xref: /linux/fs/bcachefs/btree_update_interior.h (revision 5afca7e996c42aed1b4a42d4712817601ba42aff)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4 
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8 
9 #define BTREE_UPDATE_NODES_MAX		((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
10 
11 #define BTREE_UPDATE_JOURNAL_RES	(BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
12 
13 int bch2_btree_node_check_topology(struct btree_trans *, struct btree *);
14 
15 #define BTREE_UPDATE_MODES()	\
16 	x(none)			\
17 	x(node)			\
18 	x(root)			\
19 	x(update)
20 
21 enum btree_update_mode {
22 #define x(n)	BTREE_UPDATE_##n,
23 	BTREE_UPDATE_MODES()
24 #undef x
25 };
26 
27 /*
28  * Tracks an in progress split/rewrite of a btree node and the update to the
29  * parent node:
30  *
31  * When we split/rewrite a node, we do all the updates in memory without
32  * waiting for any writes to complete - we allocate the new node(s) and update
33  * the parent node, possibly recursively up to the root.
34  *
35  * The end result is that we have one or more new nodes being written -
36  * possibly several, if there were multiple splits - and then a write (updating
37  * an interior node) which will make all these new nodes visible.
38  *
39  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
40  * nodes can't be freed (their space on disk can't be reclaimed) until the
41  * update to the interior node that makes the new node visible completes -
42  * until then, the old nodes are still reachable on disk.
43  *
44  */
45 struct btree_update {
46 	struct closure			cl;
47 	struct bch_fs			*c;
48 	u64				start_time;
49 	unsigned long			ip_started;
50 
51 	struct list_head		list;
52 	struct list_head		unwritten_list;
53 
54 	enum btree_update_mode		mode;
55 	enum bch_trans_commit_flags	flags;
56 	unsigned			nodes_written:1;
57 	unsigned			took_gc_lock:1;
58 
59 	enum btree_id			btree_id;
60 	unsigned			update_level_start;
61 	unsigned			update_level_end;
62 
63 	struct disk_reservation		disk_res;
64 
65 	/*
66 	 * BTREE_UPDATE_node:
67 	 * The update that made the new nodes visible was a regular update to an
68 	 * existing interior node - @b. We can't write out the update to @b
69 	 * until the new nodes we created are finished writing, so we block @b
70 	 * from writing by putting this btree_interior update on the
71 	 * @b->write_blocked list with @write_blocked_list:
72 	 */
73 	struct btree			*b;
74 	struct list_head		write_blocked_list;
75 
76 	/*
77 	 * We may be freeing nodes that were dirty, and thus had journal entries
78 	 * pinned: we need to transfer the oldest of those pins to the
79 	 * btree_update operation, and release it when the new node(s)
80 	 * are all persistent and reachable:
81 	 */
82 	struct journal_entry_pin	journal;
83 
84 	/* Preallocated nodes we reserve when we start the update: */
85 	struct prealloc_nodes {
86 		struct btree		*b[BTREE_UPDATE_NODES_MAX];
87 		unsigned		nr;
88 	}				prealloc_nodes[2];
89 
90 	/* Nodes being freed: */
91 	struct keylist			old_keys;
92 	u64				_old_keys[BTREE_UPDATE_NODES_MAX *
93 						  BKEY_BTREE_PTR_U64s_MAX];
94 
95 	/* Nodes being added: */
96 	struct keylist			new_keys;
97 	u64				_new_keys[BTREE_UPDATE_NODES_MAX *
98 						  BKEY_BTREE_PTR_U64s_MAX];
99 
100 	/* New nodes, that will be made reachable by this update: */
101 	struct btree			*new_nodes[BTREE_UPDATE_NODES_MAX];
102 	unsigned			nr_new_nodes;
103 
104 	struct btree			*old_nodes[BTREE_UPDATE_NODES_MAX];
105 	__le64				old_nodes_seq[BTREE_UPDATE_NODES_MAX];
106 	unsigned			nr_old_nodes;
107 
108 	open_bucket_idx_t		open_buckets[BTREE_UPDATE_NODES_MAX *
109 						     BCH_REPLICAS_MAX];
110 	open_bucket_idx_t		nr_open_buckets;
111 
112 	unsigned			journal_u64s;
113 	u64				journal_entries[BTREE_UPDATE_JOURNAL_RES];
114 
115 	/* Only here to reduce stack usage on recursive splits: */
116 	struct keylist			parent_keys;
117 	/*
118 	 * Enough room for btree_split's keys without realloc - btree node
119 	 * pointers never have crc/compression info, so we only need to acount
120 	 * for the pointers for three keys
121 	 */
122 	u64				inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
123 };
124 
125 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
126 						  struct btree_trans *,
127 						  struct btree *,
128 						  struct bkey_format);
129 
130 int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned);
131 
132 int bch2_btree_increase_depth(struct btree_trans *, btree_path_idx_t, unsigned);
133 
134 int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t,
135 				  unsigned, unsigned, enum btree_node_sibling);
136 
137 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
138 					btree_path_idx_t path_idx,
139 					unsigned level, unsigned flags,
140 					enum btree_node_sibling sib)
141 {
142 	struct btree_path *path = trans->paths + path_idx;
143 	struct btree *b;
144 
145 	EBUG_ON(!btree_node_locked(path, level));
146 
147 	if (bch2_btree_node_merging_disabled)
148 		return 0;
149 
150 	b = path->l[level].b;
151 	if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
152 		return 0;
153 
154 	return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib);
155 }
156 
157 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
158 					      btree_path_idx_t path,
159 					      unsigned level,
160 					      unsigned flags)
161 {
162 	bch2_trans_verify_not_unlocked(trans);
163 
164 	return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
165 						    btree_prev_sib) ?:
166 		bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
167 						    btree_next_sib);
168 }
169 
170 int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
171 			    struct btree *, unsigned);
172 void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
173 int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
174 			       struct btree *, struct bkey_i *,
175 			       unsigned, bool);
176 int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
177 					struct bkey_i *, unsigned, bool);
178 
179 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
180 
181 int bch2_btree_root_alloc_fake_trans(struct btree_trans *, enum btree_id, unsigned);
182 void bch2_btree_root_alloc_fake(struct bch_fs *, enum btree_id, unsigned);
183 
184 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
185 						     struct btree *b)
186 {
187 	unsigned depth = btree_node_root(c, b)->c.level + 1;
188 
189 	/*
190 	 * Number of nodes we might have to allocate in a worst case btree
191 	 * split operation - we split all the way up to the root, then allocate
192 	 * a new root, unless we're already at max depth:
193 	 */
194 	if (depth < BTREE_MAX_DEPTH)
195 		return (depth - b->c.level) * 2 + 1;
196 	else
197 		return (depth - b->c.level) * 2 - 1;
198 }
199 
200 static inline void btree_node_reset_sib_u64s(struct btree *b)
201 {
202 	b->sib_u64s[0] = b->nr.live_u64s;
203 	b->sib_u64s[1] = b->nr.live_u64s;
204 }
205 
206 static inline void *btree_data_end(struct btree *b)
207 {
208 	return (void *) b->data + btree_buf_bytes(b);
209 }
210 
211 static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b)
212 {
213 	return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s);
214 }
215 
216 static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b)
217 {
218 	return btree_data_end(b);
219 }
220 
221 static inline void *write_block(struct btree *b)
222 {
223 	return (void *) b->data + (b->written << 9);
224 }
225 
226 static inline bool __btree_addr_written(struct btree *b, void *p)
227 {
228 	return p < write_block(b);
229 }
230 
231 static inline bool bset_written(struct btree *b, struct bset *i)
232 {
233 	return __btree_addr_written(b, i);
234 }
235 
236 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
237 {
238 	return __btree_addr_written(b, k);
239 }
240 
241 static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end)
242 {
243 	ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
244 		b->whiteout_u64s;
245 	ssize_t total = btree_buf_bytes(b) >> 3;
246 
247 	/* Always leave one extra u64 for bch2_varint_decode: */
248 	used++;
249 
250 	return total - used;
251 }
252 
253 static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b)
254 {
255 	ssize_t remaining = __bch2_btree_u64s_remaining(b,
256 				btree_bkey_last(b, bset_tree_last(b)));
257 
258 	BUG_ON(remaining < 0);
259 
260 	if (bset_written(b, btree_bset_last(b)))
261 		return 0;
262 
263 	return remaining;
264 }
265 
266 #define BTREE_WRITE_SET_U64s_BITS	9
267 
268 static inline unsigned btree_write_set_buffer(struct btree *b)
269 {
270 	/*
271 	 * Could buffer up larger amounts of keys for btrees with larger keys,
272 	 * pending benchmarking:
273 	 */
274 	return 8 << BTREE_WRITE_SET_U64s_BITS;
275 }
276 
277 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b)
278 {
279 	struct bset_tree *t = bset_tree_last(b);
280 	struct btree_node_entry *bne = max(write_block(b),
281 			(void *) btree_bkey_last(b, bset_tree_last(b)));
282 	ssize_t remaining_space =
283 		__bch2_btree_u64s_remaining(b, bne->keys.start);
284 
285 	if (unlikely(bset_written(b, bset(b, t)))) {
286 		if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
287 			return bne;
288 	} else {
289 		if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
290 		    remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
291 			return bne;
292 	}
293 
294 	return NULL;
295 }
296 
297 static inline void push_whiteout(struct btree *b, struct bpos pos)
298 {
299 	struct bkey_packed k;
300 
301 	BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s);
302 	EBUG_ON(btree_node_just_written(b));
303 
304 	if (!bkey_pack_pos(&k, pos, b)) {
305 		struct bkey *u = (void *) &k;
306 
307 		bkey_init(u);
308 		u->p = pos;
309 	}
310 
311 	k.needs_whiteout = true;
312 
313 	b->whiteout_u64s += k.u64s;
314 	bkey_p_copy(unwritten_whiteouts_start(b), &k);
315 }
316 
317 /*
318  * write lock must be held on @b (else the dirty bset that we were going to
319  * insert into could be written out from under us)
320  */
321 static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s)
322 {
323 	if (unlikely(btree_node_need_rewrite(b)))
324 		return false;
325 
326 	return u64s <= bch2_btree_keys_u64s_remaining(b);
327 }
328 
329 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
330 
331 bool bch2_btree_interior_updates_flush(struct bch_fs *);
332 
333 void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
334 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
335 					struct jset_entry *, unsigned long);
336 
337 void bch2_do_pending_node_rewrites(struct bch_fs *);
338 void bch2_free_pending_node_rewrites(struct bch_fs *);
339 
340 void bch2_btree_reserve_cache_to_text(struct printbuf *, struct bch_fs *);
341 
342 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
343 void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
344 int bch2_fs_btree_interior_update_init(struct bch_fs *);
345 
346 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */
347