1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_buf.h" 6 #include "bkey_methods.h" 7 #include "btree_cache.h" 8 #include "btree_gc.h" 9 #include "btree_journal_iter.h" 10 #include "btree_update.h" 11 #include "btree_update_interior.h" 12 #include "btree_io.h" 13 #include "btree_iter.h" 14 #include "btree_locking.h" 15 #include "buckets.h" 16 #include "clock.h" 17 #include "error.h" 18 #include "extents.h" 19 #include "journal.h" 20 #include "journal_reclaim.h" 21 #include "keylist.h" 22 #include "recovery_passes.h" 23 #include "replicas.h" 24 #include "sb-members.h" 25 #include "super-io.h" 26 #include "trace.h" 27 28 #include <linux/random.h> 29 30 static const char * const bch2_btree_update_modes[] = { 31 #define x(t) #t, 32 BTREE_UPDATE_MODES() 33 #undef x 34 NULL 35 }; 36 37 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 38 btree_path_idx_t, struct btree *, struct keylist *); 39 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 40 41 /* 42 * Verify that child nodes correctly span parent node's range: 43 */ 44 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b) 45 { 46 struct bch_fs *c = trans->c; 47 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2 48 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key 49 : b->data->min_key; 50 struct btree_and_journal_iter iter; 51 struct bkey_s_c k; 52 struct printbuf buf = PRINTBUF; 53 struct bkey_buf prev; 54 int ret = 0; 55 56 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && 57 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, 58 b->data->min_key)); 59 60 if (b == btree_node_root(c, b)) { 61 if (!bpos_eq(b->data->min_key, POS_MIN)) { 62 printbuf_reset(&buf); 63 bch2_bpos_to_text(&buf, b->data->min_key); 64 need_fsck_err(trans, btree_root_bad_min_key, 65 "btree root with incorrect min_key: %s", buf.buf); 66 goto topology_repair; 67 } 68 69 if (!bpos_eq(b->data->max_key, SPOS_MAX)) { 70 printbuf_reset(&buf); 71 bch2_bpos_to_text(&buf, b->data->max_key); 72 need_fsck_err(trans, btree_root_bad_max_key, 73 "btree root with incorrect max_key: %s", buf.buf); 74 goto topology_repair; 75 } 76 } 77 78 if (!b->c.level) 79 return 0; 80 81 bch2_bkey_buf_init(&prev); 82 bkey_init(&prev.k->k); 83 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); 84 85 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { 86 if (k.k->type != KEY_TYPE_btree_ptr_v2) 87 goto out; 88 89 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 90 91 struct bpos expected_min = bkey_deleted(&prev.k->k) 92 ? node_min 93 : bpos_successor(prev.k->k.p); 94 95 if (!bpos_eq(expected_min, bp.v->min_key)) { 96 bch2_topology_error(c); 97 98 printbuf_reset(&buf); 99 prt_str(&buf, "end of prev node doesn't match start of next node\n"), 100 prt_printf(&buf, " in btree %s level %u node ", 101 bch2_btree_id_str(b->c.btree_id), b->c.level); 102 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 103 prt_str(&buf, "\n prev "); 104 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 105 prt_str(&buf, "\n next "); 106 bch2_bkey_val_to_text(&buf, c, k); 107 108 need_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf); 109 goto topology_repair; 110 } 111 112 bch2_bkey_buf_reassemble(&prev, c, k); 113 bch2_btree_and_journal_iter_advance(&iter); 114 } 115 116 if (bkey_deleted(&prev.k->k)) { 117 bch2_topology_error(c); 118 119 printbuf_reset(&buf); 120 prt_str(&buf, "empty interior node\n"); 121 prt_printf(&buf, " in btree %s level %u node ", 122 bch2_btree_id_str(b->c.btree_id), b->c.level); 123 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 124 125 need_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf); 126 goto topology_repair; 127 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) { 128 bch2_topology_error(c); 129 130 printbuf_reset(&buf); 131 prt_str(&buf, "last child node doesn't end at end of parent node\n"); 132 prt_printf(&buf, " in btree %s level %u node ", 133 bch2_btree_id_str(b->c.btree_id), b->c.level); 134 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 135 prt_str(&buf, "\n last key "); 136 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 137 138 need_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf); 139 goto topology_repair; 140 } 141 out: 142 fsck_err: 143 bch2_btree_and_journal_iter_exit(&iter); 144 bch2_bkey_buf_exit(&prev, c); 145 printbuf_exit(&buf); 146 return ret; 147 topology_repair: 148 if ((c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) && 149 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) { 150 bch2_inconsistent_error(c); 151 ret = -BCH_ERR_btree_need_topology_repair; 152 } else { 153 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); 154 } 155 goto out; 156 } 157 158 /* Calculate ideal packed bkey format for new btree nodes: */ 159 160 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 161 { 162 struct bkey_packed *k; 163 struct bkey uk; 164 165 for_each_bset(b, t) 166 bset_tree_for_each_key(b, t, k) 167 if (!bkey_deleted(k)) { 168 uk = bkey_unpack_key(b, k); 169 bch2_bkey_format_add_key(s, &uk); 170 } 171 } 172 173 static struct bkey_format bch2_btree_calc_format(struct btree *b) 174 { 175 struct bkey_format_state s; 176 177 bch2_bkey_format_init(&s); 178 bch2_bkey_format_add_pos(&s, b->data->min_key); 179 bch2_bkey_format_add_pos(&s, b->data->max_key); 180 __bch2_btree_calc_format(&s, b); 181 182 return bch2_bkey_format_done(&s); 183 } 184 185 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 186 struct bkey_format *old_f, 187 struct bkey_format *new_f) 188 { 189 /* stupid integer promotion rules */ 190 ssize_t delta = 191 (((int) new_f->key_u64s - old_f->key_u64s) * 192 (int) nr.packed_keys) + 193 (((int) new_f->key_u64s - BKEY_U64s) * 194 (int) nr.unpacked_keys); 195 196 BUG_ON(delta + nr.live_u64s < 0); 197 198 return nr.live_u64s + delta; 199 } 200 201 /** 202 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 203 * 204 * @c: filesystem handle 205 * @b: btree node to rewrite 206 * @nr: number of keys for new node (i.e. b->nr) 207 * @new_f: bkey format to translate keys to 208 * 209 * Returns: true if all re-packed keys will be able to fit in a new node. 210 * 211 * Assumes all keys will successfully pack with the new format. 212 */ 213 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 214 struct btree_nr_keys nr, 215 struct bkey_format *new_f) 216 { 217 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 218 219 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 220 } 221 222 /* Btree node freeing/allocation: */ 223 224 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 225 { 226 struct bch_fs *c = trans->c; 227 228 trace_and_count(c, btree_node_free, trans, b); 229 230 BUG_ON(btree_node_write_blocked(b)); 231 BUG_ON(btree_node_dirty(b)); 232 BUG_ON(btree_node_need_write(b)); 233 BUG_ON(b == btree_node_root(c, b)); 234 BUG_ON(b->ob.nr); 235 BUG_ON(!list_empty(&b->write_blocked)); 236 BUG_ON(b->will_make_reachable); 237 238 clear_btree_node_noevict(b); 239 240 mutex_lock(&c->btree_cache.lock); 241 list_move(&b->list, &c->btree_cache.freeable); 242 mutex_unlock(&c->btree_cache.lock); 243 } 244 245 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 246 struct btree_path *path, 247 struct btree *b) 248 { 249 struct bch_fs *c = trans->c; 250 unsigned i, level = b->c.level; 251 252 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 253 bch2_btree_node_hash_remove(&c->btree_cache, b); 254 __btree_node_free(trans, b); 255 six_unlock_write(&b->c.lock); 256 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 257 258 trans_for_each_path(trans, path, i) 259 if (path->l[level].b == b) { 260 btree_node_unlock(trans, path, level); 261 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 262 } 263 } 264 265 static void bch2_btree_node_free_never_used(struct btree_update *as, 266 struct btree_trans *trans, 267 struct btree *b) 268 { 269 struct bch_fs *c = as->c; 270 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 271 struct btree_path *path; 272 unsigned i, level = b->c.level; 273 274 BUG_ON(!list_empty(&b->write_blocked)); 275 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 276 277 b->will_make_reachable = 0; 278 closure_put(&as->cl); 279 280 clear_btree_node_will_make_reachable(b); 281 clear_btree_node_accessed(b); 282 clear_btree_node_dirty_acct(c, b); 283 clear_btree_node_need_write(b); 284 285 mutex_lock(&c->btree_cache.lock); 286 list_del_init(&b->list); 287 bch2_btree_node_hash_remove(&c->btree_cache, b); 288 mutex_unlock(&c->btree_cache.lock); 289 290 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 291 p->b[p->nr++] = b; 292 293 six_unlock_intent(&b->c.lock); 294 295 trans_for_each_path(trans, path, i) 296 if (path->l[level].b == b) { 297 btree_node_unlock(trans, path, level); 298 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 299 } 300 } 301 302 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 303 struct disk_reservation *res, 304 struct closure *cl, 305 bool interior_node, 306 unsigned flags) 307 { 308 struct bch_fs *c = trans->c; 309 struct write_point *wp; 310 struct btree *b; 311 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 312 struct open_buckets obs = { .nr = 0 }; 313 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 314 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 315 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim 316 ? BTREE_NODE_RESERVE 317 : 0; 318 int ret; 319 320 b = bch2_btree_node_mem_alloc(trans, interior_node); 321 if (IS_ERR(b)) 322 return b; 323 324 BUG_ON(b->ob.nr); 325 326 mutex_lock(&c->btree_reserve_cache_lock); 327 if (c->btree_reserve_cache_nr > nr_reserve) { 328 struct btree_alloc *a = 329 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 330 331 obs = a->ob; 332 bkey_copy(&tmp.k, &a->k); 333 mutex_unlock(&c->btree_reserve_cache_lock); 334 goto out; 335 } 336 mutex_unlock(&c->btree_reserve_cache_lock); 337 retry: 338 ret = bch2_alloc_sectors_start_trans(trans, 339 c->opts.metadata_target ?: 340 c->opts.foreground_target, 341 0, 342 writepoint_ptr(&c->btree_write_point), 343 &devs_have, 344 res->nr_replicas, 345 min(res->nr_replicas, 346 c->opts.metadata_replicas_required), 347 watermark, 0, cl, &wp); 348 if (unlikely(ret)) 349 goto err; 350 351 if (wp->sectors_free < btree_sectors(c)) { 352 struct open_bucket *ob; 353 unsigned i; 354 355 open_bucket_for_each(c, &wp->ptrs, ob, i) 356 if (ob->sectors_free < btree_sectors(c)) 357 ob->sectors_free = 0; 358 359 bch2_alloc_sectors_done(c, wp); 360 goto retry; 361 } 362 363 bkey_btree_ptr_v2_init(&tmp.k); 364 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 365 366 bch2_open_bucket_get(c, wp, &obs); 367 bch2_alloc_sectors_done(c, wp); 368 out: 369 bkey_copy(&b->key, &tmp.k); 370 b->ob = obs; 371 six_unlock_write(&b->c.lock); 372 six_unlock_intent(&b->c.lock); 373 374 return b; 375 err: 376 bch2_btree_node_to_freelist(c, b); 377 return ERR_PTR(ret); 378 } 379 380 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 381 struct btree_trans *trans, 382 unsigned level) 383 { 384 struct bch_fs *c = as->c; 385 struct btree *b; 386 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 387 int ret; 388 389 BUG_ON(level >= BTREE_MAX_DEPTH); 390 BUG_ON(!p->nr); 391 392 b = p->b[--p->nr]; 393 394 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 395 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 396 397 set_btree_node_accessed(b); 398 set_btree_node_dirty_acct(c, b); 399 set_btree_node_need_write(b); 400 401 bch2_bset_init_first(b, &b->data->keys); 402 b->c.level = level; 403 b->c.btree_id = as->btree_id; 404 b->version_ondisk = c->sb.version; 405 406 memset(&b->nr, 0, sizeof(b->nr)); 407 b->data->magic = cpu_to_le64(bset_magic(c)); 408 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 409 b->data->flags = 0; 410 SET_BTREE_NODE_ID(b->data, as->btree_id); 411 SET_BTREE_NODE_LEVEL(b->data, level); 412 413 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 414 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 415 416 bp->v.mem_ptr = 0; 417 bp->v.seq = b->data->keys.seq; 418 bp->v.sectors_written = 0; 419 } 420 421 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 422 423 bch2_btree_build_aux_trees(b); 424 425 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 426 BUG_ON(ret); 427 428 trace_and_count(c, btree_node_alloc, trans, b); 429 bch2_increment_clock(c, btree_sectors(c), WRITE); 430 return b; 431 } 432 433 static void btree_set_min(struct btree *b, struct bpos pos) 434 { 435 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 436 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 437 b->data->min_key = pos; 438 } 439 440 static void btree_set_max(struct btree *b, struct bpos pos) 441 { 442 b->key.k.p = pos; 443 b->data->max_key = pos; 444 } 445 446 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 447 struct btree_trans *trans, 448 struct btree *b) 449 { 450 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 451 struct bkey_format format = bch2_btree_calc_format(b); 452 453 /* 454 * The keys might expand with the new format - if they wouldn't fit in 455 * the btree node anymore, use the old format for now: 456 */ 457 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 458 format = b->format; 459 460 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 461 462 btree_set_min(n, b->data->min_key); 463 btree_set_max(n, b->data->max_key); 464 465 n->data->format = format; 466 btree_node_set_format(n, format); 467 468 bch2_btree_sort_into(as->c, n, b); 469 470 btree_node_reset_sib_u64s(n); 471 return n; 472 } 473 474 static struct btree *__btree_root_alloc(struct btree_update *as, 475 struct btree_trans *trans, unsigned level) 476 { 477 struct btree *b = bch2_btree_node_alloc(as, trans, level); 478 479 btree_set_min(b, POS_MIN); 480 btree_set_max(b, SPOS_MAX); 481 b->data->format = bch2_btree_calc_format(b); 482 483 btree_node_set_format(b, b->data->format); 484 bch2_btree_build_aux_trees(b); 485 486 return b; 487 } 488 489 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 490 { 491 struct bch_fs *c = as->c; 492 struct prealloc_nodes *p; 493 494 for (p = as->prealloc_nodes; 495 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 496 p++) { 497 while (p->nr) { 498 struct btree *b = p->b[--p->nr]; 499 500 mutex_lock(&c->btree_reserve_cache_lock); 501 502 if (c->btree_reserve_cache_nr < 503 ARRAY_SIZE(c->btree_reserve_cache)) { 504 struct btree_alloc *a = 505 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 506 507 a->ob = b->ob; 508 b->ob.nr = 0; 509 bkey_copy(&a->k, &b->key); 510 } else { 511 bch2_open_buckets_put(c, &b->ob); 512 } 513 514 mutex_unlock(&c->btree_reserve_cache_lock); 515 516 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 517 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 518 __btree_node_free(trans, b); 519 six_unlock_write(&b->c.lock); 520 six_unlock_intent(&b->c.lock); 521 } 522 } 523 } 524 525 static int bch2_btree_reserve_get(struct btree_trans *trans, 526 struct btree_update *as, 527 unsigned nr_nodes[2], 528 unsigned flags, 529 struct closure *cl) 530 { 531 struct btree *b; 532 unsigned interior; 533 int ret = 0; 534 535 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 536 537 /* 538 * Protects reaping from the btree node cache and using the btree node 539 * open bucket reserve: 540 */ 541 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 542 if (ret) 543 return ret; 544 545 for (interior = 0; interior < 2; interior++) { 546 struct prealloc_nodes *p = as->prealloc_nodes + interior; 547 548 while (p->nr < nr_nodes[interior]) { 549 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 550 interior, flags); 551 if (IS_ERR(b)) { 552 ret = PTR_ERR(b); 553 goto err; 554 } 555 556 p->b[p->nr++] = b; 557 } 558 } 559 err: 560 bch2_btree_cache_cannibalize_unlock(trans); 561 return ret; 562 } 563 564 /* Asynchronous interior node update machinery */ 565 566 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 567 { 568 struct bch_fs *c = as->c; 569 570 if (as->took_gc_lock) 571 up_read(&c->gc_lock); 572 as->took_gc_lock = false; 573 574 bch2_journal_pin_drop(&c->journal, &as->journal); 575 bch2_journal_pin_flush(&c->journal, &as->journal); 576 bch2_disk_reservation_put(c, &as->disk_res); 577 bch2_btree_reserve_put(as, trans); 578 579 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 580 as->start_time); 581 582 mutex_lock(&c->btree_interior_update_lock); 583 list_del(&as->unwritten_list); 584 list_del(&as->list); 585 586 closure_debug_destroy(&as->cl); 587 mempool_free(as, &c->btree_interior_update_pool); 588 589 /* 590 * Have to do the wakeup with btree_interior_update_lock still held, 591 * since being on btree_interior_update_list is our ref on @c: 592 */ 593 closure_wake_up(&c->btree_interior_update_wait); 594 595 mutex_unlock(&c->btree_interior_update_lock); 596 } 597 598 static void btree_update_add_key(struct btree_update *as, 599 struct keylist *keys, struct btree *b) 600 { 601 struct bkey_i *k = &b->key; 602 603 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 604 ARRAY_SIZE(as->_old_keys)); 605 606 bkey_copy(keys->top, k); 607 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 608 609 bch2_keylist_push(keys); 610 } 611 612 static bool btree_update_new_nodes_marked_sb(struct btree_update *as) 613 { 614 for_each_keylist_key(&as->new_keys, k) 615 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k))) 616 return false; 617 return true; 618 } 619 620 static void btree_update_new_nodes_mark_sb(struct btree_update *as) 621 { 622 struct bch_fs *c = as->c; 623 624 mutex_lock(&c->sb_lock); 625 for_each_keylist_key(&as->new_keys, k) 626 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k)); 627 628 bch2_write_super(c); 629 mutex_unlock(&c->sb_lock); 630 } 631 632 /* 633 * The transactional part of an interior btree node update, where we journal the 634 * update we did to the interior node and update alloc info: 635 */ 636 static int btree_update_nodes_written_trans(struct btree_trans *trans, 637 struct btree_update *as) 638 { 639 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 640 int ret = PTR_ERR_OR_ZERO(e); 641 if (ret) 642 return ret; 643 644 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 645 646 trans->journal_pin = &as->journal; 647 648 for_each_keylist_key(&as->old_keys, k) { 649 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 650 651 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 652 BTREE_TRIGGER_transactional); 653 if (ret) 654 return ret; 655 } 656 657 for_each_keylist_key(&as->new_keys, k) { 658 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 659 660 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 661 BTREE_TRIGGER_transactional); 662 if (ret) 663 return ret; 664 } 665 666 return 0; 667 } 668 669 static void btree_update_nodes_written(struct btree_update *as) 670 { 671 struct bch_fs *c = as->c; 672 struct btree *b; 673 struct btree_trans *trans = bch2_trans_get(c); 674 u64 journal_seq = 0; 675 unsigned i; 676 int ret; 677 678 /* 679 * If we're already in an error state, it might be because a btree node 680 * was never written, and we might be trying to free that same btree 681 * node here, but it won't have been marked as allocated and we'll see 682 * spurious disk usage inconsistencies in the transactional part below 683 * if we don't skip it: 684 */ 685 ret = bch2_journal_error(&c->journal); 686 if (ret) 687 goto err; 688 689 if (!btree_update_new_nodes_marked_sb(as)) 690 btree_update_new_nodes_mark_sb(as); 691 692 /* 693 * Wait for any in flight writes to finish before we free the old nodes 694 * on disk: 695 */ 696 for (i = 0; i < as->nr_old_nodes; i++) { 697 __le64 seq; 698 699 b = as->old_nodes[i]; 700 701 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 702 seq = b->data ? b->data->keys.seq : 0; 703 six_unlock_read(&b->c.lock); 704 705 if (seq == as->old_nodes_seq[i]) 706 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 707 TASK_UNINTERRUPTIBLE); 708 } 709 710 /* 711 * We did an update to a parent node where the pointers we added pointed 712 * to child nodes that weren't written yet: now, the child nodes have 713 * been written so we can write out the update to the interior node. 714 */ 715 716 /* 717 * We can't call into journal reclaim here: we'd block on the journal 718 * reclaim lock, but we may need to release the open buckets we have 719 * pinned in order for other btree updates to make forward progress, and 720 * journal reclaim does btree updates when flushing bkey_cached entries, 721 * which may require allocations as well. 722 */ 723 ret = commit_do(trans, &as->disk_res, &journal_seq, 724 BCH_WATERMARK_interior_updates| 725 BCH_TRANS_COMMIT_no_enospc| 726 BCH_TRANS_COMMIT_no_check_rw| 727 BCH_TRANS_COMMIT_journal_reclaim, 728 btree_update_nodes_written_trans(trans, as)); 729 bch2_trans_unlock(trans); 730 731 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 732 "%s", bch2_err_str(ret)); 733 err: 734 /* 735 * We have to be careful because another thread might be getting ready 736 * to free as->b and calling btree_update_reparent() on us - we'll 737 * recheck under btree_update_lock below: 738 */ 739 b = READ_ONCE(as->b); 740 if (b) { 741 /* 742 * @b is the node we did the final insert into: 743 * 744 * On failure to get a journal reservation, we still have to 745 * unblock the write and allow most of the write path to happen 746 * so that shutdown works, but the i->journal_seq mechanism 747 * won't work to prevent the btree write from being visible (we 748 * didn't get a journal sequence number) - instead 749 * __bch2_btree_node_write() doesn't do the actual write if 750 * we're in journal error state: 751 */ 752 753 /* 754 * Ensure transaction is unlocked before using 755 * btree_node_lock_nopath() (the use of which is always suspect, 756 * we need to work on removing this in the future) 757 * 758 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get() 759 * calls bch2_path_upgrade(), before we call path_make_mut(), so 760 * we may rarely end up with a locked path besides the one we 761 * have here: 762 */ 763 bch2_trans_unlock(trans); 764 bch2_trans_begin(trans); 765 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans, 766 as->btree_id, b->c.level, b->key.k.p); 767 struct btree_path *path = trans->paths + path_idx; 768 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 769 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 770 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 771 path->l[b->c.level].b = b; 772 773 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 774 775 mutex_lock(&c->btree_interior_update_lock); 776 777 list_del(&as->write_blocked_list); 778 if (list_empty(&b->write_blocked)) 779 clear_btree_node_write_blocked(b); 780 781 /* 782 * Node might have been freed, recheck under 783 * btree_interior_update_lock: 784 */ 785 if (as->b == b) { 786 BUG_ON(!b->c.level); 787 BUG_ON(!btree_node_dirty(b)); 788 789 if (!ret) { 790 struct bset *last = btree_bset_last(b); 791 792 last->journal_seq = cpu_to_le64( 793 max(journal_seq, 794 le64_to_cpu(last->journal_seq))); 795 796 bch2_btree_add_journal_pin(c, b, journal_seq); 797 } else { 798 /* 799 * If we didn't get a journal sequence number we 800 * can't write this btree node, because recovery 801 * won't know to ignore this write: 802 */ 803 set_btree_node_never_write(b); 804 } 805 } 806 807 mutex_unlock(&c->btree_interior_update_lock); 808 809 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 810 six_unlock_write(&b->c.lock); 811 812 btree_node_write_if_need(c, b, SIX_LOCK_intent); 813 btree_node_unlock(trans, path, b->c.level); 814 bch2_path_put(trans, path_idx, true); 815 } 816 817 bch2_journal_pin_drop(&c->journal, &as->journal); 818 819 mutex_lock(&c->btree_interior_update_lock); 820 for (i = 0; i < as->nr_new_nodes; i++) { 821 b = as->new_nodes[i]; 822 823 BUG_ON(b->will_make_reachable != (unsigned long) as); 824 b->will_make_reachable = 0; 825 clear_btree_node_will_make_reachable(b); 826 } 827 mutex_unlock(&c->btree_interior_update_lock); 828 829 for (i = 0; i < as->nr_new_nodes; i++) { 830 b = as->new_nodes[i]; 831 832 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 833 btree_node_write_if_need(c, b, SIX_LOCK_read); 834 six_unlock_read(&b->c.lock); 835 } 836 837 for (i = 0; i < as->nr_open_buckets; i++) 838 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 839 840 bch2_btree_update_free(as, trans); 841 bch2_trans_put(trans); 842 } 843 844 static void btree_interior_update_work(struct work_struct *work) 845 { 846 struct bch_fs *c = 847 container_of(work, struct bch_fs, btree_interior_update_work); 848 struct btree_update *as; 849 850 while (1) { 851 mutex_lock(&c->btree_interior_update_lock); 852 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 853 struct btree_update, unwritten_list); 854 if (as && !as->nodes_written) 855 as = NULL; 856 mutex_unlock(&c->btree_interior_update_lock); 857 858 if (!as) 859 break; 860 861 btree_update_nodes_written(as); 862 } 863 } 864 865 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 866 { 867 closure_type(as, struct btree_update, cl); 868 struct bch_fs *c = as->c; 869 870 mutex_lock(&c->btree_interior_update_lock); 871 as->nodes_written = true; 872 mutex_unlock(&c->btree_interior_update_lock); 873 874 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 875 } 876 877 /* 878 * We're updating @b with pointers to nodes that haven't finished writing yet: 879 * block @b from being written until @as completes 880 */ 881 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 882 { 883 struct bch_fs *c = as->c; 884 885 BUG_ON(as->mode != BTREE_UPDATE_none); 886 BUG_ON(as->update_level_end < b->c.level); 887 BUG_ON(!btree_node_dirty(b)); 888 BUG_ON(!b->c.level); 889 890 mutex_lock(&c->btree_interior_update_lock); 891 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 892 893 as->mode = BTREE_UPDATE_node; 894 as->b = b; 895 as->update_level_end = b->c.level; 896 897 set_btree_node_write_blocked(b); 898 list_add(&as->write_blocked_list, &b->write_blocked); 899 900 mutex_unlock(&c->btree_interior_update_lock); 901 } 902 903 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 904 struct journal_entry_pin *_pin, u64 seq) 905 { 906 return 0; 907 } 908 909 static void btree_update_reparent(struct btree_update *as, 910 struct btree_update *child) 911 { 912 struct bch_fs *c = as->c; 913 914 lockdep_assert_held(&c->btree_interior_update_lock); 915 916 child->b = NULL; 917 child->mode = BTREE_UPDATE_update; 918 919 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 920 bch2_update_reparent_journal_pin_flush); 921 } 922 923 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 924 { 925 struct bkey_i *insert = &b->key; 926 struct bch_fs *c = as->c; 927 928 BUG_ON(as->mode != BTREE_UPDATE_none); 929 930 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 931 ARRAY_SIZE(as->journal_entries)); 932 933 as->journal_u64s += 934 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 935 BCH_JSET_ENTRY_btree_root, 936 b->c.btree_id, b->c.level, 937 insert, insert->k.u64s); 938 939 mutex_lock(&c->btree_interior_update_lock); 940 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 941 942 as->mode = BTREE_UPDATE_root; 943 mutex_unlock(&c->btree_interior_update_lock); 944 } 945 946 /* 947 * bch2_btree_update_add_new_node: 948 * 949 * This causes @as to wait on @b to be written, before it gets to 950 * bch2_btree_update_nodes_written 951 * 952 * Additionally, it sets b->will_make_reachable to prevent any additional writes 953 * to @b from happening besides the first until @b is reachable on disk 954 * 955 * And it adds @b to the list of @as's new nodes, so that we can update sector 956 * counts in bch2_btree_update_nodes_written: 957 */ 958 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 959 { 960 struct bch_fs *c = as->c; 961 962 closure_get(&as->cl); 963 964 mutex_lock(&c->btree_interior_update_lock); 965 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 966 BUG_ON(b->will_make_reachable); 967 968 as->new_nodes[as->nr_new_nodes++] = b; 969 b->will_make_reachable = 1UL|(unsigned long) as; 970 set_btree_node_will_make_reachable(b); 971 972 mutex_unlock(&c->btree_interior_update_lock); 973 974 btree_update_add_key(as, &as->new_keys, b); 975 976 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 977 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 978 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 979 980 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 981 cpu_to_le16(sectors); 982 } 983 } 984 985 /* 986 * returns true if @b was a new node 987 */ 988 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 989 { 990 struct btree_update *as; 991 unsigned long v; 992 unsigned i; 993 994 mutex_lock(&c->btree_interior_update_lock); 995 /* 996 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 997 * dropped when it gets written by bch2_btree_complete_write - the 998 * xchg() is for synchronization with bch2_btree_complete_write: 999 */ 1000 v = xchg(&b->will_make_reachable, 0); 1001 clear_btree_node_will_make_reachable(b); 1002 as = (struct btree_update *) (v & ~1UL); 1003 1004 if (!as) { 1005 mutex_unlock(&c->btree_interior_update_lock); 1006 return; 1007 } 1008 1009 for (i = 0; i < as->nr_new_nodes; i++) 1010 if (as->new_nodes[i] == b) 1011 goto found; 1012 1013 BUG(); 1014 found: 1015 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 1016 mutex_unlock(&c->btree_interior_update_lock); 1017 1018 if (v & 1) 1019 closure_put(&as->cl); 1020 } 1021 1022 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 1023 { 1024 while (b->ob.nr) 1025 as->open_buckets[as->nr_open_buckets++] = 1026 b->ob.v[--b->ob.nr]; 1027 } 1028 1029 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 1030 struct journal_entry_pin *_pin, u64 seq) 1031 { 1032 return 0; 1033 } 1034 1035 /* 1036 * @b is being split/rewritten: it may have pointers to not-yet-written btree 1037 * nodes and thus outstanding btree_updates - redirect @b's 1038 * btree_updates to point to this btree_update: 1039 */ 1040 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 1041 struct btree *b) 1042 { 1043 struct bch_fs *c = as->c; 1044 struct btree_update *p, *n; 1045 struct btree_write *w; 1046 1047 set_btree_node_dying(b); 1048 1049 if (btree_node_fake(b)) 1050 return; 1051 1052 mutex_lock(&c->btree_interior_update_lock); 1053 1054 /* 1055 * Does this node have any btree_update operations preventing 1056 * it from being written? 1057 * 1058 * If so, redirect them to point to this btree_update: we can 1059 * write out our new nodes, but we won't make them visible until those 1060 * operations complete 1061 */ 1062 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 1063 list_del_init(&p->write_blocked_list); 1064 btree_update_reparent(as, p); 1065 1066 /* 1067 * for flush_held_btree_writes() waiting on updates to flush or 1068 * nodes to be writeable: 1069 */ 1070 closure_wake_up(&c->btree_interior_update_wait); 1071 } 1072 1073 clear_btree_node_dirty_acct(c, b); 1074 clear_btree_node_need_write(b); 1075 clear_btree_node_write_blocked(b); 1076 1077 /* 1078 * Does this node have unwritten data that has a pin on the journal? 1079 * 1080 * If so, transfer that pin to the btree_update operation - 1081 * note that if we're freeing multiple nodes, we only need to keep the 1082 * oldest pin of any of the nodes we're freeing. We'll release the pin 1083 * when the new nodes are persistent and reachable on disk: 1084 */ 1085 w = btree_current_write(b); 1086 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1087 bch2_btree_update_will_free_node_journal_pin_flush); 1088 bch2_journal_pin_drop(&c->journal, &w->journal); 1089 1090 w = btree_prev_write(b); 1091 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1092 bch2_btree_update_will_free_node_journal_pin_flush); 1093 bch2_journal_pin_drop(&c->journal, &w->journal); 1094 1095 mutex_unlock(&c->btree_interior_update_lock); 1096 1097 /* 1098 * Is this a node that isn't reachable on disk yet? 1099 * 1100 * Nodes that aren't reachable yet have writes blocked until they're 1101 * reachable - now that we've cancelled any pending writes and moved 1102 * things waiting on that write to wait on this update, we can drop this 1103 * node from the list of nodes that the other update is making 1104 * reachable, prior to freeing it: 1105 */ 1106 btree_update_drop_new_node(c, b); 1107 1108 btree_update_add_key(as, &as->old_keys, b); 1109 1110 as->old_nodes[as->nr_old_nodes] = b; 1111 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1112 as->nr_old_nodes++; 1113 } 1114 1115 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1116 { 1117 struct bch_fs *c = as->c; 1118 u64 start_time = as->start_time; 1119 1120 BUG_ON(as->mode == BTREE_UPDATE_none); 1121 1122 if (as->took_gc_lock) 1123 up_read(&as->c->gc_lock); 1124 as->took_gc_lock = false; 1125 1126 bch2_btree_reserve_put(as, trans); 1127 1128 continue_at(&as->cl, btree_update_set_nodes_written, 1129 as->c->btree_interior_update_worker); 1130 1131 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1132 start_time); 1133 } 1134 1135 static struct btree_update * 1136 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1137 unsigned level_start, bool split, unsigned flags) 1138 { 1139 struct bch_fs *c = trans->c; 1140 struct btree_update *as; 1141 u64 start_time = local_clock(); 1142 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1143 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1144 unsigned nr_nodes[2] = { 0, 0 }; 1145 unsigned level_end = level_start; 1146 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1147 int ret = 0; 1148 u32 restart_count = trans->restart_count; 1149 1150 BUG_ON(!path->should_be_locked); 1151 1152 if (watermark == BCH_WATERMARK_copygc) 1153 watermark = BCH_WATERMARK_btree_copygc; 1154 if (watermark < BCH_WATERMARK_btree) 1155 watermark = BCH_WATERMARK_btree; 1156 1157 flags &= ~BCH_WATERMARK_MASK; 1158 flags |= watermark; 1159 1160 if (watermark < BCH_WATERMARK_reclaim && 1161 test_bit(JOURNAL_space_low, &c->journal.flags)) { 1162 if (flags & BCH_TRANS_COMMIT_journal_reclaim) 1163 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock); 1164 1165 ret = drop_locks_do(trans, 1166 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; })); 1167 if (ret) 1168 return ERR_PTR(ret); 1169 } 1170 1171 while (1) { 1172 nr_nodes[!!level_end] += 1 + split; 1173 level_end++; 1174 1175 ret = bch2_btree_path_upgrade(trans, path, level_end + 1); 1176 if (ret) 1177 return ERR_PTR(ret); 1178 1179 if (!btree_path_node(path, level_end)) { 1180 /* Allocating new root? */ 1181 nr_nodes[1] += split; 1182 level_end = BTREE_MAX_DEPTH; 1183 break; 1184 } 1185 1186 /* 1187 * Always check for space for two keys, even if we won't have to 1188 * split at prior level - it might have been a merge instead: 1189 */ 1190 if (bch2_btree_node_insert_fits(path->l[level_end].b, 1191 BKEY_BTREE_PTR_U64s_MAX * 2)) 1192 break; 1193 1194 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1195 } 1196 1197 if (!down_read_trylock(&c->gc_lock)) { 1198 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1199 if (ret) { 1200 up_read(&c->gc_lock); 1201 return ERR_PTR(ret); 1202 } 1203 } 1204 1205 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1206 memset(as, 0, sizeof(*as)); 1207 closure_init(&as->cl, NULL); 1208 as->c = c; 1209 as->start_time = start_time; 1210 as->ip_started = _RET_IP_; 1211 as->mode = BTREE_UPDATE_none; 1212 as->flags = flags; 1213 as->took_gc_lock = true; 1214 as->btree_id = path->btree_id; 1215 as->update_level_start = level_start; 1216 as->update_level_end = level_end; 1217 INIT_LIST_HEAD(&as->list); 1218 INIT_LIST_HEAD(&as->unwritten_list); 1219 INIT_LIST_HEAD(&as->write_blocked_list); 1220 bch2_keylist_init(&as->old_keys, as->_old_keys); 1221 bch2_keylist_init(&as->new_keys, as->_new_keys); 1222 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1223 1224 mutex_lock(&c->btree_interior_update_lock); 1225 list_add_tail(&as->list, &c->btree_interior_update_list); 1226 mutex_unlock(&c->btree_interior_update_lock); 1227 1228 /* 1229 * We don't want to allocate if we're in an error state, that can cause 1230 * deadlock on emergency shutdown due to open buckets getting stuck in 1231 * the btree_reserve_cache after allocator shutdown has cleared it out. 1232 * This check needs to come after adding us to the btree_interior_update 1233 * list but before calling bch2_btree_reserve_get, to synchronize with 1234 * __bch2_fs_read_only(). 1235 */ 1236 ret = bch2_journal_error(&c->journal); 1237 if (ret) 1238 goto err; 1239 1240 ret = bch2_disk_reservation_get(c, &as->disk_res, 1241 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1242 c->opts.metadata_replicas, 1243 disk_res_flags); 1244 if (ret) 1245 goto err; 1246 1247 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1248 if (bch2_err_matches(ret, ENOSPC) || 1249 bch2_err_matches(ret, ENOMEM)) { 1250 struct closure cl; 1251 1252 /* 1253 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1254 * flag 1255 */ 1256 if (bch2_err_matches(ret, ENOSPC) && 1257 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1258 watermark < BCH_WATERMARK_reclaim) { 1259 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1260 goto err; 1261 } 1262 1263 closure_init_stack(&cl); 1264 1265 do { 1266 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1267 1268 bch2_trans_unlock(trans); 1269 bch2_wait_on_allocator(c, &cl); 1270 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1271 } 1272 1273 if (ret) { 1274 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1275 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1276 goto err; 1277 } 1278 1279 ret = bch2_trans_relock(trans); 1280 if (ret) 1281 goto err; 1282 1283 bch2_trans_verify_not_restarted(trans, restart_count); 1284 return as; 1285 err: 1286 bch2_btree_update_free(as, trans); 1287 if (!bch2_err_matches(ret, ENOSPC) && 1288 !bch2_err_matches(ret, EROFS) && 1289 ret != -BCH_ERR_journal_reclaim_would_deadlock) 1290 bch_err_fn_ratelimited(c, ret); 1291 return ERR_PTR(ret); 1292 } 1293 1294 /* Btree root updates: */ 1295 1296 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1297 { 1298 /* Root nodes cannot be reaped */ 1299 mutex_lock(&c->btree_cache.lock); 1300 list_del_init(&b->list); 1301 mutex_unlock(&c->btree_cache.lock); 1302 1303 mutex_lock(&c->btree_root_lock); 1304 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1305 mutex_unlock(&c->btree_root_lock); 1306 1307 bch2_recalc_btree_reserve(c); 1308 } 1309 1310 static int bch2_btree_set_root(struct btree_update *as, 1311 struct btree_trans *trans, 1312 struct btree_path *path, 1313 struct btree *b, 1314 bool nofail) 1315 { 1316 struct bch_fs *c = as->c; 1317 1318 trace_and_count(c, btree_node_set_root, trans, b); 1319 1320 struct btree *old = btree_node_root(c, b); 1321 1322 /* 1323 * Ensure no one is using the old root while we switch to the 1324 * new root: 1325 */ 1326 if (nofail) { 1327 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1328 } else { 1329 int ret = bch2_btree_node_lock_write(trans, path, &old->c); 1330 if (ret) 1331 return ret; 1332 } 1333 1334 bch2_btree_set_root_inmem(c, b); 1335 1336 btree_update_updated_root(as, b); 1337 1338 /* 1339 * Unlock old root after new root is visible: 1340 * 1341 * The new root isn't persistent, but that's ok: we still have 1342 * an intent lock on the new root, and any updates that would 1343 * depend on the new root would have to update the new root. 1344 */ 1345 bch2_btree_node_unlock_write(trans, path, old); 1346 return 0; 1347 } 1348 1349 /* Interior node updates: */ 1350 1351 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1352 struct btree_trans *trans, 1353 struct btree_path *path, 1354 struct btree *b, 1355 struct btree_node_iter *node_iter, 1356 struct bkey_i *insert) 1357 { 1358 struct bch_fs *c = as->c; 1359 struct bkey_packed *k; 1360 struct printbuf buf = PRINTBUF; 1361 unsigned long old, new; 1362 1363 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1364 !btree_ptr_sectors_written(bkey_i_to_s_c(insert))); 1365 1366 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags))) 1367 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1368 1369 if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), 1370 btree_node_type(b), BCH_VALIDATE_write) ?: 1371 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), BCH_VALIDATE_write)) { 1372 bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__); 1373 dump_stack(); 1374 } 1375 1376 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1377 ARRAY_SIZE(as->journal_entries)); 1378 1379 as->journal_u64s += 1380 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1381 BCH_JSET_ENTRY_btree_keys, 1382 b->c.btree_id, b->c.level, 1383 insert, insert->k.u64s); 1384 1385 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1386 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1387 bch2_btree_node_iter_advance(node_iter, b); 1388 1389 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1390 set_btree_node_dirty_acct(c, b); 1391 1392 old = READ_ONCE(b->flags); 1393 do { 1394 new = old; 1395 1396 new &= ~BTREE_WRITE_TYPE_MASK; 1397 new |= BTREE_WRITE_interior; 1398 new |= 1 << BTREE_NODE_need_write; 1399 } while (!try_cmpxchg(&b->flags, &old, new)); 1400 1401 printbuf_exit(&buf); 1402 } 1403 1404 static void 1405 bch2_btree_insert_keys_interior(struct btree_update *as, 1406 struct btree_trans *trans, 1407 struct btree_path *path, 1408 struct btree *b, 1409 struct btree_node_iter node_iter, 1410 struct keylist *keys) 1411 { 1412 struct bkey_i *insert = bch2_keylist_front(keys); 1413 struct bkey_packed *k; 1414 1415 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1416 1417 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1418 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1419 ; 1420 1421 while (!bch2_keylist_empty(keys)) { 1422 insert = bch2_keylist_front(keys); 1423 1424 if (bpos_gt(insert->k.p, b->key.k.p)) 1425 break; 1426 1427 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1428 bch2_keylist_pop_front(keys); 1429 } 1430 } 1431 1432 /* 1433 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1434 * node) 1435 */ 1436 static void __btree_split_node(struct btree_update *as, 1437 struct btree_trans *trans, 1438 struct btree *b, 1439 struct btree *n[2]) 1440 { 1441 struct bkey_packed *k; 1442 struct bpos n1_pos = POS_MIN; 1443 struct btree_node_iter iter; 1444 struct bset *bsets[2]; 1445 struct bkey_format_state format[2]; 1446 struct bkey_packed *out[2]; 1447 struct bkey uk; 1448 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1449 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1450 int i; 1451 1452 memset(&nr_keys, 0, sizeof(nr_keys)); 1453 1454 for (i = 0; i < 2; i++) { 1455 BUG_ON(n[i]->nsets != 1); 1456 1457 bsets[i] = btree_bset_first(n[i]); 1458 out[i] = bsets[i]->start; 1459 1460 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1461 bch2_bkey_format_init(&format[i]); 1462 } 1463 1464 u64s = 0; 1465 for_each_btree_node_key(b, k, &iter) { 1466 if (bkey_deleted(k)) 1467 continue; 1468 1469 uk = bkey_unpack_key(b, k); 1470 1471 if (b->c.level && 1472 u64s < n1_u64s && 1473 u64s + k->u64s >= n1_u64s && 1474 bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p)) 1475 n1_u64s += k->u64s; 1476 1477 i = u64s >= n1_u64s; 1478 u64s += k->u64s; 1479 if (!i) 1480 n1_pos = uk.p; 1481 bch2_bkey_format_add_key(&format[i], &uk); 1482 1483 nr_keys[i].nr_keys++; 1484 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1485 } 1486 1487 btree_set_min(n[0], b->data->min_key); 1488 btree_set_max(n[0], n1_pos); 1489 btree_set_min(n[1], bpos_successor(n1_pos)); 1490 btree_set_max(n[1], b->data->max_key); 1491 1492 for (i = 0; i < 2; i++) { 1493 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1494 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1495 1496 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1497 1498 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1499 nr_keys[i].val_u64s; 1500 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1501 n[i]->data->format = b->format; 1502 1503 btree_node_set_format(n[i], n[i]->data->format); 1504 } 1505 1506 u64s = 0; 1507 for_each_btree_node_key(b, k, &iter) { 1508 if (bkey_deleted(k)) 1509 continue; 1510 1511 i = u64s >= n1_u64s; 1512 u64s += k->u64s; 1513 1514 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1515 ? &b->format: &bch2_bkey_format_current, k)) 1516 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1517 else 1518 bch2_bkey_unpack(b, (void *) out[i], k); 1519 1520 out[i]->needs_whiteout = false; 1521 1522 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1523 out[i] = bkey_p_next(out[i]); 1524 } 1525 1526 for (i = 0; i < 2; i++) { 1527 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1528 1529 BUG_ON(!bsets[i]->u64s); 1530 1531 set_btree_bset_end(n[i], n[i]->set); 1532 1533 btree_node_reset_sib_u64s(n[i]); 1534 1535 bch2_verify_btree_nr_keys(n[i]); 1536 1537 BUG_ON(bch2_btree_node_check_topology(trans, n[i])); 1538 } 1539 } 1540 1541 /* 1542 * For updates to interior nodes, we've got to do the insert before we split 1543 * because the stuff we're inserting has to be inserted atomically. Post split, 1544 * the keys might have to go in different nodes and the split would no longer be 1545 * atomic. 1546 * 1547 * Worse, if the insert is from btree node coalescing, if we do the insert after 1548 * we do the split (and pick the pivot) - the pivot we pick might be between 1549 * nodes that were coalesced, and thus in the middle of a child node post 1550 * coalescing: 1551 */ 1552 static void btree_split_insert_keys(struct btree_update *as, 1553 struct btree_trans *trans, 1554 btree_path_idx_t path_idx, 1555 struct btree *b, 1556 struct keylist *keys) 1557 { 1558 struct btree_path *path = trans->paths + path_idx; 1559 1560 if (!bch2_keylist_empty(keys) && 1561 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1562 struct btree_node_iter node_iter; 1563 1564 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1565 1566 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1567 1568 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1569 } 1570 } 1571 1572 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1573 btree_path_idx_t path, struct btree *b, 1574 struct keylist *keys) 1575 { 1576 struct bch_fs *c = as->c; 1577 struct btree *parent = btree_node_parent(trans->paths + path, b); 1578 struct btree *n1, *n2 = NULL, *n3 = NULL; 1579 btree_path_idx_t path1 = 0, path2 = 0; 1580 u64 start_time = local_clock(); 1581 int ret = 0; 1582 1583 bch2_verify_btree_nr_keys(b); 1584 BUG_ON(!parent && (b != btree_node_root(c, b))); 1585 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1586 1587 ret = bch2_btree_node_check_topology(trans, b); 1588 if (ret) 1589 return ret; 1590 1591 bch2_btree_interior_update_will_free_node(as, b); 1592 1593 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1594 struct btree *n[2]; 1595 1596 trace_and_count(c, btree_node_split, trans, b); 1597 1598 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1599 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1600 1601 __btree_split_node(as, trans, b, n); 1602 1603 if (keys) { 1604 btree_split_insert_keys(as, trans, path, n1, keys); 1605 btree_split_insert_keys(as, trans, path, n2, keys); 1606 BUG_ON(!bch2_keylist_empty(keys)); 1607 } 1608 1609 bch2_btree_build_aux_trees(n2); 1610 bch2_btree_build_aux_trees(n1); 1611 1612 bch2_btree_update_add_new_node(as, n1); 1613 bch2_btree_update_add_new_node(as, n2); 1614 six_unlock_write(&n2->c.lock); 1615 six_unlock_write(&n1->c.lock); 1616 1617 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1618 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1619 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1620 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1621 1622 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p); 1623 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1624 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1625 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1626 1627 /* 1628 * Note that on recursive parent_keys == keys, so we 1629 * can't start adding new keys to parent_keys before emptying it 1630 * out (which we did with btree_split_insert_keys() above) 1631 */ 1632 bch2_keylist_add(&as->parent_keys, &n1->key); 1633 bch2_keylist_add(&as->parent_keys, &n2->key); 1634 1635 if (!parent) { 1636 /* Depth increases, make a new root */ 1637 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1638 1639 bch2_btree_update_add_new_node(as, n3); 1640 six_unlock_write(&n3->c.lock); 1641 1642 trans->paths[path2].locks_want++; 1643 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1644 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1645 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1646 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1647 1648 n3->sib_u64s[0] = U16_MAX; 1649 n3->sib_u64s[1] = U16_MAX; 1650 1651 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1652 } 1653 } else { 1654 trace_and_count(c, btree_node_compact, trans, b); 1655 1656 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1657 1658 if (keys) { 1659 btree_split_insert_keys(as, trans, path, n1, keys); 1660 BUG_ON(!bch2_keylist_empty(keys)); 1661 } 1662 1663 bch2_btree_build_aux_trees(n1); 1664 bch2_btree_update_add_new_node(as, n1); 1665 six_unlock_write(&n1->c.lock); 1666 1667 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1668 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1669 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1670 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1671 1672 if (parent) 1673 bch2_keylist_add(&as->parent_keys, &n1->key); 1674 } 1675 1676 /* New nodes all written, now make them visible: */ 1677 1678 if (parent) { 1679 /* Split a non root node */ 1680 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1681 } else if (n3) { 1682 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false); 1683 } else { 1684 /* Root filled up but didn't need to be split */ 1685 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false); 1686 } 1687 1688 if (ret) 1689 goto err; 1690 1691 if (n3) { 1692 bch2_btree_update_get_open_buckets(as, n3); 1693 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1694 } 1695 if (n2) { 1696 bch2_btree_update_get_open_buckets(as, n2); 1697 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1698 } 1699 bch2_btree_update_get_open_buckets(as, n1); 1700 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1701 1702 /* 1703 * The old node must be freed (in memory) _before_ unlocking the new 1704 * nodes - else another thread could re-acquire a read lock on the old 1705 * node after another thread has locked and updated the new node, thus 1706 * seeing stale data: 1707 */ 1708 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1709 1710 if (n3) 1711 bch2_trans_node_add(trans, trans->paths + path, n3); 1712 if (n2) 1713 bch2_trans_node_add(trans, trans->paths + path2, n2); 1714 bch2_trans_node_add(trans, trans->paths + path1, n1); 1715 1716 if (n3) 1717 six_unlock_intent(&n3->c.lock); 1718 if (n2) 1719 six_unlock_intent(&n2->c.lock); 1720 six_unlock_intent(&n1->c.lock); 1721 out: 1722 if (path2) { 1723 __bch2_btree_path_unlock(trans, trans->paths + path2); 1724 bch2_path_put(trans, path2, true); 1725 } 1726 if (path1) { 1727 __bch2_btree_path_unlock(trans, trans->paths + path1); 1728 bch2_path_put(trans, path1, true); 1729 } 1730 1731 bch2_trans_verify_locks(trans); 1732 1733 bch2_time_stats_update(&c->times[n2 1734 ? BCH_TIME_btree_node_split 1735 : BCH_TIME_btree_node_compact], 1736 start_time); 1737 return ret; 1738 err: 1739 if (n3) 1740 bch2_btree_node_free_never_used(as, trans, n3); 1741 if (n2) 1742 bch2_btree_node_free_never_used(as, trans, n2); 1743 bch2_btree_node_free_never_used(as, trans, n1); 1744 goto out; 1745 } 1746 1747 /** 1748 * bch2_btree_insert_node - insert bkeys into a given btree node 1749 * 1750 * @as: btree_update object 1751 * @trans: btree_trans object 1752 * @path_idx: path that points to current node 1753 * @b: node to insert keys into 1754 * @keys: list of keys to insert 1755 * 1756 * Returns: 0 on success, typically transaction restart error on failure 1757 * 1758 * Inserts as many keys as it can into a given btree node, splitting it if full. 1759 * If a split occurred, this function will return early. This can only happen 1760 * for leaf nodes -- inserts into interior nodes have to be atomic. 1761 */ 1762 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1763 btree_path_idx_t path_idx, struct btree *b, 1764 struct keylist *keys) 1765 { 1766 struct bch_fs *c = as->c; 1767 struct btree_path *path = trans->paths + path_idx, *linked; 1768 unsigned i; 1769 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1770 int old_live_u64s = b->nr.live_u64s; 1771 int live_u64s_added, u64s_added; 1772 int ret; 1773 1774 lockdep_assert_held(&c->gc_lock); 1775 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1776 BUG_ON(!b->c.level); 1777 BUG_ON(!as || as->b); 1778 bch2_verify_keylist_sorted(keys); 1779 1780 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1781 if (ret) 1782 return ret; 1783 1784 bch2_btree_node_prep_for_write(trans, path, b); 1785 1786 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1787 bch2_btree_node_unlock_write(trans, path, b); 1788 goto split; 1789 } 1790 1791 ret = bch2_btree_node_check_topology(trans, b); 1792 if (ret) { 1793 bch2_btree_node_unlock_write(trans, path, b); 1794 return ret; 1795 } 1796 1797 bch2_btree_insert_keys_interior(as, trans, path, b, 1798 path->l[b->c.level].iter, keys); 1799 1800 trans_for_each_path_with_node(trans, b, linked, i) 1801 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1802 1803 bch2_trans_verify_paths(trans); 1804 1805 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1806 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1807 1808 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1809 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1810 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1811 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1812 1813 if (u64s_added > live_u64s_added && 1814 bch2_maybe_compact_whiteouts(c, b)) 1815 bch2_trans_node_reinit_iter(trans, b); 1816 1817 btree_update_updated_node(as, b); 1818 bch2_btree_node_unlock_write(trans, path, b); 1819 1820 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1821 return 0; 1822 split: 1823 /* 1824 * We could attempt to avoid the transaction restart, by calling 1825 * bch2_btree_path_upgrade() and allocating more nodes: 1826 */ 1827 if (b->c.level >= as->update_level_end) { 1828 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1829 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1830 } 1831 1832 return btree_split(as, trans, path_idx, b, keys); 1833 } 1834 1835 int bch2_btree_split_leaf(struct btree_trans *trans, 1836 btree_path_idx_t path, 1837 unsigned flags) 1838 { 1839 /* btree_split & merge may both cause paths array to be reallocated */ 1840 struct btree *b = path_l(trans->paths + path)->b; 1841 struct btree_update *as; 1842 unsigned l; 1843 int ret = 0; 1844 1845 as = bch2_btree_update_start(trans, trans->paths + path, 1846 trans->paths[path].level, 1847 true, flags); 1848 if (IS_ERR(as)) 1849 return PTR_ERR(as); 1850 1851 ret = btree_split(as, trans, path, b, NULL); 1852 if (ret) { 1853 bch2_btree_update_free(as, trans); 1854 return ret; 1855 } 1856 1857 bch2_btree_update_done(as, trans); 1858 1859 for (l = trans->paths[path].level + 1; 1860 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1861 l++) 1862 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1863 1864 return ret; 1865 } 1866 1867 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans, 1868 btree_path_idx_t path_idx) 1869 { 1870 struct bch_fs *c = as->c; 1871 struct btree_path *path = trans->paths + path_idx; 1872 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b; 1873 1874 BUG_ON(!btree_node_locked(path, b->c.level)); 1875 1876 n = __btree_root_alloc(as, trans, b->c.level + 1); 1877 1878 bch2_btree_update_add_new_node(as, n); 1879 six_unlock_write(&n->c.lock); 1880 1881 path->locks_want++; 1882 BUG_ON(btree_node_locked(path, n->c.level)); 1883 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1884 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1885 bch2_btree_path_level_init(trans, path, n); 1886 1887 n->sib_u64s[0] = U16_MAX; 1888 n->sib_u64s[1] = U16_MAX; 1889 1890 bch2_keylist_add(&as->parent_keys, &b->key); 1891 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys); 1892 1893 int ret = bch2_btree_set_root(as, trans, path, n, true); 1894 BUG_ON(ret); 1895 1896 bch2_btree_update_get_open_buckets(as, n); 1897 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1898 bch2_trans_node_add(trans, path, n); 1899 six_unlock_intent(&n->c.lock); 1900 1901 mutex_lock(&c->btree_cache.lock); 1902 list_add_tail(&b->list, &c->btree_cache.live); 1903 mutex_unlock(&c->btree_cache.lock); 1904 1905 bch2_trans_verify_locks(trans); 1906 } 1907 1908 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) 1909 { 1910 struct bch_fs *c = trans->c; 1911 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b; 1912 1913 if (btree_node_fake(b)) 1914 return bch2_btree_split_leaf(trans, path, flags); 1915 1916 struct btree_update *as = 1917 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags); 1918 if (IS_ERR(as)) 1919 return PTR_ERR(as); 1920 1921 __btree_increase_depth(as, trans, path); 1922 bch2_btree_update_done(as, trans); 1923 return 0; 1924 } 1925 1926 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1927 btree_path_idx_t path, 1928 unsigned level, 1929 unsigned flags, 1930 enum btree_node_sibling sib) 1931 { 1932 struct bch_fs *c = trans->c; 1933 struct btree_update *as; 1934 struct bkey_format_state new_s; 1935 struct bkey_format new_f; 1936 struct bkey_i delete; 1937 struct btree *b, *m, *n, *prev, *next, *parent; 1938 struct bpos sib_pos; 1939 size_t sib_u64s; 1940 enum btree_id btree = trans->paths[path].btree_id; 1941 btree_path_idx_t sib_path = 0, new_path = 0; 1942 u64 start_time = local_clock(); 1943 int ret = 0; 1944 1945 bch2_trans_verify_not_in_restart(trans); 1946 bch2_trans_verify_not_unlocked(trans); 1947 BUG_ON(!trans->paths[path].should_be_locked); 1948 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1949 1950 /* 1951 * Work around a deadlock caused by the btree write buffer not doing 1952 * merges and leaving tons of merges for us to do - we really don't need 1953 * to be doing merges at all from the interior update path, and if the 1954 * interior update path is generating too many new interior updates we 1955 * deadlock: 1956 */ 1957 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates) 1958 return 0; 1959 1960 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) { 1961 flags &= ~BCH_WATERMARK_MASK; 1962 flags |= BCH_WATERMARK_btree; 1963 flags |= BCH_TRANS_COMMIT_journal_reclaim; 1964 } 1965 1966 b = trans->paths[path].l[level].b; 1967 1968 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1969 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1970 b->sib_u64s[sib] = U16_MAX; 1971 return 0; 1972 } 1973 1974 sib_pos = sib == btree_prev_sib 1975 ? bpos_predecessor(b->data->min_key) 1976 : bpos_successor(b->data->max_key); 1977 1978 sib_path = bch2_path_get(trans, btree, sib_pos, 1979 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_); 1980 ret = bch2_btree_path_traverse(trans, sib_path, false); 1981 if (ret) 1982 goto err; 1983 1984 btree_path_set_should_be_locked(trans->paths + sib_path); 1985 1986 m = trans->paths[sib_path].l[level].b; 1987 1988 if (btree_node_parent(trans->paths + path, b) != 1989 btree_node_parent(trans->paths + sib_path, m)) { 1990 b->sib_u64s[sib] = U16_MAX; 1991 goto out; 1992 } 1993 1994 if (sib == btree_prev_sib) { 1995 prev = m; 1996 next = b; 1997 } else { 1998 prev = b; 1999 next = m; 2000 } 2001 2002 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 2003 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 2004 2005 bch2_bpos_to_text(&buf1, prev->data->max_key); 2006 bch2_bpos_to_text(&buf2, next->data->min_key); 2007 bch_err(c, 2008 "%s(): btree topology error:\n" 2009 " prev ends at %s\n" 2010 " next starts at %s", 2011 __func__, buf1.buf, buf2.buf); 2012 printbuf_exit(&buf1); 2013 printbuf_exit(&buf2); 2014 ret = bch2_topology_error(c); 2015 goto err; 2016 } 2017 2018 bch2_bkey_format_init(&new_s); 2019 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 2020 __bch2_btree_calc_format(&new_s, prev); 2021 __bch2_btree_calc_format(&new_s, next); 2022 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 2023 new_f = bch2_bkey_format_done(&new_s); 2024 2025 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 2026 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 2027 2028 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 2029 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2030 sib_u64s /= 2; 2031 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2032 } 2033 2034 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 2035 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 2036 b->sib_u64s[sib] = sib_u64s; 2037 2038 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 2039 goto out; 2040 2041 parent = btree_node_parent(trans->paths + path, b); 2042 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 2043 BCH_TRANS_COMMIT_no_enospc|flags); 2044 ret = PTR_ERR_OR_ZERO(as); 2045 if (ret) 2046 goto err; 2047 2048 trace_and_count(c, btree_node_merge, trans, b); 2049 2050 bch2_btree_interior_update_will_free_node(as, b); 2051 bch2_btree_interior_update_will_free_node(as, m); 2052 2053 n = bch2_btree_node_alloc(as, trans, b->c.level); 2054 2055 SET_BTREE_NODE_SEQ(n->data, 2056 max(BTREE_NODE_SEQ(b->data), 2057 BTREE_NODE_SEQ(m->data)) + 1); 2058 2059 btree_set_min(n, prev->data->min_key); 2060 btree_set_max(n, next->data->max_key); 2061 2062 n->data->format = new_f; 2063 btree_node_set_format(n, new_f); 2064 2065 bch2_btree_sort_into(c, n, prev); 2066 bch2_btree_sort_into(c, n, next); 2067 2068 bch2_btree_build_aux_trees(n); 2069 bch2_btree_update_add_new_node(as, n); 2070 six_unlock_write(&n->c.lock); 2071 2072 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p); 2073 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2074 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2075 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2076 2077 bkey_init(&delete.k); 2078 delete.k.p = prev->key.k.p; 2079 bch2_keylist_add(&as->parent_keys, &delete); 2080 bch2_keylist_add(&as->parent_keys, &n->key); 2081 2082 bch2_trans_verify_paths(trans); 2083 2084 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 2085 if (ret) 2086 goto err_free_update; 2087 2088 bch2_trans_verify_paths(trans); 2089 2090 bch2_btree_update_get_open_buckets(as, n); 2091 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2092 2093 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 2094 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 2095 2096 bch2_trans_node_add(trans, trans->paths + path, n); 2097 2098 bch2_trans_verify_paths(trans); 2099 2100 six_unlock_intent(&n->c.lock); 2101 2102 bch2_btree_update_done(as, trans); 2103 2104 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 2105 out: 2106 err: 2107 if (new_path) 2108 bch2_path_put(trans, new_path, true); 2109 bch2_path_put(trans, sib_path, true); 2110 bch2_trans_verify_locks(trans); 2111 if (ret == -BCH_ERR_journal_reclaim_would_deadlock) 2112 ret = 0; 2113 if (!ret) 2114 ret = bch2_trans_relock(trans); 2115 return ret; 2116 err_free_update: 2117 bch2_btree_node_free_never_used(as, trans, n); 2118 bch2_btree_update_free(as, trans); 2119 goto out; 2120 } 2121 2122 int bch2_btree_node_rewrite(struct btree_trans *trans, 2123 struct btree_iter *iter, 2124 struct btree *b, 2125 unsigned flags) 2126 { 2127 struct bch_fs *c = trans->c; 2128 struct btree *n, *parent; 2129 struct btree_update *as; 2130 btree_path_idx_t new_path = 0; 2131 int ret; 2132 2133 flags |= BCH_TRANS_COMMIT_no_enospc; 2134 2135 struct btree_path *path = btree_iter_path(trans, iter); 2136 parent = btree_node_parent(path, b); 2137 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 2138 ret = PTR_ERR_OR_ZERO(as); 2139 if (ret) 2140 goto out; 2141 2142 bch2_btree_interior_update_will_free_node(as, b); 2143 2144 n = bch2_btree_node_alloc_replacement(as, trans, b); 2145 2146 bch2_btree_build_aux_trees(n); 2147 bch2_btree_update_add_new_node(as, n); 2148 six_unlock_write(&n->c.lock); 2149 2150 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p); 2151 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2152 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2153 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2154 2155 trace_and_count(c, btree_node_rewrite, trans, b); 2156 2157 if (parent) { 2158 bch2_keylist_add(&as->parent_keys, &n->key); 2159 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys); 2160 } else { 2161 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false); 2162 } 2163 2164 if (ret) 2165 goto err; 2166 2167 bch2_btree_update_get_open_buckets(as, n); 2168 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2169 2170 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2171 2172 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2173 six_unlock_intent(&n->c.lock); 2174 2175 bch2_btree_update_done(as, trans); 2176 out: 2177 if (new_path) 2178 bch2_path_put(trans, new_path, true); 2179 bch2_trans_downgrade(trans); 2180 return ret; 2181 err: 2182 bch2_btree_node_free_never_used(as, trans, n); 2183 bch2_btree_update_free(as, trans); 2184 goto out; 2185 } 2186 2187 struct async_btree_rewrite { 2188 struct bch_fs *c; 2189 struct work_struct work; 2190 struct list_head list; 2191 enum btree_id btree_id; 2192 unsigned level; 2193 struct bpos pos; 2194 __le64 seq; 2195 }; 2196 2197 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2198 struct async_btree_rewrite *a) 2199 { 2200 struct bch_fs *c = trans->c; 2201 struct btree_iter iter; 2202 struct btree *b; 2203 int ret; 2204 2205 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2206 BTREE_MAX_DEPTH, a->level, 0); 2207 b = bch2_btree_iter_peek_node(&iter); 2208 ret = PTR_ERR_OR_ZERO(b); 2209 if (ret) 2210 goto out; 2211 2212 if (!b || b->data->keys.seq != a->seq) { 2213 struct printbuf buf = PRINTBUF; 2214 2215 if (b) 2216 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2217 else 2218 prt_str(&buf, "(null"); 2219 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2220 __func__, a->seq, buf.buf); 2221 printbuf_exit(&buf); 2222 goto out; 2223 } 2224 2225 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2226 out: 2227 bch2_trans_iter_exit(trans, &iter); 2228 2229 return ret; 2230 } 2231 2232 static void async_btree_node_rewrite_work(struct work_struct *work) 2233 { 2234 struct async_btree_rewrite *a = 2235 container_of(work, struct async_btree_rewrite, work); 2236 struct bch_fs *c = a->c; 2237 int ret; 2238 2239 ret = bch2_trans_do(c, NULL, NULL, 0, 2240 async_btree_node_rewrite_trans(trans, a)); 2241 bch_err_fn_ratelimited(c, ret); 2242 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2243 kfree(a); 2244 } 2245 2246 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2247 { 2248 struct async_btree_rewrite *a; 2249 int ret; 2250 2251 a = kmalloc(sizeof(*a), GFP_NOFS); 2252 if (!a) { 2253 bch_err(c, "%s: error allocating memory", __func__); 2254 return; 2255 } 2256 2257 a->c = c; 2258 a->btree_id = b->c.btree_id; 2259 a->level = b->c.level; 2260 a->pos = b->key.k.p; 2261 a->seq = b->data->keys.seq; 2262 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2263 2264 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { 2265 mutex_lock(&c->pending_node_rewrites_lock); 2266 list_add(&a->list, &c->pending_node_rewrites); 2267 mutex_unlock(&c->pending_node_rewrites_lock); 2268 return; 2269 } 2270 2271 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2272 if (test_bit(BCH_FS_started, &c->flags)) { 2273 bch_err(c, "%s: error getting c->writes ref", __func__); 2274 kfree(a); 2275 return; 2276 } 2277 2278 ret = bch2_fs_read_write_early(c); 2279 bch_err_msg(c, ret, "going read-write"); 2280 if (ret) { 2281 kfree(a); 2282 return; 2283 } 2284 2285 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2286 } 2287 2288 queue_work(c->btree_node_rewrite_worker, &a->work); 2289 } 2290 2291 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2292 { 2293 struct async_btree_rewrite *a, *n; 2294 2295 mutex_lock(&c->pending_node_rewrites_lock); 2296 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2297 list_del(&a->list); 2298 2299 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2300 queue_work(c->btree_node_rewrite_worker, &a->work); 2301 } 2302 mutex_unlock(&c->pending_node_rewrites_lock); 2303 } 2304 2305 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2306 { 2307 struct async_btree_rewrite *a, *n; 2308 2309 mutex_lock(&c->pending_node_rewrites_lock); 2310 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2311 list_del(&a->list); 2312 2313 kfree(a); 2314 } 2315 mutex_unlock(&c->pending_node_rewrites_lock); 2316 } 2317 2318 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2319 struct btree_iter *iter, 2320 struct btree *b, struct btree *new_hash, 2321 struct bkey_i *new_key, 2322 unsigned commit_flags, 2323 bool skip_triggers) 2324 { 2325 struct bch_fs *c = trans->c; 2326 struct btree_iter iter2 = { NULL }; 2327 struct btree *parent; 2328 int ret; 2329 2330 if (!skip_triggers) { 2331 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2332 bkey_i_to_s_c(&b->key), 2333 BTREE_TRIGGER_transactional) ?: 2334 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2335 bkey_i_to_s(new_key), 2336 BTREE_TRIGGER_transactional); 2337 if (ret) 2338 return ret; 2339 } 2340 2341 if (new_hash) { 2342 bkey_copy(&new_hash->key, new_key); 2343 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2344 new_hash, b->c.level, b->c.btree_id); 2345 BUG_ON(ret); 2346 } 2347 2348 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2349 if (parent) { 2350 bch2_trans_copy_iter(&iter2, iter); 2351 2352 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2353 iter2.flags & BTREE_ITER_intent, 2354 _THIS_IP_); 2355 2356 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2357 BUG_ON(path2->level != b->c.level); 2358 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2359 2360 btree_path_set_level_up(trans, path2); 2361 2362 trans->paths_sorted = false; 2363 2364 ret = bch2_btree_iter_traverse(&iter2) ?: 2365 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun); 2366 if (ret) 2367 goto err; 2368 } else { 2369 BUG_ON(btree_node_root(c, b) != b); 2370 2371 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2372 jset_u64s(new_key->k.u64s)); 2373 ret = PTR_ERR_OR_ZERO(e); 2374 if (ret) 2375 return ret; 2376 2377 journal_entry_set(e, 2378 BCH_JSET_ENTRY_btree_root, 2379 b->c.btree_id, b->c.level, 2380 new_key, new_key->k.u64s); 2381 } 2382 2383 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2384 if (ret) 2385 goto err; 2386 2387 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2388 2389 if (new_hash) { 2390 mutex_lock(&c->btree_cache.lock); 2391 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2392 bch2_btree_node_hash_remove(&c->btree_cache, b); 2393 2394 bkey_copy(&b->key, new_key); 2395 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2396 BUG_ON(ret); 2397 mutex_unlock(&c->btree_cache.lock); 2398 } else { 2399 bkey_copy(&b->key, new_key); 2400 } 2401 2402 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2403 out: 2404 bch2_trans_iter_exit(trans, &iter2); 2405 return ret; 2406 err: 2407 if (new_hash) { 2408 mutex_lock(&c->btree_cache.lock); 2409 bch2_btree_node_hash_remove(&c->btree_cache, b); 2410 mutex_unlock(&c->btree_cache.lock); 2411 } 2412 goto out; 2413 } 2414 2415 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2416 struct btree *b, struct bkey_i *new_key, 2417 unsigned commit_flags, bool skip_triggers) 2418 { 2419 struct bch_fs *c = trans->c; 2420 struct btree *new_hash = NULL; 2421 struct btree_path *path = btree_iter_path(trans, iter); 2422 struct closure cl; 2423 int ret = 0; 2424 2425 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2426 if (ret) 2427 return ret; 2428 2429 closure_init_stack(&cl); 2430 2431 /* 2432 * check btree_ptr_hash_val() after @b is locked by 2433 * btree_iter_traverse(): 2434 */ 2435 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2436 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2437 if (ret) { 2438 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2439 if (ret) 2440 return ret; 2441 } 2442 2443 new_hash = bch2_btree_node_mem_alloc(trans, false); 2444 ret = PTR_ERR_OR_ZERO(new_hash); 2445 if (ret) 2446 goto err; 2447 } 2448 2449 path->intent_ref++; 2450 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2451 commit_flags, skip_triggers); 2452 --path->intent_ref; 2453 2454 if (new_hash) 2455 bch2_btree_node_to_freelist(c, new_hash); 2456 err: 2457 closure_sync(&cl); 2458 bch2_btree_cache_cannibalize_unlock(trans); 2459 return ret; 2460 } 2461 2462 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2463 struct btree *b, struct bkey_i *new_key, 2464 unsigned commit_flags, bool skip_triggers) 2465 { 2466 struct btree_iter iter; 2467 int ret; 2468 2469 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2470 BTREE_MAX_DEPTH, b->c.level, 2471 BTREE_ITER_intent); 2472 ret = bch2_btree_iter_traverse(&iter); 2473 if (ret) 2474 goto out; 2475 2476 /* has node been freed? */ 2477 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2478 /* node has been freed: */ 2479 BUG_ON(!btree_node_dying(b)); 2480 goto out; 2481 } 2482 2483 BUG_ON(!btree_node_hashed(b)); 2484 2485 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2486 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2487 2488 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2489 commit_flags, skip_triggers); 2490 out: 2491 bch2_trans_iter_exit(trans, &iter); 2492 return ret; 2493 } 2494 2495 /* Init code: */ 2496 2497 /* 2498 * Only for filesystem bringup, when first reading the btree roots or allocating 2499 * btree roots when initializing a new filesystem: 2500 */ 2501 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2502 { 2503 BUG_ON(btree_node_root(c, b)); 2504 2505 bch2_btree_set_root_inmem(c, b); 2506 } 2507 2508 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level) 2509 { 2510 struct bch_fs *c = trans->c; 2511 struct closure cl; 2512 struct btree *b; 2513 int ret; 2514 2515 closure_init_stack(&cl); 2516 2517 do { 2518 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2519 closure_sync(&cl); 2520 } while (ret); 2521 2522 b = bch2_btree_node_mem_alloc(trans, false); 2523 bch2_btree_cache_cannibalize_unlock(trans); 2524 2525 ret = PTR_ERR_OR_ZERO(b); 2526 if (ret) 2527 return ret; 2528 2529 set_btree_node_fake(b); 2530 set_btree_node_need_rewrite(b); 2531 b->c.level = level; 2532 b->c.btree_id = id; 2533 2534 bkey_btree_ptr_init(&b->key); 2535 b->key.k.p = SPOS_MAX; 2536 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2537 2538 bch2_bset_init_first(b, &b->data->keys); 2539 bch2_btree_build_aux_trees(b); 2540 2541 b->data->flags = 0; 2542 btree_set_min(b, POS_MIN); 2543 btree_set_max(b, SPOS_MAX); 2544 b->data->format = bch2_btree_calc_format(b); 2545 btree_node_set_format(b, b->data->format); 2546 2547 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2548 b->c.level, b->c.btree_id); 2549 BUG_ON(ret); 2550 2551 bch2_btree_set_root_inmem(c, b); 2552 2553 six_unlock_write(&b->c.lock); 2554 six_unlock_intent(&b->c.lock); 2555 return 0; 2556 } 2557 2558 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level) 2559 { 2560 bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level))); 2561 } 2562 2563 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as) 2564 { 2565 prt_printf(out, "%ps: ", (void *) as->ip_started); 2566 bch2_trans_commit_flags_to_text(out, as->flags); 2567 2568 prt_printf(out, " btree=%s l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n", 2569 bch2_btree_id_str(as->btree_id), 2570 as->update_level_start, 2571 as->update_level_end, 2572 bch2_btree_update_modes[as->mode], 2573 as->nodes_written, 2574 closure_nr_remaining(&as->cl), 2575 as->journal.seq); 2576 } 2577 2578 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2579 { 2580 struct btree_update *as; 2581 2582 mutex_lock(&c->btree_interior_update_lock); 2583 list_for_each_entry(as, &c->btree_interior_update_list, list) 2584 bch2_btree_update_to_text(out, as); 2585 mutex_unlock(&c->btree_interior_update_lock); 2586 } 2587 2588 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2589 { 2590 bool ret; 2591 2592 mutex_lock(&c->btree_interior_update_lock); 2593 ret = !list_empty(&c->btree_interior_update_list); 2594 mutex_unlock(&c->btree_interior_update_lock); 2595 2596 return ret; 2597 } 2598 2599 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2600 { 2601 bool ret = bch2_btree_interior_updates_pending(c); 2602 2603 if (ret) 2604 closure_wait_event(&c->btree_interior_update_wait, 2605 !bch2_btree_interior_updates_pending(c)); 2606 return ret; 2607 } 2608 2609 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2610 { 2611 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2612 2613 mutex_lock(&c->btree_root_lock); 2614 2615 r->level = entry->level; 2616 r->alive = true; 2617 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2618 2619 mutex_unlock(&c->btree_root_lock); 2620 } 2621 2622 struct jset_entry * 2623 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2624 struct jset_entry *end, 2625 unsigned long skip) 2626 { 2627 unsigned i; 2628 2629 mutex_lock(&c->btree_root_lock); 2630 2631 for (i = 0; i < btree_id_nr_alive(c); i++) { 2632 struct btree_root *r = bch2_btree_id_root(c, i); 2633 2634 if (r->alive && !test_bit(i, &skip)) { 2635 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2636 i, r->level, &r->key, r->key.k.u64s); 2637 end = vstruct_next(end); 2638 } 2639 } 2640 2641 mutex_unlock(&c->btree_root_lock); 2642 2643 return end; 2644 } 2645 2646 static void bch2_btree_alloc_to_text(struct printbuf *out, 2647 struct bch_fs *c, 2648 struct btree_alloc *a) 2649 { 2650 printbuf_indent_add(out, 2); 2651 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k)); 2652 prt_newline(out); 2653 2654 struct open_bucket *ob; 2655 unsigned i; 2656 open_bucket_for_each(c, &a->ob, ob, i) 2657 bch2_open_bucket_to_text(out, c, ob); 2658 2659 printbuf_indent_sub(out, 2); 2660 } 2661 2662 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c) 2663 { 2664 for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++) 2665 bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]); 2666 } 2667 2668 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2669 { 2670 if (c->btree_node_rewrite_worker) 2671 destroy_workqueue(c->btree_node_rewrite_worker); 2672 if (c->btree_interior_update_worker) 2673 destroy_workqueue(c->btree_interior_update_worker); 2674 mempool_exit(&c->btree_interior_update_pool); 2675 } 2676 2677 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2678 { 2679 mutex_init(&c->btree_reserve_cache_lock); 2680 INIT_LIST_HEAD(&c->btree_interior_update_list); 2681 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2682 mutex_init(&c->btree_interior_update_lock); 2683 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2684 2685 INIT_LIST_HEAD(&c->pending_node_rewrites); 2686 mutex_init(&c->pending_node_rewrites_lock); 2687 } 2688 2689 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2690 { 2691 c->btree_interior_update_worker = 2692 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8); 2693 if (!c->btree_interior_update_worker) 2694 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2695 2696 c->btree_node_rewrite_worker = 2697 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND); 2698 if (!c->btree_node_rewrite_worker) 2699 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2700 2701 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2702 sizeof(struct btree_update))) 2703 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2704 2705 return 0; 2706 } 2707