xref: /linux/fs/bcachefs/btree_update_interior.h (revision c02ce1735b150cf7c3b43790b48e23dcd17c0d46)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4 
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8 
9 #define BTREE_UPDATE_NODES_MAX		((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
10 
11 #define BTREE_UPDATE_JOURNAL_RES	(BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
12 
13 int bch2_btree_node_check_topology(struct btree_trans *, struct btree *);
14 
15 #define BTREE_UPDATE_MODES()	\
16 	x(none)			\
17 	x(node)			\
18 	x(root)			\
19 	x(update)
20 
21 enum btree_update_mode {
22 #define x(n)	BTREE_UPDATE_##n,
23 	BTREE_UPDATE_MODES()
24 #undef x
25 };
26 
27 /*
28  * Tracks an in progress split/rewrite of a btree node and the update to the
29  * parent node:
30  *
31  * When we split/rewrite a node, we do all the updates in memory without
32  * waiting for any writes to complete - we allocate the new node(s) and update
33  * the parent node, possibly recursively up to the root.
34  *
35  * The end result is that we have one or more new nodes being written -
36  * possibly several, if there were multiple splits - and then a write (updating
37  * an interior node) which will make all these new nodes visible.
38  *
39  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
40  * nodes can't be freed (their space on disk can't be reclaimed) until the
41  * update to the interior node that makes the new node visible completes -
42  * until then, the old nodes are still reachable on disk.
43  *
44  */
45 struct btree_update {
46 	struct closure			cl;
47 	struct bch_fs			*c;
48 	u64				start_time;
49 	unsigned long			ip_started;
50 
51 	struct list_head		list;
52 	struct list_head		unwritten_list;
53 
54 	enum btree_update_mode		mode;
55 	enum bch_watermark		watermark;
56 	unsigned			nodes_written:1;
57 	unsigned			took_gc_lock:1;
58 
59 	enum btree_id			btree_id;
60 	unsigned			update_level;
61 
62 	struct disk_reservation		disk_res;
63 
64 	/*
65 	 * BTREE_UPDATE_node:
66 	 * The update that made the new nodes visible was a regular update to an
67 	 * existing interior node - @b. We can't write out the update to @b
68 	 * until the new nodes we created are finished writing, so we block @b
69 	 * from writing by putting this btree_interior update on the
70 	 * @b->write_blocked list with @write_blocked_list:
71 	 */
72 	struct btree			*b;
73 	struct list_head		write_blocked_list;
74 
75 	/*
76 	 * We may be freeing nodes that were dirty, and thus had journal entries
77 	 * pinned: we need to transfer the oldest of those pins to the
78 	 * btree_update operation, and release it when the new node(s)
79 	 * are all persistent and reachable:
80 	 */
81 	struct journal_entry_pin	journal;
82 
83 	/* Preallocated nodes we reserve when we start the update: */
84 	struct prealloc_nodes {
85 		struct btree		*b[BTREE_UPDATE_NODES_MAX];
86 		unsigned		nr;
87 	}				prealloc_nodes[2];
88 
89 	/* Nodes being freed: */
90 	struct keylist			old_keys;
91 	u64				_old_keys[BTREE_UPDATE_NODES_MAX *
92 						  BKEY_BTREE_PTR_U64s_MAX];
93 
94 	/* Nodes being added: */
95 	struct keylist			new_keys;
96 	u64				_new_keys[BTREE_UPDATE_NODES_MAX *
97 						  BKEY_BTREE_PTR_U64s_MAX];
98 
99 	/* New nodes, that will be made reachable by this update: */
100 	struct btree			*new_nodes[BTREE_UPDATE_NODES_MAX];
101 	unsigned			nr_new_nodes;
102 
103 	struct btree			*old_nodes[BTREE_UPDATE_NODES_MAX];
104 	__le64				old_nodes_seq[BTREE_UPDATE_NODES_MAX];
105 	unsigned			nr_old_nodes;
106 
107 	open_bucket_idx_t		open_buckets[BTREE_UPDATE_NODES_MAX *
108 						     BCH_REPLICAS_MAX];
109 	open_bucket_idx_t		nr_open_buckets;
110 
111 	unsigned			journal_u64s;
112 	u64				journal_entries[BTREE_UPDATE_JOURNAL_RES];
113 
114 	/* Only here to reduce stack usage on recursive splits: */
115 	struct keylist			parent_keys;
116 	/*
117 	 * Enough room for btree_split's keys without realloc - btree node
118 	 * pointers never have crc/compression info, so we only need to acount
119 	 * for the pointers for three keys
120 	 */
121 	u64				inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
122 };
123 
124 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
125 						  struct btree_trans *,
126 						  struct btree *,
127 						  struct bkey_format);
128 
129 int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned);
130 
131 int bch2_btree_increase_depth(struct btree_trans *, btree_path_idx_t, unsigned);
132 
133 int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t,
134 				  unsigned, unsigned, enum btree_node_sibling);
135 
136 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
137 					btree_path_idx_t path_idx,
138 					unsigned level, unsigned flags,
139 					enum btree_node_sibling sib)
140 {
141 	struct btree_path *path = trans->paths + path_idx;
142 	struct btree *b;
143 
144 	EBUG_ON(!btree_node_locked(path, level));
145 
146 	b = path->l[level].b;
147 	if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
148 		return 0;
149 
150 	return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib);
151 }
152 
153 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
154 					      btree_path_idx_t path,
155 					      unsigned level,
156 					      unsigned flags)
157 {
158 	return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
159 						    btree_prev_sib) ?:
160 		bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
161 						    btree_next_sib);
162 }
163 
164 int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
165 			    struct btree *, unsigned);
166 void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
167 int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
168 			       struct btree *, struct bkey_i *,
169 			       unsigned, bool);
170 int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
171 					struct bkey_i *, unsigned, bool);
172 
173 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
174 void bch2_btree_root_alloc_fake(struct bch_fs *, enum btree_id, unsigned);
175 
176 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
177 						     struct btree *b)
178 {
179 	unsigned depth = btree_node_root(c, b)->c.level + 1;
180 
181 	/*
182 	 * Number of nodes we might have to allocate in a worst case btree
183 	 * split operation - we split all the way up to the root, then allocate
184 	 * a new root, unless we're already at max depth:
185 	 */
186 	if (depth < BTREE_MAX_DEPTH)
187 		return (depth - b->c.level) * 2 + 1;
188 	else
189 		return (depth - b->c.level) * 2 - 1;
190 }
191 
192 static inline void btree_node_reset_sib_u64s(struct btree *b)
193 {
194 	b->sib_u64s[0] = b->nr.live_u64s;
195 	b->sib_u64s[1] = b->nr.live_u64s;
196 }
197 
198 static inline void *btree_data_end(struct btree *b)
199 {
200 	return (void *) b->data + btree_buf_bytes(b);
201 }
202 
203 static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b)
204 {
205 	return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s);
206 }
207 
208 static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b)
209 {
210 	return btree_data_end(b);
211 }
212 
213 static inline void *write_block(struct btree *b)
214 {
215 	return (void *) b->data + (b->written << 9);
216 }
217 
218 static inline bool __btree_addr_written(struct btree *b, void *p)
219 {
220 	return p < write_block(b);
221 }
222 
223 static inline bool bset_written(struct btree *b, struct bset *i)
224 {
225 	return __btree_addr_written(b, i);
226 }
227 
228 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
229 {
230 	return __btree_addr_written(b, k);
231 }
232 
233 static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end)
234 {
235 	ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
236 		b->whiteout_u64s;
237 	ssize_t total = btree_buf_bytes(b) >> 3;
238 
239 	/* Always leave one extra u64 for bch2_varint_decode: */
240 	used++;
241 
242 	return total - used;
243 }
244 
245 static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b)
246 {
247 	ssize_t remaining = __bch2_btree_u64s_remaining(b,
248 				btree_bkey_last(b, bset_tree_last(b)));
249 
250 	BUG_ON(remaining < 0);
251 
252 	if (bset_written(b, btree_bset_last(b)))
253 		return 0;
254 
255 	return remaining;
256 }
257 
258 #define BTREE_WRITE_SET_U64s_BITS	9
259 
260 static inline unsigned btree_write_set_buffer(struct btree *b)
261 {
262 	/*
263 	 * Could buffer up larger amounts of keys for btrees with larger keys,
264 	 * pending benchmarking:
265 	 */
266 	return 8 << BTREE_WRITE_SET_U64s_BITS;
267 }
268 
269 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b)
270 {
271 	struct bset_tree *t = bset_tree_last(b);
272 	struct btree_node_entry *bne = max(write_block(b),
273 			(void *) btree_bkey_last(b, bset_tree_last(b)));
274 	ssize_t remaining_space =
275 		__bch2_btree_u64s_remaining(b, bne->keys.start);
276 
277 	if (unlikely(bset_written(b, bset(b, t)))) {
278 		if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
279 			return bne;
280 	} else {
281 		if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
282 		    remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
283 			return bne;
284 	}
285 
286 	return NULL;
287 }
288 
289 static inline void push_whiteout(struct btree *b, struct bpos pos)
290 {
291 	struct bkey_packed k;
292 
293 	BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s);
294 	EBUG_ON(btree_node_just_written(b));
295 
296 	if (!bkey_pack_pos(&k, pos, b)) {
297 		struct bkey *u = (void *) &k;
298 
299 		bkey_init(u);
300 		u->p = pos;
301 	}
302 
303 	k.needs_whiteout = true;
304 
305 	b->whiteout_u64s += k.u64s;
306 	bkey_p_copy(unwritten_whiteouts_start(b), &k);
307 }
308 
309 /*
310  * write lock must be held on @b (else the dirty bset that we were going to
311  * insert into could be written out from under us)
312  */
313 static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s)
314 {
315 	if (unlikely(btree_node_need_rewrite(b)))
316 		return false;
317 
318 	return u64s <= bch2_btree_keys_u64s_remaining(b);
319 }
320 
321 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
322 
323 bool bch2_btree_interior_updates_flush(struct bch_fs *);
324 
325 void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
326 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
327 					struct jset_entry *, unsigned long);
328 
329 void bch2_do_pending_node_rewrites(struct bch_fs *);
330 void bch2_free_pending_node_rewrites(struct bch_fs *);
331 
332 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
333 void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
334 int bch2_fs_btree_interior_update_init(struct bch_fs *);
335 
336 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */
337