1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_methods.h" 6 #include "btree_cache.h" 7 #include "btree_gc.h" 8 #include "btree_journal_iter.h" 9 #include "btree_update.h" 10 #include "btree_update_interior.h" 11 #include "btree_io.h" 12 #include "btree_iter.h" 13 #include "btree_locking.h" 14 #include "buckets.h" 15 #include "clock.h" 16 #include "error.h" 17 #include "extents.h" 18 #include "journal.h" 19 #include "journal_reclaim.h" 20 #include "keylist.h" 21 #include "replicas.h" 22 #include "super-io.h" 23 #include "trace.h" 24 25 #include <linux/random.h> 26 27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 28 btree_path_idx_t, struct btree *, struct keylist *); 29 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 30 31 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans, 32 enum btree_id btree_id, 33 unsigned level, 34 struct bpos pos) 35 { 36 btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level, 37 BTREE_ITER_NOPRESERVE| 38 BTREE_ITER_INTENT, _RET_IP_); 39 path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_); 40 41 struct btree_path *path = trans->paths + path_idx; 42 bch2_btree_path_downgrade(trans, path); 43 __bch2_btree_path_unlock(trans, path); 44 return path_idx; 45 } 46 47 /* Debug code: */ 48 49 /* 50 * Verify that child nodes correctly span parent node's range: 51 */ 52 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) 53 { 54 #ifdef CONFIG_BCACHEFS_DEBUG 55 struct bpos next_node = b->data->min_key; 56 struct btree_node_iter iter; 57 struct bkey_s_c k; 58 struct bkey_s_c_btree_ptr_v2 bp; 59 struct bkey unpacked; 60 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 61 62 BUG_ON(!b->c.level); 63 64 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) 65 return; 66 67 bch2_btree_node_iter_init_from_start(&iter, b); 68 69 while (1) { 70 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); 71 if (k.k->type != KEY_TYPE_btree_ptr_v2) 72 break; 73 bp = bkey_s_c_to_btree_ptr_v2(k); 74 75 if (!bpos_eq(next_node, bp.v->min_key)) { 76 bch2_dump_btree_node(c, b); 77 bch2_bpos_to_text(&buf1, next_node); 78 bch2_bpos_to_text(&buf2, bp.v->min_key); 79 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); 80 } 81 82 bch2_btree_node_iter_advance(&iter, b); 83 84 if (bch2_btree_node_iter_end(&iter)) { 85 if (!bpos_eq(k.k->p, b->key.k.p)) { 86 bch2_dump_btree_node(c, b); 87 bch2_bpos_to_text(&buf1, b->key.k.p); 88 bch2_bpos_to_text(&buf2, k.k->p); 89 panic("expected end %s got %s\n", buf1.buf, buf2.buf); 90 } 91 break; 92 } 93 94 next_node = bpos_successor(k.k->p); 95 } 96 #endif 97 } 98 99 /* Calculate ideal packed bkey format for new btree nodes: */ 100 101 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 102 { 103 struct bkey_packed *k; 104 struct bset_tree *t; 105 struct bkey uk; 106 107 for_each_bset(b, t) 108 bset_tree_for_each_key(b, t, k) 109 if (!bkey_deleted(k)) { 110 uk = bkey_unpack_key(b, k); 111 bch2_bkey_format_add_key(s, &uk); 112 } 113 } 114 115 static struct bkey_format bch2_btree_calc_format(struct btree *b) 116 { 117 struct bkey_format_state s; 118 119 bch2_bkey_format_init(&s); 120 bch2_bkey_format_add_pos(&s, b->data->min_key); 121 bch2_bkey_format_add_pos(&s, b->data->max_key); 122 __bch2_btree_calc_format(&s, b); 123 124 return bch2_bkey_format_done(&s); 125 } 126 127 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 128 struct bkey_format *old_f, 129 struct bkey_format *new_f) 130 { 131 /* stupid integer promotion rules */ 132 ssize_t delta = 133 (((int) new_f->key_u64s - old_f->key_u64s) * 134 (int) nr.packed_keys) + 135 (((int) new_f->key_u64s - BKEY_U64s) * 136 (int) nr.unpacked_keys); 137 138 BUG_ON(delta + nr.live_u64s < 0); 139 140 return nr.live_u64s + delta; 141 } 142 143 /** 144 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 145 * 146 * @c: filesystem handle 147 * @b: btree node to rewrite 148 * @nr: number of keys for new node (i.e. b->nr) 149 * @new_f: bkey format to translate keys to 150 * 151 * Returns: true if all re-packed keys will be able to fit in a new node. 152 * 153 * Assumes all keys will successfully pack with the new format. 154 */ 155 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 156 struct btree_nr_keys nr, 157 struct bkey_format *new_f) 158 { 159 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 160 161 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 162 } 163 164 /* Btree node freeing/allocation: */ 165 166 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 167 { 168 struct bch_fs *c = trans->c; 169 170 trace_and_count(c, btree_node_free, trans, b); 171 172 BUG_ON(btree_node_write_blocked(b)); 173 BUG_ON(btree_node_dirty(b)); 174 BUG_ON(btree_node_need_write(b)); 175 BUG_ON(b == btree_node_root(c, b)); 176 BUG_ON(b->ob.nr); 177 BUG_ON(!list_empty(&b->write_blocked)); 178 BUG_ON(b->will_make_reachable); 179 180 clear_btree_node_noevict(b); 181 182 mutex_lock(&c->btree_cache.lock); 183 list_move(&b->list, &c->btree_cache.freeable); 184 mutex_unlock(&c->btree_cache.lock); 185 } 186 187 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 188 struct btree_path *path, 189 struct btree *b) 190 { 191 struct bch_fs *c = trans->c; 192 unsigned i, level = b->c.level; 193 194 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 195 bch2_btree_node_hash_remove(&c->btree_cache, b); 196 __btree_node_free(trans, b); 197 six_unlock_write(&b->c.lock); 198 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 199 200 trans_for_each_path(trans, path, i) 201 if (path->l[level].b == b) { 202 btree_node_unlock(trans, path, level); 203 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 204 } 205 } 206 207 static void bch2_btree_node_free_never_used(struct btree_update *as, 208 struct btree_trans *trans, 209 struct btree *b) 210 { 211 struct bch_fs *c = as->c; 212 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 213 struct btree_path *path; 214 unsigned i, level = b->c.level; 215 216 BUG_ON(!list_empty(&b->write_blocked)); 217 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 218 219 b->will_make_reachable = 0; 220 closure_put(&as->cl); 221 222 clear_btree_node_will_make_reachable(b); 223 clear_btree_node_accessed(b); 224 clear_btree_node_dirty_acct(c, b); 225 clear_btree_node_need_write(b); 226 227 mutex_lock(&c->btree_cache.lock); 228 list_del_init(&b->list); 229 bch2_btree_node_hash_remove(&c->btree_cache, b); 230 mutex_unlock(&c->btree_cache.lock); 231 232 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 233 p->b[p->nr++] = b; 234 235 six_unlock_intent(&b->c.lock); 236 237 trans_for_each_path(trans, path, i) 238 if (path->l[level].b == b) { 239 btree_node_unlock(trans, path, level); 240 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 241 } 242 } 243 244 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 245 struct disk_reservation *res, 246 struct closure *cl, 247 bool interior_node, 248 unsigned flags) 249 { 250 struct bch_fs *c = trans->c; 251 struct write_point *wp; 252 struct btree *b; 253 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 254 struct open_buckets obs = { .nr = 0 }; 255 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 256 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 257 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim 258 ? BTREE_NODE_RESERVE 259 : 0; 260 int ret; 261 262 mutex_lock(&c->btree_reserve_cache_lock); 263 if (c->btree_reserve_cache_nr > nr_reserve) { 264 struct btree_alloc *a = 265 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 266 267 obs = a->ob; 268 bkey_copy(&tmp.k, &a->k); 269 mutex_unlock(&c->btree_reserve_cache_lock); 270 goto mem_alloc; 271 } 272 mutex_unlock(&c->btree_reserve_cache_lock); 273 274 retry: 275 ret = bch2_alloc_sectors_start_trans(trans, 276 c->opts.metadata_target ?: 277 c->opts.foreground_target, 278 0, 279 writepoint_ptr(&c->btree_write_point), 280 &devs_have, 281 res->nr_replicas, 282 min(res->nr_replicas, 283 c->opts.metadata_replicas_required), 284 watermark, 0, cl, &wp); 285 if (unlikely(ret)) 286 return ERR_PTR(ret); 287 288 if (wp->sectors_free < btree_sectors(c)) { 289 struct open_bucket *ob; 290 unsigned i; 291 292 open_bucket_for_each(c, &wp->ptrs, ob, i) 293 if (ob->sectors_free < btree_sectors(c)) 294 ob->sectors_free = 0; 295 296 bch2_alloc_sectors_done(c, wp); 297 goto retry; 298 } 299 300 bkey_btree_ptr_v2_init(&tmp.k); 301 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 302 303 bch2_open_bucket_get(c, wp, &obs); 304 bch2_alloc_sectors_done(c, wp); 305 mem_alloc: 306 b = bch2_btree_node_mem_alloc(trans, interior_node); 307 six_unlock_write(&b->c.lock); 308 six_unlock_intent(&b->c.lock); 309 310 /* we hold cannibalize_lock: */ 311 BUG_ON(IS_ERR(b)); 312 BUG_ON(b->ob.nr); 313 314 bkey_copy(&b->key, &tmp.k); 315 b->ob = obs; 316 317 return b; 318 } 319 320 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 321 struct btree_trans *trans, 322 unsigned level) 323 { 324 struct bch_fs *c = as->c; 325 struct btree *b; 326 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 327 int ret; 328 329 BUG_ON(level >= BTREE_MAX_DEPTH); 330 BUG_ON(!p->nr); 331 332 b = p->b[--p->nr]; 333 334 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 335 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 336 337 set_btree_node_accessed(b); 338 set_btree_node_dirty_acct(c, b); 339 set_btree_node_need_write(b); 340 341 bch2_bset_init_first(b, &b->data->keys); 342 b->c.level = level; 343 b->c.btree_id = as->btree_id; 344 b->version_ondisk = c->sb.version; 345 346 memset(&b->nr, 0, sizeof(b->nr)); 347 b->data->magic = cpu_to_le64(bset_magic(c)); 348 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 349 b->data->flags = 0; 350 SET_BTREE_NODE_ID(b->data, as->btree_id); 351 SET_BTREE_NODE_LEVEL(b->data, level); 352 353 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 354 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 355 356 bp->v.mem_ptr = 0; 357 bp->v.seq = b->data->keys.seq; 358 bp->v.sectors_written = 0; 359 } 360 361 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 362 363 bch2_btree_build_aux_trees(b); 364 365 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 366 BUG_ON(ret); 367 368 trace_and_count(c, btree_node_alloc, trans, b); 369 bch2_increment_clock(c, btree_sectors(c), WRITE); 370 return b; 371 } 372 373 static void btree_set_min(struct btree *b, struct bpos pos) 374 { 375 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 376 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 377 b->data->min_key = pos; 378 } 379 380 static void btree_set_max(struct btree *b, struct bpos pos) 381 { 382 b->key.k.p = pos; 383 b->data->max_key = pos; 384 } 385 386 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 387 struct btree_trans *trans, 388 struct btree *b) 389 { 390 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 391 struct bkey_format format = bch2_btree_calc_format(b); 392 393 /* 394 * The keys might expand with the new format - if they wouldn't fit in 395 * the btree node anymore, use the old format for now: 396 */ 397 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 398 format = b->format; 399 400 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 401 402 btree_set_min(n, b->data->min_key); 403 btree_set_max(n, b->data->max_key); 404 405 n->data->format = format; 406 btree_node_set_format(n, format); 407 408 bch2_btree_sort_into(as->c, n, b); 409 410 btree_node_reset_sib_u64s(n); 411 return n; 412 } 413 414 static struct btree *__btree_root_alloc(struct btree_update *as, 415 struct btree_trans *trans, unsigned level) 416 { 417 struct btree *b = bch2_btree_node_alloc(as, trans, level); 418 419 btree_set_min(b, POS_MIN); 420 btree_set_max(b, SPOS_MAX); 421 b->data->format = bch2_btree_calc_format(b); 422 423 btree_node_set_format(b, b->data->format); 424 bch2_btree_build_aux_trees(b); 425 426 return b; 427 } 428 429 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 430 { 431 struct bch_fs *c = as->c; 432 struct prealloc_nodes *p; 433 434 for (p = as->prealloc_nodes; 435 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 436 p++) { 437 while (p->nr) { 438 struct btree *b = p->b[--p->nr]; 439 440 mutex_lock(&c->btree_reserve_cache_lock); 441 442 if (c->btree_reserve_cache_nr < 443 ARRAY_SIZE(c->btree_reserve_cache)) { 444 struct btree_alloc *a = 445 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 446 447 a->ob = b->ob; 448 b->ob.nr = 0; 449 bkey_copy(&a->k, &b->key); 450 } else { 451 bch2_open_buckets_put(c, &b->ob); 452 } 453 454 mutex_unlock(&c->btree_reserve_cache_lock); 455 456 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 457 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 458 __btree_node_free(trans, b); 459 six_unlock_write(&b->c.lock); 460 six_unlock_intent(&b->c.lock); 461 } 462 } 463 } 464 465 static int bch2_btree_reserve_get(struct btree_trans *trans, 466 struct btree_update *as, 467 unsigned nr_nodes[2], 468 unsigned flags, 469 struct closure *cl) 470 { 471 struct btree *b; 472 unsigned interior; 473 int ret = 0; 474 475 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 476 477 /* 478 * Protects reaping from the btree node cache and using the btree node 479 * open bucket reserve: 480 */ 481 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 482 if (ret) 483 return ret; 484 485 for (interior = 0; interior < 2; interior++) { 486 struct prealloc_nodes *p = as->prealloc_nodes + interior; 487 488 while (p->nr < nr_nodes[interior]) { 489 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 490 interior, flags); 491 if (IS_ERR(b)) { 492 ret = PTR_ERR(b); 493 goto err; 494 } 495 496 p->b[p->nr++] = b; 497 } 498 } 499 err: 500 bch2_btree_cache_cannibalize_unlock(trans); 501 return ret; 502 } 503 504 /* Asynchronous interior node update machinery */ 505 506 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 507 { 508 struct bch_fs *c = as->c; 509 510 if (as->took_gc_lock) 511 up_read(&c->gc_lock); 512 as->took_gc_lock = false; 513 514 bch2_journal_pin_drop(&c->journal, &as->journal); 515 bch2_journal_pin_flush(&c->journal, &as->journal); 516 bch2_disk_reservation_put(c, &as->disk_res); 517 bch2_btree_reserve_put(as, trans); 518 519 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 520 as->start_time); 521 522 mutex_lock(&c->btree_interior_update_lock); 523 list_del(&as->unwritten_list); 524 list_del(&as->list); 525 526 closure_debug_destroy(&as->cl); 527 mempool_free(as, &c->btree_interior_update_pool); 528 529 /* 530 * Have to do the wakeup with btree_interior_update_lock still held, 531 * since being on btree_interior_update_list is our ref on @c: 532 */ 533 closure_wake_up(&c->btree_interior_update_wait); 534 535 mutex_unlock(&c->btree_interior_update_lock); 536 } 537 538 static void btree_update_add_key(struct btree_update *as, 539 struct keylist *keys, struct btree *b) 540 { 541 struct bkey_i *k = &b->key; 542 543 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 544 ARRAY_SIZE(as->_old_keys)); 545 546 bkey_copy(keys->top, k); 547 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 548 549 bch2_keylist_push(keys); 550 } 551 552 /* 553 * The transactional part of an interior btree node update, where we journal the 554 * update we did to the interior node and update alloc info: 555 */ 556 static int btree_update_nodes_written_trans(struct btree_trans *trans, 557 struct btree_update *as) 558 { 559 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 560 int ret = PTR_ERR_OR_ZERO(e); 561 if (ret) 562 return ret; 563 564 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 565 566 trans->journal_pin = &as->journal; 567 568 for_each_keylist_key(&as->old_keys, k) { 569 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 570 571 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 572 BTREE_TRIGGER_TRANSACTIONAL); 573 if (ret) 574 return ret; 575 } 576 577 for_each_keylist_key(&as->new_keys, k) { 578 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 579 580 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 581 BTREE_TRIGGER_TRANSACTIONAL); 582 if (ret) 583 return ret; 584 } 585 586 return 0; 587 } 588 589 static void btree_update_nodes_written(struct btree_update *as) 590 { 591 struct bch_fs *c = as->c; 592 struct btree *b; 593 struct btree_trans *trans = bch2_trans_get(c); 594 u64 journal_seq = 0; 595 unsigned i; 596 int ret; 597 598 /* 599 * If we're already in an error state, it might be because a btree node 600 * was never written, and we might be trying to free that same btree 601 * node here, but it won't have been marked as allocated and we'll see 602 * spurious disk usage inconsistencies in the transactional part below 603 * if we don't skip it: 604 */ 605 ret = bch2_journal_error(&c->journal); 606 if (ret) 607 goto err; 608 609 /* 610 * Wait for any in flight writes to finish before we free the old nodes 611 * on disk: 612 */ 613 for (i = 0; i < as->nr_old_nodes; i++) { 614 __le64 seq; 615 616 b = as->old_nodes[i]; 617 618 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 619 seq = b->data ? b->data->keys.seq : 0; 620 six_unlock_read(&b->c.lock); 621 622 if (seq == as->old_nodes_seq[i]) 623 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 624 TASK_UNINTERRUPTIBLE); 625 } 626 627 /* 628 * We did an update to a parent node where the pointers we added pointed 629 * to child nodes that weren't written yet: now, the child nodes have 630 * been written so we can write out the update to the interior node. 631 */ 632 633 /* 634 * We can't call into journal reclaim here: we'd block on the journal 635 * reclaim lock, but we may need to release the open buckets we have 636 * pinned in order for other btree updates to make forward progress, and 637 * journal reclaim does btree updates when flushing bkey_cached entries, 638 * which may require allocations as well. 639 */ 640 ret = commit_do(trans, &as->disk_res, &journal_seq, 641 BCH_WATERMARK_reclaim| 642 BCH_TRANS_COMMIT_no_enospc| 643 BCH_TRANS_COMMIT_no_check_rw| 644 BCH_TRANS_COMMIT_journal_reclaim, 645 btree_update_nodes_written_trans(trans, as)); 646 bch2_trans_unlock(trans); 647 648 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 649 "%s", bch2_err_str(ret)); 650 err: 651 if (as->b) { 652 653 b = as->b; 654 btree_path_idx_t path_idx = get_unlocked_mut_path(trans, 655 as->btree_id, b->c.level, b->key.k.p); 656 struct btree_path *path = trans->paths + path_idx; 657 /* 658 * @b is the node we did the final insert into: 659 * 660 * On failure to get a journal reservation, we still have to 661 * unblock the write and allow most of the write path to happen 662 * so that shutdown works, but the i->journal_seq mechanism 663 * won't work to prevent the btree write from being visible (we 664 * didn't get a journal sequence number) - instead 665 * __bch2_btree_node_write() doesn't do the actual write if 666 * we're in journal error state: 667 */ 668 669 /* 670 * Ensure transaction is unlocked before using 671 * btree_node_lock_nopath() (the use of which is always suspect, 672 * we need to work on removing this in the future) 673 * 674 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 675 * calls bch2_path_upgrade(), before we call path_make_mut(), so 676 * we may rarely end up with a locked path besides the one we 677 * have here: 678 */ 679 bch2_trans_unlock(trans); 680 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 681 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 682 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 683 path->l[b->c.level].b = b; 684 685 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 686 687 mutex_lock(&c->btree_interior_update_lock); 688 689 list_del(&as->write_blocked_list); 690 if (list_empty(&b->write_blocked)) 691 clear_btree_node_write_blocked(b); 692 693 /* 694 * Node might have been freed, recheck under 695 * btree_interior_update_lock: 696 */ 697 if (as->b == b) { 698 BUG_ON(!b->c.level); 699 BUG_ON(!btree_node_dirty(b)); 700 701 if (!ret) { 702 struct bset *last = btree_bset_last(b); 703 704 last->journal_seq = cpu_to_le64( 705 max(journal_seq, 706 le64_to_cpu(last->journal_seq))); 707 708 bch2_btree_add_journal_pin(c, b, journal_seq); 709 } else { 710 /* 711 * If we didn't get a journal sequence number we 712 * can't write this btree node, because recovery 713 * won't know to ignore this write: 714 */ 715 set_btree_node_never_write(b); 716 } 717 } 718 719 mutex_unlock(&c->btree_interior_update_lock); 720 721 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 722 six_unlock_write(&b->c.lock); 723 724 btree_node_write_if_need(c, b, SIX_LOCK_intent); 725 btree_node_unlock(trans, path, b->c.level); 726 bch2_path_put(trans, path_idx, true); 727 } 728 729 bch2_journal_pin_drop(&c->journal, &as->journal); 730 731 mutex_lock(&c->btree_interior_update_lock); 732 for (i = 0; i < as->nr_new_nodes; i++) { 733 b = as->new_nodes[i]; 734 735 BUG_ON(b->will_make_reachable != (unsigned long) as); 736 b->will_make_reachable = 0; 737 clear_btree_node_will_make_reachable(b); 738 } 739 mutex_unlock(&c->btree_interior_update_lock); 740 741 for (i = 0; i < as->nr_new_nodes; i++) { 742 b = as->new_nodes[i]; 743 744 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 745 btree_node_write_if_need(c, b, SIX_LOCK_read); 746 six_unlock_read(&b->c.lock); 747 } 748 749 for (i = 0; i < as->nr_open_buckets; i++) 750 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 751 752 bch2_btree_update_free(as, trans); 753 bch2_trans_put(trans); 754 } 755 756 static void btree_interior_update_work(struct work_struct *work) 757 { 758 struct bch_fs *c = 759 container_of(work, struct bch_fs, btree_interior_update_work); 760 struct btree_update *as; 761 762 while (1) { 763 mutex_lock(&c->btree_interior_update_lock); 764 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 765 struct btree_update, unwritten_list); 766 if (as && !as->nodes_written) 767 as = NULL; 768 mutex_unlock(&c->btree_interior_update_lock); 769 770 if (!as) 771 break; 772 773 btree_update_nodes_written(as); 774 } 775 } 776 777 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 778 { 779 closure_type(as, struct btree_update, cl); 780 struct bch_fs *c = as->c; 781 782 mutex_lock(&c->btree_interior_update_lock); 783 as->nodes_written = true; 784 mutex_unlock(&c->btree_interior_update_lock); 785 786 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 787 } 788 789 /* 790 * We're updating @b with pointers to nodes that haven't finished writing yet: 791 * block @b from being written until @as completes 792 */ 793 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 794 { 795 struct bch_fs *c = as->c; 796 797 mutex_lock(&c->btree_interior_update_lock); 798 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 799 800 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 801 BUG_ON(!btree_node_dirty(b)); 802 BUG_ON(!b->c.level); 803 804 as->mode = BTREE_INTERIOR_UPDATING_NODE; 805 as->b = b; 806 807 set_btree_node_write_blocked(b); 808 list_add(&as->write_blocked_list, &b->write_blocked); 809 810 mutex_unlock(&c->btree_interior_update_lock); 811 } 812 813 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 814 struct journal_entry_pin *_pin, u64 seq) 815 { 816 return 0; 817 } 818 819 static void btree_update_reparent(struct btree_update *as, 820 struct btree_update *child) 821 { 822 struct bch_fs *c = as->c; 823 824 lockdep_assert_held(&c->btree_interior_update_lock); 825 826 child->b = NULL; 827 child->mode = BTREE_INTERIOR_UPDATING_AS; 828 829 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 830 bch2_update_reparent_journal_pin_flush); 831 } 832 833 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 834 { 835 struct bkey_i *insert = &b->key; 836 struct bch_fs *c = as->c; 837 838 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 839 840 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 841 ARRAY_SIZE(as->journal_entries)); 842 843 as->journal_u64s += 844 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 845 BCH_JSET_ENTRY_btree_root, 846 b->c.btree_id, b->c.level, 847 insert, insert->k.u64s); 848 849 mutex_lock(&c->btree_interior_update_lock); 850 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 851 852 as->mode = BTREE_INTERIOR_UPDATING_ROOT; 853 mutex_unlock(&c->btree_interior_update_lock); 854 } 855 856 /* 857 * bch2_btree_update_add_new_node: 858 * 859 * This causes @as to wait on @b to be written, before it gets to 860 * bch2_btree_update_nodes_written 861 * 862 * Additionally, it sets b->will_make_reachable to prevent any additional writes 863 * to @b from happening besides the first until @b is reachable on disk 864 * 865 * And it adds @b to the list of @as's new nodes, so that we can update sector 866 * counts in bch2_btree_update_nodes_written: 867 */ 868 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 869 { 870 struct bch_fs *c = as->c; 871 872 closure_get(&as->cl); 873 874 mutex_lock(&c->btree_interior_update_lock); 875 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 876 BUG_ON(b->will_make_reachable); 877 878 as->new_nodes[as->nr_new_nodes++] = b; 879 b->will_make_reachable = 1UL|(unsigned long) as; 880 set_btree_node_will_make_reachable(b); 881 882 mutex_unlock(&c->btree_interior_update_lock); 883 884 btree_update_add_key(as, &as->new_keys, b); 885 886 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 887 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 888 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 889 890 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 891 cpu_to_le16(sectors); 892 } 893 } 894 895 /* 896 * returns true if @b was a new node 897 */ 898 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 899 { 900 struct btree_update *as; 901 unsigned long v; 902 unsigned i; 903 904 mutex_lock(&c->btree_interior_update_lock); 905 /* 906 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 907 * dropped when it gets written by bch2_btree_complete_write - the 908 * xchg() is for synchronization with bch2_btree_complete_write: 909 */ 910 v = xchg(&b->will_make_reachable, 0); 911 clear_btree_node_will_make_reachable(b); 912 as = (struct btree_update *) (v & ~1UL); 913 914 if (!as) { 915 mutex_unlock(&c->btree_interior_update_lock); 916 return; 917 } 918 919 for (i = 0; i < as->nr_new_nodes; i++) 920 if (as->new_nodes[i] == b) 921 goto found; 922 923 BUG(); 924 found: 925 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 926 mutex_unlock(&c->btree_interior_update_lock); 927 928 if (v & 1) 929 closure_put(&as->cl); 930 } 931 932 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 933 { 934 while (b->ob.nr) 935 as->open_buckets[as->nr_open_buckets++] = 936 b->ob.v[--b->ob.nr]; 937 } 938 939 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 940 struct journal_entry_pin *_pin, u64 seq) 941 { 942 return 0; 943 } 944 945 /* 946 * @b is being split/rewritten: it may have pointers to not-yet-written btree 947 * nodes and thus outstanding btree_updates - redirect @b's 948 * btree_updates to point to this btree_update: 949 */ 950 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 951 struct btree *b) 952 { 953 struct bch_fs *c = as->c; 954 struct btree_update *p, *n; 955 struct btree_write *w; 956 957 set_btree_node_dying(b); 958 959 if (btree_node_fake(b)) 960 return; 961 962 mutex_lock(&c->btree_interior_update_lock); 963 964 /* 965 * Does this node have any btree_update operations preventing 966 * it from being written? 967 * 968 * If so, redirect them to point to this btree_update: we can 969 * write out our new nodes, but we won't make them visible until those 970 * operations complete 971 */ 972 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 973 list_del_init(&p->write_blocked_list); 974 btree_update_reparent(as, p); 975 976 /* 977 * for flush_held_btree_writes() waiting on updates to flush or 978 * nodes to be writeable: 979 */ 980 closure_wake_up(&c->btree_interior_update_wait); 981 } 982 983 clear_btree_node_dirty_acct(c, b); 984 clear_btree_node_need_write(b); 985 clear_btree_node_write_blocked(b); 986 987 /* 988 * Does this node have unwritten data that has a pin on the journal? 989 * 990 * If so, transfer that pin to the btree_update operation - 991 * note that if we're freeing multiple nodes, we only need to keep the 992 * oldest pin of any of the nodes we're freeing. We'll release the pin 993 * when the new nodes are persistent and reachable on disk: 994 */ 995 w = btree_current_write(b); 996 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 997 bch2_btree_update_will_free_node_journal_pin_flush); 998 bch2_journal_pin_drop(&c->journal, &w->journal); 999 1000 w = btree_prev_write(b); 1001 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1002 bch2_btree_update_will_free_node_journal_pin_flush); 1003 bch2_journal_pin_drop(&c->journal, &w->journal); 1004 1005 mutex_unlock(&c->btree_interior_update_lock); 1006 1007 /* 1008 * Is this a node that isn't reachable on disk yet? 1009 * 1010 * Nodes that aren't reachable yet have writes blocked until they're 1011 * reachable - now that we've cancelled any pending writes and moved 1012 * things waiting on that write to wait on this update, we can drop this 1013 * node from the list of nodes that the other update is making 1014 * reachable, prior to freeing it: 1015 */ 1016 btree_update_drop_new_node(c, b); 1017 1018 btree_update_add_key(as, &as->old_keys, b); 1019 1020 as->old_nodes[as->nr_old_nodes] = b; 1021 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1022 as->nr_old_nodes++; 1023 } 1024 1025 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1026 { 1027 struct bch_fs *c = as->c; 1028 u64 start_time = as->start_time; 1029 1030 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); 1031 1032 if (as->took_gc_lock) 1033 up_read(&as->c->gc_lock); 1034 as->took_gc_lock = false; 1035 1036 bch2_btree_reserve_put(as, trans); 1037 1038 continue_at(&as->cl, btree_update_set_nodes_written, 1039 as->c->btree_interior_update_worker); 1040 1041 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1042 start_time); 1043 } 1044 1045 static struct btree_update * 1046 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1047 unsigned level, bool split, unsigned flags) 1048 { 1049 struct bch_fs *c = trans->c; 1050 struct btree_update *as; 1051 u64 start_time = local_clock(); 1052 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1053 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1054 unsigned nr_nodes[2] = { 0, 0 }; 1055 unsigned update_level = level; 1056 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1057 int ret = 0; 1058 u32 restart_count = trans->restart_count; 1059 1060 BUG_ON(!path->should_be_locked); 1061 1062 if (watermark == BCH_WATERMARK_copygc) 1063 watermark = BCH_WATERMARK_btree_copygc; 1064 if (watermark < BCH_WATERMARK_btree) 1065 watermark = BCH_WATERMARK_btree; 1066 1067 flags &= ~BCH_WATERMARK_MASK; 1068 flags |= watermark; 1069 1070 if (watermark < c->journal.watermark) { 1071 struct journal_res res = { 0 }; 1072 unsigned journal_flags = watermark|JOURNAL_RES_GET_CHECK; 1073 1074 if ((flags & BCH_TRANS_COMMIT_journal_reclaim) && 1075 watermark != BCH_WATERMARK_reclaim) 1076 journal_flags |= JOURNAL_RES_GET_NONBLOCK; 1077 1078 ret = drop_locks_do(trans, 1079 bch2_journal_res_get(&c->journal, &res, 1, journal_flags)); 1080 if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) 1081 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1082 if (ret) 1083 return ERR_PTR(ret); 1084 } 1085 1086 while (1) { 1087 nr_nodes[!!update_level] += 1 + split; 1088 update_level++; 1089 1090 ret = bch2_btree_path_upgrade(trans, path, update_level + 1); 1091 if (ret) 1092 return ERR_PTR(ret); 1093 1094 if (!btree_path_node(path, update_level)) { 1095 /* Allocating new root? */ 1096 nr_nodes[1] += split; 1097 update_level = BTREE_MAX_DEPTH; 1098 break; 1099 } 1100 1101 /* 1102 * Always check for space for two keys, even if we won't have to 1103 * split at prior level - it might have been a merge instead: 1104 */ 1105 if (bch2_btree_node_insert_fits(path->l[update_level].b, 1106 BKEY_BTREE_PTR_U64s_MAX * 2)) 1107 break; 1108 1109 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1110 } 1111 1112 if (!down_read_trylock(&c->gc_lock)) { 1113 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1114 if (ret) { 1115 up_read(&c->gc_lock); 1116 return ERR_PTR(ret); 1117 } 1118 } 1119 1120 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1121 memset(as, 0, sizeof(*as)); 1122 closure_init(&as->cl, NULL); 1123 as->c = c; 1124 as->start_time = start_time; 1125 as->ip_started = _RET_IP_; 1126 as->mode = BTREE_INTERIOR_NO_UPDATE; 1127 as->took_gc_lock = true; 1128 as->btree_id = path->btree_id; 1129 as->update_level = update_level; 1130 INIT_LIST_HEAD(&as->list); 1131 INIT_LIST_HEAD(&as->unwritten_list); 1132 INIT_LIST_HEAD(&as->write_blocked_list); 1133 bch2_keylist_init(&as->old_keys, as->_old_keys); 1134 bch2_keylist_init(&as->new_keys, as->_new_keys); 1135 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1136 1137 mutex_lock(&c->btree_interior_update_lock); 1138 list_add_tail(&as->list, &c->btree_interior_update_list); 1139 mutex_unlock(&c->btree_interior_update_lock); 1140 1141 /* 1142 * We don't want to allocate if we're in an error state, that can cause 1143 * deadlock on emergency shutdown due to open buckets getting stuck in 1144 * the btree_reserve_cache after allocator shutdown has cleared it out. 1145 * This check needs to come after adding us to the btree_interior_update 1146 * list but before calling bch2_btree_reserve_get, to synchronize with 1147 * __bch2_fs_read_only(). 1148 */ 1149 ret = bch2_journal_error(&c->journal); 1150 if (ret) 1151 goto err; 1152 1153 ret = bch2_disk_reservation_get(c, &as->disk_res, 1154 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1155 c->opts.metadata_replicas, 1156 disk_res_flags); 1157 if (ret) 1158 goto err; 1159 1160 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1161 if (bch2_err_matches(ret, ENOSPC) || 1162 bch2_err_matches(ret, ENOMEM)) { 1163 struct closure cl; 1164 1165 /* 1166 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1167 * flag 1168 */ 1169 if (bch2_err_matches(ret, ENOSPC) && 1170 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1171 watermark != BCH_WATERMARK_reclaim) { 1172 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1173 goto err; 1174 } 1175 1176 closure_init_stack(&cl); 1177 1178 do { 1179 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1180 1181 bch2_trans_unlock(trans); 1182 closure_sync(&cl); 1183 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1184 } 1185 1186 if (ret) { 1187 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1188 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1189 goto err; 1190 } 1191 1192 ret = bch2_trans_relock(trans); 1193 if (ret) 1194 goto err; 1195 1196 bch2_trans_verify_not_restarted(trans, restart_count); 1197 return as; 1198 err: 1199 bch2_btree_update_free(as, trans); 1200 if (!bch2_err_matches(ret, ENOSPC) && 1201 !bch2_err_matches(ret, EROFS) && 1202 ret != -BCH_ERR_journal_reclaim_would_deadlock) 1203 bch_err_fn_ratelimited(c, ret); 1204 return ERR_PTR(ret); 1205 } 1206 1207 /* Btree root updates: */ 1208 1209 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1210 { 1211 /* Root nodes cannot be reaped */ 1212 mutex_lock(&c->btree_cache.lock); 1213 list_del_init(&b->list); 1214 mutex_unlock(&c->btree_cache.lock); 1215 1216 mutex_lock(&c->btree_root_lock); 1217 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1218 mutex_unlock(&c->btree_root_lock); 1219 1220 bch2_recalc_btree_reserve(c); 1221 } 1222 1223 static void bch2_btree_set_root(struct btree_update *as, 1224 struct btree_trans *trans, 1225 struct btree_path *path, 1226 struct btree *b) 1227 { 1228 struct bch_fs *c = as->c; 1229 struct btree *old; 1230 1231 trace_and_count(c, btree_node_set_root, trans, b); 1232 1233 old = btree_node_root(c, b); 1234 1235 /* 1236 * Ensure no one is using the old root while we switch to the 1237 * new root: 1238 */ 1239 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1240 1241 bch2_btree_set_root_inmem(c, b); 1242 1243 btree_update_updated_root(as, b); 1244 1245 /* 1246 * Unlock old root after new root is visible: 1247 * 1248 * The new root isn't persistent, but that's ok: we still have 1249 * an intent lock on the new root, and any updates that would 1250 * depend on the new root would have to update the new root. 1251 */ 1252 bch2_btree_node_unlock_write(trans, path, old); 1253 } 1254 1255 /* Interior node updates: */ 1256 1257 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1258 struct btree_trans *trans, 1259 struct btree_path *path, 1260 struct btree *b, 1261 struct btree_node_iter *node_iter, 1262 struct bkey_i *insert) 1263 { 1264 struct bch_fs *c = as->c; 1265 struct bkey_packed *k; 1266 struct printbuf buf = PRINTBUF; 1267 unsigned long old, new, v; 1268 1269 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1270 !btree_ptr_sectors_written(insert)); 1271 1272 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1273 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1274 1275 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1276 btree_node_type(b), WRITE, &buf) ?: 1277 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1278 printbuf_reset(&buf); 1279 prt_printf(&buf, "inserting invalid bkey\n "); 1280 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1281 prt_printf(&buf, "\n "); 1282 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1283 btree_node_type(b), WRITE, &buf); 1284 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1285 1286 bch2_fs_inconsistent(c, "%s", buf.buf); 1287 dump_stack(); 1288 } 1289 1290 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1291 ARRAY_SIZE(as->journal_entries)); 1292 1293 as->journal_u64s += 1294 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1295 BCH_JSET_ENTRY_btree_keys, 1296 b->c.btree_id, b->c.level, 1297 insert, insert->k.u64s); 1298 1299 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1300 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1301 bch2_btree_node_iter_advance(node_iter, b); 1302 1303 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1304 set_btree_node_dirty_acct(c, b); 1305 1306 v = READ_ONCE(b->flags); 1307 do { 1308 old = new = v; 1309 1310 new &= ~BTREE_WRITE_TYPE_MASK; 1311 new |= BTREE_WRITE_interior; 1312 new |= 1 << BTREE_NODE_need_write; 1313 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1314 1315 printbuf_exit(&buf); 1316 } 1317 1318 static void 1319 __bch2_btree_insert_keys_interior(struct btree_update *as, 1320 struct btree_trans *trans, 1321 struct btree_path *path, 1322 struct btree *b, 1323 struct btree_node_iter node_iter, 1324 struct keylist *keys) 1325 { 1326 struct bkey_i *insert = bch2_keylist_front(keys); 1327 struct bkey_packed *k; 1328 1329 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1330 1331 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1332 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1333 ; 1334 1335 while (!bch2_keylist_empty(keys)) { 1336 insert = bch2_keylist_front(keys); 1337 1338 if (bpos_gt(insert->k.p, b->key.k.p)) 1339 break; 1340 1341 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1342 bch2_keylist_pop_front(keys); 1343 } 1344 } 1345 1346 /* 1347 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1348 * node) 1349 */ 1350 static void __btree_split_node(struct btree_update *as, 1351 struct btree_trans *trans, 1352 struct btree *b, 1353 struct btree *n[2]) 1354 { 1355 struct bkey_packed *k; 1356 struct bpos n1_pos = POS_MIN; 1357 struct btree_node_iter iter; 1358 struct bset *bsets[2]; 1359 struct bkey_format_state format[2]; 1360 struct bkey_packed *out[2]; 1361 struct bkey uk; 1362 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1363 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1364 int i; 1365 1366 memset(&nr_keys, 0, sizeof(nr_keys)); 1367 1368 for (i = 0; i < 2; i++) { 1369 BUG_ON(n[i]->nsets != 1); 1370 1371 bsets[i] = btree_bset_first(n[i]); 1372 out[i] = bsets[i]->start; 1373 1374 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1375 bch2_bkey_format_init(&format[i]); 1376 } 1377 1378 u64s = 0; 1379 for_each_btree_node_key(b, k, &iter) { 1380 if (bkey_deleted(k)) 1381 continue; 1382 1383 i = u64s >= n1_u64s; 1384 u64s += k->u64s; 1385 uk = bkey_unpack_key(b, k); 1386 if (!i) 1387 n1_pos = uk.p; 1388 bch2_bkey_format_add_key(&format[i], &uk); 1389 1390 nr_keys[i].nr_keys++; 1391 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1392 } 1393 1394 btree_set_min(n[0], b->data->min_key); 1395 btree_set_max(n[0], n1_pos); 1396 btree_set_min(n[1], bpos_successor(n1_pos)); 1397 btree_set_max(n[1], b->data->max_key); 1398 1399 for (i = 0; i < 2; i++) { 1400 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1401 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1402 1403 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1404 1405 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1406 nr_keys[i].val_u64s; 1407 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1408 n[i]->data->format = b->format; 1409 1410 btree_node_set_format(n[i], n[i]->data->format); 1411 } 1412 1413 u64s = 0; 1414 for_each_btree_node_key(b, k, &iter) { 1415 if (bkey_deleted(k)) 1416 continue; 1417 1418 i = u64s >= n1_u64s; 1419 u64s += k->u64s; 1420 1421 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1422 ? &b->format: &bch2_bkey_format_current, k)) 1423 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1424 else 1425 bch2_bkey_unpack(b, (void *) out[i], k); 1426 1427 out[i]->needs_whiteout = false; 1428 1429 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1430 out[i] = bkey_p_next(out[i]); 1431 } 1432 1433 for (i = 0; i < 2; i++) { 1434 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1435 1436 BUG_ON(!bsets[i]->u64s); 1437 1438 set_btree_bset_end(n[i], n[i]->set); 1439 1440 btree_node_reset_sib_u64s(n[i]); 1441 1442 bch2_verify_btree_nr_keys(n[i]); 1443 1444 if (b->c.level) 1445 btree_node_interior_verify(as->c, n[i]); 1446 } 1447 } 1448 1449 /* 1450 * For updates to interior nodes, we've got to do the insert before we split 1451 * because the stuff we're inserting has to be inserted atomically. Post split, 1452 * the keys might have to go in different nodes and the split would no longer be 1453 * atomic. 1454 * 1455 * Worse, if the insert is from btree node coalescing, if we do the insert after 1456 * we do the split (and pick the pivot) - the pivot we pick might be between 1457 * nodes that were coalesced, and thus in the middle of a child node post 1458 * coalescing: 1459 */ 1460 static void btree_split_insert_keys(struct btree_update *as, 1461 struct btree_trans *trans, 1462 btree_path_idx_t path_idx, 1463 struct btree *b, 1464 struct keylist *keys) 1465 { 1466 struct btree_path *path = trans->paths + path_idx; 1467 1468 if (!bch2_keylist_empty(keys) && 1469 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1470 struct btree_node_iter node_iter; 1471 1472 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1473 1474 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1475 1476 btree_node_interior_verify(as->c, b); 1477 } 1478 } 1479 1480 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1481 btree_path_idx_t path, struct btree *b, 1482 struct keylist *keys) 1483 { 1484 struct bch_fs *c = as->c; 1485 struct btree *parent = btree_node_parent(trans->paths + path, b); 1486 struct btree *n1, *n2 = NULL, *n3 = NULL; 1487 btree_path_idx_t path1 = 0, path2 = 0; 1488 u64 start_time = local_clock(); 1489 int ret = 0; 1490 1491 BUG_ON(!parent && (b != btree_node_root(c, b))); 1492 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1493 1494 bch2_btree_interior_update_will_free_node(as, b); 1495 1496 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1497 struct btree *n[2]; 1498 1499 trace_and_count(c, btree_node_split, trans, b); 1500 1501 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1502 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1503 1504 __btree_split_node(as, trans, b, n); 1505 1506 if (keys) { 1507 btree_split_insert_keys(as, trans, path, n1, keys); 1508 btree_split_insert_keys(as, trans, path, n2, keys); 1509 BUG_ON(!bch2_keylist_empty(keys)); 1510 } 1511 1512 bch2_btree_build_aux_trees(n2); 1513 bch2_btree_build_aux_trees(n1); 1514 1515 bch2_btree_update_add_new_node(as, n1); 1516 bch2_btree_update_add_new_node(as, n2); 1517 six_unlock_write(&n2->c.lock); 1518 six_unlock_write(&n1->c.lock); 1519 1520 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1521 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1522 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1523 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1524 1525 path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p); 1526 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1527 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1528 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1529 1530 /* 1531 * Note that on recursive parent_keys == keys, so we 1532 * can't start adding new keys to parent_keys before emptying it 1533 * out (which we did with btree_split_insert_keys() above) 1534 */ 1535 bch2_keylist_add(&as->parent_keys, &n1->key); 1536 bch2_keylist_add(&as->parent_keys, &n2->key); 1537 1538 if (!parent) { 1539 /* Depth increases, make a new root */ 1540 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1541 1542 bch2_btree_update_add_new_node(as, n3); 1543 six_unlock_write(&n3->c.lock); 1544 1545 trans->paths[path2].locks_want++; 1546 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1547 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1548 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1549 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1550 1551 n3->sib_u64s[0] = U16_MAX; 1552 n3->sib_u64s[1] = U16_MAX; 1553 1554 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1555 } 1556 } else { 1557 trace_and_count(c, btree_node_compact, trans, b); 1558 1559 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1560 1561 if (keys) { 1562 btree_split_insert_keys(as, trans, path, n1, keys); 1563 BUG_ON(!bch2_keylist_empty(keys)); 1564 } 1565 1566 bch2_btree_build_aux_trees(n1); 1567 bch2_btree_update_add_new_node(as, n1); 1568 six_unlock_write(&n1->c.lock); 1569 1570 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1571 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1572 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1573 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1574 1575 if (parent) 1576 bch2_keylist_add(&as->parent_keys, &n1->key); 1577 } 1578 1579 /* New nodes all written, now make them visible: */ 1580 1581 if (parent) { 1582 /* Split a non root node */ 1583 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1584 if (ret) 1585 goto err; 1586 } else if (n3) { 1587 bch2_btree_set_root(as, trans, trans->paths + path, n3); 1588 } else { 1589 /* Root filled up but didn't need to be split */ 1590 bch2_btree_set_root(as, trans, trans->paths + path, n1); 1591 } 1592 1593 if (n3) { 1594 bch2_btree_update_get_open_buckets(as, n3); 1595 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1596 } 1597 if (n2) { 1598 bch2_btree_update_get_open_buckets(as, n2); 1599 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1600 } 1601 bch2_btree_update_get_open_buckets(as, n1); 1602 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1603 1604 /* 1605 * The old node must be freed (in memory) _before_ unlocking the new 1606 * nodes - else another thread could re-acquire a read lock on the old 1607 * node after another thread has locked and updated the new node, thus 1608 * seeing stale data: 1609 */ 1610 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1611 1612 if (n3) 1613 bch2_trans_node_add(trans, trans->paths + path, n3); 1614 if (n2) 1615 bch2_trans_node_add(trans, trans->paths + path2, n2); 1616 bch2_trans_node_add(trans, trans->paths + path1, n1); 1617 1618 if (n3) 1619 six_unlock_intent(&n3->c.lock); 1620 if (n2) 1621 six_unlock_intent(&n2->c.lock); 1622 six_unlock_intent(&n1->c.lock); 1623 out: 1624 if (path2) { 1625 __bch2_btree_path_unlock(trans, trans->paths + path2); 1626 bch2_path_put(trans, path2, true); 1627 } 1628 if (path1) { 1629 __bch2_btree_path_unlock(trans, trans->paths + path1); 1630 bch2_path_put(trans, path1, true); 1631 } 1632 1633 bch2_trans_verify_locks(trans); 1634 1635 bch2_time_stats_update(&c->times[n2 1636 ? BCH_TIME_btree_node_split 1637 : BCH_TIME_btree_node_compact], 1638 start_time); 1639 return ret; 1640 err: 1641 if (n3) 1642 bch2_btree_node_free_never_used(as, trans, n3); 1643 if (n2) 1644 bch2_btree_node_free_never_used(as, trans, n2); 1645 bch2_btree_node_free_never_used(as, trans, n1); 1646 goto out; 1647 } 1648 1649 static void 1650 bch2_btree_insert_keys_interior(struct btree_update *as, 1651 struct btree_trans *trans, 1652 struct btree_path *path, 1653 struct btree *b, 1654 struct keylist *keys) 1655 { 1656 struct btree_path *linked; 1657 unsigned i; 1658 1659 __bch2_btree_insert_keys_interior(as, trans, path, b, 1660 path->l[b->c.level].iter, keys); 1661 1662 btree_update_updated_node(as, b); 1663 1664 trans_for_each_path_with_node(trans, b, linked, i) 1665 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1666 1667 bch2_trans_verify_paths(trans); 1668 } 1669 1670 /** 1671 * bch2_btree_insert_node - insert bkeys into a given btree node 1672 * 1673 * @as: btree_update object 1674 * @trans: btree_trans object 1675 * @path_idx: path that points to current node 1676 * @b: node to insert keys into 1677 * @keys: list of keys to insert 1678 * 1679 * Returns: 0 on success, typically transaction restart error on failure 1680 * 1681 * Inserts as many keys as it can into a given btree node, splitting it if full. 1682 * If a split occurred, this function will return early. This can only happen 1683 * for leaf nodes -- inserts into interior nodes have to be atomic. 1684 */ 1685 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1686 btree_path_idx_t path_idx, struct btree *b, 1687 struct keylist *keys) 1688 { 1689 struct bch_fs *c = as->c; 1690 struct btree_path *path = trans->paths + path_idx; 1691 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1692 int old_live_u64s = b->nr.live_u64s; 1693 int live_u64s_added, u64s_added; 1694 int ret; 1695 1696 lockdep_assert_held(&c->gc_lock); 1697 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1698 BUG_ON(!b->c.level); 1699 BUG_ON(!as || as->b); 1700 bch2_verify_keylist_sorted(keys); 1701 1702 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1703 if (ret) 1704 return ret; 1705 1706 bch2_btree_node_prep_for_write(trans, path, b); 1707 1708 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1709 bch2_btree_node_unlock_write(trans, path, b); 1710 goto split; 1711 } 1712 1713 btree_node_interior_verify(c, b); 1714 1715 bch2_btree_insert_keys_interior(as, trans, path, b, keys); 1716 1717 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1718 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1719 1720 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1721 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1722 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1723 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1724 1725 if (u64s_added > live_u64s_added && 1726 bch2_maybe_compact_whiteouts(c, b)) 1727 bch2_trans_node_reinit_iter(trans, b); 1728 1729 bch2_btree_node_unlock_write(trans, path, b); 1730 1731 btree_node_interior_verify(c, b); 1732 return 0; 1733 split: 1734 /* 1735 * We could attempt to avoid the transaction restart, by calling 1736 * bch2_btree_path_upgrade() and allocating more nodes: 1737 */ 1738 if (b->c.level >= as->update_level) { 1739 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1740 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1741 } 1742 1743 return btree_split(as, trans, path_idx, b, keys); 1744 } 1745 1746 int bch2_btree_split_leaf(struct btree_trans *trans, 1747 btree_path_idx_t path, 1748 unsigned flags) 1749 { 1750 /* btree_split & merge may both cause paths array to be reallocated */ 1751 struct btree *b = path_l(trans->paths + path)->b; 1752 struct btree_update *as; 1753 unsigned l; 1754 int ret = 0; 1755 1756 as = bch2_btree_update_start(trans, trans->paths + path, 1757 trans->paths[path].level, 1758 true, flags); 1759 if (IS_ERR(as)) 1760 return PTR_ERR(as); 1761 1762 ret = btree_split(as, trans, path, b, NULL); 1763 if (ret) { 1764 bch2_btree_update_free(as, trans); 1765 return ret; 1766 } 1767 1768 bch2_btree_update_done(as, trans); 1769 1770 for (l = trans->paths[path].level + 1; 1771 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1772 l++) 1773 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1774 1775 return ret; 1776 } 1777 1778 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans, 1779 btree_path_idx_t path_idx) 1780 { 1781 struct bch_fs *c = as->c; 1782 struct btree_path *path = trans->paths + path_idx; 1783 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b; 1784 1785 BUG_ON(!btree_node_locked(path, b->c.level)); 1786 1787 n = __btree_root_alloc(as, trans, b->c.level + 1); 1788 1789 bch2_btree_update_add_new_node(as, n); 1790 six_unlock_write(&n->c.lock); 1791 1792 path->locks_want++; 1793 BUG_ON(btree_node_locked(path, n->c.level)); 1794 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1795 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1796 bch2_btree_path_level_init(trans, path, n); 1797 1798 n->sib_u64s[0] = U16_MAX; 1799 n->sib_u64s[1] = U16_MAX; 1800 1801 bch2_keylist_add(&as->parent_keys, &b->key); 1802 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys); 1803 1804 bch2_btree_set_root(as, trans, path, n); 1805 bch2_btree_update_get_open_buckets(as, n); 1806 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1807 bch2_trans_node_add(trans, path, n); 1808 six_unlock_intent(&n->c.lock); 1809 1810 mutex_lock(&c->btree_cache.lock); 1811 list_add_tail(&b->list, &c->btree_cache.live); 1812 mutex_unlock(&c->btree_cache.lock); 1813 1814 bch2_trans_verify_locks(trans); 1815 } 1816 1817 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) 1818 { 1819 struct bch_fs *c = trans->c; 1820 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b; 1821 struct btree_update *as = 1822 bch2_btree_update_start(trans, trans->paths + path, 1823 b->c.level, true, flags); 1824 if (IS_ERR(as)) 1825 return PTR_ERR(as); 1826 1827 __btree_increase_depth(as, trans, path); 1828 bch2_btree_update_done(as, trans); 1829 return 0; 1830 } 1831 1832 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1833 btree_path_idx_t path, 1834 unsigned level, 1835 unsigned flags, 1836 enum btree_node_sibling sib) 1837 { 1838 struct bch_fs *c = trans->c; 1839 struct btree_update *as; 1840 struct bkey_format_state new_s; 1841 struct bkey_format new_f; 1842 struct bkey_i delete; 1843 struct btree *b, *m, *n, *prev, *next, *parent; 1844 struct bpos sib_pos; 1845 size_t sib_u64s; 1846 enum btree_id btree = trans->paths[path].btree_id; 1847 btree_path_idx_t sib_path = 0, new_path = 0; 1848 u64 start_time = local_clock(); 1849 int ret = 0; 1850 1851 BUG_ON(!trans->paths[path].should_be_locked); 1852 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1853 1854 b = trans->paths[path].l[level].b; 1855 1856 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1857 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1858 b->sib_u64s[sib] = U16_MAX; 1859 return 0; 1860 } 1861 1862 sib_pos = sib == btree_prev_sib 1863 ? bpos_predecessor(b->data->min_key) 1864 : bpos_successor(b->data->max_key); 1865 1866 sib_path = bch2_path_get(trans, btree, sib_pos, 1867 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1868 ret = bch2_btree_path_traverse(trans, sib_path, false); 1869 if (ret) 1870 goto err; 1871 1872 btree_path_set_should_be_locked(trans->paths + sib_path); 1873 1874 m = trans->paths[sib_path].l[level].b; 1875 1876 if (btree_node_parent(trans->paths + path, b) != 1877 btree_node_parent(trans->paths + sib_path, m)) { 1878 b->sib_u64s[sib] = U16_MAX; 1879 goto out; 1880 } 1881 1882 if (sib == btree_prev_sib) { 1883 prev = m; 1884 next = b; 1885 } else { 1886 prev = b; 1887 next = m; 1888 } 1889 1890 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 1891 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 1892 1893 bch2_bpos_to_text(&buf1, prev->data->max_key); 1894 bch2_bpos_to_text(&buf2, next->data->min_key); 1895 bch_err(c, 1896 "%s(): btree topology error:\n" 1897 " prev ends at %s\n" 1898 " next starts at %s", 1899 __func__, buf1.buf, buf2.buf); 1900 printbuf_exit(&buf1); 1901 printbuf_exit(&buf2); 1902 ret = bch2_topology_error(c); 1903 goto err; 1904 } 1905 1906 bch2_bkey_format_init(&new_s); 1907 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 1908 __bch2_btree_calc_format(&new_s, prev); 1909 __bch2_btree_calc_format(&new_s, next); 1910 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 1911 new_f = bch2_bkey_format_done(&new_s); 1912 1913 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 1914 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 1915 1916 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 1917 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1918 sib_u64s /= 2; 1919 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1920 } 1921 1922 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 1923 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 1924 b->sib_u64s[sib] = sib_u64s; 1925 1926 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 1927 goto out; 1928 1929 parent = btree_node_parent(trans->paths + path, b); 1930 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 1931 BCH_TRANS_COMMIT_no_enospc|flags); 1932 ret = PTR_ERR_OR_ZERO(as); 1933 if (ret) 1934 goto err; 1935 1936 trace_and_count(c, btree_node_merge, trans, b); 1937 1938 bch2_btree_interior_update_will_free_node(as, b); 1939 bch2_btree_interior_update_will_free_node(as, m); 1940 1941 n = bch2_btree_node_alloc(as, trans, b->c.level); 1942 1943 SET_BTREE_NODE_SEQ(n->data, 1944 max(BTREE_NODE_SEQ(b->data), 1945 BTREE_NODE_SEQ(m->data)) + 1); 1946 1947 btree_set_min(n, prev->data->min_key); 1948 btree_set_max(n, next->data->max_key); 1949 1950 n->data->format = new_f; 1951 btree_node_set_format(n, new_f); 1952 1953 bch2_btree_sort_into(c, n, prev); 1954 bch2_btree_sort_into(c, n, next); 1955 1956 bch2_btree_build_aux_trees(n); 1957 bch2_btree_update_add_new_node(as, n); 1958 six_unlock_write(&n->c.lock); 1959 1960 new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p); 1961 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1962 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1963 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 1964 1965 bkey_init(&delete.k); 1966 delete.k.p = prev->key.k.p; 1967 bch2_keylist_add(&as->parent_keys, &delete); 1968 bch2_keylist_add(&as->parent_keys, &n->key); 1969 1970 bch2_trans_verify_paths(trans); 1971 1972 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1973 if (ret) 1974 goto err_free_update; 1975 1976 bch2_trans_verify_paths(trans); 1977 1978 bch2_btree_update_get_open_buckets(as, n); 1979 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1980 1981 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1982 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 1983 1984 bch2_trans_node_add(trans, trans->paths + path, n); 1985 1986 bch2_trans_verify_paths(trans); 1987 1988 six_unlock_intent(&n->c.lock); 1989 1990 bch2_btree_update_done(as, trans); 1991 1992 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 1993 out: 1994 err: 1995 if (new_path) 1996 bch2_path_put(trans, new_path, true); 1997 bch2_path_put(trans, sib_path, true); 1998 bch2_trans_verify_locks(trans); 1999 return ret; 2000 err_free_update: 2001 bch2_btree_node_free_never_used(as, trans, n); 2002 bch2_btree_update_free(as, trans); 2003 goto out; 2004 } 2005 2006 int bch2_btree_node_rewrite(struct btree_trans *trans, 2007 struct btree_iter *iter, 2008 struct btree *b, 2009 unsigned flags) 2010 { 2011 struct bch_fs *c = trans->c; 2012 struct btree *n, *parent; 2013 struct btree_update *as; 2014 btree_path_idx_t new_path = 0; 2015 int ret; 2016 2017 flags |= BCH_TRANS_COMMIT_no_enospc; 2018 2019 struct btree_path *path = btree_iter_path(trans, iter); 2020 parent = btree_node_parent(path, b); 2021 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 2022 ret = PTR_ERR_OR_ZERO(as); 2023 if (ret) 2024 goto out; 2025 2026 bch2_btree_interior_update_will_free_node(as, b); 2027 2028 n = bch2_btree_node_alloc_replacement(as, trans, b); 2029 2030 bch2_btree_build_aux_trees(n); 2031 bch2_btree_update_add_new_node(as, n); 2032 six_unlock_write(&n->c.lock); 2033 2034 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 2035 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2036 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2037 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2038 2039 trace_and_count(c, btree_node_rewrite, trans, b); 2040 2041 if (parent) { 2042 bch2_keylist_add(&as->parent_keys, &n->key); 2043 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys); 2044 if (ret) 2045 goto err; 2046 } else { 2047 bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n); 2048 } 2049 2050 bch2_btree_update_get_open_buckets(as, n); 2051 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2052 2053 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2054 2055 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2056 six_unlock_intent(&n->c.lock); 2057 2058 bch2_btree_update_done(as, trans); 2059 out: 2060 if (new_path) 2061 bch2_path_put(trans, new_path, true); 2062 bch2_trans_downgrade(trans); 2063 return ret; 2064 err: 2065 bch2_btree_node_free_never_used(as, trans, n); 2066 bch2_btree_update_free(as, trans); 2067 goto out; 2068 } 2069 2070 struct async_btree_rewrite { 2071 struct bch_fs *c; 2072 struct work_struct work; 2073 struct list_head list; 2074 enum btree_id btree_id; 2075 unsigned level; 2076 struct bpos pos; 2077 __le64 seq; 2078 }; 2079 2080 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2081 struct async_btree_rewrite *a) 2082 { 2083 struct bch_fs *c = trans->c; 2084 struct btree_iter iter; 2085 struct btree *b; 2086 int ret; 2087 2088 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2089 BTREE_MAX_DEPTH, a->level, 0); 2090 b = bch2_btree_iter_peek_node(&iter); 2091 ret = PTR_ERR_OR_ZERO(b); 2092 if (ret) 2093 goto out; 2094 2095 if (!b || b->data->keys.seq != a->seq) { 2096 struct printbuf buf = PRINTBUF; 2097 2098 if (b) 2099 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2100 else 2101 prt_str(&buf, "(null"); 2102 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2103 __func__, a->seq, buf.buf); 2104 printbuf_exit(&buf); 2105 goto out; 2106 } 2107 2108 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2109 out: 2110 bch2_trans_iter_exit(trans, &iter); 2111 2112 return ret; 2113 } 2114 2115 static void async_btree_node_rewrite_work(struct work_struct *work) 2116 { 2117 struct async_btree_rewrite *a = 2118 container_of(work, struct async_btree_rewrite, work); 2119 struct bch_fs *c = a->c; 2120 int ret; 2121 2122 ret = bch2_trans_do(c, NULL, NULL, 0, 2123 async_btree_node_rewrite_trans(trans, a)); 2124 bch_err_fn_ratelimited(c, ret); 2125 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2126 kfree(a); 2127 } 2128 2129 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2130 { 2131 struct async_btree_rewrite *a; 2132 int ret; 2133 2134 a = kmalloc(sizeof(*a), GFP_NOFS); 2135 if (!a) { 2136 bch_err(c, "%s: error allocating memory", __func__); 2137 return; 2138 } 2139 2140 a->c = c; 2141 a->btree_id = b->c.btree_id; 2142 a->level = b->c.level; 2143 a->pos = b->key.k.p; 2144 a->seq = b->data->keys.seq; 2145 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2146 2147 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { 2148 mutex_lock(&c->pending_node_rewrites_lock); 2149 list_add(&a->list, &c->pending_node_rewrites); 2150 mutex_unlock(&c->pending_node_rewrites_lock); 2151 return; 2152 } 2153 2154 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2155 if (test_bit(BCH_FS_started, &c->flags)) { 2156 bch_err(c, "%s: error getting c->writes ref", __func__); 2157 kfree(a); 2158 return; 2159 } 2160 2161 ret = bch2_fs_read_write_early(c); 2162 bch_err_msg(c, ret, "going read-write"); 2163 if (ret) { 2164 kfree(a); 2165 return; 2166 } 2167 2168 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2169 } 2170 2171 queue_work(c->btree_node_rewrite_worker, &a->work); 2172 } 2173 2174 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2175 { 2176 struct async_btree_rewrite *a, *n; 2177 2178 mutex_lock(&c->pending_node_rewrites_lock); 2179 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2180 list_del(&a->list); 2181 2182 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2183 queue_work(c->btree_node_rewrite_worker, &a->work); 2184 } 2185 mutex_unlock(&c->pending_node_rewrites_lock); 2186 } 2187 2188 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2189 { 2190 struct async_btree_rewrite *a, *n; 2191 2192 mutex_lock(&c->pending_node_rewrites_lock); 2193 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2194 list_del(&a->list); 2195 2196 kfree(a); 2197 } 2198 mutex_unlock(&c->pending_node_rewrites_lock); 2199 } 2200 2201 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2202 struct btree_iter *iter, 2203 struct btree *b, struct btree *new_hash, 2204 struct bkey_i *new_key, 2205 unsigned commit_flags, 2206 bool skip_triggers) 2207 { 2208 struct bch_fs *c = trans->c; 2209 struct btree_iter iter2 = { NULL }; 2210 struct btree *parent; 2211 int ret; 2212 2213 if (!skip_triggers) { 2214 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2215 bkey_i_to_s_c(&b->key), 2216 BTREE_TRIGGER_TRANSACTIONAL) ?: 2217 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2218 bkey_i_to_s(new_key), 2219 BTREE_TRIGGER_TRANSACTIONAL); 2220 if (ret) 2221 return ret; 2222 } 2223 2224 if (new_hash) { 2225 bkey_copy(&new_hash->key, new_key); 2226 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2227 new_hash, b->c.level, b->c.btree_id); 2228 BUG_ON(ret); 2229 } 2230 2231 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2232 if (parent) { 2233 bch2_trans_copy_iter(&iter2, iter); 2234 2235 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2236 iter2.flags & BTREE_ITER_INTENT, 2237 _THIS_IP_); 2238 2239 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2240 BUG_ON(path2->level != b->c.level); 2241 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2242 2243 btree_path_set_level_up(trans, path2); 2244 2245 trans->paths_sorted = false; 2246 2247 ret = bch2_btree_iter_traverse(&iter2) ?: 2248 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2249 if (ret) 2250 goto err; 2251 } else { 2252 BUG_ON(btree_node_root(c, b) != b); 2253 2254 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2255 jset_u64s(new_key->k.u64s)); 2256 ret = PTR_ERR_OR_ZERO(e); 2257 if (ret) 2258 return ret; 2259 2260 journal_entry_set(e, 2261 BCH_JSET_ENTRY_btree_root, 2262 b->c.btree_id, b->c.level, 2263 new_key, new_key->k.u64s); 2264 } 2265 2266 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2267 if (ret) 2268 goto err; 2269 2270 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2271 2272 if (new_hash) { 2273 mutex_lock(&c->btree_cache.lock); 2274 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2275 bch2_btree_node_hash_remove(&c->btree_cache, b); 2276 2277 bkey_copy(&b->key, new_key); 2278 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2279 BUG_ON(ret); 2280 mutex_unlock(&c->btree_cache.lock); 2281 } else { 2282 bkey_copy(&b->key, new_key); 2283 } 2284 2285 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2286 out: 2287 bch2_trans_iter_exit(trans, &iter2); 2288 return ret; 2289 err: 2290 if (new_hash) { 2291 mutex_lock(&c->btree_cache.lock); 2292 bch2_btree_node_hash_remove(&c->btree_cache, b); 2293 mutex_unlock(&c->btree_cache.lock); 2294 } 2295 goto out; 2296 } 2297 2298 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2299 struct btree *b, struct bkey_i *new_key, 2300 unsigned commit_flags, bool skip_triggers) 2301 { 2302 struct bch_fs *c = trans->c; 2303 struct btree *new_hash = NULL; 2304 struct btree_path *path = btree_iter_path(trans, iter); 2305 struct closure cl; 2306 int ret = 0; 2307 2308 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2309 if (ret) 2310 return ret; 2311 2312 closure_init_stack(&cl); 2313 2314 /* 2315 * check btree_ptr_hash_val() after @b is locked by 2316 * btree_iter_traverse(): 2317 */ 2318 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2319 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2320 if (ret) { 2321 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2322 if (ret) 2323 return ret; 2324 } 2325 2326 new_hash = bch2_btree_node_mem_alloc(trans, false); 2327 } 2328 2329 path->intent_ref++; 2330 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2331 commit_flags, skip_triggers); 2332 --path->intent_ref; 2333 2334 if (new_hash) { 2335 mutex_lock(&c->btree_cache.lock); 2336 list_move(&new_hash->list, &c->btree_cache.freeable); 2337 mutex_unlock(&c->btree_cache.lock); 2338 2339 six_unlock_write(&new_hash->c.lock); 2340 six_unlock_intent(&new_hash->c.lock); 2341 } 2342 closure_sync(&cl); 2343 bch2_btree_cache_cannibalize_unlock(trans); 2344 return ret; 2345 } 2346 2347 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2348 struct btree *b, struct bkey_i *new_key, 2349 unsigned commit_flags, bool skip_triggers) 2350 { 2351 struct btree_iter iter; 2352 int ret; 2353 2354 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2355 BTREE_MAX_DEPTH, b->c.level, 2356 BTREE_ITER_INTENT); 2357 ret = bch2_btree_iter_traverse(&iter); 2358 if (ret) 2359 goto out; 2360 2361 /* has node been freed? */ 2362 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2363 /* node has been freed: */ 2364 BUG_ON(!btree_node_dying(b)); 2365 goto out; 2366 } 2367 2368 BUG_ON(!btree_node_hashed(b)); 2369 2370 struct bch_extent_ptr *ptr; 2371 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2372 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2373 2374 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2375 commit_flags, skip_triggers); 2376 out: 2377 bch2_trans_iter_exit(trans, &iter); 2378 return ret; 2379 } 2380 2381 /* Init code: */ 2382 2383 /* 2384 * Only for filesystem bringup, when first reading the btree roots or allocating 2385 * btree roots when initializing a new filesystem: 2386 */ 2387 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2388 { 2389 BUG_ON(btree_node_root(c, b)); 2390 2391 bch2_btree_set_root_inmem(c, b); 2392 } 2393 2394 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) 2395 { 2396 struct bch_fs *c = trans->c; 2397 struct closure cl; 2398 struct btree *b; 2399 int ret; 2400 2401 closure_init_stack(&cl); 2402 2403 do { 2404 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2405 closure_sync(&cl); 2406 } while (ret); 2407 2408 b = bch2_btree_node_mem_alloc(trans, false); 2409 bch2_btree_cache_cannibalize_unlock(trans); 2410 2411 set_btree_node_fake(b); 2412 set_btree_node_need_rewrite(b); 2413 b->c.level = 0; 2414 b->c.btree_id = id; 2415 2416 bkey_btree_ptr_init(&b->key); 2417 b->key.k.p = SPOS_MAX; 2418 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2419 2420 bch2_bset_init_first(b, &b->data->keys); 2421 bch2_btree_build_aux_trees(b); 2422 2423 b->data->flags = 0; 2424 btree_set_min(b, POS_MIN); 2425 btree_set_max(b, SPOS_MAX); 2426 b->data->format = bch2_btree_calc_format(b); 2427 btree_node_set_format(b, b->data->format); 2428 2429 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2430 b->c.level, b->c.btree_id); 2431 BUG_ON(ret); 2432 2433 bch2_btree_set_root_inmem(c, b); 2434 2435 six_unlock_write(&b->c.lock); 2436 six_unlock_intent(&b->c.lock); 2437 return 0; 2438 } 2439 2440 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) 2441 { 2442 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); 2443 } 2444 2445 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2446 { 2447 struct btree_update *as; 2448 2449 mutex_lock(&c->btree_interior_update_lock); 2450 list_for_each_entry(as, &c->btree_interior_update_list, list) 2451 prt_printf(out, "%ps: mode=%u nodes_written=%u cl.remaining=%u journal_seq=%llu\n", 2452 (void *) as->ip_started, 2453 as->mode, 2454 as->nodes_written, 2455 closure_nr_remaining(&as->cl), 2456 as->journal.seq); 2457 mutex_unlock(&c->btree_interior_update_lock); 2458 } 2459 2460 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2461 { 2462 bool ret; 2463 2464 mutex_lock(&c->btree_interior_update_lock); 2465 ret = !list_empty(&c->btree_interior_update_list); 2466 mutex_unlock(&c->btree_interior_update_lock); 2467 2468 return ret; 2469 } 2470 2471 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2472 { 2473 bool ret = bch2_btree_interior_updates_pending(c); 2474 2475 if (ret) 2476 closure_wait_event(&c->btree_interior_update_wait, 2477 !bch2_btree_interior_updates_pending(c)); 2478 return ret; 2479 } 2480 2481 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2482 { 2483 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2484 2485 mutex_lock(&c->btree_root_lock); 2486 2487 r->level = entry->level; 2488 r->alive = true; 2489 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2490 2491 mutex_unlock(&c->btree_root_lock); 2492 } 2493 2494 struct jset_entry * 2495 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2496 struct jset_entry *end, 2497 unsigned long skip) 2498 { 2499 unsigned i; 2500 2501 mutex_lock(&c->btree_root_lock); 2502 2503 for (i = 0; i < btree_id_nr_alive(c); i++) { 2504 struct btree_root *r = bch2_btree_id_root(c, i); 2505 2506 if (r->alive && !test_bit(i, &skip)) { 2507 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2508 i, r->level, &r->key, r->key.k.u64s); 2509 end = vstruct_next(end); 2510 } 2511 } 2512 2513 mutex_unlock(&c->btree_root_lock); 2514 2515 return end; 2516 } 2517 2518 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2519 { 2520 if (c->btree_node_rewrite_worker) 2521 destroy_workqueue(c->btree_node_rewrite_worker); 2522 if (c->btree_interior_update_worker) 2523 destroy_workqueue(c->btree_interior_update_worker); 2524 mempool_exit(&c->btree_interior_update_pool); 2525 } 2526 2527 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2528 { 2529 mutex_init(&c->btree_reserve_cache_lock); 2530 INIT_LIST_HEAD(&c->btree_interior_update_list); 2531 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2532 mutex_init(&c->btree_interior_update_lock); 2533 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2534 2535 INIT_LIST_HEAD(&c->pending_node_rewrites); 2536 mutex_init(&c->pending_node_rewrites_lock); 2537 } 2538 2539 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2540 { 2541 c->btree_interior_update_worker = 2542 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8); 2543 if (!c->btree_interior_update_worker) 2544 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2545 2546 c->btree_node_rewrite_worker = 2547 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND); 2548 if (!c->btree_node_rewrite_worker) 2549 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2550 2551 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2552 sizeof(struct btree_update))) 2553 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2554 2555 return 0; 2556 } 2557