xref: /linux/fs/bcachefs/btree_update_interior.c (revision eb7cca1faf9883d7b4da792281147dbedc449238)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "btree_iter.h"
13 #include "btree_locking.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "journal_reclaim.h"
20 #include "keylist.h"
21 #include "replicas.h"
22 #include "super-io.h"
23 #include "trace.h"
24 
25 #include <linux/random.h>
26 
27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
28 				  btree_path_idx_t, struct btree *, struct keylist *);
29 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
30 
31 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans,
32 					      enum btree_id btree_id,
33 					      unsigned level,
34 					      struct bpos pos)
35 {
36 	btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level,
37 			     BTREE_ITER_NOPRESERVE|
38 			     BTREE_ITER_INTENT, _RET_IP_);
39 	path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_);
40 
41 	struct btree_path *path = trans->paths + path_idx;
42 	bch2_btree_path_downgrade(trans, path);
43 	__bch2_btree_path_unlock(trans, path);
44 	return path_idx;
45 }
46 
47 /* Debug code: */
48 
49 /*
50  * Verify that child nodes correctly span parent node's range:
51  */
52 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
53 {
54 #ifdef CONFIG_BCACHEFS_DEBUG
55 	struct bpos next_node = b->data->min_key;
56 	struct btree_node_iter iter;
57 	struct bkey_s_c k;
58 	struct bkey_s_c_btree_ptr_v2 bp;
59 	struct bkey unpacked;
60 	struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
61 
62 	BUG_ON(!b->c.level);
63 
64 	if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
65 		return;
66 
67 	bch2_btree_node_iter_init_from_start(&iter, b);
68 
69 	while (1) {
70 		k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
71 		if (k.k->type != KEY_TYPE_btree_ptr_v2)
72 			break;
73 		bp = bkey_s_c_to_btree_ptr_v2(k);
74 
75 		if (!bpos_eq(next_node, bp.v->min_key)) {
76 			bch2_dump_btree_node(c, b);
77 			bch2_bpos_to_text(&buf1, next_node);
78 			bch2_bpos_to_text(&buf2, bp.v->min_key);
79 			panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
80 		}
81 
82 		bch2_btree_node_iter_advance(&iter, b);
83 
84 		if (bch2_btree_node_iter_end(&iter)) {
85 			if (!bpos_eq(k.k->p, b->key.k.p)) {
86 				bch2_dump_btree_node(c, b);
87 				bch2_bpos_to_text(&buf1, b->key.k.p);
88 				bch2_bpos_to_text(&buf2, k.k->p);
89 				panic("expected end %s got %s\n", buf1.buf, buf2.buf);
90 			}
91 			break;
92 		}
93 
94 		next_node = bpos_successor(k.k->p);
95 	}
96 #endif
97 }
98 
99 /* Calculate ideal packed bkey format for new btree nodes: */
100 
101 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
102 {
103 	struct bkey_packed *k;
104 	struct bset_tree *t;
105 	struct bkey uk;
106 
107 	for_each_bset(b, t)
108 		bset_tree_for_each_key(b, t, k)
109 			if (!bkey_deleted(k)) {
110 				uk = bkey_unpack_key(b, k);
111 				bch2_bkey_format_add_key(s, &uk);
112 			}
113 }
114 
115 static struct bkey_format bch2_btree_calc_format(struct btree *b)
116 {
117 	struct bkey_format_state s;
118 
119 	bch2_bkey_format_init(&s);
120 	bch2_bkey_format_add_pos(&s, b->data->min_key);
121 	bch2_bkey_format_add_pos(&s, b->data->max_key);
122 	__bch2_btree_calc_format(&s, b);
123 
124 	return bch2_bkey_format_done(&s);
125 }
126 
127 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
128 					  struct bkey_format *old_f,
129 					  struct bkey_format *new_f)
130 {
131 	/* stupid integer promotion rules */
132 	ssize_t delta =
133 	    (((int) new_f->key_u64s - old_f->key_u64s) *
134 	     (int) nr.packed_keys) +
135 	    (((int) new_f->key_u64s - BKEY_U64s) *
136 	     (int) nr.unpacked_keys);
137 
138 	BUG_ON(delta + nr.live_u64s < 0);
139 
140 	return nr.live_u64s + delta;
141 }
142 
143 /**
144  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
145  *
146  * @c:		filesystem handle
147  * @b:		btree node to rewrite
148  * @nr:		number of keys for new node (i.e. b->nr)
149  * @new_f:	bkey format to translate keys to
150  *
151  * Returns: true if all re-packed keys will be able to fit in a new node.
152  *
153  * Assumes all keys will successfully pack with the new format.
154  */
155 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
156 				 struct btree_nr_keys nr,
157 				 struct bkey_format *new_f)
158 {
159 	size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
160 
161 	return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
162 }
163 
164 /* Btree node freeing/allocation: */
165 
166 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
167 {
168 	struct bch_fs *c = trans->c;
169 
170 	trace_and_count(c, btree_node_free, trans, b);
171 
172 	BUG_ON(btree_node_write_blocked(b));
173 	BUG_ON(btree_node_dirty(b));
174 	BUG_ON(btree_node_need_write(b));
175 	BUG_ON(b == btree_node_root(c, b));
176 	BUG_ON(b->ob.nr);
177 	BUG_ON(!list_empty(&b->write_blocked));
178 	BUG_ON(b->will_make_reachable);
179 
180 	clear_btree_node_noevict(b);
181 
182 	mutex_lock(&c->btree_cache.lock);
183 	list_move(&b->list, &c->btree_cache.freeable);
184 	mutex_unlock(&c->btree_cache.lock);
185 }
186 
187 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
188 				       struct btree_path *path,
189 				       struct btree *b)
190 {
191 	struct bch_fs *c = trans->c;
192 	unsigned i, level = b->c.level;
193 
194 	bch2_btree_node_lock_write_nofail(trans, path, &b->c);
195 	bch2_btree_node_hash_remove(&c->btree_cache, b);
196 	__btree_node_free(trans, b);
197 	six_unlock_write(&b->c.lock);
198 	mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
199 
200 	trans_for_each_path(trans, path, i)
201 		if (path->l[level].b == b) {
202 			btree_node_unlock(trans, path, level);
203 			path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
204 		}
205 }
206 
207 static void bch2_btree_node_free_never_used(struct btree_update *as,
208 					    struct btree_trans *trans,
209 					    struct btree *b)
210 {
211 	struct bch_fs *c = as->c;
212 	struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
213 	struct btree_path *path;
214 	unsigned i, level = b->c.level;
215 
216 	BUG_ON(!list_empty(&b->write_blocked));
217 	BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
218 
219 	b->will_make_reachable = 0;
220 	closure_put(&as->cl);
221 
222 	clear_btree_node_will_make_reachable(b);
223 	clear_btree_node_accessed(b);
224 	clear_btree_node_dirty_acct(c, b);
225 	clear_btree_node_need_write(b);
226 
227 	mutex_lock(&c->btree_cache.lock);
228 	list_del_init(&b->list);
229 	bch2_btree_node_hash_remove(&c->btree_cache, b);
230 	mutex_unlock(&c->btree_cache.lock);
231 
232 	BUG_ON(p->nr >= ARRAY_SIZE(p->b));
233 	p->b[p->nr++] = b;
234 
235 	six_unlock_intent(&b->c.lock);
236 
237 	trans_for_each_path(trans, path, i)
238 		if (path->l[level].b == b) {
239 			btree_node_unlock(trans, path, level);
240 			path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
241 		}
242 }
243 
244 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
245 					     struct disk_reservation *res,
246 					     struct closure *cl,
247 					     bool interior_node,
248 					     unsigned flags)
249 {
250 	struct bch_fs *c = trans->c;
251 	struct write_point *wp;
252 	struct btree *b;
253 	BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
254 	struct open_buckets obs = { .nr = 0 };
255 	struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
256 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
257 	unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim
258 		? BTREE_NODE_RESERVE
259 		: 0;
260 	int ret;
261 
262 	mutex_lock(&c->btree_reserve_cache_lock);
263 	if (c->btree_reserve_cache_nr > nr_reserve) {
264 		struct btree_alloc *a =
265 			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
266 
267 		obs = a->ob;
268 		bkey_copy(&tmp.k, &a->k);
269 		mutex_unlock(&c->btree_reserve_cache_lock);
270 		goto mem_alloc;
271 	}
272 	mutex_unlock(&c->btree_reserve_cache_lock);
273 
274 retry:
275 	ret = bch2_alloc_sectors_start_trans(trans,
276 				      c->opts.metadata_target ?:
277 				      c->opts.foreground_target,
278 				      0,
279 				      writepoint_ptr(&c->btree_write_point),
280 				      &devs_have,
281 				      res->nr_replicas,
282 				      min(res->nr_replicas,
283 					  c->opts.metadata_replicas_required),
284 				      watermark, 0, cl, &wp);
285 	if (unlikely(ret))
286 		return ERR_PTR(ret);
287 
288 	if (wp->sectors_free < btree_sectors(c)) {
289 		struct open_bucket *ob;
290 		unsigned i;
291 
292 		open_bucket_for_each(c, &wp->ptrs, ob, i)
293 			if (ob->sectors_free < btree_sectors(c))
294 				ob->sectors_free = 0;
295 
296 		bch2_alloc_sectors_done(c, wp);
297 		goto retry;
298 	}
299 
300 	bkey_btree_ptr_v2_init(&tmp.k);
301 	bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
302 
303 	bch2_open_bucket_get(c, wp, &obs);
304 	bch2_alloc_sectors_done(c, wp);
305 mem_alloc:
306 	b = bch2_btree_node_mem_alloc(trans, interior_node);
307 	six_unlock_write(&b->c.lock);
308 	six_unlock_intent(&b->c.lock);
309 
310 	/* we hold cannibalize_lock: */
311 	BUG_ON(IS_ERR(b));
312 	BUG_ON(b->ob.nr);
313 
314 	bkey_copy(&b->key, &tmp.k);
315 	b->ob = obs;
316 
317 	return b;
318 }
319 
320 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
321 					   struct btree_trans *trans,
322 					   unsigned level)
323 {
324 	struct bch_fs *c = as->c;
325 	struct btree *b;
326 	struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
327 	int ret;
328 
329 	BUG_ON(level >= BTREE_MAX_DEPTH);
330 	BUG_ON(!p->nr);
331 
332 	b = p->b[--p->nr];
333 
334 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
335 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
336 
337 	set_btree_node_accessed(b);
338 	set_btree_node_dirty_acct(c, b);
339 	set_btree_node_need_write(b);
340 
341 	bch2_bset_init_first(b, &b->data->keys);
342 	b->c.level	= level;
343 	b->c.btree_id	= as->btree_id;
344 	b->version_ondisk = c->sb.version;
345 
346 	memset(&b->nr, 0, sizeof(b->nr));
347 	b->data->magic = cpu_to_le64(bset_magic(c));
348 	memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
349 	b->data->flags = 0;
350 	SET_BTREE_NODE_ID(b->data, as->btree_id);
351 	SET_BTREE_NODE_LEVEL(b->data, level);
352 
353 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
354 		struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
355 
356 		bp->v.mem_ptr		= 0;
357 		bp->v.seq		= b->data->keys.seq;
358 		bp->v.sectors_written	= 0;
359 	}
360 
361 	SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
362 
363 	bch2_btree_build_aux_trees(b);
364 
365 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
366 	BUG_ON(ret);
367 
368 	trace_and_count(c, btree_node_alloc, trans, b);
369 	bch2_increment_clock(c, btree_sectors(c), WRITE);
370 	return b;
371 }
372 
373 static void btree_set_min(struct btree *b, struct bpos pos)
374 {
375 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
376 		bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
377 	b->data->min_key = pos;
378 }
379 
380 static void btree_set_max(struct btree *b, struct bpos pos)
381 {
382 	b->key.k.p = pos;
383 	b->data->max_key = pos;
384 }
385 
386 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
387 						       struct btree_trans *trans,
388 						       struct btree *b)
389 {
390 	struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
391 	struct bkey_format format = bch2_btree_calc_format(b);
392 
393 	/*
394 	 * The keys might expand with the new format - if they wouldn't fit in
395 	 * the btree node anymore, use the old format for now:
396 	 */
397 	if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
398 		format = b->format;
399 
400 	SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
401 
402 	btree_set_min(n, b->data->min_key);
403 	btree_set_max(n, b->data->max_key);
404 
405 	n->data->format		= format;
406 	btree_node_set_format(n, format);
407 
408 	bch2_btree_sort_into(as->c, n, b);
409 
410 	btree_node_reset_sib_u64s(n);
411 	return n;
412 }
413 
414 static struct btree *__btree_root_alloc(struct btree_update *as,
415 				struct btree_trans *trans, unsigned level)
416 {
417 	struct btree *b = bch2_btree_node_alloc(as, trans, level);
418 
419 	btree_set_min(b, POS_MIN);
420 	btree_set_max(b, SPOS_MAX);
421 	b->data->format = bch2_btree_calc_format(b);
422 
423 	btree_node_set_format(b, b->data->format);
424 	bch2_btree_build_aux_trees(b);
425 
426 	return b;
427 }
428 
429 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
430 {
431 	struct bch_fs *c = as->c;
432 	struct prealloc_nodes *p;
433 
434 	for (p = as->prealloc_nodes;
435 	     p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
436 	     p++) {
437 		while (p->nr) {
438 			struct btree *b = p->b[--p->nr];
439 
440 			mutex_lock(&c->btree_reserve_cache_lock);
441 
442 			if (c->btree_reserve_cache_nr <
443 			    ARRAY_SIZE(c->btree_reserve_cache)) {
444 				struct btree_alloc *a =
445 					&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
446 
447 				a->ob = b->ob;
448 				b->ob.nr = 0;
449 				bkey_copy(&a->k, &b->key);
450 			} else {
451 				bch2_open_buckets_put(c, &b->ob);
452 			}
453 
454 			mutex_unlock(&c->btree_reserve_cache_lock);
455 
456 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
457 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
458 			__btree_node_free(trans, b);
459 			six_unlock_write(&b->c.lock);
460 			six_unlock_intent(&b->c.lock);
461 		}
462 	}
463 }
464 
465 static int bch2_btree_reserve_get(struct btree_trans *trans,
466 				  struct btree_update *as,
467 				  unsigned nr_nodes[2],
468 				  unsigned flags,
469 				  struct closure *cl)
470 {
471 	struct btree *b;
472 	unsigned interior;
473 	int ret = 0;
474 
475 	BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
476 
477 	/*
478 	 * Protects reaping from the btree node cache and using the btree node
479 	 * open bucket reserve:
480 	 */
481 	ret = bch2_btree_cache_cannibalize_lock(trans, cl);
482 	if (ret)
483 		return ret;
484 
485 	for (interior = 0; interior < 2; interior++) {
486 		struct prealloc_nodes *p = as->prealloc_nodes + interior;
487 
488 		while (p->nr < nr_nodes[interior]) {
489 			b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
490 						    interior, flags);
491 			if (IS_ERR(b)) {
492 				ret = PTR_ERR(b);
493 				goto err;
494 			}
495 
496 			p->b[p->nr++] = b;
497 		}
498 	}
499 err:
500 	bch2_btree_cache_cannibalize_unlock(trans);
501 	return ret;
502 }
503 
504 /* Asynchronous interior node update machinery */
505 
506 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
507 {
508 	struct bch_fs *c = as->c;
509 
510 	if (as->took_gc_lock)
511 		up_read(&c->gc_lock);
512 	as->took_gc_lock = false;
513 
514 	bch2_journal_pin_drop(&c->journal, &as->journal);
515 	bch2_journal_pin_flush(&c->journal, &as->journal);
516 	bch2_disk_reservation_put(c, &as->disk_res);
517 	bch2_btree_reserve_put(as, trans);
518 
519 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
520 			       as->start_time);
521 
522 	mutex_lock(&c->btree_interior_update_lock);
523 	list_del(&as->unwritten_list);
524 	list_del(&as->list);
525 
526 	closure_debug_destroy(&as->cl);
527 	mempool_free(as, &c->btree_interior_update_pool);
528 
529 	/*
530 	 * Have to do the wakeup with btree_interior_update_lock still held,
531 	 * since being on btree_interior_update_list is our ref on @c:
532 	 */
533 	closure_wake_up(&c->btree_interior_update_wait);
534 
535 	mutex_unlock(&c->btree_interior_update_lock);
536 }
537 
538 static void btree_update_add_key(struct btree_update *as,
539 				 struct keylist *keys, struct btree *b)
540 {
541 	struct bkey_i *k = &b->key;
542 
543 	BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
544 	       ARRAY_SIZE(as->_old_keys));
545 
546 	bkey_copy(keys->top, k);
547 	bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
548 
549 	bch2_keylist_push(keys);
550 }
551 
552 /*
553  * The transactional part of an interior btree node update, where we journal the
554  * update we did to the interior node and update alloc info:
555  */
556 static int btree_update_nodes_written_trans(struct btree_trans *trans,
557 					    struct btree_update *as)
558 {
559 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
560 	int ret = PTR_ERR_OR_ZERO(e);
561 	if (ret)
562 		return ret;
563 
564 	memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
565 
566 	trans->journal_pin = &as->journal;
567 
568 	for_each_keylist_key(&as->old_keys, k) {
569 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
570 
571 		ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
572 					   BTREE_TRIGGER_TRANSACTIONAL);
573 		if (ret)
574 			return ret;
575 	}
576 
577 	for_each_keylist_key(&as->new_keys, k) {
578 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
579 
580 		ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
581 					   BTREE_TRIGGER_TRANSACTIONAL);
582 		if (ret)
583 			return ret;
584 	}
585 
586 	return 0;
587 }
588 
589 static void btree_update_nodes_written(struct btree_update *as)
590 {
591 	struct bch_fs *c = as->c;
592 	struct btree *b;
593 	struct btree_trans *trans = bch2_trans_get(c);
594 	u64 journal_seq = 0;
595 	unsigned i;
596 	int ret;
597 
598 	/*
599 	 * If we're already in an error state, it might be because a btree node
600 	 * was never written, and we might be trying to free that same btree
601 	 * node here, but it won't have been marked as allocated and we'll see
602 	 * spurious disk usage inconsistencies in the transactional part below
603 	 * if we don't skip it:
604 	 */
605 	ret = bch2_journal_error(&c->journal);
606 	if (ret)
607 		goto err;
608 
609 	/*
610 	 * Wait for any in flight writes to finish before we free the old nodes
611 	 * on disk:
612 	 */
613 	for (i = 0; i < as->nr_old_nodes; i++) {
614 		__le64 seq;
615 
616 		b = as->old_nodes[i];
617 
618 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
619 		seq = b->data ? b->data->keys.seq : 0;
620 		six_unlock_read(&b->c.lock);
621 
622 		if (seq == as->old_nodes_seq[i])
623 			wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
624 				       TASK_UNINTERRUPTIBLE);
625 	}
626 
627 	/*
628 	 * We did an update to a parent node where the pointers we added pointed
629 	 * to child nodes that weren't written yet: now, the child nodes have
630 	 * been written so we can write out the update to the interior node.
631 	 */
632 
633 	/*
634 	 * We can't call into journal reclaim here: we'd block on the journal
635 	 * reclaim lock, but we may need to release the open buckets we have
636 	 * pinned in order for other btree updates to make forward progress, and
637 	 * journal reclaim does btree updates when flushing bkey_cached entries,
638 	 * which may require allocations as well.
639 	 */
640 	ret = commit_do(trans, &as->disk_res, &journal_seq,
641 			BCH_WATERMARK_reclaim|
642 			BCH_TRANS_COMMIT_no_enospc|
643 			BCH_TRANS_COMMIT_no_check_rw|
644 			BCH_TRANS_COMMIT_journal_reclaim,
645 			btree_update_nodes_written_trans(trans, as));
646 	bch2_trans_unlock(trans);
647 
648 	bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
649 			     "%s(): error %s", __func__, bch2_err_str(ret));
650 err:
651 	if (as->b) {
652 
653 		b = as->b;
654 		btree_path_idx_t path_idx = get_unlocked_mut_path(trans,
655 						as->btree_id, b->c.level, b->key.k.p);
656 		struct btree_path *path = trans->paths + path_idx;
657 		/*
658 		 * @b is the node we did the final insert into:
659 		 *
660 		 * On failure to get a journal reservation, we still have to
661 		 * unblock the write and allow most of the write path to happen
662 		 * so that shutdown works, but the i->journal_seq mechanism
663 		 * won't work to prevent the btree write from being visible (we
664 		 * didn't get a journal sequence number) - instead
665 		 * __bch2_btree_node_write() doesn't do the actual write if
666 		 * we're in journal error state:
667 		 */
668 
669 		/*
670 		 * Ensure transaction is unlocked before using
671 		 * btree_node_lock_nopath() (the use of which is always suspect,
672 		 * we need to work on removing this in the future)
673 		 *
674 		 * It should be, but get_unlocked_mut_path() -> bch2_path_get()
675 		 * calls bch2_path_upgrade(), before we call path_make_mut(), so
676 		 * we may rarely end up with a locked path besides the one we
677 		 * have here:
678 		 */
679 		bch2_trans_unlock(trans);
680 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
681 		mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
682 		path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
683 		path->l[b->c.level].b = b;
684 
685 		bch2_btree_node_lock_write_nofail(trans, path, &b->c);
686 
687 		mutex_lock(&c->btree_interior_update_lock);
688 
689 		list_del(&as->write_blocked_list);
690 		if (list_empty(&b->write_blocked))
691 			clear_btree_node_write_blocked(b);
692 
693 		/*
694 		 * Node might have been freed, recheck under
695 		 * btree_interior_update_lock:
696 		 */
697 		if (as->b == b) {
698 			BUG_ON(!b->c.level);
699 			BUG_ON(!btree_node_dirty(b));
700 
701 			if (!ret) {
702 				struct bset *last = btree_bset_last(b);
703 
704 				last->journal_seq = cpu_to_le64(
705 							     max(journal_seq,
706 								 le64_to_cpu(last->journal_seq)));
707 
708 				bch2_btree_add_journal_pin(c, b, journal_seq);
709 			} else {
710 				/*
711 				 * If we didn't get a journal sequence number we
712 				 * can't write this btree node, because recovery
713 				 * won't know to ignore this write:
714 				 */
715 				set_btree_node_never_write(b);
716 			}
717 		}
718 
719 		mutex_unlock(&c->btree_interior_update_lock);
720 
721 		mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
722 		six_unlock_write(&b->c.lock);
723 
724 		btree_node_write_if_need(c, b, SIX_LOCK_intent);
725 		btree_node_unlock(trans, path, b->c.level);
726 		bch2_path_put(trans, path_idx, true);
727 	}
728 
729 	bch2_journal_pin_drop(&c->journal, &as->journal);
730 
731 	mutex_lock(&c->btree_interior_update_lock);
732 	for (i = 0; i < as->nr_new_nodes; i++) {
733 		b = as->new_nodes[i];
734 
735 		BUG_ON(b->will_make_reachable != (unsigned long) as);
736 		b->will_make_reachable = 0;
737 		clear_btree_node_will_make_reachable(b);
738 	}
739 	mutex_unlock(&c->btree_interior_update_lock);
740 
741 	for (i = 0; i < as->nr_new_nodes; i++) {
742 		b = as->new_nodes[i];
743 
744 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
745 		btree_node_write_if_need(c, b, SIX_LOCK_read);
746 		six_unlock_read(&b->c.lock);
747 	}
748 
749 	for (i = 0; i < as->nr_open_buckets; i++)
750 		bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
751 
752 	bch2_btree_update_free(as, trans);
753 	bch2_trans_put(trans);
754 }
755 
756 static void btree_interior_update_work(struct work_struct *work)
757 {
758 	struct bch_fs *c =
759 		container_of(work, struct bch_fs, btree_interior_update_work);
760 	struct btree_update *as;
761 
762 	while (1) {
763 		mutex_lock(&c->btree_interior_update_lock);
764 		as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
765 					      struct btree_update, unwritten_list);
766 		if (as && !as->nodes_written)
767 			as = NULL;
768 		mutex_unlock(&c->btree_interior_update_lock);
769 
770 		if (!as)
771 			break;
772 
773 		btree_update_nodes_written(as);
774 	}
775 }
776 
777 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
778 {
779 	closure_type(as, struct btree_update, cl);
780 	struct bch_fs *c = as->c;
781 
782 	mutex_lock(&c->btree_interior_update_lock);
783 	as->nodes_written = true;
784 	mutex_unlock(&c->btree_interior_update_lock);
785 
786 	queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
787 }
788 
789 /*
790  * We're updating @b with pointers to nodes that haven't finished writing yet:
791  * block @b from being written until @as completes
792  */
793 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
794 {
795 	struct bch_fs *c = as->c;
796 
797 	mutex_lock(&c->btree_interior_update_lock);
798 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
799 
800 	BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
801 	BUG_ON(!btree_node_dirty(b));
802 	BUG_ON(!b->c.level);
803 
804 	as->mode	= BTREE_INTERIOR_UPDATING_NODE;
805 	as->b		= b;
806 
807 	set_btree_node_write_blocked(b);
808 	list_add(&as->write_blocked_list, &b->write_blocked);
809 
810 	mutex_unlock(&c->btree_interior_update_lock);
811 }
812 
813 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
814 				struct journal_entry_pin *_pin, u64 seq)
815 {
816 	return 0;
817 }
818 
819 static void btree_update_reparent(struct btree_update *as,
820 				  struct btree_update *child)
821 {
822 	struct bch_fs *c = as->c;
823 
824 	lockdep_assert_held(&c->btree_interior_update_lock);
825 
826 	child->b = NULL;
827 	child->mode = BTREE_INTERIOR_UPDATING_AS;
828 
829 	bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
830 			      bch2_update_reparent_journal_pin_flush);
831 }
832 
833 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
834 {
835 	struct bkey_i *insert = &b->key;
836 	struct bch_fs *c = as->c;
837 
838 	BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
839 
840 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
841 	       ARRAY_SIZE(as->journal_entries));
842 
843 	as->journal_u64s +=
844 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
845 				  BCH_JSET_ENTRY_btree_root,
846 				  b->c.btree_id, b->c.level,
847 				  insert, insert->k.u64s);
848 
849 	mutex_lock(&c->btree_interior_update_lock);
850 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
851 
852 	as->mode	= BTREE_INTERIOR_UPDATING_ROOT;
853 	mutex_unlock(&c->btree_interior_update_lock);
854 }
855 
856 /*
857  * bch2_btree_update_add_new_node:
858  *
859  * This causes @as to wait on @b to be written, before it gets to
860  * bch2_btree_update_nodes_written
861  *
862  * Additionally, it sets b->will_make_reachable to prevent any additional writes
863  * to @b from happening besides the first until @b is reachable on disk
864  *
865  * And it adds @b to the list of @as's new nodes, so that we can update sector
866  * counts in bch2_btree_update_nodes_written:
867  */
868 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
869 {
870 	struct bch_fs *c = as->c;
871 
872 	closure_get(&as->cl);
873 
874 	mutex_lock(&c->btree_interior_update_lock);
875 	BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
876 	BUG_ON(b->will_make_reachable);
877 
878 	as->new_nodes[as->nr_new_nodes++] = b;
879 	b->will_make_reachable = 1UL|(unsigned long) as;
880 	set_btree_node_will_make_reachable(b);
881 
882 	mutex_unlock(&c->btree_interior_update_lock);
883 
884 	btree_update_add_key(as, &as->new_keys, b);
885 
886 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
887 		unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
888 		unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
889 
890 		bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
891 			cpu_to_le16(sectors);
892 	}
893 }
894 
895 /*
896  * returns true if @b was a new node
897  */
898 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
899 {
900 	struct btree_update *as;
901 	unsigned long v;
902 	unsigned i;
903 
904 	mutex_lock(&c->btree_interior_update_lock);
905 	/*
906 	 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
907 	 * dropped when it gets written by bch2_btree_complete_write - the
908 	 * xchg() is for synchronization with bch2_btree_complete_write:
909 	 */
910 	v = xchg(&b->will_make_reachable, 0);
911 	clear_btree_node_will_make_reachable(b);
912 	as = (struct btree_update *) (v & ~1UL);
913 
914 	if (!as) {
915 		mutex_unlock(&c->btree_interior_update_lock);
916 		return;
917 	}
918 
919 	for (i = 0; i < as->nr_new_nodes; i++)
920 		if (as->new_nodes[i] == b)
921 			goto found;
922 
923 	BUG();
924 found:
925 	array_remove_item(as->new_nodes, as->nr_new_nodes, i);
926 	mutex_unlock(&c->btree_interior_update_lock);
927 
928 	if (v & 1)
929 		closure_put(&as->cl);
930 }
931 
932 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
933 {
934 	while (b->ob.nr)
935 		as->open_buckets[as->nr_open_buckets++] =
936 			b->ob.v[--b->ob.nr];
937 }
938 
939 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
940 				struct journal_entry_pin *_pin, u64 seq)
941 {
942 	return 0;
943 }
944 
945 /*
946  * @b is being split/rewritten: it may have pointers to not-yet-written btree
947  * nodes and thus outstanding btree_updates - redirect @b's
948  * btree_updates to point to this btree_update:
949  */
950 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
951 						      struct btree *b)
952 {
953 	struct bch_fs *c = as->c;
954 	struct btree_update *p, *n;
955 	struct btree_write *w;
956 
957 	set_btree_node_dying(b);
958 
959 	if (btree_node_fake(b))
960 		return;
961 
962 	mutex_lock(&c->btree_interior_update_lock);
963 
964 	/*
965 	 * Does this node have any btree_update operations preventing
966 	 * it from being written?
967 	 *
968 	 * If so, redirect them to point to this btree_update: we can
969 	 * write out our new nodes, but we won't make them visible until those
970 	 * operations complete
971 	 */
972 	list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
973 		list_del_init(&p->write_blocked_list);
974 		btree_update_reparent(as, p);
975 
976 		/*
977 		 * for flush_held_btree_writes() waiting on updates to flush or
978 		 * nodes to be writeable:
979 		 */
980 		closure_wake_up(&c->btree_interior_update_wait);
981 	}
982 
983 	clear_btree_node_dirty_acct(c, b);
984 	clear_btree_node_need_write(b);
985 	clear_btree_node_write_blocked(b);
986 
987 	/*
988 	 * Does this node have unwritten data that has a pin on the journal?
989 	 *
990 	 * If so, transfer that pin to the btree_update operation -
991 	 * note that if we're freeing multiple nodes, we only need to keep the
992 	 * oldest pin of any of the nodes we're freeing. We'll release the pin
993 	 * when the new nodes are persistent and reachable on disk:
994 	 */
995 	w = btree_current_write(b);
996 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
997 			      bch2_btree_update_will_free_node_journal_pin_flush);
998 	bch2_journal_pin_drop(&c->journal, &w->journal);
999 
1000 	w = btree_prev_write(b);
1001 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1002 			      bch2_btree_update_will_free_node_journal_pin_flush);
1003 	bch2_journal_pin_drop(&c->journal, &w->journal);
1004 
1005 	mutex_unlock(&c->btree_interior_update_lock);
1006 
1007 	/*
1008 	 * Is this a node that isn't reachable on disk yet?
1009 	 *
1010 	 * Nodes that aren't reachable yet have writes blocked until they're
1011 	 * reachable - now that we've cancelled any pending writes and moved
1012 	 * things waiting on that write to wait on this update, we can drop this
1013 	 * node from the list of nodes that the other update is making
1014 	 * reachable, prior to freeing it:
1015 	 */
1016 	btree_update_drop_new_node(c, b);
1017 
1018 	btree_update_add_key(as, &as->old_keys, b);
1019 
1020 	as->old_nodes[as->nr_old_nodes] = b;
1021 	as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1022 	as->nr_old_nodes++;
1023 }
1024 
1025 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1026 {
1027 	struct bch_fs *c = as->c;
1028 	u64 start_time = as->start_time;
1029 
1030 	BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1031 
1032 	if (as->took_gc_lock)
1033 		up_read(&as->c->gc_lock);
1034 	as->took_gc_lock = false;
1035 
1036 	bch2_btree_reserve_put(as, trans);
1037 
1038 	continue_at(&as->cl, btree_update_set_nodes_written,
1039 		    as->c->btree_interior_update_worker);
1040 
1041 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1042 			       start_time);
1043 }
1044 
1045 static struct btree_update *
1046 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1047 			unsigned level, bool split, unsigned flags)
1048 {
1049 	struct bch_fs *c = trans->c;
1050 	struct btree_update *as;
1051 	u64 start_time = local_clock();
1052 	int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1053 		? BCH_DISK_RESERVATION_NOFAIL : 0;
1054 	unsigned nr_nodes[2] = { 0, 0 };
1055 	unsigned update_level = level;
1056 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1057 	int ret = 0;
1058 	u32 restart_count = trans->restart_count;
1059 
1060 	BUG_ON(!path->should_be_locked);
1061 
1062 	if (watermark == BCH_WATERMARK_copygc)
1063 		watermark = BCH_WATERMARK_btree_copygc;
1064 	if (watermark < BCH_WATERMARK_btree)
1065 		watermark = BCH_WATERMARK_btree;
1066 
1067 	flags &= ~BCH_WATERMARK_MASK;
1068 	flags |= watermark;
1069 
1070 	if (!(flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1071 	    watermark < c->journal.watermark) {
1072 		struct journal_res res = { 0 };
1073 
1074 		ret = drop_locks_do(trans,
1075 			bch2_journal_res_get(&c->journal, &res, 1,
1076 					     watermark|JOURNAL_RES_GET_CHECK));
1077 		if (ret)
1078 			return ERR_PTR(ret);
1079 	}
1080 
1081 	while (1) {
1082 		nr_nodes[!!update_level] += 1 + split;
1083 		update_level++;
1084 
1085 		ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1086 		if (ret)
1087 			return ERR_PTR(ret);
1088 
1089 		if (!btree_path_node(path, update_level)) {
1090 			/* Allocating new root? */
1091 			nr_nodes[1] += split;
1092 			update_level = BTREE_MAX_DEPTH;
1093 			break;
1094 		}
1095 
1096 		/*
1097 		 * Always check for space for two keys, even if we won't have to
1098 		 * split at prior level - it might have been a merge instead:
1099 		 */
1100 		if (bch2_btree_node_insert_fits(path->l[update_level].b,
1101 						BKEY_BTREE_PTR_U64s_MAX * 2))
1102 			break;
1103 
1104 		split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1105 	}
1106 
1107 	if (!down_read_trylock(&c->gc_lock)) {
1108 		ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1109 		if (ret) {
1110 			up_read(&c->gc_lock);
1111 			return ERR_PTR(ret);
1112 		}
1113 	}
1114 
1115 	as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1116 	memset(as, 0, sizeof(*as));
1117 	closure_init(&as->cl, NULL);
1118 	as->c		= c;
1119 	as->start_time	= start_time;
1120 	as->mode	= BTREE_INTERIOR_NO_UPDATE;
1121 	as->took_gc_lock = true;
1122 	as->btree_id	= path->btree_id;
1123 	as->update_level = update_level;
1124 	INIT_LIST_HEAD(&as->list);
1125 	INIT_LIST_HEAD(&as->unwritten_list);
1126 	INIT_LIST_HEAD(&as->write_blocked_list);
1127 	bch2_keylist_init(&as->old_keys, as->_old_keys);
1128 	bch2_keylist_init(&as->new_keys, as->_new_keys);
1129 	bch2_keylist_init(&as->parent_keys, as->inline_keys);
1130 
1131 	mutex_lock(&c->btree_interior_update_lock);
1132 	list_add_tail(&as->list, &c->btree_interior_update_list);
1133 	mutex_unlock(&c->btree_interior_update_lock);
1134 
1135 	/*
1136 	 * We don't want to allocate if we're in an error state, that can cause
1137 	 * deadlock on emergency shutdown due to open buckets getting stuck in
1138 	 * the btree_reserve_cache after allocator shutdown has cleared it out.
1139 	 * This check needs to come after adding us to the btree_interior_update
1140 	 * list but before calling bch2_btree_reserve_get, to synchronize with
1141 	 * __bch2_fs_read_only().
1142 	 */
1143 	ret = bch2_journal_error(&c->journal);
1144 	if (ret)
1145 		goto err;
1146 
1147 	ret = bch2_disk_reservation_get(c, &as->disk_res,
1148 			(nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1149 			c->opts.metadata_replicas,
1150 			disk_res_flags);
1151 	if (ret)
1152 		goto err;
1153 
1154 	ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1155 	if (bch2_err_matches(ret, ENOSPC) ||
1156 	    bch2_err_matches(ret, ENOMEM)) {
1157 		struct closure cl;
1158 
1159 		/*
1160 		 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1161 		 * flag
1162 		 */
1163 		if (bch2_err_matches(ret, ENOSPC) &&
1164 		    (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1165 		    watermark != BCH_WATERMARK_reclaim) {
1166 			ret = -BCH_ERR_journal_reclaim_would_deadlock;
1167 			goto err;
1168 		}
1169 
1170 		closure_init_stack(&cl);
1171 
1172 		do {
1173 			ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1174 
1175 			bch2_trans_unlock(trans);
1176 			closure_sync(&cl);
1177 		} while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1178 	}
1179 
1180 	if (ret) {
1181 		trace_and_count(c, btree_reserve_get_fail, trans->fn,
1182 				_RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1183 		goto err;
1184 	}
1185 
1186 	ret = bch2_trans_relock(trans);
1187 	if (ret)
1188 		goto err;
1189 
1190 	bch2_trans_verify_not_restarted(trans, restart_count);
1191 	return as;
1192 err:
1193 	bch2_btree_update_free(as, trans);
1194 	if (!bch2_err_matches(ret, ENOSPC) &&
1195 	    !bch2_err_matches(ret, EROFS))
1196 		bch_err_fn_ratelimited(c, ret);
1197 	return ERR_PTR(ret);
1198 }
1199 
1200 /* Btree root updates: */
1201 
1202 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1203 {
1204 	/* Root nodes cannot be reaped */
1205 	mutex_lock(&c->btree_cache.lock);
1206 	list_del_init(&b->list);
1207 	mutex_unlock(&c->btree_cache.lock);
1208 
1209 	mutex_lock(&c->btree_root_lock);
1210 	bch2_btree_id_root(c, b->c.btree_id)->b = b;
1211 	mutex_unlock(&c->btree_root_lock);
1212 
1213 	bch2_recalc_btree_reserve(c);
1214 }
1215 
1216 static void bch2_btree_set_root(struct btree_update *as,
1217 				struct btree_trans *trans,
1218 				struct btree_path *path,
1219 				struct btree *b)
1220 {
1221 	struct bch_fs *c = as->c;
1222 	struct btree *old;
1223 
1224 	trace_and_count(c, btree_node_set_root, trans, b);
1225 
1226 	old = btree_node_root(c, b);
1227 
1228 	/*
1229 	 * Ensure no one is using the old root while we switch to the
1230 	 * new root:
1231 	 */
1232 	bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1233 
1234 	bch2_btree_set_root_inmem(c, b);
1235 
1236 	btree_update_updated_root(as, b);
1237 
1238 	/*
1239 	 * Unlock old root after new root is visible:
1240 	 *
1241 	 * The new root isn't persistent, but that's ok: we still have
1242 	 * an intent lock on the new root, and any updates that would
1243 	 * depend on the new root would have to update the new root.
1244 	 */
1245 	bch2_btree_node_unlock_write(trans, path, old);
1246 }
1247 
1248 /* Interior node updates: */
1249 
1250 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1251 					struct btree_trans *trans,
1252 					struct btree_path *path,
1253 					struct btree *b,
1254 					struct btree_node_iter *node_iter,
1255 					struct bkey_i *insert)
1256 {
1257 	struct bch_fs *c = as->c;
1258 	struct bkey_packed *k;
1259 	struct printbuf buf = PRINTBUF;
1260 	unsigned long old, new, v;
1261 
1262 	BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1263 	       !btree_ptr_sectors_written(insert));
1264 
1265 	if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1266 		bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1267 
1268 	if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1269 			      btree_node_type(b), WRITE, &buf) ?:
1270 	    bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) {
1271 		printbuf_reset(&buf);
1272 		prt_printf(&buf, "inserting invalid bkey\n  ");
1273 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1274 		prt_printf(&buf, "\n  ");
1275 		bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1276 				  btree_node_type(b), WRITE, &buf);
1277 		bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf);
1278 
1279 		bch2_fs_inconsistent(c, "%s", buf.buf);
1280 		dump_stack();
1281 	}
1282 
1283 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1284 	       ARRAY_SIZE(as->journal_entries));
1285 
1286 	as->journal_u64s +=
1287 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1288 				  BCH_JSET_ENTRY_btree_keys,
1289 				  b->c.btree_id, b->c.level,
1290 				  insert, insert->k.u64s);
1291 
1292 	while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1293 	       bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1294 		bch2_btree_node_iter_advance(node_iter, b);
1295 
1296 	bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1297 	set_btree_node_dirty_acct(c, b);
1298 
1299 	v = READ_ONCE(b->flags);
1300 	do {
1301 		old = new = v;
1302 
1303 		new &= ~BTREE_WRITE_TYPE_MASK;
1304 		new |= BTREE_WRITE_interior;
1305 		new |= 1 << BTREE_NODE_need_write;
1306 	} while ((v = cmpxchg(&b->flags, old, new)) != old);
1307 
1308 	printbuf_exit(&buf);
1309 }
1310 
1311 static void
1312 __bch2_btree_insert_keys_interior(struct btree_update *as,
1313 				  struct btree_trans *trans,
1314 				  struct btree_path *path,
1315 				  struct btree *b,
1316 				  struct btree_node_iter node_iter,
1317 				  struct keylist *keys)
1318 {
1319 	struct bkey_i *insert = bch2_keylist_front(keys);
1320 	struct bkey_packed *k;
1321 
1322 	BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1323 
1324 	while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1325 	       (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1326 		;
1327 
1328 	while (!bch2_keylist_empty(keys)) {
1329 		insert = bch2_keylist_front(keys);
1330 
1331 		if (bpos_gt(insert->k.p, b->key.k.p))
1332 			break;
1333 
1334 		bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1335 		bch2_keylist_pop_front(keys);
1336 	}
1337 }
1338 
1339 /*
1340  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1341  * node)
1342  */
1343 static void __btree_split_node(struct btree_update *as,
1344 			       struct btree_trans *trans,
1345 			       struct btree *b,
1346 			       struct btree *n[2])
1347 {
1348 	struct bkey_packed *k;
1349 	struct bpos n1_pos = POS_MIN;
1350 	struct btree_node_iter iter;
1351 	struct bset *bsets[2];
1352 	struct bkey_format_state format[2];
1353 	struct bkey_packed *out[2];
1354 	struct bkey uk;
1355 	unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1356 	struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1357 	int i;
1358 
1359 	memset(&nr_keys, 0, sizeof(nr_keys));
1360 
1361 	for (i = 0; i < 2; i++) {
1362 		BUG_ON(n[i]->nsets != 1);
1363 
1364 		bsets[i] = btree_bset_first(n[i]);
1365 		out[i] = bsets[i]->start;
1366 
1367 		SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1368 		bch2_bkey_format_init(&format[i]);
1369 	}
1370 
1371 	u64s = 0;
1372 	for_each_btree_node_key(b, k, &iter) {
1373 		if (bkey_deleted(k))
1374 			continue;
1375 
1376 		i = u64s >= n1_u64s;
1377 		u64s += k->u64s;
1378 		uk = bkey_unpack_key(b, k);
1379 		if (!i)
1380 			n1_pos = uk.p;
1381 		bch2_bkey_format_add_key(&format[i], &uk);
1382 
1383 		nr_keys[i].nr_keys++;
1384 		nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1385 	}
1386 
1387 	btree_set_min(n[0], b->data->min_key);
1388 	btree_set_max(n[0], n1_pos);
1389 	btree_set_min(n[1], bpos_successor(n1_pos));
1390 	btree_set_max(n[1], b->data->max_key);
1391 
1392 	for (i = 0; i < 2; i++) {
1393 		bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1394 		bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1395 
1396 		n[i]->data->format = bch2_bkey_format_done(&format[i]);
1397 
1398 		unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1399 			nr_keys[i].val_u64s;
1400 		if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1401 			n[i]->data->format = b->format;
1402 
1403 		btree_node_set_format(n[i], n[i]->data->format);
1404 	}
1405 
1406 	u64s = 0;
1407 	for_each_btree_node_key(b, k, &iter) {
1408 		if (bkey_deleted(k))
1409 			continue;
1410 
1411 		i = u64s >= n1_u64s;
1412 		u64s += k->u64s;
1413 
1414 		if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1415 					? &b->format: &bch2_bkey_format_current, k))
1416 			out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1417 		else
1418 			bch2_bkey_unpack(b, (void *) out[i], k);
1419 
1420 		out[i]->needs_whiteout = false;
1421 
1422 		btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1423 		out[i] = bkey_p_next(out[i]);
1424 	}
1425 
1426 	for (i = 0; i < 2; i++) {
1427 		bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1428 
1429 		BUG_ON(!bsets[i]->u64s);
1430 
1431 		set_btree_bset_end(n[i], n[i]->set);
1432 
1433 		btree_node_reset_sib_u64s(n[i]);
1434 
1435 		bch2_verify_btree_nr_keys(n[i]);
1436 
1437 		if (b->c.level)
1438 			btree_node_interior_verify(as->c, n[i]);
1439 	}
1440 }
1441 
1442 /*
1443  * For updates to interior nodes, we've got to do the insert before we split
1444  * because the stuff we're inserting has to be inserted atomically. Post split,
1445  * the keys might have to go in different nodes and the split would no longer be
1446  * atomic.
1447  *
1448  * Worse, if the insert is from btree node coalescing, if we do the insert after
1449  * we do the split (and pick the pivot) - the pivot we pick might be between
1450  * nodes that were coalesced, and thus in the middle of a child node post
1451  * coalescing:
1452  */
1453 static void btree_split_insert_keys(struct btree_update *as,
1454 				    struct btree_trans *trans,
1455 				    btree_path_idx_t path_idx,
1456 				    struct btree *b,
1457 				    struct keylist *keys)
1458 {
1459 	struct btree_path *path = trans->paths + path_idx;
1460 
1461 	if (!bch2_keylist_empty(keys) &&
1462 	    bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1463 		struct btree_node_iter node_iter;
1464 
1465 		bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1466 
1467 		__bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1468 
1469 		btree_node_interior_verify(as->c, b);
1470 	}
1471 }
1472 
1473 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1474 		       btree_path_idx_t path, struct btree *b,
1475 		       struct keylist *keys)
1476 {
1477 	struct bch_fs *c = as->c;
1478 	struct btree *parent = btree_node_parent(trans->paths + path, b);
1479 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1480 	btree_path_idx_t path1 = 0, path2 = 0;
1481 	u64 start_time = local_clock();
1482 	int ret = 0;
1483 
1484 	BUG_ON(!parent && (b != btree_node_root(c, b)));
1485 	BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1486 
1487 	bch2_btree_interior_update_will_free_node(as, b);
1488 
1489 	if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1490 		struct btree *n[2];
1491 
1492 		trace_and_count(c, btree_node_split, trans, b);
1493 
1494 		n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1495 		n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1496 
1497 		__btree_split_node(as, trans, b, n);
1498 
1499 		if (keys) {
1500 			btree_split_insert_keys(as, trans, path, n1, keys);
1501 			btree_split_insert_keys(as, trans, path, n2, keys);
1502 			BUG_ON(!bch2_keylist_empty(keys));
1503 		}
1504 
1505 		bch2_btree_build_aux_trees(n2);
1506 		bch2_btree_build_aux_trees(n1);
1507 
1508 		bch2_btree_update_add_new_node(as, n1);
1509 		bch2_btree_update_add_new_node(as, n2);
1510 		six_unlock_write(&n2->c.lock);
1511 		six_unlock_write(&n1->c.lock);
1512 
1513 		path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1514 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1515 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1516 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1517 
1518 		path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p);
1519 		six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1520 		mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1521 		bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1522 
1523 		/*
1524 		 * Note that on recursive parent_keys == keys, so we
1525 		 * can't start adding new keys to parent_keys before emptying it
1526 		 * out (which we did with btree_split_insert_keys() above)
1527 		 */
1528 		bch2_keylist_add(&as->parent_keys, &n1->key);
1529 		bch2_keylist_add(&as->parent_keys, &n2->key);
1530 
1531 		if (!parent) {
1532 			/* Depth increases, make a new root */
1533 			n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1534 
1535 			bch2_btree_update_add_new_node(as, n3);
1536 			six_unlock_write(&n3->c.lock);
1537 
1538 			trans->paths[path2].locks_want++;
1539 			BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1540 			six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1541 			mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1542 			bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1543 
1544 			n3->sib_u64s[0] = U16_MAX;
1545 			n3->sib_u64s[1] = U16_MAX;
1546 
1547 			btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1548 		}
1549 	} else {
1550 		trace_and_count(c, btree_node_compact, trans, b);
1551 
1552 		n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1553 
1554 		if (keys) {
1555 			btree_split_insert_keys(as, trans, path, n1, keys);
1556 			BUG_ON(!bch2_keylist_empty(keys));
1557 		}
1558 
1559 		bch2_btree_build_aux_trees(n1);
1560 		bch2_btree_update_add_new_node(as, n1);
1561 		six_unlock_write(&n1->c.lock);
1562 
1563 		path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1564 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1565 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1566 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1567 
1568 		if (parent)
1569 			bch2_keylist_add(&as->parent_keys, &n1->key);
1570 	}
1571 
1572 	/* New nodes all written, now make them visible: */
1573 
1574 	if (parent) {
1575 		/* Split a non root node */
1576 		ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1577 		if (ret)
1578 			goto err;
1579 	} else if (n3) {
1580 		bch2_btree_set_root(as, trans, trans->paths + path, n3);
1581 	} else {
1582 		/* Root filled up but didn't need to be split */
1583 		bch2_btree_set_root(as, trans, trans->paths + path, n1);
1584 	}
1585 
1586 	if (n3) {
1587 		bch2_btree_update_get_open_buckets(as, n3);
1588 		bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1589 	}
1590 	if (n2) {
1591 		bch2_btree_update_get_open_buckets(as, n2);
1592 		bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1593 	}
1594 	bch2_btree_update_get_open_buckets(as, n1);
1595 	bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1596 
1597 	/*
1598 	 * The old node must be freed (in memory) _before_ unlocking the new
1599 	 * nodes - else another thread could re-acquire a read lock on the old
1600 	 * node after another thread has locked and updated the new node, thus
1601 	 * seeing stale data:
1602 	 */
1603 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1604 
1605 	if (n3)
1606 		bch2_trans_node_add(trans, trans->paths + path, n3);
1607 	if (n2)
1608 		bch2_trans_node_add(trans, trans->paths + path2, n2);
1609 	bch2_trans_node_add(trans, trans->paths + path1, n1);
1610 
1611 	if (n3)
1612 		six_unlock_intent(&n3->c.lock);
1613 	if (n2)
1614 		six_unlock_intent(&n2->c.lock);
1615 	six_unlock_intent(&n1->c.lock);
1616 out:
1617 	if (path2) {
1618 		__bch2_btree_path_unlock(trans, trans->paths + path2);
1619 		bch2_path_put(trans, path2, true);
1620 	}
1621 	if (path1) {
1622 		__bch2_btree_path_unlock(trans, trans->paths + path1);
1623 		bch2_path_put(trans, path1, true);
1624 	}
1625 
1626 	bch2_trans_verify_locks(trans);
1627 
1628 	bch2_time_stats_update(&c->times[n2
1629 			       ? BCH_TIME_btree_node_split
1630 			       : BCH_TIME_btree_node_compact],
1631 			       start_time);
1632 	return ret;
1633 err:
1634 	if (n3)
1635 		bch2_btree_node_free_never_used(as, trans, n3);
1636 	if (n2)
1637 		bch2_btree_node_free_never_used(as, trans, n2);
1638 	bch2_btree_node_free_never_used(as, trans, n1);
1639 	goto out;
1640 }
1641 
1642 static void
1643 bch2_btree_insert_keys_interior(struct btree_update *as,
1644 				struct btree_trans *trans,
1645 				struct btree_path *path,
1646 				struct btree *b,
1647 				struct keylist *keys)
1648 {
1649 	struct btree_path *linked;
1650 	unsigned i;
1651 
1652 	__bch2_btree_insert_keys_interior(as, trans, path, b,
1653 					  path->l[b->c.level].iter, keys);
1654 
1655 	btree_update_updated_node(as, b);
1656 
1657 	trans_for_each_path_with_node(trans, b, linked, i)
1658 		bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1659 
1660 	bch2_trans_verify_paths(trans);
1661 }
1662 
1663 /**
1664  * bch2_btree_insert_node - insert bkeys into a given btree node
1665  *
1666  * @as:			btree_update object
1667  * @trans:		btree_trans object
1668  * @path_idx:		path that points to current node
1669  * @b:			node to insert keys into
1670  * @keys:		list of keys to insert
1671  *
1672  * Returns: 0 on success, typically transaction restart error on failure
1673  *
1674  * Inserts as many keys as it can into a given btree node, splitting it if full.
1675  * If a split occurred, this function will return early. This can only happen
1676  * for leaf nodes -- inserts into interior nodes have to be atomic.
1677  */
1678 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1679 				  btree_path_idx_t path_idx, struct btree *b,
1680 				  struct keylist *keys)
1681 {
1682 	struct bch_fs *c = as->c;
1683 	struct btree_path *path = trans->paths + path_idx;
1684 	int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1685 	int old_live_u64s = b->nr.live_u64s;
1686 	int live_u64s_added, u64s_added;
1687 	int ret;
1688 
1689 	lockdep_assert_held(&c->gc_lock);
1690 	BUG_ON(!btree_node_intent_locked(path, b->c.level));
1691 	BUG_ON(!b->c.level);
1692 	BUG_ON(!as || as->b);
1693 	bch2_verify_keylist_sorted(keys);
1694 
1695 	ret = bch2_btree_node_lock_write(trans, path, &b->c);
1696 	if (ret)
1697 		return ret;
1698 
1699 	bch2_btree_node_prep_for_write(trans, path, b);
1700 
1701 	if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1702 		bch2_btree_node_unlock_write(trans, path, b);
1703 		goto split;
1704 	}
1705 
1706 	btree_node_interior_verify(c, b);
1707 
1708 	bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1709 
1710 	live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1711 	u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1712 
1713 	if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1714 		b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1715 	if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1716 		b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1717 
1718 	if (u64s_added > live_u64s_added &&
1719 	    bch2_maybe_compact_whiteouts(c, b))
1720 		bch2_trans_node_reinit_iter(trans, b);
1721 
1722 	bch2_btree_node_unlock_write(trans, path, b);
1723 
1724 	btree_node_interior_verify(c, b);
1725 	return 0;
1726 split:
1727 	/*
1728 	 * We could attempt to avoid the transaction restart, by calling
1729 	 * bch2_btree_path_upgrade() and allocating more nodes:
1730 	 */
1731 	if (b->c.level >= as->update_level) {
1732 		trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1733 		return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1734 	}
1735 
1736 	return btree_split(as, trans, path_idx, b, keys);
1737 }
1738 
1739 int bch2_btree_split_leaf(struct btree_trans *trans,
1740 			  btree_path_idx_t path,
1741 			  unsigned flags)
1742 {
1743 	/* btree_split & merge may both cause paths array to be reallocated */
1744 	struct btree *b = path_l(trans->paths + path)->b;
1745 	struct btree_update *as;
1746 	unsigned l;
1747 	int ret = 0;
1748 
1749 	as = bch2_btree_update_start(trans, trans->paths + path,
1750 				     trans->paths[path].level,
1751 				     true, flags);
1752 	if (IS_ERR(as))
1753 		return PTR_ERR(as);
1754 
1755 	ret = btree_split(as, trans, path, b, NULL);
1756 	if (ret) {
1757 		bch2_btree_update_free(as, trans);
1758 		return ret;
1759 	}
1760 
1761 	bch2_btree_update_done(as, trans);
1762 
1763 	for (l = trans->paths[path].level + 1;
1764 	     btree_node_intent_locked(&trans->paths[path], l) && !ret;
1765 	     l++)
1766 		ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1767 
1768 	return ret;
1769 }
1770 
1771 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1772 				   btree_path_idx_t path_idx)
1773 {
1774 	struct bch_fs *c = as->c;
1775 	struct btree_path *path = trans->paths + path_idx;
1776 	struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1777 
1778 	BUG_ON(!btree_node_locked(path, b->c.level));
1779 
1780 	n = __btree_root_alloc(as, trans, b->c.level + 1);
1781 
1782 	bch2_btree_update_add_new_node(as, n);
1783 	six_unlock_write(&n->c.lock);
1784 
1785 	path->locks_want++;
1786 	BUG_ON(btree_node_locked(path, n->c.level));
1787 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1788 	mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1789 	bch2_btree_path_level_init(trans, path, n);
1790 
1791 	n->sib_u64s[0] = U16_MAX;
1792 	n->sib_u64s[1] = U16_MAX;
1793 
1794 	bch2_keylist_add(&as->parent_keys, &b->key);
1795 	btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1796 
1797 	bch2_btree_set_root(as, trans, path, n);
1798 	bch2_btree_update_get_open_buckets(as, n);
1799 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1800 	bch2_trans_node_add(trans, path, n);
1801 	six_unlock_intent(&n->c.lock);
1802 
1803 	mutex_lock(&c->btree_cache.lock);
1804 	list_add_tail(&b->list, &c->btree_cache.live);
1805 	mutex_unlock(&c->btree_cache.lock);
1806 
1807 	bch2_trans_verify_locks(trans);
1808 }
1809 
1810 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1811 {
1812 	struct bch_fs *c = trans->c;
1813 	struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1814 	struct btree_update *as =
1815 		bch2_btree_update_start(trans, trans->paths + path,
1816 					b->c.level, true, flags);
1817 	if (IS_ERR(as))
1818 		return PTR_ERR(as);
1819 
1820 	__btree_increase_depth(as, trans, path);
1821 	bch2_btree_update_done(as, trans);
1822 	return 0;
1823 }
1824 
1825 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1826 				  btree_path_idx_t path,
1827 				  unsigned level,
1828 				  unsigned flags,
1829 				  enum btree_node_sibling sib)
1830 {
1831 	struct bch_fs *c = trans->c;
1832 	struct btree_update *as;
1833 	struct bkey_format_state new_s;
1834 	struct bkey_format new_f;
1835 	struct bkey_i delete;
1836 	struct btree *b, *m, *n, *prev, *next, *parent;
1837 	struct bpos sib_pos;
1838 	size_t sib_u64s;
1839 	enum btree_id btree = trans->paths[path].btree_id;
1840 	btree_path_idx_t sib_path = 0, new_path = 0;
1841 	u64 start_time = local_clock();
1842 	int ret = 0;
1843 
1844 	BUG_ON(!trans->paths[path].should_be_locked);
1845 	BUG_ON(!btree_node_locked(&trans->paths[path], level));
1846 
1847 	b = trans->paths[path].l[level].b;
1848 
1849 	if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1850 	    (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1851 		b->sib_u64s[sib] = U16_MAX;
1852 		return 0;
1853 	}
1854 
1855 	sib_pos = sib == btree_prev_sib
1856 		? bpos_predecessor(b->data->min_key)
1857 		: bpos_successor(b->data->max_key);
1858 
1859 	sib_path = bch2_path_get(trans, btree, sib_pos,
1860 				 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1861 	ret = bch2_btree_path_traverse(trans, sib_path, false);
1862 	if (ret)
1863 		goto err;
1864 
1865 	btree_path_set_should_be_locked(trans->paths + sib_path);
1866 
1867 	m = trans->paths[sib_path].l[level].b;
1868 
1869 	if (btree_node_parent(trans->paths + path, b) !=
1870 	    btree_node_parent(trans->paths + sib_path, m)) {
1871 		b->sib_u64s[sib] = U16_MAX;
1872 		goto out;
1873 	}
1874 
1875 	if (sib == btree_prev_sib) {
1876 		prev = m;
1877 		next = b;
1878 	} else {
1879 		prev = b;
1880 		next = m;
1881 	}
1882 
1883 	if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
1884 		struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1885 
1886 		bch2_bpos_to_text(&buf1, prev->data->max_key);
1887 		bch2_bpos_to_text(&buf2, next->data->min_key);
1888 		bch_err(c,
1889 			"%s(): btree topology error:\n"
1890 			"  prev ends at   %s\n"
1891 			"  next starts at %s",
1892 			__func__, buf1.buf, buf2.buf);
1893 		printbuf_exit(&buf1);
1894 		printbuf_exit(&buf2);
1895 		ret = bch2_topology_error(c);
1896 		goto err;
1897 	}
1898 
1899 	bch2_bkey_format_init(&new_s);
1900 	bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1901 	__bch2_btree_calc_format(&new_s, prev);
1902 	__bch2_btree_calc_format(&new_s, next);
1903 	bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1904 	new_f = bch2_bkey_format_done(&new_s);
1905 
1906 	sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
1907 		btree_node_u64s_with_format(m->nr, &m->format, &new_f);
1908 
1909 	if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1910 		sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1911 		sib_u64s /= 2;
1912 		sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1913 	}
1914 
1915 	sib_u64s = min(sib_u64s, btree_max_u64s(c));
1916 	sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1917 	b->sib_u64s[sib] = sib_u64s;
1918 
1919 	if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1920 		goto out;
1921 
1922 	parent = btree_node_parent(trans->paths + path, b);
1923 	as = bch2_btree_update_start(trans, trans->paths + path, level, false,
1924 				     BCH_TRANS_COMMIT_no_enospc|flags);
1925 	ret = PTR_ERR_OR_ZERO(as);
1926 	if (ret)
1927 		goto err;
1928 
1929 	trace_and_count(c, btree_node_merge, trans, b);
1930 
1931 	bch2_btree_interior_update_will_free_node(as, b);
1932 	bch2_btree_interior_update_will_free_node(as, m);
1933 
1934 	n = bch2_btree_node_alloc(as, trans, b->c.level);
1935 
1936 	SET_BTREE_NODE_SEQ(n->data,
1937 			   max(BTREE_NODE_SEQ(b->data),
1938 			       BTREE_NODE_SEQ(m->data)) + 1);
1939 
1940 	btree_set_min(n, prev->data->min_key);
1941 	btree_set_max(n, next->data->max_key);
1942 
1943 	n->data->format	 = new_f;
1944 	btree_node_set_format(n, new_f);
1945 
1946 	bch2_btree_sort_into(c, n, prev);
1947 	bch2_btree_sort_into(c, n, next);
1948 
1949 	bch2_btree_build_aux_trees(n);
1950 	bch2_btree_update_add_new_node(as, n);
1951 	six_unlock_write(&n->c.lock);
1952 
1953 	new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p);
1954 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1955 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1956 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
1957 
1958 	bkey_init(&delete.k);
1959 	delete.k.p = prev->key.k.p;
1960 	bch2_keylist_add(&as->parent_keys, &delete);
1961 	bch2_keylist_add(&as->parent_keys, &n->key);
1962 
1963 	bch2_trans_verify_paths(trans);
1964 
1965 	ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1966 	if (ret)
1967 		goto err_free_update;
1968 
1969 	bch2_trans_verify_paths(trans);
1970 
1971 	bch2_btree_update_get_open_buckets(as, n);
1972 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1973 
1974 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1975 	bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
1976 
1977 	bch2_trans_node_add(trans, trans->paths + path, n);
1978 
1979 	bch2_trans_verify_paths(trans);
1980 
1981 	six_unlock_intent(&n->c.lock);
1982 
1983 	bch2_btree_update_done(as, trans);
1984 
1985 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1986 out:
1987 err:
1988 	if (new_path)
1989 		bch2_path_put(trans, new_path, true);
1990 	bch2_path_put(trans, sib_path, true);
1991 	bch2_trans_verify_locks(trans);
1992 	return ret;
1993 err_free_update:
1994 	bch2_btree_node_free_never_used(as, trans, n);
1995 	bch2_btree_update_free(as, trans);
1996 	goto out;
1997 }
1998 
1999 int bch2_btree_node_rewrite(struct btree_trans *trans,
2000 			    struct btree_iter *iter,
2001 			    struct btree *b,
2002 			    unsigned flags)
2003 {
2004 	struct bch_fs *c = trans->c;
2005 	struct btree *n, *parent;
2006 	struct btree_update *as;
2007 	btree_path_idx_t new_path = 0;
2008 	int ret;
2009 
2010 	flags |= BCH_TRANS_COMMIT_no_enospc;
2011 
2012 	struct btree_path *path = btree_iter_path(trans, iter);
2013 	parent = btree_node_parent(path, b);
2014 	as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2015 	ret = PTR_ERR_OR_ZERO(as);
2016 	if (ret)
2017 		goto out;
2018 
2019 	bch2_btree_interior_update_will_free_node(as, b);
2020 
2021 	n = bch2_btree_node_alloc_replacement(as, trans, b);
2022 
2023 	bch2_btree_build_aux_trees(n);
2024 	bch2_btree_update_add_new_node(as, n);
2025 	six_unlock_write(&n->c.lock);
2026 
2027 	new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
2028 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2029 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2030 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2031 
2032 	trace_and_count(c, btree_node_rewrite, trans, b);
2033 
2034 	if (parent) {
2035 		bch2_keylist_add(&as->parent_keys, &n->key);
2036 		ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2037 		if (ret)
2038 			goto err;
2039 	} else {
2040 		bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n);
2041 	}
2042 
2043 	bch2_btree_update_get_open_buckets(as, n);
2044 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2045 
2046 	bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2047 
2048 	bch2_trans_node_add(trans, trans->paths + iter->path, n);
2049 	six_unlock_intent(&n->c.lock);
2050 
2051 	bch2_btree_update_done(as, trans);
2052 out:
2053 	if (new_path)
2054 		bch2_path_put(trans, new_path, true);
2055 	bch2_trans_downgrade(trans);
2056 	return ret;
2057 err:
2058 	bch2_btree_node_free_never_used(as, trans, n);
2059 	bch2_btree_update_free(as, trans);
2060 	goto out;
2061 }
2062 
2063 struct async_btree_rewrite {
2064 	struct bch_fs		*c;
2065 	struct work_struct	work;
2066 	struct list_head	list;
2067 	enum btree_id		btree_id;
2068 	unsigned		level;
2069 	struct bpos		pos;
2070 	__le64			seq;
2071 };
2072 
2073 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2074 					  struct async_btree_rewrite *a)
2075 {
2076 	struct bch_fs *c = trans->c;
2077 	struct btree_iter iter;
2078 	struct btree *b;
2079 	int ret;
2080 
2081 	bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2082 				  BTREE_MAX_DEPTH, a->level, 0);
2083 	b = bch2_btree_iter_peek_node(&iter);
2084 	ret = PTR_ERR_OR_ZERO(b);
2085 	if (ret)
2086 		goto out;
2087 
2088 	if (!b || b->data->keys.seq != a->seq) {
2089 		struct printbuf buf = PRINTBUF;
2090 
2091 		if (b)
2092 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2093 		else
2094 			prt_str(&buf, "(null");
2095 		bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2096 			 __func__, a->seq, buf.buf);
2097 		printbuf_exit(&buf);
2098 		goto out;
2099 	}
2100 
2101 	ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2102 out:
2103 	bch2_trans_iter_exit(trans, &iter);
2104 
2105 	return ret;
2106 }
2107 
2108 static void async_btree_node_rewrite_work(struct work_struct *work)
2109 {
2110 	struct async_btree_rewrite *a =
2111 		container_of(work, struct async_btree_rewrite, work);
2112 	struct bch_fs *c = a->c;
2113 	int ret;
2114 
2115 	ret = bch2_trans_do(c, NULL, NULL, 0,
2116 		      async_btree_node_rewrite_trans(trans, a));
2117 	bch_err_fn(c, ret);
2118 	bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2119 	kfree(a);
2120 }
2121 
2122 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2123 {
2124 	struct async_btree_rewrite *a;
2125 	int ret;
2126 
2127 	a = kmalloc(sizeof(*a), GFP_NOFS);
2128 	if (!a) {
2129 		bch_err(c, "%s: error allocating memory", __func__);
2130 		return;
2131 	}
2132 
2133 	a->c		= c;
2134 	a->btree_id	= b->c.btree_id;
2135 	a->level	= b->c.level;
2136 	a->pos		= b->key.k.p;
2137 	a->seq		= b->data->keys.seq;
2138 	INIT_WORK(&a->work, async_btree_node_rewrite_work);
2139 
2140 	if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2141 		mutex_lock(&c->pending_node_rewrites_lock);
2142 		list_add(&a->list, &c->pending_node_rewrites);
2143 		mutex_unlock(&c->pending_node_rewrites_lock);
2144 		return;
2145 	}
2146 
2147 	if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2148 		if (test_bit(BCH_FS_started, &c->flags)) {
2149 			bch_err(c, "%s: error getting c->writes ref", __func__);
2150 			kfree(a);
2151 			return;
2152 		}
2153 
2154 		ret = bch2_fs_read_write_early(c);
2155 		bch_err_msg(c, ret, "going read-write");
2156 		if (ret) {
2157 			kfree(a);
2158 			return;
2159 		}
2160 
2161 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2162 	}
2163 
2164 	queue_work(c->btree_interior_update_worker, &a->work);
2165 }
2166 
2167 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2168 {
2169 	struct async_btree_rewrite *a, *n;
2170 
2171 	mutex_lock(&c->pending_node_rewrites_lock);
2172 	list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2173 		list_del(&a->list);
2174 
2175 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2176 		queue_work(c->btree_interior_update_worker, &a->work);
2177 	}
2178 	mutex_unlock(&c->pending_node_rewrites_lock);
2179 }
2180 
2181 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2182 {
2183 	struct async_btree_rewrite *a, *n;
2184 
2185 	mutex_lock(&c->pending_node_rewrites_lock);
2186 	list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2187 		list_del(&a->list);
2188 
2189 		kfree(a);
2190 	}
2191 	mutex_unlock(&c->pending_node_rewrites_lock);
2192 }
2193 
2194 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2195 					struct btree_iter *iter,
2196 					struct btree *b, struct btree *new_hash,
2197 					struct bkey_i *new_key,
2198 					unsigned commit_flags,
2199 					bool skip_triggers)
2200 {
2201 	struct bch_fs *c = trans->c;
2202 	struct btree_iter iter2 = { NULL };
2203 	struct btree *parent;
2204 	int ret;
2205 
2206 	if (!skip_triggers) {
2207 		ret   = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2208 					     bkey_i_to_s_c(&b->key),
2209 					     BTREE_TRIGGER_TRANSACTIONAL) ?:
2210 			bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2211 					     bkey_i_to_s(new_key),
2212 					     BTREE_TRIGGER_TRANSACTIONAL);
2213 		if (ret)
2214 			return ret;
2215 	}
2216 
2217 	if (new_hash) {
2218 		bkey_copy(&new_hash->key, new_key);
2219 		ret = bch2_btree_node_hash_insert(&c->btree_cache,
2220 				new_hash, b->c.level, b->c.btree_id);
2221 		BUG_ON(ret);
2222 	}
2223 
2224 	parent = btree_node_parent(btree_iter_path(trans, iter), b);
2225 	if (parent) {
2226 		bch2_trans_copy_iter(&iter2, iter);
2227 
2228 		iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2229 				iter2.flags & BTREE_ITER_INTENT,
2230 				_THIS_IP_);
2231 
2232 		struct btree_path *path2 = btree_iter_path(trans, &iter2);
2233 		BUG_ON(path2->level != b->c.level);
2234 		BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2235 
2236 		btree_path_set_level_up(trans, path2);
2237 
2238 		trans->paths_sorted = false;
2239 
2240 		ret   = bch2_btree_iter_traverse(&iter2) ?:
2241 			bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2242 		if (ret)
2243 			goto err;
2244 	} else {
2245 		BUG_ON(btree_node_root(c, b) != b);
2246 
2247 		struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2248 				       jset_u64s(new_key->k.u64s));
2249 		ret = PTR_ERR_OR_ZERO(e);
2250 		if (ret)
2251 			return ret;
2252 
2253 		journal_entry_set(e,
2254 				  BCH_JSET_ENTRY_btree_root,
2255 				  b->c.btree_id, b->c.level,
2256 				  new_key, new_key->k.u64s);
2257 	}
2258 
2259 	ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2260 	if (ret)
2261 		goto err;
2262 
2263 	bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2264 
2265 	if (new_hash) {
2266 		mutex_lock(&c->btree_cache.lock);
2267 		bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2268 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2269 
2270 		bkey_copy(&b->key, new_key);
2271 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2272 		BUG_ON(ret);
2273 		mutex_unlock(&c->btree_cache.lock);
2274 	} else {
2275 		bkey_copy(&b->key, new_key);
2276 	}
2277 
2278 	bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2279 out:
2280 	bch2_trans_iter_exit(trans, &iter2);
2281 	return ret;
2282 err:
2283 	if (new_hash) {
2284 		mutex_lock(&c->btree_cache.lock);
2285 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2286 		mutex_unlock(&c->btree_cache.lock);
2287 	}
2288 	goto out;
2289 }
2290 
2291 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2292 			       struct btree *b, struct bkey_i *new_key,
2293 			       unsigned commit_flags, bool skip_triggers)
2294 {
2295 	struct bch_fs *c = trans->c;
2296 	struct btree *new_hash = NULL;
2297 	struct btree_path *path = btree_iter_path(trans, iter);
2298 	struct closure cl;
2299 	int ret = 0;
2300 
2301 	ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2302 	if (ret)
2303 		return ret;
2304 
2305 	closure_init_stack(&cl);
2306 
2307 	/*
2308 	 * check btree_ptr_hash_val() after @b is locked by
2309 	 * btree_iter_traverse():
2310 	 */
2311 	if (btree_ptr_hash_val(new_key) != b->hash_val) {
2312 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2313 		if (ret) {
2314 			ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2315 			if (ret)
2316 				return ret;
2317 		}
2318 
2319 		new_hash = bch2_btree_node_mem_alloc(trans, false);
2320 	}
2321 
2322 	path->intent_ref++;
2323 	ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2324 					   commit_flags, skip_triggers);
2325 	--path->intent_ref;
2326 
2327 	if (new_hash) {
2328 		mutex_lock(&c->btree_cache.lock);
2329 		list_move(&new_hash->list, &c->btree_cache.freeable);
2330 		mutex_unlock(&c->btree_cache.lock);
2331 
2332 		six_unlock_write(&new_hash->c.lock);
2333 		six_unlock_intent(&new_hash->c.lock);
2334 	}
2335 	closure_sync(&cl);
2336 	bch2_btree_cache_cannibalize_unlock(trans);
2337 	return ret;
2338 }
2339 
2340 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2341 					struct btree *b, struct bkey_i *new_key,
2342 					unsigned commit_flags, bool skip_triggers)
2343 {
2344 	struct btree_iter iter;
2345 	int ret;
2346 
2347 	bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2348 				  BTREE_MAX_DEPTH, b->c.level,
2349 				  BTREE_ITER_INTENT);
2350 	ret = bch2_btree_iter_traverse(&iter);
2351 	if (ret)
2352 		goto out;
2353 
2354 	/* has node been freed? */
2355 	if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2356 		/* node has been freed: */
2357 		BUG_ON(!btree_node_dying(b));
2358 		goto out;
2359 	}
2360 
2361 	BUG_ON(!btree_node_hashed(b));
2362 
2363 	struct bch_extent_ptr *ptr;
2364 	bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2365 			    !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2366 
2367 	ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2368 					 commit_flags, skip_triggers);
2369 out:
2370 	bch2_trans_iter_exit(trans, &iter);
2371 	return ret;
2372 }
2373 
2374 /* Init code: */
2375 
2376 /*
2377  * Only for filesystem bringup, when first reading the btree roots or allocating
2378  * btree roots when initializing a new filesystem:
2379  */
2380 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2381 {
2382 	BUG_ON(btree_node_root(c, b));
2383 
2384 	bch2_btree_set_root_inmem(c, b);
2385 }
2386 
2387 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id)
2388 {
2389 	struct bch_fs *c = trans->c;
2390 	struct closure cl;
2391 	struct btree *b;
2392 	int ret;
2393 
2394 	closure_init_stack(&cl);
2395 
2396 	do {
2397 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2398 		closure_sync(&cl);
2399 	} while (ret);
2400 
2401 	b = bch2_btree_node_mem_alloc(trans, false);
2402 	bch2_btree_cache_cannibalize_unlock(trans);
2403 
2404 	set_btree_node_fake(b);
2405 	set_btree_node_need_rewrite(b);
2406 	b->c.level	= 0;
2407 	b->c.btree_id	= id;
2408 
2409 	bkey_btree_ptr_init(&b->key);
2410 	b->key.k.p = SPOS_MAX;
2411 	*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2412 
2413 	bch2_bset_init_first(b, &b->data->keys);
2414 	bch2_btree_build_aux_trees(b);
2415 
2416 	b->data->flags = 0;
2417 	btree_set_min(b, POS_MIN);
2418 	btree_set_max(b, SPOS_MAX);
2419 	b->data->format = bch2_btree_calc_format(b);
2420 	btree_node_set_format(b, b->data->format);
2421 
2422 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2423 					  b->c.level, b->c.btree_id);
2424 	BUG_ON(ret);
2425 
2426 	bch2_btree_set_root_inmem(c, b);
2427 
2428 	six_unlock_write(&b->c.lock);
2429 	six_unlock_intent(&b->c.lock);
2430 	return 0;
2431 }
2432 
2433 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2434 {
2435 	bch2_trans_run(c, __bch2_btree_root_alloc(trans, id));
2436 }
2437 
2438 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2439 {
2440 	struct btree_update *as;
2441 
2442 	mutex_lock(&c->btree_interior_update_lock);
2443 	list_for_each_entry(as, &c->btree_interior_update_list, list)
2444 		prt_printf(out, "%p m %u w %u r %u j %llu\n",
2445 		       as,
2446 		       as->mode,
2447 		       as->nodes_written,
2448 		       closure_nr_remaining(&as->cl),
2449 		       as->journal.seq);
2450 	mutex_unlock(&c->btree_interior_update_lock);
2451 }
2452 
2453 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2454 {
2455 	bool ret;
2456 
2457 	mutex_lock(&c->btree_interior_update_lock);
2458 	ret = !list_empty(&c->btree_interior_update_list);
2459 	mutex_unlock(&c->btree_interior_update_lock);
2460 
2461 	return ret;
2462 }
2463 
2464 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2465 {
2466 	bool ret = bch2_btree_interior_updates_pending(c);
2467 
2468 	if (ret)
2469 		closure_wait_event(&c->btree_interior_update_wait,
2470 				   !bch2_btree_interior_updates_pending(c));
2471 	return ret;
2472 }
2473 
2474 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2475 {
2476 	struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2477 
2478 	mutex_lock(&c->btree_root_lock);
2479 
2480 	r->level = entry->level;
2481 	r->alive = true;
2482 	bkey_copy(&r->key, (struct bkey_i *) entry->start);
2483 
2484 	mutex_unlock(&c->btree_root_lock);
2485 }
2486 
2487 struct jset_entry *
2488 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2489 				    struct jset_entry *end,
2490 				    unsigned long skip)
2491 {
2492 	unsigned i;
2493 
2494 	mutex_lock(&c->btree_root_lock);
2495 
2496 	for (i = 0; i < btree_id_nr_alive(c); i++) {
2497 		struct btree_root *r = bch2_btree_id_root(c, i);
2498 
2499 		if (r->alive && !test_bit(i, &skip)) {
2500 			journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2501 					  i, r->level, &r->key, r->key.k.u64s);
2502 			end = vstruct_next(end);
2503 		}
2504 	}
2505 
2506 	mutex_unlock(&c->btree_root_lock);
2507 
2508 	return end;
2509 }
2510 
2511 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2512 {
2513 	if (c->btree_interior_update_worker)
2514 		destroy_workqueue(c->btree_interior_update_worker);
2515 	mempool_exit(&c->btree_interior_update_pool);
2516 }
2517 
2518 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2519 {
2520 	mutex_init(&c->btree_reserve_cache_lock);
2521 	INIT_LIST_HEAD(&c->btree_interior_update_list);
2522 	INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2523 	mutex_init(&c->btree_interior_update_lock);
2524 	INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2525 
2526 	INIT_LIST_HEAD(&c->pending_node_rewrites);
2527 	mutex_init(&c->pending_node_rewrites_lock);
2528 }
2529 
2530 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2531 {
2532 	c->btree_interior_update_worker =
2533 		alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2534 	if (!c->btree_interior_update_worker)
2535 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2536 
2537 	if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2538 				      sizeof(struct btree_update)))
2539 		return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2540 
2541 	return 0;
2542 }
2543