xref: /linux/fs/bcachefs/btree_update_interior.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4 
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8 
9 #define BTREE_UPDATE_NODES_MAX		((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
10 
11 #define BTREE_UPDATE_JOURNAL_RES	(BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
12 
13 /*
14  * Tracks an in progress split/rewrite of a btree node and the update to the
15  * parent node:
16  *
17  * When we split/rewrite a node, we do all the updates in memory without
18  * waiting for any writes to complete - we allocate the new node(s) and update
19  * the parent node, possibly recursively up to the root.
20  *
21  * The end result is that we have one or more new nodes being written -
22  * possibly several, if there were multiple splits - and then a write (updating
23  * an interior node) which will make all these new nodes visible.
24  *
25  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
26  * nodes can't be freed (their space on disk can't be reclaimed) until the
27  * update to the interior node that makes the new node visible completes -
28  * until then, the old nodes are still reachable on disk.
29  *
30  */
31 struct btree_update {
32 	struct closure			cl;
33 	struct bch_fs			*c;
34 	u64				start_time;
35 	unsigned long			ip_started;
36 
37 	struct list_head		list;
38 	struct list_head		unwritten_list;
39 
40 	/* What kind of update are we doing? */
41 	enum {
42 		BTREE_INTERIOR_NO_UPDATE,
43 		BTREE_INTERIOR_UPDATING_NODE,
44 		BTREE_INTERIOR_UPDATING_ROOT,
45 		BTREE_INTERIOR_UPDATING_AS,
46 	} mode;
47 
48 	unsigned			nodes_written:1;
49 	unsigned			took_gc_lock:1;
50 
51 	enum btree_id			btree_id;
52 	unsigned			update_level;
53 
54 	struct disk_reservation		disk_res;
55 
56 	/*
57 	 * BTREE_INTERIOR_UPDATING_NODE:
58 	 * The update that made the new nodes visible was a regular update to an
59 	 * existing interior node - @b. We can't write out the update to @b
60 	 * until the new nodes we created are finished writing, so we block @b
61 	 * from writing by putting this btree_interior update on the
62 	 * @b->write_blocked list with @write_blocked_list:
63 	 */
64 	struct btree			*b;
65 	struct list_head		write_blocked_list;
66 
67 	/*
68 	 * We may be freeing nodes that were dirty, and thus had journal entries
69 	 * pinned: we need to transfer the oldest of those pins to the
70 	 * btree_update operation, and release it when the new node(s)
71 	 * are all persistent and reachable:
72 	 */
73 	struct journal_entry_pin	journal;
74 
75 	/* Preallocated nodes we reserve when we start the update: */
76 	struct prealloc_nodes {
77 		struct btree		*b[BTREE_UPDATE_NODES_MAX];
78 		unsigned		nr;
79 	}				prealloc_nodes[2];
80 
81 	/* Nodes being freed: */
82 	struct keylist			old_keys;
83 	u64				_old_keys[BTREE_UPDATE_NODES_MAX *
84 						  BKEY_BTREE_PTR_U64s_MAX];
85 
86 	/* Nodes being added: */
87 	struct keylist			new_keys;
88 	u64				_new_keys[BTREE_UPDATE_NODES_MAX *
89 						  BKEY_BTREE_PTR_U64s_MAX];
90 
91 	/* New nodes, that will be made reachable by this update: */
92 	struct btree			*new_nodes[BTREE_UPDATE_NODES_MAX];
93 	unsigned			nr_new_nodes;
94 
95 	struct btree			*old_nodes[BTREE_UPDATE_NODES_MAX];
96 	__le64				old_nodes_seq[BTREE_UPDATE_NODES_MAX];
97 	unsigned			nr_old_nodes;
98 
99 	open_bucket_idx_t		open_buckets[BTREE_UPDATE_NODES_MAX *
100 						     BCH_REPLICAS_MAX];
101 	open_bucket_idx_t		nr_open_buckets;
102 
103 	unsigned			journal_u64s;
104 	u64				journal_entries[BTREE_UPDATE_JOURNAL_RES];
105 
106 	/* Only here to reduce stack usage on recursive splits: */
107 	struct keylist			parent_keys;
108 	/*
109 	 * Enough room for btree_split's keys without realloc - btree node
110 	 * pointers never have crc/compression info, so we only need to acount
111 	 * for the pointers for three keys
112 	 */
113 	u64				inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
114 };
115 
116 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
117 						  struct btree_trans *,
118 						  struct btree *,
119 						  struct bkey_format);
120 
121 int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned);
122 
123 int bch2_btree_increase_depth(struct btree_trans *, btree_path_idx_t, unsigned);
124 
125 int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t,
126 				  unsigned, unsigned, enum btree_node_sibling);
127 
128 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
129 					btree_path_idx_t path_idx,
130 					unsigned level, unsigned flags,
131 					enum btree_node_sibling sib)
132 {
133 	struct btree_path *path = trans->paths + path_idx;
134 	struct btree *b;
135 
136 	EBUG_ON(!btree_node_locked(path, level));
137 
138 	b = path->l[level].b;
139 	if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
140 		return 0;
141 
142 	return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib);
143 }
144 
145 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
146 					      btree_path_idx_t path,
147 					      unsigned level,
148 					      unsigned flags)
149 {
150 	return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
151 						    btree_prev_sib) ?:
152 		bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
153 						    btree_next_sib);
154 }
155 
156 int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
157 			    struct btree *, unsigned);
158 void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
159 int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
160 			       struct btree *, struct bkey_i *,
161 			       unsigned, bool);
162 int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
163 					struct bkey_i *, unsigned, bool);
164 
165 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
166 void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
167 
168 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
169 						     struct btree *b)
170 {
171 	unsigned depth = btree_node_root(c, b)->c.level + 1;
172 
173 	/*
174 	 * Number of nodes we might have to allocate in a worst case btree
175 	 * split operation - we split all the way up to the root, then allocate
176 	 * a new root, unless we're already at max depth:
177 	 */
178 	if (depth < BTREE_MAX_DEPTH)
179 		return (depth - b->c.level) * 2 + 1;
180 	else
181 		return (depth - b->c.level) * 2 - 1;
182 }
183 
184 static inline void btree_node_reset_sib_u64s(struct btree *b)
185 {
186 	b->sib_u64s[0] = b->nr.live_u64s;
187 	b->sib_u64s[1] = b->nr.live_u64s;
188 }
189 
190 static inline void *btree_data_end(struct btree *b)
191 {
192 	return (void *) b->data + btree_buf_bytes(b);
193 }
194 
195 static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b)
196 {
197 	return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s);
198 }
199 
200 static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b)
201 {
202 	return btree_data_end(b);
203 }
204 
205 static inline void *write_block(struct btree *b)
206 {
207 	return (void *) b->data + (b->written << 9);
208 }
209 
210 static inline bool __btree_addr_written(struct btree *b, void *p)
211 {
212 	return p < write_block(b);
213 }
214 
215 static inline bool bset_written(struct btree *b, struct bset *i)
216 {
217 	return __btree_addr_written(b, i);
218 }
219 
220 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
221 {
222 	return __btree_addr_written(b, k);
223 }
224 
225 static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end)
226 {
227 	ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
228 		b->whiteout_u64s;
229 	ssize_t total = btree_buf_bytes(b) >> 3;
230 
231 	/* Always leave one extra u64 for bch2_varint_decode: */
232 	used++;
233 
234 	return total - used;
235 }
236 
237 static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b)
238 {
239 	ssize_t remaining = __bch2_btree_u64s_remaining(b,
240 				btree_bkey_last(b, bset_tree_last(b)));
241 
242 	BUG_ON(remaining < 0);
243 
244 	if (bset_written(b, btree_bset_last(b)))
245 		return 0;
246 
247 	return remaining;
248 }
249 
250 #define BTREE_WRITE_SET_U64s_BITS	9
251 
252 static inline unsigned btree_write_set_buffer(struct btree *b)
253 {
254 	/*
255 	 * Could buffer up larger amounts of keys for btrees with larger keys,
256 	 * pending benchmarking:
257 	 */
258 	return 8 << BTREE_WRITE_SET_U64s_BITS;
259 }
260 
261 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b)
262 {
263 	struct bset_tree *t = bset_tree_last(b);
264 	struct btree_node_entry *bne = max(write_block(b),
265 			(void *) btree_bkey_last(b, bset_tree_last(b)));
266 	ssize_t remaining_space =
267 		__bch2_btree_u64s_remaining(b, bne->keys.start);
268 
269 	if (unlikely(bset_written(b, bset(b, t)))) {
270 		if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
271 			return bne;
272 	} else {
273 		if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
274 		    remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
275 			return bne;
276 	}
277 
278 	return NULL;
279 }
280 
281 static inline void push_whiteout(struct btree *b, struct bpos pos)
282 {
283 	struct bkey_packed k;
284 
285 	BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s);
286 	EBUG_ON(btree_node_just_written(b));
287 
288 	if (!bkey_pack_pos(&k, pos, b)) {
289 		struct bkey *u = (void *) &k;
290 
291 		bkey_init(u);
292 		u->p = pos;
293 	}
294 
295 	k.needs_whiteout = true;
296 
297 	b->whiteout_u64s += k.u64s;
298 	bkey_p_copy(unwritten_whiteouts_start(b), &k);
299 }
300 
301 /*
302  * write lock must be held on @b (else the dirty bset that we were going to
303  * insert into could be written out from under us)
304  */
305 static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s)
306 {
307 	if (unlikely(btree_node_need_rewrite(b)))
308 		return false;
309 
310 	return u64s <= bch2_btree_keys_u64s_remaining(b);
311 }
312 
313 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
314 
315 bool bch2_btree_interior_updates_flush(struct bch_fs *);
316 
317 void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
318 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
319 					struct jset_entry *, unsigned long);
320 
321 void bch2_do_pending_node_rewrites(struct bch_fs *);
322 void bch2_free_pending_node_rewrites(struct bch_fs *);
323 
324 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
325 void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
326 int bch2_fs_btree_interior_update_init(struct bch_fs *);
327 
328 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */
329