1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_methods.h" 6 #include "btree_cache.h" 7 #include "btree_gc.h" 8 #include "btree_journal_iter.h" 9 #include "btree_update.h" 10 #include "btree_update_interior.h" 11 #include "btree_io.h" 12 #include "btree_iter.h" 13 #include "btree_locking.h" 14 #include "buckets.h" 15 #include "clock.h" 16 #include "error.h" 17 #include "extents.h" 18 #include "journal.h" 19 #include "journal_reclaim.h" 20 #include "keylist.h" 21 #include "replicas.h" 22 #include "super-io.h" 23 #include "trace.h" 24 25 #include <linux/random.h> 26 27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 28 btree_path_idx_t, struct btree *, struct keylist *); 29 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 30 31 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans, 32 enum btree_id btree_id, 33 unsigned level, 34 struct bpos pos) 35 { 36 btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level, 37 BTREE_ITER_NOPRESERVE| 38 BTREE_ITER_INTENT, _RET_IP_); 39 path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_); 40 41 struct btree_path *path = trans->paths + path_idx; 42 bch2_btree_path_downgrade(trans, path); 43 __bch2_btree_path_unlock(trans, path); 44 return path_idx; 45 } 46 47 /* Debug code: */ 48 49 /* 50 * Verify that child nodes correctly span parent node's range: 51 */ 52 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) 53 { 54 #ifdef CONFIG_BCACHEFS_DEBUG 55 struct bpos next_node = b->data->min_key; 56 struct btree_node_iter iter; 57 struct bkey_s_c k; 58 struct bkey_s_c_btree_ptr_v2 bp; 59 struct bkey unpacked; 60 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 61 62 BUG_ON(!b->c.level); 63 64 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) 65 return; 66 67 bch2_btree_node_iter_init_from_start(&iter, b); 68 69 while (1) { 70 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); 71 if (k.k->type != KEY_TYPE_btree_ptr_v2) 72 break; 73 bp = bkey_s_c_to_btree_ptr_v2(k); 74 75 if (!bpos_eq(next_node, bp.v->min_key)) { 76 bch2_dump_btree_node(c, b); 77 bch2_bpos_to_text(&buf1, next_node); 78 bch2_bpos_to_text(&buf2, bp.v->min_key); 79 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); 80 } 81 82 bch2_btree_node_iter_advance(&iter, b); 83 84 if (bch2_btree_node_iter_end(&iter)) { 85 if (!bpos_eq(k.k->p, b->key.k.p)) { 86 bch2_dump_btree_node(c, b); 87 bch2_bpos_to_text(&buf1, b->key.k.p); 88 bch2_bpos_to_text(&buf2, k.k->p); 89 panic("expected end %s got %s\n", buf1.buf, buf2.buf); 90 } 91 break; 92 } 93 94 next_node = bpos_successor(k.k->p); 95 } 96 #endif 97 } 98 99 /* Calculate ideal packed bkey format for new btree nodes: */ 100 101 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 102 { 103 struct bkey_packed *k; 104 struct bset_tree *t; 105 struct bkey uk; 106 107 for_each_bset(b, t) 108 bset_tree_for_each_key(b, t, k) 109 if (!bkey_deleted(k)) { 110 uk = bkey_unpack_key(b, k); 111 bch2_bkey_format_add_key(s, &uk); 112 } 113 } 114 115 static struct bkey_format bch2_btree_calc_format(struct btree *b) 116 { 117 struct bkey_format_state s; 118 119 bch2_bkey_format_init(&s); 120 bch2_bkey_format_add_pos(&s, b->data->min_key); 121 bch2_bkey_format_add_pos(&s, b->data->max_key); 122 __bch2_btree_calc_format(&s, b); 123 124 return bch2_bkey_format_done(&s); 125 } 126 127 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 128 struct bkey_format *old_f, 129 struct bkey_format *new_f) 130 { 131 /* stupid integer promotion rules */ 132 ssize_t delta = 133 (((int) new_f->key_u64s - old_f->key_u64s) * 134 (int) nr.packed_keys) + 135 (((int) new_f->key_u64s - BKEY_U64s) * 136 (int) nr.unpacked_keys); 137 138 BUG_ON(delta + nr.live_u64s < 0); 139 140 return nr.live_u64s + delta; 141 } 142 143 /** 144 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 145 * 146 * @c: filesystem handle 147 * @b: btree node to rewrite 148 * @nr: number of keys for new node (i.e. b->nr) 149 * @new_f: bkey format to translate keys to 150 * 151 * Returns: true if all re-packed keys will be able to fit in a new node. 152 * 153 * Assumes all keys will successfully pack with the new format. 154 */ 155 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 156 struct btree_nr_keys nr, 157 struct bkey_format *new_f) 158 { 159 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 160 161 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 162 } 163 164 /* Btree node freeing/allocation: */ 165 166 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 167 { 168 struct bch_fs *c = trans->c; 169 170 trace_and_count(c, btree_node_free, trans, b); 171 172 BUG_ON(btree_node_write_blocked(b)); 173 BUG_ON(btree_node_dirty(b)); 174 BUG_ON(btree_node_need_write(b)); 175 BUG_ON(b == btree_node_root(c, b)); 176 BUG_ON(b->ob.nr); 177 BUG_ON(!list_empty(&b->write_blocked)); 178 BUG_ON(b->will_make_reachable); 179 180 clear_btree_node_noevict(b); 181 182 mutex_lock(&c->btree_cache.lock); 183 list_move(&b->list, &c->btree_cache.freeable); 184 mutex_unlock(&c->btree_cache.lock); 185 } 186 187 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 188 struct btree_path *path, 189 struct btree *b) 190 { 191 struct bch_fs *c = trans->c; 192 unsigned i, level = b->c.level; 193 194 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 195 bch2_btree_node_hash_remove(&c->btree_cache, b); 196 __btree_node_free(trans, b); 197 six_unlock_write(&b->c.lock); 198 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 199 200 trans_for_each_path(trans, path, i) 201 if (path->l[level].b == b) { 202 btree_node_unlock(trans, path, level); 203 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 204 } 205 } 206 207 static void bch2_btree_node_free_never_used(struct btree_update *as, 208 struct btree_trans *trans, 209 struct btree *b) 210 { 211 struct bch_fs *c = as->c; 212 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 213 struct btree_path *path; 214 unsigned i, level = b->c.level; 215 216 BUG_ON(!list_empty(&b->write_blocked)); 217 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 218 219 b->will_make_reachable = 0; 220 closure_put(&as->cl); 221 222 clear_btree_node_will_make_reachable(b); 223 clear_btree_node_accessed(b); 224 clear_btree_node_dirty_acct(c, b); 225 clear_btree_node_need_write(b); 226 227 mutex_lock(&c->btree_cache.lock); 228 list_del_init(&b->list); 229 bch2_btree_node_hash_remove(&c->btree_cache, b); 230 mutex_unlock(&c->btree_cache.lock); 231 232 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 233 p->b[p->nr++] = b; 234 235 six_unlock_intent(&b->c.lock); 236 237 trans_for_each_path(trans, path, i) 238 if (path->l[level].b == b) { 239 btree_node_unlock(trans, path, level); 240 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 241 } 242 } 243 244 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 245 struct disk_reservation *res, 246 struct closure *cl, 247 bool interior_node, 248 unsigned flags) 249 { 250 struct bch_fs *c = trans->c; 251 struct write_point *wp; 252 struct btree *b; 253 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 254 struct open_buckets obs = { .nr = 0 }; 255 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 256 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 257 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim 258 ? BTREE_NODE_RESERVE 259 : 0; 260 int ret; 261 262 mutex_lock(&c->btree_reserve_cache_lock); 263 if (c->btree_reserve_cache_nr > nr_reserve) { 264 struct btree_alloc *a = 265 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 266 267 obs = a->ob; 268 bkey_copy(&tmp.k, &a->k); 269 mutex_unlock(&c->btree_reserve_cache_lock); 270 goto mem_alloc; 271 } 272 mutex_unlock(&c->btree_reserve_cache_lock); 273 274 retry: 275 ret = bch2_alloc_sectors_start_trans(trans, 276 c->opts.metadata_target ?: 277 c->opts.foreground_target, 278 0, 279 writepoint_ptr(&c->btree_write_point), 280 &devs_have, 281 res->nr_replicas, 282 min(res->nr_replicas, 283 c->opts.metadata_replicas_required), 284 watermark, 0, cl, &wp); 285 if (unlikely(ret)) 286 return ERR_PTR(ret); 287 288 if (wp->sectors_free < btree_sectors(c)) { 289 struct open_bucket *ob; 290 unsigned i; 291 292 open_bucket_for_each(c, &wp->ptrs, ob, i) 293 if (ob->sectors_free < btree_sectors(c)) 294 ob->sectors_free = 0; 295 296 bch2_alloc_sectors_done(c, wp); 297 goto retry; 298 } 299 300 bkey_btree_ptr_v2_init(&tmp.k); 301 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 302 303 bch2_open_bucket_get(c, wp, &obs); 304 bch2_alloc_sectors_done(c, wp); 305 mem_alloc: 306 b = bch2_btree_node_mem_alloc(trans, interior_node); 307 six_unlock_write(&b->c.lock); 308 six_unlock_intent(&b->c.lock); 309 310 /* we hold cannibalize_lock: */ 311 BUG_ON(IS_ERR(b)); 312 BUG_ON(b->ob.nr); 313 314 bkey_copy(&b->key, &tmp.k); 315 b->ob = obs; 316 317 return b; 318 } 319 320 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 321 struct btree_trans *trans, 322 unsigned level) 323 { 324 struct bch_fs *c = as->c; 325 struct btree *b; 326 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 327 int ret; 328 329 BUG_ON(level >= BTREE_MAX_DEPTH); 330 BUG_ON(!p->nr); 331 332 b = p->b[--p->nr]; 333 334 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 335 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 336 337 set_btree_node_accessed(b); 338 set_btree_node_dirty_acct(c, b); 339 set_btree_node_need_write(b); 340 341 bch2_bset_init_first(b, &b->data->keys); 342 b->c.level = level; 343 b->c.btree_id = as->btree_id; 344 b->version_ondisk = c->sb.version; 345 346 memset(&b->nr, 0, sizeof(b->nr)); 347 b->data->magic = cpu_to_le64(bset_magic(c)); 348 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 349 b->data->flags = 0; 350 SET_BTREE_NODE_ID(b->data, as->btree_id); 351 SET_BTREE_NODE_LEVEL(b->data, level); 352 353 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 354 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 355 356 bp->v.mem_ptr = 0; 357 bp->v.seq = b->data->keys.seq; 358 bp->v.sectors_written = 0; 359 } 360 361 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 362 363 bch2_btree_build_aux_trees(b); 364 365 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 366 BUG_ON(ret); 367 368 trace_and_count(c, btree_node_alloc, trans, b); 369 bch2_increment_clock(c, btree_sectors(c), WRITE); 370 return b; 371 } 372 373 static void btree_set_min(struct btree *b, struct bpos pos) 374 { 375 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 376 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 377 b->data->min_key = pos; 378 } 379 380 static void btree_set_max(struct btree *b, struct bpos pos) 381 { 382 b->key.k.p = pos; 383 b->data->max_key = pos; 384 } 385 386 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 387 struct btree_trans *trans, 388 struct btree *b) 389 { 390 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 391 struct bkey_format format = bch2_btree_calc_format(b); 392 393 /* 394 * The keys might expand with the new format - if they wouldn't fit in 395 * the btree node anymore, use the old format for now: 396 */ 397 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 398 format = b->format; 399 400 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 401 402 btree_set_min(n, b->data->min_key); 403 btree_set_max(n, b->data->max_key); 404 405 n->data->format = format; 406 btree_node_set_format(n, format); 407 408 bch2_btree_sort_into(as->c, n, b); 409 410 btree_node_reset_sib_u64s(n); 411 return n; 412 } 413 414 static struct btree *__btree_root_alloc(struct btree_update *as, 415 struct btree_trans *trans, unsigned level) 416 { 417 struct btree *b = bch2_btree_node_alloc(as, trans, level); 418 419 btree_set_min(b, POS_MIN); 420 btree_set_max(b, SPOS_MAX); 421 b->data->format = bch2_btree_calc_format(b); 422 423 btree_node_set_format(b, b->data->format); 424 bch2_btree_build_aux_trees(b); 425 426 return b; 427 } 428 429 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 430 { 431 struct bch_fs *c = as->c; 432 struct prealloc_nodes *p; 433 434 for (p = as->prealloc_nodes; 435 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 436 p++) { 437 while (p->nr) { 438 struct btree *b = p->b[--p->nr]; 439 440 mutex_lock(&c->btree_reserve_cache_lock); 441 442 if (c->btree_reserve_cache_nr < 443 ARRAY_SIZE(c->btree_reserve_cache)) { 444 struct btree_alloc *a = 445 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 446 447 a->ob = b->ob; 448 b->ob.nr = 0; 449 bkey_copy(&a->k, &b->key); 450 } else { 451 bch2_open_buckets_put(c, &b->ob); 452 } 453 454 mutex_unlock(&c->btree_reserve_cache_lock); 455 456 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 457 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 458 __btree_node_free(trans, b); 459 six_unlock_write(&b->c.lock); 460 six_unlock_intent(&b->c.lock); 461 } 462 } 463 } 464 465 static int bch2_btree_reserve_get(struct btree_trans *trans, 466 struct btree_update *as, 467 unsigned nr_nodes[2], 468 unsigned flags, 469 struct closure *cl) 470 { 471 struct btree *b; 472 unsigned interior; 473 int ret = 0; 474 475 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 476 477 /* 478 * Protects reaping from the btree node cache and using the btree node 479 * open bucket reserve: 480 */ 481 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 482 if (ret) 483 return ret; 484 485 for (interior = 0; interior < 2; interior++) { 486 struct prealloc_nodes *p = as->prealloc_nodes + interior; 487 488 while (p->nr < nr_nodes[interior]) { 489 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 490 interior, flags); 491 if (IS_ERR(b)) { 492 ret = PTR_ERR(b); 493 goto err; 494 } 495 496 p->b[p->nr++] = b; 497 } 498 } 499 err: 500 bch2_btree_cache_cannibalize_unlock(trans); 501 return ret; 502 } 503 504 /* Asynchronous interior node update machinery */ 505 506 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 507 { 508 struct bch_fs *c = as->c; 509 510 if (as->took_gc_lock) 511 up_read(&c->gc_lock); 512 as->took_gc_lock = false; 513 514 bch2_journal_pin_drop(&c->journal, &as->journal); 515 bch2_journal_pin_flush(&c->journal, &as->journal); 516 bch2_disk_reservation_put(c, &as->disk_res); 517 bch2_btree_reserve_put(as, trans); 518 519 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 520 as->start_time); 521 522 mutex_lock(&c->btree_interior_update_lock); 523 list_del(&as->unwritten_list); 524 list_del(&as->list); 525 526 closure_debug_destroy(&as->cl); 527 mempool_free(as, &c->btree_interior_update_pool); 528 529 /* 530 * Have to do the wakeup with btree_interior_update_lock still held, 531 * since being on btree_interior_update_list is our ref on @c: 532 */ 533 closure_wake_up(&c->btree_interior_update_wait); 534 535 mutex_unlock(&c->btree_interior_update_lock); 536 } 537 538 static void btree_update_add_key(struct btree_update *as, 539 struct keylist *keys, struct btree *b) 540 { 541 struct bkey_i *k = &b->key; 542 543 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 544 ARRAY_SIZE(as->_old_keys)); 545 546 bkey_copy(keys->top, k); 547 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 548 549 bch2_keylist_push(keys); 550 } 551 552 /* 553 * The transactional part of an interior btree node update, where we journal the 554 * update we did to the interior node and update alloc info: 555 */ 556 static int btree_update_nodes_written_trans(struct btree_trans *trans, 557 struct btree_update *as) 558 { 559 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 560 int ret = PTR_ERR_OR_ZERO(e); 561 if (ret) 562 return ret; 563 564 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 565 566 trans->journal_pin = &as->journal; 567 568 for_each_keylist_key(&as->old_keys, k) { 569 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 570 571 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 572 BTREE_TRIGGER_TRANSACTIONAL); 573 if (ret) 574 return ret; 575 } 576 577 for_each_keylist_key(&as->new_keys, k) { 578 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 579 580 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 581 BTREE_TRIGGER_TRANSACTIONAL); 582 if (ret) 583 return ret; 584 } 585 586 return 0; 587 } 588 589 static void btree_update_nodes_written(struct btree_update *as) 590 { 591 struct bch_fs *c = as->c; 592 struct btree *b; 593 struct btree_trans *trans = bch2_trans_get(c); 594 u64 journal_seq = 0; 595 unsigned i; 596 int ret; 597 598 /* 599 * If we're already in an error state, it might be because a btree node 600 * was never written, and we might be trying to free that same btree 601 * node here, but it won't have been marked as allocated and we'll see 602 * spurious disk usage inconsistencies in the transactional part below 603 * if we don't skip it: 604 */ 605 ret = bch2_journal_error(&c->journal); 606 if (ret) 607 goto err; 608 609 /* 610 * Wait for any in flight writes to finish before we free the old nodes 611 * on disk: 612 */ 613 for (i = 0; i < as->nr_old_nodes; i++) { 614 __le64 seq; 615 616 b = as->old_nodes[i]; 617 618 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 619 seq = b->data ? b->data->keys.seq : 0; 620 six_unlock_read(&b->c.lock); 621 622 if (seq == as->old_nodes_seq[i]) 623 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 624 TASK_UNINTERRUPTIBLE); 625 } 626 627 /* 628 * We did an update to a parent node where the pointers we added pointed 629 * to child nodes that weren't written yet: now, the child nodes have 630 * been written so we can write out the update to the interior node. 631 */ 632 633 /* 634 * We can't call into journal reclaim here: we'd block on the journal 635 * reclaim lock, but we may need to release the open buckets we have 636 * pinned in order for other btree updates to make forward progress, and 637 * journal reclaim does btree updates when flushing bkey_cached entries, 638 * which may require allocations as well. 639 */ 640 ret = commit_do(trans, &as->disk_res, &journal_seq, 641 BCH_WATERMARK_reclaim| 642 BCH_TRANS_COMMIT_no_enospc| 643 BCH_TRANS_COMMIT_no_check_rw| 644 BCH_TRANS_COMMIT_journal_reclaim, 645 btree_update_nodes_written_trans(trans, as)); 646 bch2_trans_unlock(trans); 647 648 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 649 "%s(): error %s", __func__, bch2_err_str(ret)); 650 err: 651 if (as->b) { 652 653 b = as->b; 654 btree_path_idx_t path_idx = get_unlocked_mut_path(trans, 655 as->btree_id, b->c.level, b->key.k.p); 656 struct btree_path *path = trans->paths + path_idx; 657 /* 658 * @b is the node we did the final insert into: 659 * 660 * On failure to get a journal reservation, we still have to 661 * unblock the write and allow most of the write path to happen 662 * so that shutdown works, but the i->journal_seq mechanism 663 * won't work to prevent the btree write from being visible (we 664 * didn't get a journal sequence number) - instead 665 * __bch2_btree_node_write() doesn't do the actual write if 666 * we're in journal error state: 667 */ 668 669 /* 670 * Ensure transaction is unlocked before using 671 * btree_node_lock_nopath() (the use of which is always suspect, 672 * we need to work on removing this in the future) 673 * 674 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 675 * calls bch2_path_upgrade(), before we call path_make_mut(), so 676 * we may rarely end up with a locked path besides the one we 677 * have here: 678 */ 679 bch2_trans_unlock(trans); 680 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 681 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 682 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 683 path->l[b->c.level].b = b; 684 685 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 686 687 mutex_lock(&c->btree_interior_update_lock); 688 689 list_del(&as->write_blocked_list); 690 if (list_empty(&b->write_blocked)) 691 clear_btree_node_write_blocked(b); 692 693 /* 694 * Node might have been freed, recheck under 695 * btree_interior_update_lock: 696 */ 697 if (as->b == b) { 698 BUG_ON(!b->c.level); 699 BUG_ON(!btree_node_dirty(b)); 700 701 if (!ret) { 702 struct bset *last = btree_bset_last(b); 703 704 last->journal_seq = cpu_to_le64( 705 max(journal_seq, 706 le64_to_cpu(last->journal_seq))); 707 708 bch2_btree_add_journal_pin(c, b, journal_seq); 709 } else { 710 /* 711 * If we didn't get a journal sequence number we 712 * can't write this btree node, because recovery 713 * won't know to ignore this write: 714 */ 715 set_btree_node_never_write(b); 716 } 717 } 718 719 mutex_unlock(&c->btree_interior_update_lock); 720 721 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 722 six_unlock_write(&b->c.lock); 723 724 btree_node_write_if_need(c, b, SIX_LOCK_intent); 725 btree_node_unlock(trans, path, b->c.level); 726 bch2_path_put(trans, path_idx, true); 727 } 728 729 bch2_journal_pin_drop(&c->journal, &as->journal); 730 731 mutex_lock(&c->btree_interior_update_lock); 732 for (i = 0; i < as->nr_new_nodes; i++) { 733 b = as->new_nodes[i]; 734 735 BUG_ON(b->will_make_reachable != (unsigned long) as); 736 b->will_make_reachable = 0; 737 clear_btree_node_will_make_reachable(b); 738 } 739 mutex_unlock(&c->btree_interior_update_lock); 740 741 for (i = 0; i < as->nr_new_nodes; i++) { 742 b = as->new_nodes[i]; 743 744 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 745 btree_node_write_if_need(c, b, SIX_LOCK_read); 746 six_unlock_read(&b->c.lock); 747 } 748 749 for (i = 0; i < as->nr_open_buckets; i++) 750 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 751 752 bch2_btree_update_free(as, trans); 753 bch2_trans_put(trans); 754 } 755 756 static void btree_interior_update_work(struct work_struct *work) 757 { 758 struct bch_fs *c = 759 container_of(work, struct bch_fs, btree_interior_update_work); 760 struct btree_update *as; 761 762 while (1) { 763 mutex_lock(&c->btree_interior_update_lock); 764 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 765 struct btree_update, unwritten_list); 766 if (as && !as->nodes_written) 767 as = NULL; 768 mutex_unlock(&c->btree_interior_update_lock); 769 770 if (!as) 771 break; 772 773 btree_update_nodes_written(as); 774 } 775 } 776 777 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 778 { 779 closure_type(as, struct btree_update, cl); 780 struct bch_fs *c = as->c; 781 782 mutex_lock(&c->btree_interior_update_lock); 783 as->nodes_written = true; 784 mutex_unlock(&c->btree_interior_update_lock); 785 786 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 787 } 788 789 /* 790 * We're updating @b with pointers to nodes that haven't finished writing yet: 791 * block @b from being written until @as completes 792 */ 793 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 794 { 795 struct bch_fs *c = as->c; 796 797 mutex_lock(&c->btree_interior_update_lock); 798 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 799 800 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 801 BUG_ON(!btree_node_dirty(b)); 802 BUG_ON(!b->c.level); 803 804 as->mode = BTREE_INTERIOR_UPDATING_NODE; 805 as->b = b; 806 807 set_btree_node_write_blocked(b); 808 list_add(&as->write_blocked_list, &b->write_blocked); 809 810 mutex_unlock(&c->btree_interior_update_lock); 811 } 812 813 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 814 struct journal_entry_pin *_pin, u64 seq) 815 { 816 return 0; 817 } 818 819 static void btree_update_reparent(struct btree_update *as, 820 struct btree_update *child) 821 { 822 struct bch_fs *c = as->c; 823 824 lockdep_assert_held(&c->btree_interior_update_lock); 825 826 child->b = NULL; 827 child->mode = BTREE_INTERIOR_UPDATING_AS; 828 829 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 830 bch2_update_reparent_journal_pin_flush); 831 } 832 833 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 834 { 835 struct bkey_i *insert = &b->key; 836 struct bch_fs *c = as->c; 837 838 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 839 840 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 841 ARRAY_SIZE(as->journal_entries)); 842 843 as->journal_u64s += 844 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 845 BCH_JSET_ENTRY_btree_root, 846 b->c.btree_id, b->c.level, 847 insert, insert->k.u64s); 848 849 mutex_lock(&c->btree_interior_update_lock); 850 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 851 852 as->mode = BTREE_INTERIOR_UPDATING_ROOT; 853 mutex_unlock(&c->btree_interior_update_lock); 854 } 855 856 /* 857 * bch2_btree_update_add_new_node: 858 * 859 * This causes @as to wait on @b to be written, before it gets to 860 * bch2_btree_update_nodes_written 861 * 862 * Additionally, it sets b->will_make_reachable to prevent any additional writes 863 * to @b from happening besides the first until @b is reachable on disk 864 * 865 * And it adds @b to the list of @as's new nodes, so that we can update sector 866 * counts in bch2_btree_update_nodes_written: 867 */ 868 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 869 { 870 struct bch_fs *c = as->c; 871 872 closure_get(&as->cl); 873 874 mutex_lock(&c->btree_interior_update_lock); 875 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 876 BUG_ON(b->will_make_reachable); 877 878 as->new_nodes[as->nr_new_nodes++] = b; 879 b->will_make_reachable = 1UL|(unsigned long) as; 880 set_btree_node_will_make_reachable(b); 881 882 mutex_unlock(&c->btree_interior_update_lock); 883 884 btree_update_add_key(as, &as->new_keys, b); 885 886 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 887 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 888 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 889 890 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 891 cpu_to_le16(sectors); 892 } 893 } 894 895 /* 896 * returns true if @b was a new node 897 */ 898 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 899 { 900 struct btree_update *as; 901 unsigned long v; 902 unsigned i; 903 904 mutex_lock(&c->btree_interior_update_lock); 905 /* 906 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 907 * dropped when it gets written by bch2_btree_complete_write - the 908 * xchg() is for synchronization with bch2_btree_complete_write: 909 */ 910 v = xchg(&b->will_make_reachable, 0); 911 clear_btree_node_will_make_reachable(b); 912 as = (struct btree_update *) (v & ~1UL); 913 914 if (!as) { 915 mutex_unlock(&c->btree_interior_update_lock); 916 return; 917 } 918 919 for (i = 0; i < as->nr_new_nodes; i++) 920 if (as->new_nodes[i] == b) 921 goto found; 922 923 BUG(); 924 found: 925 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 926 mutex_unlock(&c->btree_interior_update_lock); 927 928 if (v & 1) 929 closure_put(&as->cl); 930 } 931 932 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 933 { 934 while (b->ob.nr) 935 as->open_buckets[as->nr_open_buckets++] = 936 b->ob.v[--b->ob.nr]; 937 } 938 939 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 940 struct journal_entry_pin *_pin, u64 seq) 941 { 942 return 0; 943 } 944 945 /* 946 * @b is being split/rewritten: it may have pointers to not-yet-written btree 947 * nodes and thus outstanding btree_updates - redirect @b's 948 * btree_updates to point to this btree_update: 949 */ 950 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 951 struct btree *b) 952 { 953 struct bch_fs *c = as->c; 954 struct btree_update *p, *n; 955 struct btree_write *w; 956 957 set_btree_node_dying(b); 958 959 if (btree_node_fake(b)) 960 return; 961 962 mutex_lock(&c->btree_interior_update_lock); 963 964 /* 965 * Does this node have any btree_update operations preventing 966 * it from being written? 967 * 968 * If so, redirect them to point to this btree_update: we can 969 * write out our new nodes, but we won't make them visible until those 970 * operations complete 971 */ 972 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 973 list_del_init(&p->write_blocked_list); 974 btree_update_reparent(as, p); 975 976 /* 977 * for flush_held_btree_writes() waiting on updates to flush or 978 * nodes to be writeable: 979 */ 980 closure_wake_up(&c->btree_interior_update_wait); 981 } 982 983 clear_btree_node_dirty_acct(c, b); 984 clear_btree_node_need_write(b); 985 clear_btree_node_write_blocked(b); 986 987 /* 988 * Does this node have unwritten data that has a pin on the journal? 989 * 990 * If so, transfer that pin to the btree_update operation - 991 * note that if we're freeing multiple nodes, we only need to keep the 992 * oldest pin of any of the nodes we're freeing. We'll release the pin 993 * when the new nodes are persistent and reachable on disk: 994 */ 995 w = btree_current_write(b); 996 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 997 bch2_btree_update_will_free_node_journal_pin_flush); 998 bch2_journal_pin_drop(&c->journal, &w->journal); 999 1000 w = btree_prev_write(b); 1001 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1002 bch2_btree_update_will_free_node_journal_pin_flush); 1003 bch2_journal_pin_drop(&c->journal, &w->journal); 1004 1005 mutex_unlock(&c->btree_interior_update_lock); 1006 1007 /* 1008 * Is this a node that isn't reachable on disk yet? 1009 * 1010 * Nodes that aren't reachable yet have writes blocked until they're 1011 * reachable - now that we've cancelled any pending writes and moved 1012 * things waiting on that write to wait on this update, we can drop this 1013 * node from the list of nodes that the other update is making 1014 * reachable, prior to freeing it: 1015 */ 1016 btree_update_drop_new_node(c, b); 1017 1018 btree_update_add_key(as, &as->old_keys, b); 1019 1020 as->old_nodes[as->nr_old_nodes] = b; 1021 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1022 as->nr_old_nodes++; 1023 } 1024 1025 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1026 { 1027 struct bch_fs *c = as->c; 1028 u64 start_time = as->start_time; 1029 1030 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); 1031 1032 if (as->took_gc_lock) 1033 up_read(&as->c->gc_lock); 1034 as->took_gc_lock = false; 1035 1036 bch2_btree_reserve_put(as, trans); 1037 1038 continue_at(&as->cl, btree_update_set_nodes_written, 1039 as->c->btree_interior_update_worker); 1040 1041 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1042 start_time); 1043 } 1044 1045 static struct btree_update * 1046 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1047 unsigned level, bool split, unsigned flags) 1048 { 1049 struct bch_fs *c = trans->c; 1050 struct btree_update *as; 1051 u64 start_time = local_clock(); 1052 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1053 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1054 unsigned nr_nodes[2] = { 0, 0 }; 1055 unsigned update_level = level; 1056 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1057 int ret = 0; 1058 u32 restart_count = trans->restart_count; 1059 1060 BUG_ON(!path->should_be_locked); 1061 1062 if (watermark == BCH_WATERMARK_copygc) 1063 watermark = BCH_WATERMARK_btree_copygc; 1064 if (watermark < BCH_WATERMARK_btree) 1065 watermark = BCH_WATERMARK_btree; 1066 1067 flags &= ~BCH_WATERMARK_MASK; 1068 flags |= watermark; 1069 1070 if (!(flags & BCH_TRANS_COMMIT_journal_reclaim) && 1071 watermark < c->journal.watermark) { 1072 struct journal_res res = { 0 }; 1073 1074 ret = drop_locks_do(trans, 1075 bch2_journal_res_get(&c->journal, &res, 1, 1076 watermark|JOURNAL_RES_GET_CHECK)); 1077 if (ret) 1078 return ERR_PTR(ret); 1079 } 1080 1081 while (1) { 1082 nr_nodes[!!update_level] += 1 + split; 1083 update_level++; 1084 1085 ret = bch2_btree_path_upgrade(trans, path, update_level + 1); 1086 if (ret) 1087 return ERR_PTR(ret); 1088 1089 if (!btree_path_node(path, update_level)) { 1090 /* Allocating new root? */ 1091 nr_nodes[1] += split; 1092 update_level = BTREE_MAX_DEPTH; 1093 break; 1094 } 1095 1096 /* 1097 * Always check for space for two keys, even if we won't have to 1098 * split at prior level - it might have been a merge instead: 1099 */ 1100 if (bch2_btree_node_insert_fits(path->l[update_level].b, 1101 BKEY_BTREE_PTR_U64s_MAX * 2)) 1102 break; 1103 1104 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1105 } 1106 1107 if (!down_read_trylock(&c->gc_lock)) { 1108 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1109 if (ret) { 1110 up_read(&c->gc_lock); 1111 return ERR_PTR(ret); 1112 } 1113 } 1114 1115 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1116 memset(as, 0, sizeof(*as)); 1117 closure_init(&as->cl, NULL); 1118 as->c = c; 1119 as->start_time = start_time; 1120 as->mode = BTREE_INTERIOR_NO_UPDATE; 1121 as->took_gc_lock = true; 1122 as->btree_id = path->btree_id; 1123 as->update_level = update_level; 1124 INIT_LIST_HEAD(&as->list); 1125 INIT_LIST_HEAD(&as->unwritten_list); 1126 INIT_LIST_HEAD(&as->write_blocked_list); 1127 bch2_keylist_init(&as->old_keys, as->_old_keys); 1128 bch2_keylist_init(&as->new_keys, as->_new_keys); 1129 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1130 1131 mutex_lock(&c->btree_interior_update_lock); 1132 list_add_tail(&as->list, &c->btree_interior_update_list); 1133 mutex_unlock(&c->btree_interior_update_lock); 1134 1135 /* 1136 * We don't want to allocate if we're in an error state, that can cause 1137 * deadlock on emergency shutdown due to open buckets getting stuck in 1138 * the btree_reserve_cache after allocator shutdown has cleared it out. 1139 * This check needs to come after adding us to the btree_interior_update 1140 * list but before calling bch2_btree_reserve_get, to synchronize with 1141 * __bch2_fs_read_only(). 1142 */ 1143 ret = bch2_journal_error(&c->journal); 1144 if (ret) 1145 goto err; 1146 1147 ret = bch2_disk_reservation_get(c, &as->disk_res, 1148 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1149 c->opts.metadata_replicas, 1150 disk_res_flags); 1151 if (ret) 1152 goto err; 1153 1154 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1155 if (bch2_err_matches(ret, ENOSPC) || 1156 bch2_err_matches(ret, ENOMEM)) { 1157 struct closure cl; 1158 1159 /* 1160 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1161 * flag 1162 */ 1163 if (bch2_err_matches(ret, ENOSPC) && 1164 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1165 watermark != BCH_WATERMARK_reclaim) { 1166 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1167 goto err; 1168 } 1169 1170 closure_init_stack(&cl); 1171 1172 do { 1173 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1174 1175 bch2_trans_unlock(trans); 1176 closure_sync(&cl); 1177 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1178 } 1179 1180 if (ret) { 1181 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1182 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1183 goto err; 1184 } 1185 1186 ret = bch2_trans_relock(trans); 1187 if (ret) 1188 goto err; 1189 1190 bch2_trans_verify_not_restarted(trans, restart_count); 1191 return as; 1192 err: 1193 bch2_btree_update_free(as, trans); 1194 if (!bch2_err_matches(ret, ENOSPC) && 1195 !bch2_err_matches(ret, EROFS)) 1196 bch_err_fn_ratelimited(c, ret); 1197 return ERR_PTR(ret); 1198 } 1199 1200 /* Btree root updates: */ 1201 1202 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1203 { 1204 /* Root nodes cannot be reaped */ 1205 mutex_lock(&c->btree_cache.lock); 1206 list_del_init(&b->list); 1207 mutex_unlock(&c->btree_cache.lock); 1208 1209 mutex_lock(&c->btree_root_lock); 1210 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1211 mutex_unlock(&c->btree_root_lock); 1212 1213 bch2_recalc_btree_reserve(c); 1214 } 1215 1216 static void bch2_btree_set_root(struct btree_update *as, 1217 struct btree_trans *trans, 1218 struct btree_path *path, 1219 struct btree *b) 1220 { 1221 struct bch_fs *c = as->c; 1222 struct btree *old; 1223 1224 trace_and_count(c, btree_node_set_root, trans, b); 1225 1226 old = btree_node_root(c, b); 1227 1228 /* 1229 * Ensure no one is using the old root while we switch to the 1230 * new root: 1231 */ 1232 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1233 1234 bch2_btree_set_root_inmem(c, b); 1235 1236 btree_update_updated_root(as, b); 1237 1238 /* 1239 * Unlock old root after new root is visible: 1240 * 1241 * The new root isn't persistent, but that's ok: we still have 1242 * an intent lock on the new root, and any updates that would 1243 * depend on the new root would have to update the new root. 1244 */ 1245 bch2_btree_node_unlock_write(trans, path, old); 1246 } 1247 1248 /* Interior node updates: */ 1249 1250 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1251 struct btree_trans *trans, 1252 struct btree_path *path, 1253 struct btree *b, 1254 struct btree_node_iter *node_iter, 1255 struct bkey_i *insert) 1256 { 1257 struct bch_fs *c = as->c; 1258 struct bkey_packed *k; 1259 struct printbuf buf = PRINTBUF; 1260 unsigned long old, new, v; 1261 1262 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1263 !btree_ptr_sectors_written(insert)); 1264 1265 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1266 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1267 1268 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1269 btree_node_type(b), WRITE, &buf) ?: 1270 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1271 printbuf_reset(&buf); 1272 prt_printf(&buf, "inserting invalid bkey\n "); 1273 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1274 prt_printf(&buf, "\n "); 1275 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1276 btree_node_type(b), WRITE, &buf); 1277 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1278 1279 bch2_fs_inconsistent(c, "%s", buf.buf); 1280 dump_stack(); 1281 } 1282 1283 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1284 ARRAY_SIZE(as->journal_entries)); 1285 1286 as->journal_u64s += 1287 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1288 BCH_JSET_ENTRY_btree_keys, 1289 b->c.btree_id, b->c.level, 1290 insert, insert->k.u64s); 1291 1292 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1293 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1294 bch2_btree_node_iter_advance(node_iter, b); 1295 1296 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1297 set_btree_node_dirty_acct(c, b); 1298 1299 v = READ_ONCE(b->flags); 1300 do { 1301 old = new = v; 1302 1303 new &= ~BTREE_WRITE_TYPE_MASK; 1304 new |= BTREE_WRITE_interior; 1305 new |= 1 << BTREE_NODE_need_write; 1306 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1307 1308 printbuf_exit(&buf); 1309 } 1310 1311 static void 1312 __bch2_btree_insert_keys_interior(struct btree_update *as, 1313 struct btree_trans *trans, 1314 struct btree_path *path, 1315 struct btree *b, 1316 struct btree_node_iter node_iter, 1317 struct keylist *keys) 1318 { 1319 struct bkey_i *insert = bch2_keylist_front(keys); 1320 struct bkey_packed *k; 1321 1322 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1323 1324 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1325 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1326 ; 1327 1328 while (!bch2_keylist_empty(keys)) { 1329 insert = bch2_keylist_front(keys); 1330 1331 if (bpos_gt(insert->k.p, b->key.k.p)) 1332 break; 1333 1334 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1335 bch2_keylist_pop_front(keys); 1336 } 1337 } 1338 1339 /* 1340 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1341 * node) 1342 */ 1343 static void __btree_split_node(struct btree_update *as, 1344 struct btree_trans *trans, 1345 struct btree *b, 1346 struct btree *n[2]) 1347 { 1348 struct bkey_packed *k; 1349 struct bpos n1_pos = POS_MIN; 1350 struct btree_node_iter iter; 1351 struct bset *bsets[2]; 1352 struct bkey_format_state format[2]; 1353 struct bkey_packed *out[2]; 1354 struct bkey uk; 1355 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1356 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1357 int i; 1358 1359 memset(&nr_keys, 0, sizeof(nr_keys)); 1360 1361 for (i = 0; i < 2; i++) { 1362 BUG_ON(n[i]->nsets != 1); 1363 1364 bsets[i] = btree_bset_first(n[i]); 1365 out[i] = bsets[i]->start; 1366 1367 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1368 bch2_bkey_format_init(&format[i]); 1369 } 1370 1371 u64s = 0; 1372 for_each_btree_node_key(b, k, &iter) { 1373 if (bkey_deleted(k)) 1374 continue; 1375 1376 i = u64s >= n1_u64s; 1377 u64s += k->u64s; 1378 uk = bkey_unpack_key(b, k); 1379 if (!i) 1380 n1_pos = uk.p; 1381 bch2_bkey_format_add_key(&format[i], &uk); 1382 1383 nr_keys[i].nr_keys++; 1384 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1385 } 1386 1387 btree_set_min(n[0], b->data->min_key); 1388 btree_set_max(n[0], n1_pos); 1389 btree_set_min(n[1], bpos_successor(n1_pos)); 1390 btree_set_max(n[1], b->data->max_key); 1391 1392 for (i = 0; i < 2; i++) { 1393 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1394 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1395 1396 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1397 1398 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1399 nr_keys[i].val_u64s; 1400 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1401 n[i]->data->format = b->format; 1402 1403 btree_node_set_format(n[i], n[i]->data->format); 1404 } 1405 1406 u64s = 0; 1407 for_each_btree_node_key(b, k, &iter) { 1408 if (bkey_deleted(k)) 1409 continue; 1410 1411 i = u64s >= n1_u64s; 1412 u64s += k->u64s; 1413 1414 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1415 ? &b->format: &bch2_bkey_format_current, k)) 1416 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1417 else 1418 bch2_bkey_unpack(b, (void *) out[i], k); 1419 1420 out[i]->needs_whiteout = false; 1421 1422 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1423 out[i] = bkey_p_next(out[i]); 1424 } 1425 1426 for (i = 0; i < 2; i++) { 1427 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1428 1429 BUG_ON(!bsets[i]->u64s); 1430 1431 set_btree_bset_end(n[i], n[i]->set); 1432 1433 btree_node_reset_sib_u64s(n[i]); 1434 1435 bch2_verify_btree_nr_keys(n[i]); 1436 1437 if (b->c.level) 1438 btree_node_interior_verify(as->c, n[i]); 1439 } 1440 } 1441 1442 /* 1443 * For updates to interior nodes, we've got to do the insert before we split 1444 * because the stuff we're inserting has to be inserted atomically. Post split, 1445 * the keys might have to go in different nodes and the split would no longer be 1446 * atomic. 1447 * 1448 * Worse, if the insert is from btree node coalescing, if we do the insert after 1449 * we do the split (and pick the pivot) - the pivot we pick might be between 1450 * nodes that were coalesced, and thus in the middle of a child node post 1451 * coalescing: 1452 */ 1453 static void btree_split_insert_keys(struct btree_update *as, 1454 struct btree_trans *trans, 1455 btree_path_idx_t path_idx, 1456 struct btree *b, 1457 struct keylist *keys) 1458 { 1459 struct btree_path *path = trans->paths + path_idx; 1460 1461 if (!bch2_keylist_empty(keys) && 1462 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1463 struct btree_node_iter node_iter; 1464 1465 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1466 1467 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1468 1469 btree_node_interior_verify(as->c, b); 1470 } 1471 } 1472 1473 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1474 btree_path_idx_t path, struct btree *b, 1475 struct keylist *keys) 1476 { 1477 struct bch_fs *c = as->c; 1478 struct btree *parent = btree_node_parent(trans->paths + path, b); 1479 struct btree *n1, *n2 = NULL, *n3 = NULL; 1480 btree_path_idx_t path1 = 0, path2 = 0; 1481 u64 start_time = local_clock(); 1482 int ret = 0; 1483 1484 BUG_ON(!parent && (b != btree_node_root(c, b))); 1485 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1486 1487 bch2_btree_interior_update_will_free_node(as, b); 1488 1489 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1490 struct btree *n[2]; 1491 1492 trace_and_count(c, btree_node_split, trans, b); 1493 1494 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1495 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1496 1497 __btree_split_node(as, trans, b, n); 1498 1499 if (keys) { 1500 btree_split_insert_keys(as, trans, path, n1, keys); 1501 btree_split_insert_keys(as, trans, path, n2, keys); 1502 BUG_ON(!bch2_keylist_empty(keys)); 1503 } 1504 1505 bch2_btree_build_aux_trees(n2); 1506 bch2_btree_build_aux_trees(n1); 1507 1508 bch2_btree_update_add_new_node(as, n1); 1509 bch2_btree_update_add_new_node(as, n2); 1510 six_unlock_write(&n2->c.lock); 1511 six_unlock_write(&n1->c.lock); 1512 1513 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1514 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1515 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1516 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1517 1518 path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p); 1519 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1520 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1521 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1522 1523 /* 1524 * Note that on recursive parent_keys == keys, so we 1525 * can't start adding new keys to parent_keys before emptying it 1526 * out (which we did with btree_split_insert_keys() above) 1527 */ 1528 bch2_keylist_add(&as->parent_keys, &n1->key); 1529 bch2_keylist_add(&as->parent_keys, &n2->key); 1530 1531 if (!parent) { 1532 /* Depth increases, make a new root */ 1533 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1534 1535 bch2_btree_update_add_new_node(as, n3); 1536 six_unlock_write(&n3->c.lock); 1537 1538 trans->paths[path2].locks_want++; 1539 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1540 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1541 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1542 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1543 1544 n3->sib_u64s[0] = U16_MAX; 1545 n3->sib_u64s[1] = U16_MAX; 1546 1547 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1548 } 1549 } else { 1550 trace_and_count(c, btree_node_compact, trans, b); 1551 1552 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1553 1554 if (keys) { 1555 btree_split_insert_keys(as, trans, path, n1, keys); 1556 BUG_ON(!bch2_keylist_empty(keys)); 1557 } 1558 1559 bch2_btree_build_aux_trees(n1); 1560 bch2_btree_update_add_new_node(as, n1); 1561 six_unlock_write(&n1->c.lock); 1562 1563 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1564 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1565 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1566 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1567 1568 if (parent) 1569 bch2_keylist_add(&as->parent_keys, &n1->key); 1570 } 1571 1572 /* New nodes all written, now make them visible: */ 1573 1574 if (parent) { 1575 /* Split a non root node */ 1576 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1577 if (ret) 1578 goto err; 1579 } else if (n3) { 1580 bch2_btree_set_root(as, trans, trans->paths + path, n3); 1581 } else { 1582 /* Root filled up but didn't need to be split */ 1583 bch2_btree_set_root(as, trans, trans->paths + path, n1); 1584 } 1585 1586 if (n3) { 1587 bch2_btree_update_get_open_buckets(as, n3); 1588 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1589 } 1590 if (n2) { 1591 bch2_btree_update_get_open_buckets(as, n2); 1592 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1593 } 1594 bch2_btree_update_get_open_buckets(as, n1); 1595 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1596 1597 /* 1598 * The old node must be freed (in memory) _before_ unlocking the new 1599 * nodes - else another thread could re-acquire a read lock on the old 1600 * node after another thread has locked and updated the new node, thus 1601 * seeing stale data: 1602 */ 1603 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1604 1605 if (n3) 1606 bch2_trans_node_add(trans, trans->paths + path, n3); 1607 if (n2) 1608 bch2_trans_node_add(trans, trans->paths + path2, n2); 1609 bch2_trans_node_add(trans, trans->paths + path1, n1); 1610 1611 if (n3) 1612 six_unlock_intent(&n3->c.lock); 1613 if (n2) 1614 six_unlock_intent(&n2->c.lock); 1615 six_unlock_intent(&n1->c.lock); 1616 out: 1617 if (path2) { 1618 __bch2_btree_path_unlock(trans, trans->paths + path2); 1619 bch2_path_put(trans, path2, true); 1620 } 1621 if (path1) { 1622 __bch2_btree_path_unlock(trans, trans->paths + path1); 1623 bch2_path_put(trans, path1, true); 1624 } 1625 1626 bch2_trans_verify_locks(trans); 1627 1628 bch2_time_stats_update(&c->times[n2 1629 ? BCH_TIME_btree_node_split 1630 : BCH_TIME_btree_node_compact], 1631 start_time); 1632 return ret; 1633 err: 1634 if (n3) 1635 bch2_btree_node_free_never_used(as, trans, n3); 1636 if (n2) 1637 bch2_btree_node_free_never_used(as, trans, n2); 1638 bch2_btree_node_free_never_used(as, trans, n1); 1639 goto out; 1640 } 1641 1642 static void 1643 bch2_btree_insert_keys_interior(struct btree_update *as, 1644 struct btree_trans *trans, 1645 struct btree_path *path, 1646 struct btree *b, 1647 struct keylist *keys) 1648 { 1649 struct btree_path *linked; 1650 unsigned i; 1651 1652 __bch2_btree_insert_keys_interior(as, trans, path, b, 1653 path->l[b->c.level].iter, keys); 1654 1655 btree_update_updated_node(as, b); 1656 1657 trans_for_each_path_with_node(trans, b, linked, i) 1658 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1659 1660 bch2_trans_verify_paths(trans); 1661 } 1662 1663 /** 1664 * bch2_btree_insert_node - insert bkeys into a given btree node 1665 * 1666 * @as: btree_update object 1667 * @trans: btree_trans object 1668 * @path_idx: path that points to current node 1669 * @b: node to insert keys into 1670 * @keys: list of keys to insert 1671 * 1672 * Returns: 0 on success, typically transaction restart error on failure 1673 * 1674 * Inserts as many keys as it can into a given btree node, splitting it if full. 1675 * If a split occurred, this function will return early. This can only happen 1676 * for leaf nodes -- inserts into interior nodes have to be atomic. 1677 */ 1678 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1679 btree_path_idx_t path_idx, struct btree *b, 1680 struct keylist *keys) 1681 { 1682 struct bch_fs *c = as->c; 1683 struct btree_path *path = trans->paths + path_idx; 1684 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1685 int old_live_u64s = b->nr.live_u64s; 1686 int live_u64s_added, u64s_added; 1687 int ret; 1688 1689 lockdep_assert_held(&c->gc_lock); 1690 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1691 BUG_ON(!b->c.level); 1692 BUG_ON(!as || as->b); 1693 bch2_verify_keylist_sorted(keys); 1694 1695 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1696 if (ret) 1697 return ret; 1698 1699 bch2_btree_node_prep_for_write(trans, path, b); 1700 1701 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1702 bch2_btree_node_unlock_write(trans, path, b); 1703 goto split; 1704 } 1705 1706 btree_node_interior_verify(c, b); 1707 1708 bch2_btree_insert_keys_interior(as, trans, path, b, keys); 1709 1710 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1711 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1712 1713 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1714 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1715 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1716 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1717 1718 if (u64s_added > live_u64s_added && 1719 bch2_maybe_compact_whiteouts(c, b)) 1720 bch2_trans_node_reinit_iter(trans, b); 1721 1722 bch2_btree_node_unlock_write(trans, path, b); 1723 1724 btree_node_interior_verify(c, b); 1725 return 0; 1726 split: 1727 /* 1728 * We could attempt to avoid the transaction restart, by calling 1729 * bch2_btree_path_upgrade() and allocating more nodes: 1730 */ 1731 if (b->c.level >= as->update_level) { 1732 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1733 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1734 } 1735 1736 return btree_split(as, trans, path_idx, b, keys); 1737 } 1738 1739 int bch2_btree_split_leaf(struct btree_trans *trans, 1740 btree_path_idx_t path, 1741 unsigned flags) 1742 { 1743 /* btree_split & merge may both cause paths array to be reallocated */ 1744 struct btree *b = path_l(trans->paths + path)->b; 1745 struct btree_update *as; 1746 unsigned l; 1747 int ret = 0; 1748 1749 as = bch2_btree_update_start(trans, trans->paths + path, 1750 trans->paths[path].level, 1751 true, flags); 1752 if (IS_ERR(as)) 1753 return PTR_ERR(as); 1754 1755 ret = btree_split(as, trans, path, b, NULL); 1756 if (ret) { 1757 bch2_btree_update_free(as, trans); 1758 return ret; 1759 } 1760 1761 bch2_btree_update_done(as, trans); 1762 1763 for (l = trans->paths[path].level + 1; 1764 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1765 l++) 1766 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1767 1768 return ret; 1769 } 1770 1771 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans, 1772 btree_path_idx_t path_idx) 1773 { 1774 struct bch_fs *c = as->c; 1775 struct btree_path *path = trans->paths + path_idx; 1776 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b; 1777 1778 BUG_ON(!btree_node_locked(path, b->c.level)); 1779 1780 n = __btree_root_alloc(as, trans, b->c.level + 1); 1781 1782 bch2_btree_update_add_new_node(as, n); 1783 six_unlock_write(&n->c.lock); 1784 1785 path->locks_want++; 1786 BUG_ON(btree_node_locked(path, n->c.level)); 1787 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1788 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1789 bch2_btree_path_level_init(trans, path, n); 1790 1791 n->sib_u64s[0] = U16_MAX; 1792 n->sib_u64s[1] = U16_MAX; 1793 1794 bch2_keylist_add(&as->parent_keys, &b->key); 1795 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys); 1796 1797 bch2_btree_set_root(as, trans, path, n); 1798 bch2_btree_update_get_open_buckets(as, n); 1799 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1800 bch2_trans_node_add(trans, path, n); 1801 six_unlock_intent(&n->c.lock); 1802 1803 mutex_lock(&c->btree_cache.lock); 1804 list_add_tail(&b->list, &c->btree_cache.live); 1805 mutex_unlock(&c->btree_cache.lock); 1806 1807 bch2_trans_verify_locks(trans); 1808 } 1809 1810 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) 1811 { 1812 struct bch_fs *c = trans->c; 1813 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b; 1814 struct btree_update *as = 1815 bch2_btree_update_start(trans, trans->paths + path, 1816 b->c.level, true, flags); 1817 if (IS_ERR(as)) 1818 return PTR_ERR(as); 1819 1820 __btree_increase_depth(as, trans, path); 1821 bch2_btree_update_done(as, trans); 1822 return 0; 1823 } 1824 1825 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1826 btree_path_idx_t path, 1827 unsigned level, 1828 unsigned flags, 1829 enum btree_node_sibling sib) 1830 { 1831 struct bch_fs *c = trans->c; 1832 struct btree_update *as; 1833 struct bkey_format_state new_s; 1834 struct bkey_format new_f; 1835 struct bkey_i delete; 1836 struct btree *b, *m, *n, *prev, *next, *parent; 1837 struct bpos sib_pos; 1838 size_t sib_u64s; 1839 enum btree_id btree = trans->paths[path].btree_id; 1840 btree_path_idx_t sib_path = 0, new_path = 0; 1841 u64 start_time = local_clock(); 1842 int ret = 0; 1843 1844 BUG_ON(!trans->paths[path].should_be_locked); 1845 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1846 1847 b = trans->paths[path].l[level].b; 1848 1849 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1850 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1851 b->sib_u64s[sib] = U16_MAX; 1852 return 0; 1853 } 1854 1855 sib_pos = sib == btree_prev_sib 1856 ? bpos_predecessor(b->data->min_key) 1857 : bpos_successor(b->data->max_key); 1858 1859 sib_path = bch2_path_get(trans, btree, sib_pos, 1860 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1861 ret = bch2_btree_path_traverse(trans, sib_path, false); 1862 if (ret) 1863 goto err; 1864 1865 btree_path_set_should_be_locked(trans->paths + sib_path); 1866 1867 m = trans->paths[sib_path].l[level].b; 1868 1869 if (btree_node_parent(trans->paths + path, b) != 1870 btree_node_parent(trans->paths + sib_path, m)) { 1871 b->sib_u64s[sib] = U16_MAX; 1872 goto out; 1873 } 1874 1875 if (sib == btree_prev_sib) { 1876 prev = m; 1877 next = b; 1878 } else { 1879 prev = b; 1880 next = m; 1881 } 1882 1883 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 1884 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 1885 1886 bch2_bpos_to_text(&buf1, prev->data->max_key); 1887 bch2_bpos_to_text(&buf2, next->data->min_key); 1888 bch_err(c, 1889 "%s(): btree topology error:\n" 1890 " prev ends at %s\n" 1891 " next starts at %s", 1892 __func__, buf1.buf, buf2.buf); 1893 printbuf_exit(&buf1); 1894 printbuf_exit(&buf2); 1895 ret = bch2_topology_error(c); 1896 goto err; 1897 } 1898 1899 bch2_bkey_format_init(&new_s); 1900 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 1901 __bch2_btree_calc_format(&new_s, prev); 1902 __bch2_btree_calc_format(&new_s, next); 1903 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 1904 new_f = bch2_bkey_format_done(&new_s); 1905 1906 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 1907 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 1908 1909 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 1910 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1911 sib_u64s /= 2; 1912 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1913 } 1914 1915 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 1916 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 1917 b->sib_u64s[sib] = sib_u64s; 1918 1919 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 1920 goto out; 1921 1922 parent = btree_node_parent(trans->paths + path, b); 1923 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 1924 BCH_TRANS_COMMIT_no_enospc|flags); 1925 ret = PTR_ERR_OR_ZERO(as); 1926 if (ret) 1927 goto err; 1928 1929 trace_and_count(c, btree_node_merge, trans, b); 1930 1931 bch2_btree_interior_update_will_free_node(as, b); 1932 bch2_btree_interior_update_will_free_node(as, m); 1933 1934 n = bch2_btree_node_alloc(as, trans, b->c.level); 1935 1936 SET_BTREE_NODE_SEQ(n->data, 1937 max(BTREE_NODE_SEQ(b->data), 1938 BTREE_NODE_SEQ(m->data)) + 1); 1939 1940 btree_set_min(n, prev->data->min_key); 1941 btree_set_max(n, next->data->max_key); 1942 1943 n->data->format = new_f; 1944 btree_node_set_format(n, new_f); 1945 1946 bch2_btree_sort_into(c, n, prev); 1947 bch2_btree_sort_into(c, n, next); 1948 1949 bch2_btree_build_aux_trees(n); 1950 bch2_btree_update_add_new_node(as, n); 1951 six_unlock_write(&n->c.lock); 1952 1953 new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p); 1954 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1955 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1956 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 1957 1958 bkey_init(&delete.k); 1959 delete.k.p = prev->key.k.p; 1960 bch2_keylist_add(&as->parent_keys, &delete); 1961 bch2_keylist_add(&as->parent_keys, &n->key); 1962 1963 bch2_trans_verify_paths(trans); 1964 1965 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1966 if (ret) 1967 goto err_free_update; 1968 1969 bch2_trans_verify_paths(trans); 1970 1971 bch2_btree_update_get_open_buckets(as, n); 1972 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1973 1974 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1975 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 1976 1977 bch2_trans_node_add(trans, trans->paths + path, n); 1978 1979 bch2_trans_verify_paths(trans); 1980 1981 six_unlock_intent(&n->c.lock); 1982 1983 bch2_btree_update_done(as, trans); 1984 1985 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 1986 out: 1987 err: 1988 if (new_path) 1989 bch2_path_put(trans, new_path, true); 1990 bch2_path_put(trans, sib_path, true); 1991 bch2_trans_verify_locks(trans); 1992 return ret; 1993 err_free_update: 1994 bch2_btree_node_free_never_used(as, trans, n); 1995 bch2_btree_update_free(as, trans); 1996 goto out; 1997 } 1998 1999 int bch2_btree_node_rewrite(struct btree_trans *trans, 2000 struct btree_iter *iter, 2001 struct btree *b, 2002 unsigned flags) 2003 { 2004 struct bch_fs *c = trans->c; 2005 struct btree *n, *parent; 2006 struct btree_update *as; 2007 btree_path_idx_t new_path = 0; 2008 int ret; 2009 2010 flags |= BCH_TRANS_COMMIT_no_enospc; 2011 2012 struct btree_path *path = btree_iter_path(trans, iter); 2013 parent = btree_node_parent(path, b); 2014 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 2015 ret = PTR_ERR_OR_ZERO(as); 2016 if (ret) 2017 goto out; 2018 2019 bch2_btree_interior_update_will_free_node(as, b); 2020 2021 n = bch2_btree_node_alloc_replacement(as, trans, b); 2022 2023 bch2_btree_build_aux_trees(n); 2024 bch2_btree_update_add_new_node(as, n); 2025 six_unlock_write(&n->c.lock); 2026 2027 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 2028 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2029 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2030 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2031 2032 trace_and_count(c, btree_node_rewrite, trans, b); 2033 2034 if (parent) { 2035 bch2_keylist_add(&as->parent_keys, &n->key); 2036 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys); 2037 if (ret) 2038 goto err; 2039 } else { 2040 bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n); 2041 } 2042 2043 bch2_btree_update_get_open_buckets(as, n); 2044 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2045 2046 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2047 2048 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2049 six_unlock_intent(&n->c.lock); 2050 2051 bch2_btree_update_done(as, trans); 2052 out: 2053 if (new_path) 2054 bch2_path_put(trans, new_path, true); 2055 bch2_trans_downgrade(trans); 2056 return ret; 2057 err: 2058 bch2_btree_node_free_never_used(as, trans, n); 2059 bch2_btree_update_free(as, trans); 2060 goto out; 2061 } 2062 2063 struct async_btree_rewrite { 2064 struct bch_fs *c; 2065 struct work_struct work; 2066 struct list_head list; 2067 enum btree_id btree_id; 2068 unsigned level; 2069 struct bpos pos; 2070 __le64 seq; 2071 }; 2072 2073 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2074 struct async_btree_rewrite *a) 2075 { 2076 struct bch_fs *c = trans->c; 2077 struct btree_iter iter; 2078 struct btree *b; 2079 int ret; 2080 2081 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2082 BTREE_MAX_DEPTH, a->level, 0); 2083 b = bch2_btree_iter_peek_node(&iter); 2084 ret = PTR_ERR_OR_ZERO(b); 2085 if (ret) 2086 goto out; 2087 2088 if (!b || b->data->keys.seq != a->seq) { 2089 struct printbuf buf = PRINTBUF; 2090 2091 if (b) 2092 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2093 else 2094 prt_str(&buf, "(null"); 2095 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2096 __func__, a->seq, buf.buf); 2097 printbuf_exit(&buf); 2098 goto out; 2099 } 2100 2101 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2102 out: 2103 bch2_trans_iter_exit(trans, &iter); 2104 2105 return ret; 2106 } 2107 2108 static void async_btree_node_rewrite_work(struct work_struct *work) 2109 { 2110 struct async_btree_rewrite *a = 2111 container_of(work, struct async_btree_rewrite, work); 2112 struct bch_fs *c = a->c; 2113 int ret; 2114 2115 ret = bch2_trans_do(c, NULL, NULL, 0, 2116 async_btree_node_rewrite_trans(trans, a)); 2117 bch_err_fn(c, ret); 2118 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2119 kfree(a); 2120 } 2121 2122 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2123 { 2124 struct async_btree_rewrite *a; 2125 int ret; 2126 2127 a = kmalloc(sizeof(*a), GFP_NOFS); 2128 if (!a) { 2129 bch_err(c, "%s: error allocating memory", __func__); 2130 return; 2131 } 2132 2133 a->c = c; 2134 a->btree_id = b->c.btree_id; 2135 a->level = b->c.level; 2136 a->pos = b->key.k.p; 2137 a->seq = b->data->keys.seq; 2138 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2139 2140 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { 2141 mutex_lock(&c->pending_node_rewrites_lock); 2142 list_add(&a->list, &c->pending_node_rewrites); 2143 mutex_unlock(&c->pending_node_rewrites_lock); 2144 return; 2145 } 2146 2147 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2148 if (test_bit(BCH_FS_started, &c->flags)) { 2149 bch_err(c, "%s: error getting c->writes ref", __func__); 2150 kfree(a); 2151 return; 2152 } 2153 2154 ret = bch2_fs_read_write_early(c); 2155 bch_err_msg(c, ret, "going read-write"); 2156 if (ret) { 2157 kfree(a); 2158 return; 2159 } 2160 2161 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2162 } 2163 2164 queue_work(c->btree_interior_update_worker, &a->work); 2165 } 2166 2167 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2168 { 2169 struct async_btree_rewrite *a, *n; 2170 2171 mutex_lock(&c->pending_node_rewrites_lock); 2172 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2173 list_del(&a->list); 2174 2175 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2176 queue_work(c->btree_interior_update_worker, &a->work); 2177 } 2178 mutex_unlock(&c->pending_node_rewrites_lock); 2179 } 2180 2181 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2182 { 2183 struct async_btree_rewrite *a, *n; 2184 2185 mutex_lock(&c->pending_node_rewrites_lock); 2186 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2187 list_del(&a->list); 2188 2189 kfree(a); 2190 } 2191 mutex_unlock(&c->pending_node_rewrites_lock); 2192 } 2193 2194 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2195 struct btree_iter *iter, 2196 struct btree *b, struct btree *new_hash, 2197 struct bkey_i *new_key, 2198 unsigned commit_flags, 2199 bool skip_triggers) 2200 { 2201 struct bch_fs *c = trans->c; 2202 struct btree_iter iter2 = { NULL }; 2203 struct btree *parent; 2204 int ret; 2205 2206 if (!skip_triggers) { 2207 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2208 bkey_i_to_s_c(&b->key), 2209 BTREE_TRIGGER_TRANSACTIONAL) ?: 2210 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2211 bkey_i_to_s(new_key), 2212 BTREE_TRIGGER_TRANSACTIONAL); 2213 if (ret) 2214 return ret; 2215 } 2216 2217 if (new_hash) { 2218 bkey_copy(&new_hash->key, new_key); 2219 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2220 new_hash, b->c.level, b->c.btree_id); 2221 BUG_ON(ret); 2222 } 2223 2224 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2225 if (parent) { 2226 bch2_trans_copy_iter(&iter2, iter); 2227 2228 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2229 iter2.flags & BTREE_ITER_INTENT, 2230 _THIS_IP_); 2231 2232 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2233 BUG_ON(path2->level != b->c.level); 2234 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2235 2236 btree_path_set_level_up(trans, path2); 2237 2238 trans->paths_sorted = false; 2239 2240 ret = bch2_btree_iter_traverse(&iter2) ?: 2241 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2242 if (ret) 2243 goto err; 2244 } else { 2245 BUG_ON(btree_node_root(c, b) != b); 2246 2247 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2248 jset_u64s(new_key->k.u64s)); 2249 ret = PTR_ERR_OR_ZERO(e); 2250 if (ret) 2251 return ret; 2252 2253 journal_entry_set(e, 2254 BCH_JSET_ENTRY_btree_root, 2255 b->c.btree_id, b->c.level, 2256 new_key, new_key->k.u64s); 2257 } 2258 2259 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2260 if (ret) 2261 goto err; 2262 2263 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2264 2265 if (new_hash) { 2266 mutex_lock(&c->btree_cache.lock); 2267 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2268 bch2_btree_node_hash_remove(&c->btree_cache, b); 2269 2270 bkey_copy(&b->key, new_key); 2271 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2272 BUG_ON(ret); 2273 mutex_unlock(&c->btree_cache.lock); 2274 } else { 2275 bkey_copy(&b->key, new_key); 2276 } 2277 2278 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2279 out: 2280 bch2_trans_iter_exit(trans, &iter2); 2281 return ret; 2282 err: 2283 if (new_hash) { 2284 mutex_lock(&c->btree_cache.lock); 2285 bch2_btree_node_hash_remove(&c->btree_cache, b); 2286 mutex_unlock(&c->btree_cache.lock); 2287 } 2288 goto out; 2289 } 2290 2291 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2292 struct btree *b, struct bkey_i *new_key, 2293 unsigned commit_flags, bool skip_triggers) 2294 { 2295 struct bch_fs *c = trans->c; 2296 struct btree *new_hash = NULL; 2297 struct btree_path *path = btree_iter_path(trans, iter); 2298 struct closure cl; 2299 int ret = 0; 2300 2301 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2302 if (ret) 2303 return ret; 2304 2305 closure_init_stack(&cl); 2306 2307 /* 2308 * check btree_ptr_hash_val() after @b is locked by 2309 * btree_iter_traverse(): 2310 */ 2311 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2312 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2313 if (ret) { 2314 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2315 if (ret) 2316 return ret; 2317 } 2318 2319 new_hash = bch2_btree_node_mem_alloc(trans, false); 2320 } 2321 2322 path->intent_ref++; 2323 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2324 commit_flags, skip_triggers); 2325 --path->intent_ref; 2326 2327 if (new_hash) { 2328 mutex_lock(&c->btree_cache.lock); 2329 list_move(&new_hash->list, &c->btree_cache.freeable); 2330 mutex_unlock(&c->btree_cache.lock); 2331 2332 six_unlock_write(&new_hash->c.lock); 2333 six_unlock_intent(&new_hash->c.lock); 2334 } 2335 closure_sync(&cl); 2336 bch2_btree_cache_cannibalize_unlock(trans); 2337 return ret; 2338 } 2339 2340 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2341 struct btree *b, struct bkey_i *new_key, 2342 unsigned commit_flags, bool skip_triggers) 2343 { 2344 struct btree_iter iter; 2345 int ret; 2346 2347 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2348 BTREE_MAX_DEPTH, b->c.level, 2349 BTREE_ITER_INTENT); 2350 ret = bch2_btree_iter_traverse(&iter); 2351 if (ret) 2352 goto out; 2353 2354 /* has node been freed? */ 2355 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2356 /* node has been freed: */ 2357 BUG_ON(!btree_node_dying(b)); 2358 goto out; 2359 } 2360 2361 BUG_ON(!btree_node_hashed(b)); 2362 2363 struct bch_extent_ptr *ptr; 2364 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2365 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2366 2367 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2368 commit_flags, skip_triggers); 2369 out: 2370 bch2_trans_iter_exit(trans, &iter); 2371 return ret; 2372 } 2373 2374 /* Init code: */ 2375 2376 /* 2377 * Only for filesystem bringup, when first reading the btree roots or allocating 2378 * btree roots when initializing a new filesystem: 2379 */ 2380 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2381 { 2382 BUG_ON(btree_node_root(c, b)); 2383 2384 bch2_btree_set_root_inmem(c, b); 2385 } 2386 2387 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) 2388 { 2389 struct bch_fs *c = trans->c; 2390 struct closure cl; 2391 struct btree *b; 2392 int ret; 2393 2394 closure_init_stack(&cl); 2395 2396 do { 2397 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2398 closure_sync(&cl); 2399 } while (ret); 2400 2401 b = bch2_btree_node_mem_alloc(trans, false); 2402 bch2_btree_cache_cannibalize_unlock(trans); 2403 2404 set_btree_node_fake(b); 2405 set_btree_node_need_rewrite(b); 2406 b->c.level = 0; 2407 b->c.btree_id = id; 2408 2409 bkey_btree_ptr_init(&b->key); 2410 b->key.k.p = SPOS_MAX; 2411 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2412 2413 bch2_bset_init_first(b, &b->data->keys); 2414 bch2_btree_build_aux_trees(b); 2415 2416 b->data->flags = 0; 2417 btree_set_min(b, POS_MIN); 2418 btree_set_max(b, SPOS_MAX); 2419 b->data->format = bch2_btree_calc_format(b); 2420 btree_node_set_format(b, b->data->format); 2421 2422 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2423 b->c.level, b->c.btree_id); 2424 BUG_ON(ret); 2425 2426 bch2_btree_set_root_inmem(c, b); 2427 2428 six_unlock_write(&b->c.lock); 2429 six_unlock_intent(&b->c.lock); 2430 return 0; 2431 } 2432 2433 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) 2434 { 2435 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); 2436 } 2437 2438 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2439 { 2440 struct btree_update *as; 2441 2442 mutex_lock(&c->btree_interior_update_lock); 2443 list_for_each_entry(as, &c->btree_interior_update_list, list) 2444 prt_printf(out, "%p m %u w %u r %u j %llu\n", 2445 as, 2446 as->mode, 2447 as->nodes_written, 2448 closure_nr_remaining(&as->cl), 2449 as->journal.seq); 2450 mutex_unlock(&c->btree_interior_update_lock); 2451 } 2452 2453 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2454 { 2455 bool ret; 2456 2457 mutex_lock(&c->btree_interior_update_lock); 2458 ret = !list_empty(&c->btree_interior_update_list); 2459 mutex_unlock(&c->btree_interior_update_lock); 2460 2461 return ret; 2462 } 2463 2464 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2465 { 2466 bool ret = bch2_btree_interior_updates_pending(c); 2467 2468 if (ret) 2469 closure_wait_event(&c->btree_interior_update_wait, 2470 !bch2_btree_interior_updates_pending(c)); 2471 return ret; 2472 } 2473 2474 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2475 { 2476 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2477 2478 mutex_lock(&c->btree_root_lock); 2479 2480 r->level = entry->level; 2481 r->alive = true; 2482 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2483 2484 mutex_unlock(&c->btree_root_lock); 2485 } 2486 2487 struct jset_entry * 2488 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2489 struct jset_entry *end, 2490 unsigned long skip) 2491 { 2492 unsigned i; 2493 2494 mutex_lock(&c->btree_root_lock); 2495 2496 for (i = 0; i < btree_id_nr_alive(c); i++) { 2497 struct btree_root *r = bch2_btree_id_root(c, i); 2498 2499 if (r->alive && !test_bit(i, &skip)) { 2500 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2501 i, r->level, &r->key, r->key.k.u64s); 2502 end = vstruct_next(end); 2503 } 2504 } 2505 2506 mutex_unlock(&c->btree_root_lock); 2507 2508 return end; 2509 } 2510 2511 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2512 { 2513 if (c->btree_interior_update_worker) 2514 destroy_workqueue(c->btree_interior_update_worker); 2515 mempool_exit(&c->btree_interior_update_pool); 2516 } 2517 2518 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2519 { 2520 mutex_init(&c->btree_reserve_cache_lock); 2521 INIT_LIST_HEAD(&c->btree_interior_update_list); 2522 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2523 mutex_init(&c->btree_interior_update_lock); 2524 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2525 2526 INIT_LIST_HEAD(&c->pending_node_rewrites); 2527 mutex_init(&c->pending_node_rewrites_lock); 2528 } 2529 2530 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2531 { 2532 c->btree_interior_update_worker = 2533 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8); 2534 if (!c->btree_interior_update_worker) 2535 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2536 2537 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2538 sizeof(struct btree_update))) 2539 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2540 2541 return 0; 2542 } 2543