi ^ r->hi)| 67 (l->mi ^ r->mi)| 68 ((l->lo >> 24) ^ (r->lo >> 24))); 69 } 70 71 static noinline void wb_sort(struct wb_key_ref *base, size_t num) 72 { 73 size_t n = num, a = num / 2; 74 75 if (!a) /* num < 2 || size == 0 */ 76 return; 77 78 for (;;) { 79 size_t b, c, d; 80 81 if (a) /* Building heap: sift down --a */ 82 --a; 83 else if (--n) /* Sorting: Extract root to --n */ 84 swap(base[0], base[n]); 85 else /* Sort complete */ 86 break; 87 88 /* 89 * Sift element at "a" down into heap. This is the 90 * "bottom-up" variant, which significantly reduces 91 * calls to cmp_func(): we find the sift-down path all 92 * the way to the leaves (one compare per level), then 93 * backtrack to find where to insert the target element. 94 * 95 * Because elements tend to sift down close to the leaves, 96 * this uses fewer compares than doing two per level 97 * on the way down. (A bit more than half as many on 98 * average, 3/4 worst-case.) 99 */ 100 for (b = a; c = 2*b + 1, (d = c + 1) < n;) 101 b = wb_key_ref_cmp(base + c, base + d) ? c : d; 102 if (d == n) /* Special case last leaf with no sibling */ 103 b = c; 104 105 /* Now backtrack from "b" to the correct location for "a" */ 106 while (b != a && wb_key_ref_cmp(base + a, base + b)) 107 b = (b - 1) / 2; 108 c = b; /* Where "a" belongs */ 109 while (b != a) { /* Shift it into place */ 110 b = (b - 1) / 2; 111 swap(base[b], base[c]); 112 } 113 } 114 } 115 116 static noinline int wb_flush_one_slowpath(struct btree_trans *trans, 117 struct btree_iter *iter, 118 struct btree_write_buffered_key *wb) 119 { 120 struct btree_path *path = btree_iter_path(trans, iter); 121 122 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 123 124 trans->journal_res.seq = wb->journal_seq; 125 126 return bch2_trans_update(trans, iter, &wb->k, 127 BTREE_UPDATE_internal_snapshot_node) ?: 128 bch2_trans_commit(trans, NULL, NULL, 129 BCH_TRANS_COMMIT_no_enospc| 130 BCH_TRANS_COMMIT_no_check_rw| 131 BCH_TRANS_COMMIT_no_journal_res| 132 BCH_TRANS_COMMIT_journal_reclaim); 133 } 134 135 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter, 136 struct btree_write_buffered_key *wb, 137 bool *write_locked, 138 bool *accounting_accumulated, 139 size_t *fast) 140 { 141 struct btree_path *path; 142 int ret; 143 144 EBUG_ON(!wb->journal_seq); 145 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq); 146 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq); 147 148 ret = bch2_btree_iter_traverse(trans, iter); 149 if (ret) 150 return ret; 151 152 if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) { 153 struct bkey u; 154 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u); 155 156 if (k.k->type == KEY_TYPE_accounting) 157 bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k), 158 bkey_s_c_to_accounting(k)); 159 } 160 *accounting_accumulated = true; 161 162 /* 163 * We can't clone a path that has write locks: unshare it now, before 164 * set_pos and traverse(): 165 */ 166 if (btree_iter_path(trans, iter)->ref > 1) 167 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_); 168 169 path = btree_iter_path(trans, iter); 170 171 if (!*write_locked) { 172 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); 173 if (ret) 174 return ret; 175 176 bch2_btree_node_prep_for_write(trans, path, path->l[0].b); 177 *write_locked = true; 178 } 179 180 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) { 181 *write_locked = false; 182 return wb_flush_one_slowpath(trans, iter, wb); 183 } 184 185 EBUG_ON(!bpos_eq(wb->k.k.p, path->pos)); 186 187 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); 188 (*fast)++; 189 return 0; 190 } 191 192 /* 193 * Update a btree with a write buffered key using the journal seq of the 194 * original write buffer insert. 195 * 196 * It is not safe to rejournal the key once it has been inserted into the write 197 * buffer because that may break recovery ordering. For example, the key may 198 * have already been modified in the active write buffer in a seq that comes 199 * before the current transaction. If we were to journal this key again and 200 * crash, recovery would process updates in the wrong order. 201 */ 202 static int 203 btree_write_buffered_insert(struct btree_trans *trans, 204 struct btree_write_buffered_key *wb) 205 { 206 struct btree_iter iter; 207 int ret; 208 209 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), 210 BTREE_ITER_cached|BTREE_ITER_intent); 211 212 trans->journal_res.seq = wb->journal_seq; 213 214 ret = bch2_btree_iter_traverse(trans, &iter) ?: 215 bch2_trans_update(trans, &iter, &wb->k, 216 BTREE_UPDATE_internal_snapshot_node); 217 bch2_trans_iter_exit(trans, &iter); 218 return ret; 219 } 220 221 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb) 222 { 223 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer); 224 struct journal *j = &c->journal; 225 226 if (!wb->inc.keys.nr) 227 return; 228 229 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin, 230 bch2_btree_write_buffer_journal_flush); 231 232 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr)); 233 darray_resize(&wb->sorted, wb->flushing.keys.size); 234 235 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) { 236 swap(wb->flushing.keys, wb->inc.keys); 237 goto out; 238 } 239 240 size_t nr = min(darray_room(wb->flushing.keys), 241 wb->sorted.size - wb->flushing.keys.nr); 242 nr = min(nr, wb->inc.keys.nr); 243 244 memcpy(&darray_top(wb->flushing.keys), 245 wb->inc.keys.data, 246 sizeof(wb->inc.keys.data[0]) * nr); 247 248 memmove(wb->inc.keys.data, 249 wb->inc.keys.data + nr, 250 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr)); 251 252 wb->flushing.keys.nr += nr; 253 wb->inc.keys.nr -= nr; 254 out: 255 if (!wb->inc.keys.nr) 256 bch2_journal_pin_drop(j, &wb->inc.pin); 257 else 258 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin, 259 bch2_btree_write_buffer_journal_flush); 260 261 if (j->watermark) { 262 spin_lock(&j->lock); 263 bch2_journal_set_watermark(j); 264 spin_unlock(&j->lock); 265 } 266 267 BUG_ON(wb->sorted.size < wb->flushing.keys.nr); 268 } 269 270 int bch2_btree_write_buffer_insert_err(struct bch_fs *c, 271 enum btree_id btree, struct bkey_i *k) 272 { 273 struct printbuf buf = PRINTBUF; 274 275 prt_printf(&buf, "attempting to do write buffer update on non wb btree="); 276 bch2_btree_id_to_text(&buf, btree); 277 prt_str(&buf, "\n"); 278 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k)); 279 280 bch2_fs_inconsistent(c, "%s", buf.buf); 281 printbuf_exit(&buf); 282 return -EROFS; 283 } 284 285 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans) 286 { 287 struct bch_fs *c = trans->c; 288 struct journal *j = &c->journal; 289 struct btree_write_buffer *wb = &c->btree_write_buffer; 290 struct btree_iter iter = {}; 291 size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0; 292 bool write_locked = false; 293 bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags); 294 int ret = 0; 295 296 ret = bch2_journal_error(&c->journal); 297 if (ret) 298 return ret; 299 300 bch2_trans_unlock(trans); 301 bch2_trans_begin(trans); 302 303 mutex_lock(&wb->inc.lock); 304 move_keys_from_inc_to_flushing(wb); 305 mutex_unlock(&wb->inc.lock); 306 307 for (size_t i = 0; i < wb->flushing.keys.nr; i++) { 308 wb->sorted.data[i].idx = i; 309 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree; 310 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos)); 311 } 312 wb->sorted.nr = wb->flushing.keys.nr; 313 314 /* 315 * We first sort so that we can detect and skip redundant updates, and 316 * then we attempt to flush in sorted btree order, as this is most 317 * efficient. 318 * 319 * However, since we're not flushing in the order they appear in the 320 * journal we won't be able to drop our journal pin until everything is 321 * flushed - which means this could deadlock the journal if we weren't 322 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail 323 * if it would block taking a journal reservation. 324 * 325 * If that happens, simply skip the key so we can optimistically insert 326 * as many keys as possible in the fast path. 327 */ 328 wb_sort(wb->sorted.data, wb->sorted.nr); 329 330 darray_for_each(wb->sorted, i) { 331 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx]; 332 333 if (unlikely(!btree_type_uses_write_buffer(k->btree))) { 334 ret = bch2_btree_write_buffer_insert_err(trans->c, k->btree, &k->k); 335 goto err; 336 } 337 338 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++) 339 prefetch(&wb->flushing.keys.data[n->idx]); 340 341 BUG_ON(!k->journal_seq); 342 343 if (!accounting_replay_done && 344 k->k.k.type == KEY_TYPE_accounting) { 345 slowpath++; 346 continue; 347 } 348 349 if (i + 1 < &darray_top(wb->sorted) && 350 wb_key_eq(i, i + 1)) { 351 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx]; 352 353 if (k->k.k.type == KEY_TYPE_accounting && 354 n->k.k.type == KEY_TYPE_accounting) 355 bch2_accounting_accumulate(bkey_i_to_accounting(&n->k), 356 bkey_i_to_s_c_accounting(&k->k)); 357 358 overwritten++; 359 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq); 360 k->journal_seq = 0; 361 continue; 362 } 363 364 if (write_locked) { 365 struct btree_path *path = btree_iter_path(trans, &iter); 366 367 if (path->btree_id != i->btree || 368 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) { 369 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 370 write_locked = false; 371 372 ret = lockrestart_do(trans, 373 bch2_btree_iter_traverse(trans, &iter) ?: 374 bch2_foreground_maybe_merge(trans, iter.path, 0, 375 BCH_WATERMARK_reclaim| 376 BCH_TRANS_COMMIT_journal_reclaim| 377 BCH_TRANS_COMMIT_no_check_rw| 378 BCH_TRANS_COMMIT_no_enospc)); 379 if (ret) 380 goto err; 381 } 382 } 383 384 if (!iter.path || iter.btree_id != k->btree) { 385 bch2_trans_iter_exit(trans, &iter); 386 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p, 387 BTREE_ITER_intent|BTREE_ITER_all_snapshots); 388 } 389 390 bch2_btree_iter_set_pos(trans, &iter, k->k.k.p); 391 btree_iter_path(trans, &iter)->preserve = false; 392 393 bool accounting_accumulated = false; 394 do { 395 if (race_fault()) { 396 ret = bch_err_throw(c, journal_reclaim_would_deadlock); 397 break; 398 } 399 400 ret = wb_flush_one(trans, &iter, k, &write_locked, 401 &accounting_accumulated, &fast); 402 if (!write_locked) 403 bch2_trans_begin(trans); 404 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); 405 406 if (!ret) { 407 k->journal_seq = 0; 408 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { 409 slowpath++; 410 ret = 0; 411 } else 412 break; 413 } 414 415 if (write_locked) { 416 struct btree_path *path = btree_iter_path(trans, &iter); 417 bch2_btree_node_unlock_write(trans, path, path->l[0].b); 418 } 419 bch2_trans_iter_exit(trans, &iter); 420 421 if (ret) 422 goto err; 423 424 if (slowpath) { 425 /* 426 * Flush in the order they were present in the journal, so that 427 * we can release journal pins: 428 * The fastpath zapped the seq of keys that were successfully flushed so 429 * we can skip those here. 430 */ 431 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr); 432 433 sort_nonatomic(wb->flushing.keys.data, 434 wb->flushing.keys.nr, 435 sizeof(wb->flushing.keys.data[0]), 436 wb_key_seq_cmp, NULL); 437 438 darray_for_each(wb->flushing.keys, i) { 439 if (!i->journal_seq) 440 continue; 441 442 if (!accounting_replay_done && 443 i->k.k.type == KEY_TYPE_accounting) { 444 could_not_insert++; 445 continue; 446 } 447 448 if (!could_not_insert) 449 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin, 450 bch2_btree_write_buffer_journal_flush); 451 452 bch2_trans_begin(trans); 453 454 ret = commit_do(trans, NULL, NULL, 455 BCH_WATERMARK_reclaim| 456 BCH_TRANS_COMMIT_journal_reclaim| 457 BCH_TRANS_COMMIT_no_check_rw| 458 BCH_TRANS_COMMIT_no_enospc| 459 BCH_TRANS_COMMIT_no_journal_res , 460 btree_write_buffered_insert(trans, i)); 461 if (ret) 462 goto err; 463 464 i->journal_seq = 0; 465 } 466 467 /* 468 * If journal replay hasn't finished with accounting keys we 469 * can't flush accounting keys at all - condense them and leave 470 * them for next time. 471 * 472 * Q: Can the write buffer overflow? 473 * A Shouldn't be any actual risk. It's just new accounting 474 * updates that the write buffer can't flush, and those are only 475 * going to be generated by interior btree node updates as 476 * journal replay has to split/rewrite nodes to make room for 477 * its updates. 478 * 479 * And for those new acounting updates, updates to the same 480 * counters get accumulated as they're flushed from the journal 481 * to the write buffer - see the patch for eytzingcer tree 482 * accumulated. So we could only overflow if the number of 483 * distinct counters touched somehow was very large. 484 */ 485 if (could_not_insert) { 486 struct btree_write_buffered_key *dst = wb->flushing.keys.data; 487 488 darray_for_each(wb->flushing.keys, i) 489 if (i->journal_seq) 490 *dst++ = *i; 491 wb->flushing.keys.nr = dst - wb->flushing.keys.data; 492 } 493 } 494 err: 495 if (ret || !could_not_insert) { 496 bch2_journal_pin_drop(j, &wb->flushing.pin); 497 wb->flushing.keys.nr = 0; 498 } 499 500 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret)); 501 trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0); 502 return ret; 503 } 504 505 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf) 506 { 507 struct journal_keys_to_wb dst; 508 int ret = 0; 509 510 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq)); 511 512 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) { 513 jset_entry_for_each_key(entry, k) { 514 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k); 515 if (ret) 516 goto out; 517 } 518 519 entry->type = BCH_JSET_ENTRY_btree_keys; 520 } 521 out: 522 ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret; 523 return ret; 524 } 525 526 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 max_seq) 527 { 528 struct journal *j = &c->journal; 529 struct journal_buf *buf; 530 bool blocked; 531 int ret = 0; 532 533 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, max_seq, &blocked))) { 534 ret = bch2_journal_keys_to_write_buffer(c, buf); 535 536 if (!blocked && !ret) { 537 spin_lock(&j->lock); 538 buf->need_flush_to_write_buffer = false; 539 spin_unlock(&j->lock); 540 } 541 542 mutex_unlock(&j->buf_lock); 543 544 if (blocked) { 545 bch2_journal_unblock(j); 546 break; 547 } 548 } 549 550 return ret; 551 } 552 553 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 max_seq, 554 bool *did_work) 555 { 556 struct bch_fs *c = trans->c; 557 struct btree_write_buffer *wb = &c->btree_write_buffer; 558 int ret = 0, fetch_from_journal_err; 559 560 do { 561 bch2_trans_unlock(trans); 562 563 fetch_from_journal_err = fetch_wb_keys_from_journal(c, max_seq); 564 565 *did_work |= wb->inc.keys.nr || wb->flushing.keys.nr; 566 567 /* 568 * On memory allocation failure, bch2_btree_write_buffer_flush_locked() 569 * is not guaranteed to empty wb->inc: 570 */ 571 mutex_lock(&wb->flushing.lock); 572 ret = bch2_btree_write_buffer_flush_locked(trans); 573 mutex_unlock(&wb->flushing.lock); 574 } while (!ret && 575 (fetch_from_journal_err || 576 (wb->inc.pin.seq && wb->inc.pin.seq <= max_seq) || 577 (wb->flushing.pin.seq && wb->flushing.pin.seq <= max_seq))); 578 579 return ret; 580 } 581 582 static int bch2_btree_write_buffer_journal_flush(struct journal *j, 583 struct journal_entry_pin *_pin, u64 seq) 584 { 585 struct bch_fs *c = container_of(j, struct bch_fs, journal); 586 bool did_work = false; 587 588 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq, &did_work)); 589 } 590 591 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) 592 { 593 struct bch_fs *c = trans->c; 594 bool did_work = false; 595 596 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_); 597 598 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal), &did_work); 599 } 600 601 /* 602 * The write buffer requires flushing when going RO: keys in the journal for the 603 * write buffer don't have a journal pin yet 604 */ 605 bool bch2_btree_write_buffer_flush_going_ro(struct bch_fs *c) 606 { 607 if (bch2_journal_error(&c->journal)) 608 return false; 609 610 bool did_work = false; 611 bch2_trans_run(c, btree_write_buffer_flush_seq(trans, 612 journal_cur_seq(&c->journal), &did_work)); 613 return did_work; 614 } 615 616 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans) 617 { 618 struct bch_fs *c = trans->c; 619 struct btree_write_buffer *wb = &c->btree_write_buffer; 620 int ret = 0; 621 622 if (mutex_trylock(&wb->flushing.lock)) { 623 ret = bch2_btree_write_buffer_flush_locked(trans); 624 mutex_unlock(&wb->flushing.lock); 625 } 626 627 return ret; 628 } 629 630 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans) 631 { 632 struct bch_fs *c = trans->c; 633 634 if (!enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_btree_write_buffer)) 635 return bch_err_throw(c, erofs_no_writes); 636 637 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans); 638 enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_write_buffer); 639 return ret; 640 } 641 642 /* 643 * In check and repair code, when checking references to write buffer btrees we 644 * need to issue a flush before we have a definitive error: this issues a flush 645 * if this is a key we haven't yet checked. 646 */ 647 int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans, 648 struct bkey_s_c referring_k, 649 struct bkey_buf *last_flushed) 650 { 651 struct bch_fs *c = trans->c; 652 struct bkey_buf tmp; 653 int ret = 0; 654 655 bch2_bkey_buf_init(&tmp); 656 657 if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) { 658 if (trace_write_buffer_maybe_flush_enabled()) { 659 struct printbuf buf = PRINTBUF; 660 661 bch2_bkey_val_to_text(&buf, c, referring_k); 662 trace_write_buffer_maybe_flush(trans, _RET_IP_, buf.buf); 663 printbuf_exit(&buf); 664 } 665 666 bch2_bkey_buf_reassemble(&tmp, c, referring_k); 667 668 if (bkey_is_btree_ptr(referring_k.k)) { 669 bch2_trans_unlock(trans); 670 bch2_btree_interior_updates_flush(c); 671 } 672 673 ret = bch2_btree_write_buffer_flush_sync(trans); 674 if (ret) 675 goto err; 676 677 bch2_bkey_buf_copy(last_flushed, c, tmp.k); 678 679 /* can we avoid the unconditional restart? */ 680 trace_and_count(c, trans_restart_write_buffer_flush, trans, _RET_IP_); 681 ret = bch_err_throw(c, transaction_restart_write_buffer_flush); 682 } 683 err: 684 bch2_bkey_buf_exit(&tmp, c); 685 return ret; 686 } 687 688 static void bch2_btree_write_buffer_flush_work(struct work_struct *work) 689 { 690 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work); 691 struct btree_write_buffer *wb = &c->btree_write_buffer; 692 int ret; 693 694 mutex_lock(&wb->flushing.lock); 695 do { 696 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans)); 697 } while (!ret && bch2_btree_write_buffer_should_flush(c)); 698 mutex_unlock(&wb->flushing.lock); 699 700 enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_write_buffer); 701 } 702 703 static void wb_accounting_sort(struct btree_write_buffer *wb) 704 { 705 eytzinger0_sort(wb->accounting.data, wb->accounting.nr, 706 sizeof(wb->accounting.data[0]), 707 wb_key_cmp, NULL); 708 } 709 710 int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree, 711 struct bkey_i_accounting *k) 712 { 713 struct btree_write_buffer *wb = &c->btree_write_buffer; 714 struct btree_write_buffered_key new = { .btree = btree }; 715 716 bkey_copy(&new.k, &k->k_i); 717 718 int ret = darray_push(&wb->accounting, new); 719 if (ret) 720 return ret; 721 722 wb_accounting_sort(wb); 723 return 0; 724 } 725 726 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c, 727 struct journal_keys_to_wb *dst, 728 enum btree_id btree, struct bkey_i *k) 729 { 730 struct btree_write_buffer *wb = &c->btree_write_buffer; 731 int ret; 732 retry: 733 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL); 734 if (!ret && dst->wb == &wb->flushing) 735 ret = darray_resize(&wb->sorted, wb->flushing.keys.size); 736 737 if (unlikely(ret)) { 738 if (dst->wb == &c->btree_write_buffer.flushing) { 739 mutex_unlock(&dst->wb->lock); 740 dst->wb = &c->btree_write_buffer.inc; 741 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin, 742 bch2_btree_write_buffer_journal_flush); 743 goto retry; 744 } 745 746 return ret; 747 } 748 749 dst->room = darray_room(dst->wb->keys); 750 if (dst->wb == &wb->flushing) 751 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 752 BUG_ON(!dst->room); 753 BUG_ON(!dst->seq); 754 755 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys); 756 wb_k->journal_seq = dst->seq; 757 wb_k->btree = btree; 758 bkey_copy(&wb_k->k, k); 759 dst->wb->keys.nr++; 760 dst->room--; 761 return 0; 762 } 763 764 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq) 765 { 766 struct btree_write_buffer *wb = &c->btree_write_buffer; 767 768 if (mutex_trylock(&wb->flushing.lock)) { 769 mutex_lock(&wb->inc.lock); 770 move_keys_from_inc_to_flushing(wb); 771 772 /* 773 * Attempt to skip wb->inc, and add keys directly to 774 * wb->flushing, saving us a copy later: 775 */ 776 777 if (!wb->inc.keys.nr) { 778 dst->wb = &wb->flushing; 779 } else { 780 mutex_unlock(&wb->flushing.lock); 781 dst->wb = &wb->inc; 782 } 783 } else { 784 mutex_lock(&wb->inc.lock); 785 dst->wb = &wb->inc; 786 } 787 788 dst->room = darray_room(dst->wb->keys); 789 if (dst->wb == &wb->flushing) 790 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); 791 dst->seq = seq; 792 793 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin, 794 bch2_btree_write_buffer_journal_flush); 795 796 darray_for_each(wb->accounting, i) 797 memset(&i->k.v, 0, bkey_val_bytes(&i->k.k)); 798 } 799 800 int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst) 801 { 802 struct btree_write_buffer *wb = &c->btree_write_buffer; 803 unsigned live_accounting_keys = 0; 804 int ret = 0; 805 806 darray_for_each(wb->accounting, i) 807 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) { 808 i->journal_seq = dst->seq; 809 live_accounting_keys++; 810 ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k); 811 if (ret) 812 break; 813 } 814 815 if (live_accounting_keys * 2 < wb->accounting.nr) { 816 struct btree_write_buffered_key *dst = wb->accounting.data; 817 818 darray_for_each(wb->accounting, src) 819 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k))) 820 *dst++ = *src; 821 wb->accounting.nr = dst - wb->accounting.data; 822 wb_accounting_sort(wb); 823 } 824 825 if (!dst->wb->keys.nr) 826 bch2_journal_pin_drop(&c->journal, &dst->wb->pin); 827 828 if (bch2_btree_write_buffer_should_flush(c) && 829 __enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_btree_write_buffer) && 830 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work)) 831 enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_write_buffer); 832 833 if (dst->wb == &wb->flushing) 834 mutex_unlock(&wb->flushing.lock); 835 mutex_unlock(&wb->inc.lock); 836 837 return ret; 838 } 839 840 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size) 841 { 842 if (wb->keys.size >= new_size) 843 return 0; 844 845 if (!mutex_trylock(&wb->lock)) 846 return -EINTR; 847 848 int ret = darray_resize(&wb->keys, new_size); 849 mutex_unlock(&wb->lock); 850 return ret; 851 } 852 853 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size) 854 { 855 struct btree_write_buffer *wb = &c->btree_write_buffer; 856 857 return wb_keys_resize(&wb->flushing, new_size) ?: 858 wb_keys_resize(&wb->inc, new_size); 859 } 860 861 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) 862 { 863 struct btree_write_buffer *wb = &c->btree_write_buffer; 864 865 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) && 866 !bch2_journal_error(&c->journal)); 867 868 darray_exit(&wb->accounting); 869 darray_exit(&wb->sorted); 870 darray_exit(&wb->flushing.keys); 871 darray_exit(&wb->inc.keys); 872 } 873 874 void bch2_fs_btree_write_buffer_init_early(struct bch_fs *c) 875 { 876 struct btree_write_buffer *wb = &c->btree_write_buffer; 877 878 mutex_init(&wb->inc.lock); 879 mutex_init(&wb->flushing.lock); 880 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work); 881 } 882 883 int bch2_fs_btree_write_buffer_init(struct bch_fs *c) 884 { 885 struct btree_write_buffer *wb = &c->btree_write_buffer; 886 887 /* Will be resized by journal as needed: */ 888 unsigned initial_size = 1 << 16; 889 890 return darray_make_room(&wb->inc.keys, initial_size) ?: 891 darray_make_room(&wb->flushing.keys, initial_size) ?: 892 darray_make_room(&wb->sorted, initial_size); 893 } 894