xref: /linux/fs/bcachefs/btree_update_interior.h (revision cff9c565e65f3622e8dc1dcc21c1520a083dff35)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4 
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8 
9 #define BTREE_UPDATE_NODES_MAX		((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
10 
11 #define BTREE_UPDATE_JOURNAL_RES	(BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
12 
13 /*
14  * Tracks an in progress split/rewrite of a btree node and the update to the
15  * parent node:
16  *
17  * When we split/rewrite a node, we do all the updates in memory without
18  * waiting for any writes to complete - we allocate the new node(s) and update
19  * the parent node, possibly recursively up to the root.
20  *
21  * The end result is that we have one or more new nodes being written -
22  * possibly several, if there were multiple splits - and then a write (updating
23  * an interior node) which will make all these new nodes visible.
24  *
25  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
26  * nodes can't be freed (their space on disk can't be reclaimed) until the
27  * update to the interior node that makes the new node visible completes -
28  * until then, the old nodes are still reachable on disk.
29  *
30  */
31 struct btree_update {
32 	struct closure			cl;
33 	struct bch_fs			*c;
34 	u64				start_time;
35 
36 	struct list_head		list;
37 	struct list_head		unwritten_list;
38 
39 	/* What kind of update are we doing? */
40 	enum {
41 		BTREE_INTERIOR_NO_UPDATE,
42 		BTREE_INTERIOR_UPDATING_NODE,
43 		BTREE_INTERIOR_UPDATING_ROOT,
44 		BTREE_INTERIOR_UPDATING_AS,
45 	} mode;
46 
47 	unsigned			nodes_written:1;
48 	unsigned			took_gc_lock:1;
49 
50 	enum btree_id			btree_id;
51 	unsigned			update_level;
52 
53 	struct disk_reservation		disk_res;
54 
55 	/*
56 	 * BTREE_INTERIOR_UPDATING_NODE:
57 	 * The update that made the new nodes visible was a regular update to an
58 	 * existing interior node - @b. We can't write out the update to @b
59 	 * until the new nodes we created are finished writing, so we block @b
60 	 * from writing by putting this btree_interior update on the
61 	 * @b->write_blocked list with @write_blocked_list:
62 	 */
63 	struct btree			*b;
64 	struct list_head		write_blocked_list;
65 
66 	/*
67 	 * We may be freeing nodes that were dirty, and thus had journal entries
68 	 * pinned: we need to transfer the oldest of those pins to the
69 	 * btree_update operation, and release it when the new node(s)
70 	 * are all persistent and reachable:
71 	 */
72 	struct journal_entry_pin	journal;
73 
74 	/* Preallocated nodes we reserve when we start the update: */
75 	struct prealloc_nodes {
76 		struct btree		*b[BTREE_UPDATE_NODES_MAX];
77 		unsigned		nr;
78 	}				prealloc_nodes[2];
79 
80 	/* Nodes being freed: */
81 	struct keylist			old_keys;
82 	u64				_old_keys[BTREE_UPDATE_NODES_MAX *
83 						  BKEY_BTREE_PTR_U64s_MAX];
84 
85 	/* Nodes being added: */
86 	struct keylist			new_keys;
87 	u64				_new_keys[BTREE_UPDATE_NODES_MAX *
88 						  BKEY_BTREE_PTR_U64s_MAX];
89 
90 	/* New nodes, that will be made reachable by this update: */
91 	struct btree			*new_nodes[BTREE_UPDATE_NODES_MAX];
92 	unsigned			nr_new_nodes;
93 
94 	struct btree			*old_nodes[BTREE_UPDATE_NODES_MAX];
95 	__le64				old_nodes_seq[BTREE_UPDATE_NODES_MAX];
96 	unsigned			nr_old_nodes;
97 
98 	open_bucket_idx_t		open_buckets[BTREE_UPDATE_NODES_MAX *
99 						     BCH_REPLICAS_MAX];
100 	open_bucket_idx_t		nr_open_buckets;
101 
102 	unsigned			journal_u64s;
103 	u64				journal_entries[BTREE_UPDATE_JOURNAL_RES];
104 
105 	/* Only here to reduce stack usage on recursive splits: */
106 	struct keylist			parent_keys;
107 	/*
108 	 * Enough room for btree_split's keys without realloc - btree node
109 	 * pointers never have crc/compression info, so we only need to acount
110 	 * for the pointers for three keys
111 	 */
112 	u64				inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
113 };
114 
115 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
116 						  struct btree_trans *,
117 						  struct btree *,
118 						  struct bkey_format);
119 
120 int bch2_btree_split_leaf(struct btree_trans *, struct btree_path *, unsigned);
121 
122 int __bch2_foreground_maybe_merge(struct btree_trans *, struct btree_path *,
123 				  unsigned, unsigned, enum btree_node_sibling);
124 
125 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
126 					struct btree_path *path,
127 					unsigned level, unsigned flags,
128 					enum btree_node_sibling sib)
129 {
130 	struct btree *b;
131 
132 	EBUG_ON(!btree_node_locked(path, level));
133 
134 	b = path->l[level].b;
135 	if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
136 		return 0;
137 
138 	return __bch2_foreground_maybe_merge(trans, path, level, flags, sib);
139 }
140 
141 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
142 					      struct btree_path *path,
143 					      unsigned level,
144 					      unsigned flags)
145 {
146 	return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
147 						    btree_prev_sib) ?:
148 		bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
149 						    btree_next_sib);
150 }
151 
152 int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
153 			    struct btree *, unsigned);
154 void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
155 int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
156 			       struct btree *, struct bkey_i *,
157 			       unsigned, bool);
158 int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
159 					struct bkey_i *, unsigned, bool);
160 
161 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
162 void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
163 
164 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
165 						     struct btree *b)
166 {
167 	unsigned depth = btree_node_root(c, b)->c.level + 1;
168 
169 	/*
170 	 * Number of nodes we might have to allocate in a worst case btree
171 	 * split operation - we split all the way up to the root, then allocate
172 	 * a new root, unless we're already at max depth:
173 	 */
174 	if (depth < BTREE_MAX_DEPTH)
175 		return (depth - b->c.level) * 2 + 1;
176 	else
177 		return (depth - b->c.level) * 2 - 1;
178 }
179 
180 static inline void btree_node_reset_sib_u64s(struct btree *b)
181 {
182 	b->sib_u64s[0] = b->nr.live_u64s;
183 	b->sib_u64s[1] = b->nr.live_u64s;
184 }
185 
186 static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
187 {
188 	return (void *) b->data + btree_bytes(c);
189 }
190 
191 static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
192 							    struct btree *b)
193 {
194 	return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
195 }
196 
197 static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
198 							  struct btree *b)
199 {
200 	return btree_data_end(c, b);
201 }
202 
203 static inline void *write_block(struct btree *b)
204 {
205 	return (void *) b->data + (b->written << 9);
206 }
207 
208 static inline bool __btree_addr_written(struct btree *b, void *p)
209 {
210 	return p < write_block(b);
211 }
212 
213 static inline bool bset_written(struct btree *b, struct bset *i)
214 {
215 	return __btree_addr_written(b, i);
216 }
217 
218 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
219 {
220 	return __btree_addr_written(b, k);
221 }
222 
223 static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
224 						 struct btree *b,
225 						 void *end)
226 {
227 	ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
228 		b->whiteout_u64s;
229 	ssize_t total = c->opts.btree_node_size >> 3;
230 
231 	/* Always leave one extra u64 for bch2_varint_decode: */
232 	used++;
233 
234 	return total - used;
235 }
236 
237 static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
238 						   struct btree *b)
239 {
240 	ssize_t remaining = __bch_btree_u64s_remaining(c, b,
241 				btree_bkey_last(b, bset_tree_last(b)));
242 
243 	BUG_ON(remaining < 0);
244 
245 	if (bset_written(b, btree_bset_last(b)))
246 		return 0;
247 
248 	return remaining;
249 }
250 
251 #define BTREE_WRITE_SET_U64s_BITS	9
252 
253 static inline unsigned btree_write_set_buffer(struct btree *b)
254 {
255 	/*
256 	 * Could buffer up larger amounts of keys for btrees with larger keys,
257 	 * pending benchmarking:
258 	 */
259 	return 8 << BTREE_WRITE_SET_U64s_BITS;
260 }
261 
262 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
263 						     struct btree *b)
264 {
265 	struct bset_tree *t = bset_tree_last(b);
266 	struct btree_node_entry *bne = max(write_block(b),
267 			(void *) btree_bkey_last(b, bset_tree_last(b)));
268 	ssize_t remaining_space =
269 		__bch_btree_u64s_remaining(c, b, bne->keys.start);
270 
271 	if (unlikely(bset_written(b, bset(b, t)))) {
272 		if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
273 			return bne;
274 	} else {
275 		if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
276 		    remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
277 			return bne;
278 	}
279 
280 	return NULL;
281 }
282 
283 static inline void push_whiteout(struct bch_fs *c, struct btree *b,
284 				 struct bpos pos)
285 {
286 	struct bkey_packed k;
287 
288 	BUG_ON(bch_btree_keys_u64s_remaining(c, b) < BKEY_U64s);
289 	EBUG_ON(btree_node_just_written(b));
290 
291 	if (!bkey_pack_pos(&k, pos, b)) {
292 		struct bkey *u = (void *) &k;
293 
294 		bkey_init(u);
295 		u->p = pos;
296 	}
297 
298 	k.needs_whiteout = true;
299 
300 	b->whiteout_u64s += k.u64s;
301 	bkey_p_copy(unwritten_whiteouts_start(c, b), &k);
302 }
303 
304 /*
305  * write lock must be held on @b (else the dirty bset that we were going to
306  * insert into could be written out from under us)
307  */
308 static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
309 					       struct btree *b, unsigned u64s)
310 {
311 	if (unlikely(btree_node_need_rewrite(b)))
312 		return false;
313 
314 	return u64s <= bch_btree_keys_u64s_remaining(c, b);
315 }
316 
317 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
318 
319 bool bch2_btree_interior_updates_flush(struct bch_fs *);
320 
321 void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
322 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
323 					struct jset_entry *, unsigned long);
324 
325 void bch2_do_pending_node_rewrites(struct bch_fs *);
326 void bch2_free_pending_node_rewrites(struct bch_fs *);
327 
328 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
329 void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
330 int bch2_fs_btree_interior_update_init(struct bch_fs *);
331 
332 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */
333