xref: /linux/fs/bcachefs/btree_write_buffer.c (revision 1d5198dd08ac04b13a8b7539131baf0980998032)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_locking.h"
5 #include "btree_update.h"
6 #include "btree_update_interior.h"
7 #include "btree_write_buffer.h"
8 #include "error.h"
9 #include "journal.h"
10 #include "journal_io.h"
11 #include "journal_reclaim.h"
12 
13 #include <linux/prefetch.h>
14 #include <linux/sort.h>
15 
16 static int bch2_btree_write_buffer_journal_flush(struct journal *,
17 				struct journal_entry_pin *, u64);
18 
19 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
20 
21 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
22 {
23 	return (cmp_int(l->hi, r->hi) ?:
24 		cmp_int(l->mi, r->mi) ?:
25 		cmp_int(l->lo, r->lo)) >= 0;
26 }
27 
28 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
29 {
30 #ifdef CONFIG_X86_64
31 	int cmp;
32 
33 	asm("mov   (%[l]), %%rax;"
34 	    "sub   (%[r]), %%rax;"
35 	    "mov  8(%[l]), %%rax;"
36 	    "sbb  8(%[r]), %%rax;"
37 	    "mov 16(%[l]), %%rax;"
38 	    "sbb 16(%[r]), %%rax;"
39 	    : "=@ccae" (cmp)
40 	    : [l] "r" (l), [r] "r" (r)
41 	    : "rax", "cc");
42 
43 	EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
44 	return cmp;
45 #else
46 	return __wb_key_ref_cmp(l, r);
47 #endif
48 }
49 
50 static int wb_key_seq_cmp(const void *_l, const void *_r)
51 {
52 	const struct btree_write_buffered_key *l = _l;
53 	const struct btree_write_buffered_key *r = _r;
54 
55 	return cmp_int(l->journal_seq, r->journal_seq);
56 }
57 
58 /* Compare excluding idx, the low 24 bits: */
59 static inline bool wb_key_eq(const void *_l, const void *_r)
60 {
61 	const struct wb_key_ref *l = _l;
62 	const struct wb_key_ref *r = _r;
63 
64 	return !((l->hi ^ r->hi)|
65 		 (l->mi ^ r->mi)|
66 		 ((l->lo >> 24) ^ (r->lo >> 24)));
67 }
68 
69 static noinline void wb_sort(struct wb_key_ref *base, size_t num)
70 {
71 	size_t n = num, a = num / 2;
72 
73 	if (!a)		/* num < 2 || size == 0 */
74 		return;
75 
76 	for (;;) {
77 		size_t b, c, d;
78 
79 		if (a)			/* Building heap: sift down --a */
80 			--a;
81 		else if (--n)		/* Sorting: Extract root to --n */
82 			swap(base[0], base[n]);
83 		else			/* Sort complete */
84 			break;
85 
86 		/*
87 		 * Sift element at "a" down into heap.  This is the
88 		 * "bottom-up" variant, which significantly reduces
89 		 * calls to cmp_func(): we find the sift-down path all
90 		 * the way to the leaves (one compare per level), then
91 		 * backtrack to find where to insert the target element.
92 		 *
93 		 * Because elements tend to sift down close to the leaves,
94 		 * this uses fewer compares than doing two per level
95 		 * on the way down.  (A bit more than half as many on
96 		 * average, 3/4 worst-case.)
97 		 */
98 		for (b = a; c = 2*b + 1, (d = c + 1) < n;)
99 			b = wb_key_ref_cmp(base + c, base + d) ? c : d;
100 		if (d == n)		/* Special case last leaf with no sibling */
101 			b = c;
102 
103 		/* Now backtrack from "b" to the correct location for "a" */
104 		while (b != a && wb_key_ref_cmp(base + a, base + b))
105 			b = (b - 1) / 2;
106 		c = b;			/* Where "a" belongs */
107 		while (b != a) {	/* Shift it into place */
108 			b = (b - 1) / 2;
109 			swap(base[b], base[c]);
110 		}
111 	}
112 }
113 
114 static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
115 					  struct btree_iter *iter,
116 					  struct btree_write_buffered_key *wb)
117 {
118 	struct btree_path *path = btree_iter_path(trans, iter);
119 
120 	bch2_btree_node_unlock_write(trans, path, path->l[0].b);
121 
122 	trans->journal_res.seq = wb->journal_seq;
123 
124 	return bch2_trans_update(trans, iter, &wb->k,
125 				 BTREE_UPDATE_internal_snapshot_node) ?:
126 		bch2_trans_commit(trans, NULL, NULL,
127 				  BCH_TRANS_COMMIT_no_enospc|
128 				  BCH_TRANS_COMMIT_no_check_rw|
129 				  BCH_TRANS_COMMIT_no_journal_res|
130 				  BCH_TRANS_COMMIT_journal_reclaim);
131 }
132 
133 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
134 			       struct btree_write_buffered_key *wb,
135 			       bool *write_locked, size_t *fast)
136 {
137 	struct btree_path *path;
138 	int ret;
139 
140 	EBUG_ON(!wb->journal_seq);
141 	EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
142 	EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
143 
144 	ret = bch2_btree_iter_traverse(iter);
145 	if (ret)
146 		return ret;
147 
148 	/*
149 	 * We can't clone a path that has write locks: unshare it now, before
150 	 * set_pos and traverse():
151 	 */
152 	if (btree_iter_path(trans, iter)->ref > 1)
153 		iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
154 
155 	path = btree_iter_path(trans, iter);
156 
157 	if (!*write_locked) {
158 		ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
159 		if (ret)
160 			return ret;
161 
162 		bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
163 		*write_locked = true;
164 	}
165 
166 	if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
167 		*write_locked = false;
168 		return wb_flush_one_slowpath(trans, iter, wb);
169 	}
170 
171 	bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
172 	(*fast)++;
173 	return 0;
174 }
175 
176 /*
177  * Update a btree with a write buffered key using the journal seq of the
178  * original write buffer insert.
179  *
180  * It is not safe to rejournal the key once it has been inserted into the write
181  * buffer because that may break recovery ordering. For example, the key may
182  * have already been modified in the active write buffer in a seq that comes
183  * before the current transaction. If we were to journal this key again and
184  * crash, recovery would process updates in the wrong order.
185  */
186 static int
187 btree_write_buffered_insert(struct btree_trans *trans,
188 			  struct btree_write_buffered_key *wb)
189 {
190 	struct btree_iter iter;
191 	int ret;
192 
193 	bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
194 			     BTREE_ITER_cached|BTREE_ITER_intent);
195 
196 	trans->journal_res.seq = wb->journal_seq;
197 
198 	ret   = bch2_btree_iter_traverse(&iter) ?:
199 		bch2_trans_update(trans, &iter, &wb->k,
200 				  BTREE_UPDATE_internal_snapshot_node);
201 	bch2_trans_iter_exit(trans, &iter);
202 	return ret;
203 }
204 
205 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
206 {
207 	struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
208 	struct journal *j = &c->journal;
209 
210 	if (!wb->inc.keys.nr)
211 		return;
212 
213 	bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
214 			     bch2_btree_write_buffer_journal_flush);
215 
216 	darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
217 	darray_resize(&wb->sorted, wb->flushing.keys.size);
218 
219 	if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
220 		swap(wb->flushing.keys, wb->inc.keys);
221 		goto out;
222 	}
223 
224 	size_t nr = min(darray_room(wb->flushing.keys),
225 			wb->sorted.size - wb->flushing.keys.nr);
226 	nr = min(nr, wb->inc.keys.nr);
227 
228 	memcpy(&darray_top(wb->flushing.keys),
229 	       wb->inc.keys.data,
230 	       sizeof(wb->inc.keys.data[0]) * nr);
231 
232 	memmove(wb->inc.keys.data,
233 		wb->inc.keys.data + nr,
234 	       sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
235 
236 	wb->flushing.keys.nr	+= nr;
237 	wb->inc.keys.nr		-= nr;
238 out:
239 	if (!wb->inc.keys.nr)
240 		bch2_journal_pin_drop(j, &wb->inc.pin);
241 	else
242 		bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
243 					bch2_btree_write_buffer_journal_flush);
244 
245 	if (j->watermark) {
246 		spin_lock(&j->lock);
247 		bch2_journal_set_watermark(j);
248 		spin_unlock(&j->lock);
249 	}
250 
251 	BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
252 }
253 
254 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
255 {
256 	struct bch_fs *c = trans->c;
257 	struct journal *j = &c->journal;
258 	struct btree_write_buffer *wb = &c->btree_write_buffer;
259 	struct btree_iter iter = { NULL };
260 	size_t skipped = 0, fast = 0, slowpath = 0;
261 	bool write_locked = false;
262 	int ret = 0;
263 
264 	bch2_trans_unlock(trans);
265 	bch2_trans_begin(trans);
266 
267 	mutex_lock(&wb->inc.lock);
268 	move_keys_from_inc_to_flushing(wb);
269 	mutex_unlock(&wb->inc.lock);
270 
271 	for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
272 		wb->sorted.data[i].idx = i;
273 		wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
274 		memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
275 	}
276 	wb->sorted.nr = wb->flushing.keys.nr;
277 
278 	/*
279 	 * We first sort so that we can detect and skip redundant updates, and
280 	 * then we attempt to flush in sorted btree order, as this is most
281 	 * efficient.
282 	 *
283 	 * However, since we're not flushing in the order they appear in the
284 	 * journal we won't be able to drop our journal pin until everything is
285 	 * flushed - which means this could deadlock the journal if we weren't
286 	 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
287 	 * if it would block taking a journal reservation.
288 	 *
289 	 * If that happens, simply skip the key so we can optimistically insert
290 	 * as many keys as possible in the fast path.
291 	 */
292 	wb_sort(wb->sorted.data, wb->sorted.nr);
293 
294 	darray_for_each(wb->sorted, i) {
295 		struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
296 
297 		for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
298 			prefetch(&wb->flushing.keys.data[n->idx]);
299 
300 		BUG_ON(!k->journal_seq);
301 
302 		if (i + 1 < &darray_top(wb->sorted) &&
303 		    wb_key_eq(i, i + 1)) {
304 			struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
305 
306 			skipped++;
307 			n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
308 			k->journal_seq = 0;
309 			continue;
310 		}
311 
312 		if (write_locked) {
313 			struct btree_path *path = btree_iter_path(trans, &iter);
314 
315 			if (path->btree_id != i->btree ||
316 			    bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
317 				bch2_btree_node_unlock_write(trans, path, path->l[0].b);
318 				write_locked = false;
319 
320 				ret = lockrestart_do(trans,
321 					bch2_btree_iter_traverse(&iter) ?:
322 					bch2_foreground_maybe_merge(trans, iter.path, 0,
323 							BCH_WATERMARK_reclaim|
324 							BCH_TRANS_COMMIT_journal_reclaim|
325 							BCH_TRANS_COMMIT_no_check_rw|
326 							BCH_TRANS_COMMIT_no_enospc));
327 				if (ret)
328 					goto err;
329 			}
330 		}
331 
332 		if (!iter.path || iter.btree_id != k->btree) {
333 			bch2_trans_iter_exit(trans, &iter);
334 			bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
335 					     BTREE_ITER_intent|BTREE_ITER_all_snapshots);
336 		}
337 
338 		bch2_btree_iter_set_pos(&iter, k->k.k.p);
339 		btree_iter_path(trans, &iter)->preserve = false;
340 
341 		do {
342 			if (race_fault()) {
343 				ret = -BCH_ERR_journal_reclaim_would_deadlock;
344 				break;
345 			}
346 
347 			ret = wb_flush_one(trans, &iter, k, &write_locked, &fast);
348 			if (!write_locked)
349 				bch2_trans_begin(trans);
350 		} while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
351 
352 		if (!ret) {
353 			k->journal_seq = 0;
354 		} else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
355 			slowpath++;
356 			ret = 0;
357 		} else
358 			break;
359 	}
360 
361 	if (write_locked) {
362 		struct btree_path *path = btree_iter_path(trans, &iter);
363 		bch2_btree_node_unlock_write(trans, path, path->l[0].b);
364 	}
365 	bch2_trans_iter_exit(trans, &iter);
366 
367 	if (ret)
368 		goto err;
369 
370 	if (slowpath) {
371 		/*
372 		 * Flush in the order they were present in the journal, so that
373 		 * we can release journal pins:
374 		 * The fastpath zapped the seq of keys that were successfully flushed so
375 		 * we can skip those here.
376 		 */
377 		trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
378 
379 		sort(wb->flushing.keys.data,
380 		     wb->flushing.keys.nr,
381 		     sizeof(wb->flushing.keys.data[0]),
382 		     wb_key_seq_cmp, NULL);
383 
384 		darray_for_each(wb->flushing.keys, i) {
385 			if (!i->journal_seq)
386 				continue;
387 
388 			bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
389 						bch2_btree_write_buffer_journal_flush);
390 
391 			bch2_trans_begin(trans);
392 
393 			ret = commit_do(trans, NULL, NULL,
394 					BCH_WATERMARK_reclaim|
395 					BCH_TRANS_COMMIT_journal_reclaim|
396 					BCH_TRANS_COMMIT_no_check_rw|
397 					BCH_TRANS_COMMIT_no_enospc|
398 					BCH_TRANS_COMMIT_no_journal_res ,
399 					btree_write_buffered_insert(trans, i));
400 			if (ret)
401 				goto err;
402 		}
403 	}
404 err:
405 	bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret));
406 	trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0);
407 	bch2_journal_pin_drop(j, &wb->flushing.pin);
408 	wb->flushing.keys.nr = 0;
409 	return ret;
410 }
411 
412 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
413 {
414 	struct journal *j = &c->journal;
415 	struct journal_buf *buf;
416 	int ret = 0;
417 
418 	while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
419 		ret = bch2_journal_keys_to_write_buffer(c, buf);
420 		mutex_unlock(&j->buf_lock);
421 	}
422 
423 	return ret;
424 }
425 
426 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq)
427 {
428 	struct bch_fs *c = trans->c;
429 	struct btree_write_buffer *wb = &c->btree_write_buffer;
430 	int ret = 0, fetch_from_journal_err;
431 
432 	do {
433 		bch2_trans_unlock(trans);
434 
435 		fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
436 
437 		/*
438 		 * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
439 		 * is not guaranteed to empty wb->inc:
440 		 */
441 		mutex_lock(&wb->flushing.lock);
442 		ret = bch2_btree_write_buffer_flush_locked(trans);
443 		mutex_unlock(&wb->flushing.lock);
444 	} while (!ret &&
445 		 (fetch_from_journal_err ||
446 		  (wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
447 		  (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));
448 
449 	return ret;
450 }
451 
452 static int bch2_btree_write_buffer_journal_flush(struct journal *j,
453 				struct journal_entry_pin *_pin, u64 seq)
454 {
455 	struct bch_fs *c = container_of(j, struct bch_fs, journal);
456 
457 	return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq));
458 }
459 
460 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
461 {
462 	struct bch_fs *c = trans->c;
463 
464 	trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
465 
466 	return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal));
467 }
468 
469 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
470 {
471 	struct bch_fs *c = trans->c;
472 	struct btree_write_buffer *wb = &c->btree_write_buffer;
473 	int ret = 0;
474 
475 	if (mutex_trylock(&wb->flushing.lock)) {
476 		ret = bch2_btree_write_buffer_flush_locked(trans);
477 		mutex_unlock(&wb->flushing.lock);
478 	}
479 
480 	return ret;
481 }
482 
483 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
484 {
485 	struct bch_fs *c = trans->c;
486 
487 	if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
488 		return -BCH_ERR_erofs_no_writes;
489 
490 	int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
491 	bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
492 	return ret;
493 }
494 
495 static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
496 {
497 	struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
498 	struct btree_write_buffer *wb = &c->btree_write_buffer;
499 	int ret;
500 
501 	mutex_lock(&wb->flushing.lock);
502 	do {
503 		ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
504 	} while (!ret && bch2_btree_write_buffer_should_flush(c));
505 	mutex_unlock(&wb->flushing.lock);
506 
507 	bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
508 }
509 
510 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
511 			     struct journal_keys_to_wb *dst,
512 			     enum btree_id btree, struct bkey_i *k)
513 {
514 	struct btree_write_buffer *wb = &c->btree_write_buffer;
515 	int ret;
516 retry:
517 	ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
518 	if (!ret && dst->wb == &wb->flushing)
519 		ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
520 
521 	if (unlikely(ret)) {
522 		if (dst->wb == &c->btree_write_buffer.flushing) {
523 			mutex_unlock(&dst->wb->lock);
524 			dst->wb = &c->btree_write_buffer.inc;
525 			bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
526 					     bch2_btree_write_buffer_journal_flush);
527 			goto retry;
528 		}
529 
530 		return ret;
531 	}
532 
533 	dst->room = darray_room(dst->wb->keys);
534 	if (dst->wb == &wb->flushing)
535 		dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
536 	BUG_ON(!dst->room);
537 	BUG_ON(!dst->seq);
538 
539 	struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
540 	wb_k->journal_seq	= dst->seq;
541 	wb_k->btree		= btree;
542 	bkey_copy(&wb_k->k, k);
543 	dst->wb->keys.nr++;
544 	dst->room--;
545 	return 0;
546 }
547 
548 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
549 {
550 	struct btree_write_buffer *wb = &c->btree_write_buffer;
551 
552 	if (mutex_trylock(&wb->flushing.lock)) {
553 		mutex_lock(&wb->inc.lock);
554 		move_keys_from_inc_to_flushing(wb);
555 
556 		/*
557 		 * Attempt to skip wb->inc, and add keys directly to
558 		 * wb->flushing, saving us a copy later:
559 		 */
560 
561 		if (!wb->inc.keys.nr) {
562 			dst->wb = &wb->flushing;
563 		} else {
564 			mutex_unlock(&wb->flushing.lock);
565 			dst->wb = &wb->inc;
566 		}
567 	} else {
568 		mutex_lock(&wb->inc.lock);
569 		dst->wb = &wb->inc;
570 	}
571 
572 	dst->room = darray_room(dst->wb->keys);
573 	if (dst->wb == &wb->flushing)
574 		dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
575 	dst->seq = seq;
576 
577 	bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
578 			     bch2_btree_write_buffer_journal_flush);
579 }
580 
581 void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
582 {
583 	struct btree_write_buffer *wb = &c->btree_write_buffer;
584 
585 	if (!dst->wb->keys.nr)
586 		bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
587 
588 	if (bch2_btree_write_buffer_should_flush(c) &&
589 	    __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
590 	    !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
591 		bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
592 
593 	if (dst->wb == &wb->flushing)
594 		mutex_unlock(&wb->flushing.lock);
595 	mutex_unlock(&wb->inc.lock);
596 }
597 
598 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
599 {
600 	struct journal_keys_to_wb dst;
601 	int ret = 0;
602 
603 	bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
604 
605 	for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
606 		jset_entry_for_each_key(entry, k) {
607 			ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
608 			if (ret)
609 				goto out;
610 		}
611 
612 		entry->type = BCH_JSET_ENTRY_btree_keys;
613 	}
614 
615 	spin_lock(&c->journal.lock);
616 	buf->need_flush_to_write_buffer = false;
617 	spin_unlock(&c->journal.lock);
618 out:
619 	bch2_journal_keys_to_write_buffer_end(c, &dst);
620 	return ret;
621 }
622 
623 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
624 {
625 	if (wb->keys.size >= new_size)
626 		return 0;
627 
628 	if (!mutex_trylock(&wb->lock))
629 		return -EINTR;
630 
631 	int ret = darray_resize(&wb->keys, new_size);
632 	mutex_unlock(&wb->lock);
633 	return ret;
634 }
635 
636 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
637 {
638 	struct btree_write_buffer *wb = &c->btree_write_buffer;
639 
640 	return wb_keys_resize(&wb->flushing, new_size) ?:
641 		wb_keys_resize(&wb->inc, new_size);
642 }
643 
644 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
645 {
646 	struct btree_write_buffer *wb = &c->btree_write_buffer;
647 
648 	BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
649 	       !bch2_journal_error(&c->journal));
650 
651 	darray_exit(&wb->sorted);
652 	darray_exit(&wb->flushing.keys);
653 	darray_exit(&wb->inc.keys);
654 }
655 
656 int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
657 {
658 	struct btree_write_buffer *wb = &c->btree_write_buffer;
659 
660 	mutex_init(&wb->inc.lock);
661 	mutex_init(&wb->flushing.lock);
662 	INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
663 
664 	/* Will be resized by journal as needed: */
665 	unsigned initial_size = 1 << 16;
666 
667 	return  darray_make_room(&wb->inc.keys, initial_size) ?:
668 		darray_make_room(&wb->flushing.keys, initial_size) ?:
669 		darray_make_room(&wb->sorted, initial_size);
670 }
671