xref: /linux/fs/bcachefs/btree_update_interior.c (revision cff9c565e65f3622e8dc1dcc21c1520a083dff35)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "btree_iter.h"
13 #include "btree_locking.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "journal_reclaim.h"
20 #include "keylist.h"
21 #include "replicas.h"
22 #include "super-io.h"
23 #include "trace.h"
24 
25 #include <linux/random.h>
26 
27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
28 				  struct btree_path *, struct btree *,
29 				  struct keylist *, unsigned);
30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
31 
32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans,
33 						enum btree_id btree_id,
34 						unsigned level,
35 						struct bpos pos)
36 {
37 	struct btree_path *path;
38 
39 	path = bch2_path_get(trans, btree_id, pos, level + 1, level,
40 			     BTREE_ITER_NOPRESERVE|
41 			     BTREE_ITER_INTENT, _RET_IP_);
42 	path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_);
43 	bch2_btree_path_downgrade(trans, path);
44 	__bch2_btree_path_unlock(trans, path);
45 	return path;
46 }
47 
48 /* Debug code: */
49 
50 /*
51  * Verify that child nodes correctly span parent node's range:
52  */
53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
54 {
55 #ifdef CONFIG_BCACHEFS_DEBUG
56 	struct bpos next_node = b->data->min_key;
57 	struct btree_node_iter iter;
58 	struct bkey_s_c k;
59 	struct bkey_s_c_btree_ptr_v2 bp;
60 	struct bkey unpacked;
61 	struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
62 
63 	BUG_ON(!b->c.level);
64 
65 	if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
66 		return;
67 
68 	bch2_btree_node_iter_init_from_start(&iter, b);
69 
70 	while (1) {
71 		k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
72 		if (k.k->type != KEY_TYPE_btree_ptr_v2)
73 			break;
74 		bp = bkey_s_c_to_btree_ptr_v2(k);
75 
76 		if (!bpos_eq(next_node, bp.v->min_key)) {
77 			bch2_dump_btree_node(c, b);
78 			bch2_bpos_to_text(&buf1, next_node);
79 			bch2_bpos_to_text(&buf2, bp.v->min_key);
80 			panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
81 		}
82 
83 		bch2_btree_node_iter_advance(&iter, b);
84 
85 		if (bch2_btree_node_iter_end(&iter)) {
86 			if (!bpos_eq(k.k->p, b->key.k.p)) {
87 				bch2_dump_btree_node(c, b);
88 				bch2_bpos_to_text(&buf1, b->key.k.p);
89 				bch2_bpos_to_text(&buf2, k.k->p);
90 				panic("expected end %s got %s\n", buf1.buf, buf2.buf);
91 			}
92 			break;
93 		}
94 
95 		next_node = bpos_successor(k.k->p);
96 	}
97 #endif
98 }
99 
100 /* Calculate ideal packed bkey format for new btree nodes: */
101 
102 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
103 {
104 	struct bkey_packed *k;
105 	struct bset_tree *t;
106 	struct bkey uk;
107 
108 	for_each_bset(b, t)
109 		bset_tree_for_each_key(b, t, k)
110 			if (!bkey_deleted(k)) {
111 				uk = bkey_unpack_key(b, k);
112 				bch2_bkey_format_add_key(s, &uk);
113 			}
114 }
115 
116 static struct bkey_format bch2_btree_calc_format(struct btree *b)
117 {
118 	struct bkey_format_state s;
119 
120 	bch2_bkey_format_init(&s);
121 	bch2_bkey_format_add_pos(&s, b->data->min_key);
122 	bch2_bkey_format_add_pos(&s, b->data->max_key);
123 	__bch2_btree_calc_format(&s, b);
124 
125 	return bch2_bkey_format_done(&s);
126 }
127 
128 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
129 					  struct bkey_format *old_f,
130 					  struct bkey_format *new_f)
131 {
132 	/* stupid integer promotion rules */
133 	ssize_t delta =
134 	    (((int) new_f->key_u64s - old_f->key_u64s) *
135 	     (int) nr.packed_keys) +
136 	    (((int) new_f->key_u64s - BKEY_U64s) *
137 	     (int) nr.unpacked_keys);
138 
139 	BUG_ON(delta + nr.live_u64s < 0);
140 
141 	return nr.live_u64s + delta;
142 }
143 
144 /**
145  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
146  *
147  * @c:		filesystem handle
148  * @b:		btree node to rewrite
149  * @nr:		number of keys for new node (i.e. b->nr)
150  * @new_f:	bkey format to translate keys to
151  *
152  * Returns: true if all re-packed keys will be able to fit in a new node.
153  *
154  * Assumes all keys will successfully pack with the new format.
155  */
156 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
157 				 struct btree_nr_keys nr,
158 				 struct bkey_format *new_f)
159 {
160 	size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
161 
162 	return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
163 }
164 
165 /* Btree node freeing/allocation: */
166 
167 static void __btree_node_free(struct bch_fs *c, struct btree *b)
168 {
169 	trace_and_count(c, btree_node_free, c, b);
170 
171 	BUG_ON(btree_node_write_blocked(b));
172 	BUG_ON(btree_node_dirty(b));
173 	BUG_ON(btree_node_need_write(b));
174 	BUG_ON(b == btree_node_root(c, b));
175 	BUG_ON(b->ob.nr);
176 	BUG_ON(!list_empty(&b->write_blocked));
177 	BUG_ON(b->will_make_reachable);
178 
179 	clear_btree_node_noevict(b);
180 
181 	mutex_lock(&c->btree_cache.lock);
182 	list_move(&b->list, &c->btree_cache.freeable);
183 	mutex_unlock(&c->btree_cache.lock);
184 }
185 
186 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
187 				       struct btree_path *path,
188 				       struct btree *b)
189 {
190 	struct bch_fs *c = trans->c;
191 	unsigned level = b->c.level;
192 
193 	bch2_btree_node_lock_write_nofail(trans, path, &b->c);
194 	bch2_btree_node_hash_remove(&c->btree_cache, b);
195 	__btree_node_free(c, b);
196 	six_unlock_write(&b->c.lock);
197 	mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
198 
199 	trans_for_each_path(trans, path)
200 		if (path->l[level].b == b) {
201 			btree_node_unlock(trans, path, level);
202 			path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
203 		}
204 }
205 
206 static void bch2_btree_node_free_never_used(struct btree_update *as,
207 					    struct btree_trans *trans,
208 					    struct btree *b)
209 {
210 	struct bch_fs *c = as->c;
211 	struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
212 	struct btree_path *path;
213 	unsigned level = b->c.level;
214 
215 	BUG_ON(!list_empty(&b->write_blocked));
216 	BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
217 
218 	b->will_make_reachable = 0;
219 	closure_put(&as->cl);
220 
221 	clear_btree_node_will_make_reachable(b);
222 	clear_btree_node_accessed(b);
223 	clear_btree_node_dirty_acct(c, b);
224 	clear_btree_node_need_write(b);
225 
226 	mutex_lock(&c->btree_cache.lock);
227 	list_del_init(&b->list);
228 	bch2_btree_node_hash_remove(&c->btree_cache, b);
229 	mutex_unlock(&c->btree_cache.lock);
230 
231 	BUG_ON(p->nr >= ARRAY_SIZE(p->b));
232 	p->b[p->nr++] = b;
233 
234 	six_unlock_intent(&b->c.lock);
235 
236 	trans_for_each_path(trans, path)
237 		if (path->l[level].b == b) {
238 			btree_node_unlock(trans, path, level);
239 			path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
240 		}
241 }
242 
243 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
244 					     struct disk_reservation *res,
245 					     struct closure *cl,
246 					     bool interior_node,
247 					     unsigned flags)
248 {
249 	struct bch_fs *c = trans->c;
250 	struct write_point *wp;
251 	struct btree *b;
252 	BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
253 	struct open_buckets obs = { .nr = 0 };
254 	struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
255 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
256 	unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim
257 		? BTREE_NODE_RESERVE
258 		: 0;
259 	int ret;
260 
261 	mutex_lock(&c->btree_reserve_cache_lock);
262 	if (c->btree_reserve_cache_nr > nr_reserve) {
263 		struct btree_alloc *a =
264 			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
265 
266 		obs = a->ob;
267 		bkey_copy(&tmp.k, &a->k);
268 		mutex_unlock(&c->btree_reserve_cache_lock);
269 		goto mem_alloc;
270 	}
271 	mutex_unlock(&c->btree_reserve_cache_lock);
272 
273 retry:
274 	ret = bch2_alloc_sectors_start_trans(trans,
275 				      c->opts.metadata_target ?:
276 				      c->opts.foreground_target,
277 				      0,
278 				      writepoint_ptr(&c->btree_write_point),
279 				      &devs_have,
280 				      res->nr_replicas,
281 				      c->opts.metadata_replicas_required,
282 				      watermark, 0, cl, &wp);
283 	if (unlikely(ret))
284 		return ERR_PTR(ret);
285 
286 	if (wp->sectors_free < btree_sectors(c)) {
287 		struct open_bucket *ob;
288 		unsigned i;
289 
290 		open_bucket_for_each(c, &wp->ptrs, ob, i)
291 			if (ob->sectors_free < btree_sectors(c))
292 				ob->sectors_free = 0;
293 
294 		bch2_alloc_sectors_done(c, wp);
295 		goto retry;
296 	}
297 
298 	bkey_btree_ptr_v2_init(&tmp.k);
299 	bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
300 
301 	bch2_open_bucket_get(c, wp, &obs);
302 	bch2_alloc_sectors_done(c, wp);
303 mem_alloc:
304 	b = bch2_btree_node_mem_alloc(trans, interior_node);
305 	six_unlock_write(&b->c.lock);
306 	six_unlock_intent(&b->c.lock);
307 
308 	/* we hold cannibalize_lock: */
309 	BUG_ON(IS_ERR(b));
310 	BUG_ON(b->ob.nr);
311 
312 	bkey_copy(&b->key, &tmp.k);
313 	b->ob = obs;
314 
315 	return b;
316 }
317 
318 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
319 					   struct btree_trans *trans,
320 					   unsigned level)
321 {
322 	struct bch_fs *c = as->c;
323 	struct btree *b;
324 	struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
325 	int ret;
326 
327 	BUG_ON(level >= BTREE_MAX_DEPTH);
328 	BUG_ON(!p->nr);
329 
330 	b = p->b[--p->nr];
331 
332 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
333 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
334 
335 	set_btree_node_accessed(b);
336 	set_btree_node_dirty_acct(c, b);
337 	set_btree_node_need_write(b);
338 
339 	bch2_bset_init_first(b, &b->data->keys);
340 	b->c.level	= level;
341 	b->c.btree_id	= as->btree_id;
342 	b->version_ondisk = c->sb.version;
343 
344 	memset(&b->nr, 0, sizeof(b->nr));
345 	b->data->magic = cpu_to_le64(bset_magic(c));
346 	memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
347 	b->data->flags = 0;
348 	SET_BTREE_NODE_ID(b->data, as->btree_id);
349 	SET_BTREE_NODE_LEVEL(b->data, level);
350 
351 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
352 		struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
353 
354 		bp->v.mem_ptr		= 0;
355 		bp->v.seq		= b->data->keys.seq;
356 		bp->v.sectors_written	= 0;
357 	}
358 
359 	SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
360 
361 	bch2_btree_build_aux_trees(b);
362 
363 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
364 	BUG_ON(ret);
365 
366 	trace_and_count(c, btree_node_alloc, c, b);
367 	bch2_increment_clock(c, btree_sectors(c), WRITE);
368 	return b;
369 }
370 
371 static void btree_set_min(struct btree *b, struct bpos pos)
372 {
373 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
374 		bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
375 	b->data->min_key = pos;
376 }
377 
378 static void btree_set_max(struct btree *b, struct bpos pos)
379 {
380 	b->key.k.p = pos;
381 	b->data->max_key = pos;
382 }
383 
384 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
385 						       struct btree_trans *trans,
386 						       struct btree *b)
387 {
388 	struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
389 	struct bkey_format format = bch2_btree_calc_format(b);
390 
391 	/*
392 	 * The keys might expand with the new format - if they wouldn't fit in
393 	 * the btree node anymore, use the old format for now:
394 	 */
395 	if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
396 		format = b->format;
397 
398 	SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
399 
400 	btree_set_min(n, b->data->min_key);
401 	btree_set_max(n, b->data->max_key);
402 
403 	n->data->format		= format;
404 	btree_node_set_format(n, format);
405 
406 	bch2_btree_sort_into(as->c, n, b);
407 
408 	btree_node_reset_sib_u64s(n);
409 	return n;
410 }
411 
412 static struct btree *__btree_root_alloc(struct btree_update *as,
413 				struct btree_trans *trans, unsigned level)
414 {
415 	struct btree *b = bch2_btree_node_alloc(as, trans, level);
416 
417 	btree_set_min(b, POS_MIN);
418 	btree_set_max(b, SPOS_MAX);
419 	b->data->format = bch2_btree_calc_format(b);
420 
421 	btree_node_set_format(b, b->data->format);
422 	bch2_btree_build_aux_trees(b);
423 
424 	return b;
425 }
426 
427 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
428 {
429 	struct bch_fs *c = as->c;
430 	struct prealloc_nodes *p;
431 
432 	for (p = as->prealloc_nodes;
433 	     p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
434 	     p++) {
435 		while (p->nr) {
436 			struct btree *b = p->b[--p->nr];
437 
438 			mutex_lock(&c->btree_reserve_cache_lock);
439 
440 			if (c->btree_reserve_cache_nr <
441 			    ARRAY_SIZE(c->btree_reserve_cache)) {
442 				struct btree_alloc *a =
443 					&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
444 
445 				a->ob = b->ob;
446 				b->ob.nr = 0;
447 				bkey_copy(&a->k, &b->key);
448 			} else {
449 				bch2_open_buckets_put(c, &b->ob);
450 			}
451 
452 			mutex_unlock(&c->btree_reserve_cache_lock);
453 
454 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
455 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
456 			__btree_node_free(c, b);
457 			six_unlock_write(&b->c.lock);
458 			six_unlock_intent(&b->c.lock);
459 		}
460 	}
461 }
462 
463 static int bch2_btree_reserve_get(struct btree_trans *trans,
464 				  struct btree_update *as,
465 				  unsigned nr_nodes[2],
466 				  unsigned flags,
467 				  struct closure *cl)
468 {
469 	struct bch_fs *c = as->c;
470 	struct btree *b;
471 	unsigned interior;
472 	int ret = 0;
473 
474 	BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
475 
476 	/*
477 	 * Protects reaping from the btree node cache and using the btree node
478 	 * open bucket reserve:
479 	 *
480 	 * BTREE_INSERT_NOWAIT only applies to btree node allocation, not
481 	 * blocking on this lock:
482 	 */
483 	ret = bch2_btree_cache_cannibalize_lock(c, cl);
484 	if (ret)
485 		return ret;
486 
487 	for (interior = 0; interior < 2; interior++) {
488 		struct prealloc_nodes *p = as->prealloc_nodes + interior;
489 
490 		while (p->nr < nr_nodes[interior]) {
491 			b = __bch2_btree_node_alloc(trans, &as->disk_res,
492 					flags & BTREE_INSERT_NOWAIT ? NULL : cl,
493 					interior, flags);
494 			if (IS_ERR(b)) {
495 				ret = PTR_ERR(b);
496 				goto err;
497 			}
498 
499 			p->b[p->nr++] = b;
500 		}
501 	}
502 err:
503 	bch2_btree_cache_cannibalize_unlock(c);
504 	return ret;
505 }
506 
507 /* Asynchronous interior node update machinery */
508 
509 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
510 {
511 	struct bch_fs *c = as->c;
512 
513 	if (as->took_gc_lock)
514 		up_read(&c->gc_lock);
515 	as->took_gc_lock = false;
516 
517 	bch2_journal_pin_drop(&c->journal, &as->journal);
518 	bch2_journal_pin_flush(&c->journal, &as->journal);
519 	bch2_disk_reservation_put(c, &as->disk_res);
520 	bch2_btree_reserve_put(as, trans);
521 
522 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
523 			       as->start_time);
524 
525 	mutex_lock(&c->btree_interior_update_lock);
526 	list_del(&as->unwritten_list);
527 	list_del(&as->list);
528 
529 	closure_debug_destroy(&as->cl);
530 	mempool_free(as, &c->btree_interior_update_pool);
531 
532 	/*
533 	 * Have to do the wakeup with btree_interior_update_lock still held,
534 	 * since being on btree_interior_update_list is our ref on @c:
535 	 */
536 	closure_wake_up(&c->btree_interior_update_wait);
537 
538 	mutex_unlock(&c->btree_interior_update_lock);
539 }
540 
541 static void btree_update_add_key(struct btree_update *as,
542 				 struct keylist *keys, struct btree *b)
543 {
544 	struct bkey_i *k = &b->key;
545 
546 	BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
547 	       ARRAY_SIZE(as->_old_keys));
548 
549 	bkey_copy(keys->top, k);
550 	bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
551 
552 	bch2_keylist_push(keys);
553 }
554 
555 /*
556  * The transactional part of an interior btree node update, where we journal the
557  * update we did to the interior node and update alloc info:
558  */
559 static int btree_update_nodes_written_trans(struct btree_trans *trans,
560 					    struct btree_update *as)
561 {
562 	struct bkey_i *k;
563 	int ret;
564 
565 	ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s);
566 	if (ret)
567 		return ret;
568 
569 	memcpy(&darray_top(trans->extra_journal_entries),
570 	       as->journal_entries,
571 	       as->journal_u64s * sizeof(u64));
572 	trans->extra_journal_entries.nr += as->journal_u64s;
573 
574 	trans->journal_pin = &as->journal;
575 
576 	for_each_keylist_key(&as->old_keys, k) {
577 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
578 
579 		ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0);
580 		if (ret)
581 			return ret;
582 	}
583 
584 	for_each_keylist_key(&as->new_keys, k) {
585 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
586 
587 		ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0);
588 		if (ret)
589 			return ret;
590 	}
591 
592 	return 0;
593 }
594 
595 static void btree_update_nodes_written(struct btree_update *as)
596 {
597 	struct bch_fs *c = as->c;
598 	struct btree *b;
599 	struct btree_trans *trans = bch2_trans_get(c);
600 	u64 journal_seq = 0;
601 	unsigned i;
602 	int ret;
603 
604 	/*
605 	 * If we're already in an error state, it might be because a btree node
606 	 * was never written, and we might be trying to free that same btree
607 	 * node here, but it won't have been marked as allocated and we'll see
608 	 * spurious disk usage inconsistencies in the transactional part below
609 	 * if we don't skip it:
610 	 */
611 	ret = bch2_journal_error(&c->journal);
612 	if (ret)
613 		goto err;
614 
615 	/*
616 	 * Wait for any in flight writes to finish before we free the old nodes
617 	 * on disk:
618 	 */
619 	for (i = 0; i < as->nr_old_nodes; i++) {
620 		__le64 seq;
621 
622 		b = as->old_nodes[i];
623 
624 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
625 		seq = b->data ? b->data->keys.seq : 0;
626 		six_unlock_read(&b->c.lock);
627 
628 		if (seq == as->old_nodes_seq[i])
629 			wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
630 				       TASK_UNINTERRUPTIBLE);
631 	}
632 
633 	/*
634 	 * We did an update to a parent node where the pointers we added pointed
635 	 * to child nodes that weren't written yet: now, the child nodes have
636 	 * been written so we can write out the update to the interior node.
637 	 */
638 
639 	/*
640 	 * We can't call into journal reclaim here: we'd block on the journal
641 	 * reclaim lock, but we may need to release the open buckets we have
642 	 * pinned in order for other btree updates to make forward progress, and
643 	 * journal reclaim does btree updates when flushing bkey_cached entries,
644 	 * which may require allocations as well.
645 	 */
646 	ret = commit_do(trans, &as->disk_res, &journal_seq,
647 			BCH_WATERMARK_reclaim|
648 			BTREE_INSERT_NOFAIL|
649 			BTREE_INSERT_NOCHECK_RW|
650 			BTREE_INSERT_JOURNAL_RECLAIM,
651 			btree_update_nodes_written_trans(trans, as));
652 	bch2_trans_unlock(trans);
653 
654 	bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
655 			     "%s(): error %s", __func__, bch2_err_str(ret));
656 err:
657 	if (as->b) {
658 		struct btree_path *path;
659 
660 		b = as->b;
661 		path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p);
662 		/*
663 		 * @b is the node we did the final insert into:
664 		 *
665 		 * On failure to get a journal reservation, we still have to
666 		 * unblock the write and allow most of the write path to happen
667 		 * so that shutdown works, but the i->journal_seq mechanism
668 		 * won't work to prevent the btree write from being visible (we
669 		 * didn't get a journal sequence number) - instead
670 		 * __bch2_btree_node_write() doesn't do the actual write if
671 		 * we're in journal error state:
672 		 */
673 
674 		/*
675 		 * Ensure transaction is unlocked before using
676 		 * btree_node_lock_nopath() (the use of which is always suspect,
677 		 * we need to work on removing this in the future)
678 		 *
679 		 * It should be, but get_unlocked_mut_path() -> bch2_path_get()
680 		 * calls bch2_path_upgrade(), before we call path_make_mut(), so
681 		 * we may rarely end up with a locked path besides the one we
682 		 * have here:
683 		 */
684 		bch2_trans_unlock(trans);
685 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
686 		mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
687 		path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
688 		path->l[b->c.level].b = b;
689 
690 		bch2_btree_node_lock_write_nofail(trans, path, &b->c);
691 
692 		mutex_lock(&c->btree_interior_update_lock);
693 
694 		list_del(&as->write_blocked_list);
695 		if (list_empty(&b->write_blocked))
696 			clear_btree_node_write_blocked(b);
697 
698 		/*
699 		 * Node might have been freed, recheck under
700 		 * btree_interior_update_lock:
701 		 */
702 		if (as->b == b) {
703 			BUG_ON(!b->c.level);
704 			BUG_ON(!btree_node_dirty(b));
705 
706 			if (!ret) {
707 				struct bset *last = btree_bset_last(b);
708 
709 				last->journal_seq = cpu_to_le64(
710 							     max(journal_seq,
711 								 le64_to_cpu(last->journal_seq)));
712 
713 				bch2_btree_add_journal_pin(c, b, journal_seq);
714 			} else {
715 				/*
716 				 * If we didn't get a journal sequence number we
717 				 * can't write this btree node, because recovery
718 				 * won't know to ignore this write:
719 				 */
720 				set_btree_node_never_write(b);
721 			}
722 		}
723 
724 		mutex_unlock(&c->btree_interior_update_lock);
725 
726 		mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
727 		six_unlock_write(&b->c.lock);
728 
729 		btree_node_write_if_need(c, b, SIX_LOCK_intent);
730 		btree_node_unlock(trans, path, b->c.level);
731 		bch2_path_put(trans, path, true);
732 	}
733 
734 	bch2_journal_pin_drop(&c->journal, &as->journal);
735 
736 	mutex_lock(&c->btree_interior_update_lock);
737 	for (i = 0; i < as->nr_new_nodes; i++) {
738 		b = as->new_nodes[i];
739 
740 		BUG_ON(b->will_make_reachable != (unsigned long) as);
741 		b->will_make_reachable = 0;
742 		clear_btree_node_will_make_reachable(b);
743 	}
744 	mutex_unlock(&c->btree_interior_update_lock);
745 
746 	for (i = 0; i < as->nr_new_nodes; i++) {
747 		b = as->new_nodes[i];
748 
749 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
750 		btree_node_write_if_need(c, b, SIX_LOCK_read);
751 		six_unlock_read(&b->c.lock);
752 	}
753 
754 	for (i = 0; i < as->nr_open_buckets; i++)
755 		bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
756 
757 	bch2_btree_update_free(as, trans);
758 	bch2_trans_put(trans);
759 }
760 
761 static void btree_interior_update_work(struct work_struct *work)
762 {
763 	struct bch_fs *c =
764 		container_of(work, struct bch_fs, btree_interior_update_work);
765 	struct btree_update *as;
766 
767 	while (1) {
768 		mutex_lock(&c->btree_interior_update_lock);
769 		as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
770 					      struct btree_update, unwritten_list);
771 		if (as && !as->nodes_written)
772 			as = NULL;
773 		mutex_unlock(&c->btree_interior_update_lock);
774 
775 		if (!as)
776 			break;
777 
778 		btree_update_nodes_written(as);
779 	}
780 }
781 
782 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
783 {
784 	closure_type(as, struct btree_update, cl);
785 	struct bch_fs *c = as->c;
786 
787 	mutex_lock(&c->btree_interior_update_lock);
788 	as->nodes_written = true;
789 	mutex_unlock(&c->btree_interior_update_lock);
790 
791 	queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
792 }
793 
794 /*
795  * We're updating @b with pointers to nodes that haven't finished writing yet:
796  * block @b from being written until @as completes
797  */
798 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
799 {
800 	struct bch_fs *c = as->c;
801 
802 	mutex_lock(&c->btree_interior_update_lock);
803 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
804 
805 	BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
806 	BUG_ON(!btree_node_dirty(b));
807 	BUG_ON(!b->c.level);
808 
809 	as->mode	= BTREE_INTERIOR_UPDATING_NODE;
810 	as->b		= b;
811 
812 	set_btree_node_write_blocked(b);
813 	list_add(&as->write_blocked_list, &b->write_blocked);
814 
815 	mutex_unlock(&c->btree_interior_update_lock);
816 }
817 
818 static void btree_update_reparent(struct btree_update *as,
819 				  struct btree_update *child)
820 {
821 	struct bch_fs *c = as->c;
822 
823 	lockdep_assert_held(&c->btree_interior_update_lock);
824 
825 	child->b = NULL;
826 	child->mode = BTREE_INTERIOR_UPDATING_AS;
827 
828 	bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
829 }
830 
831 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
832 {
833 	struct bkey_i *insert = &b->key;
834 	struct bch_fs *c = as->c;
835 
836 	BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
837 
838 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
839 	       ARRAY_SIZE(as->journal_entries));
840 
841 	as->journal_u64s +=
842 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
843 				  BCH_JSET_ENTRY_btree_root,
844 				  b->c.btree_id, b->c.level,
845 				  insert, insert->k.u64s);
846 
847 	mutex_lock(&c->btree_interior_update_lock);
848 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
849 
850 	as->mode	= BTREE_INTERIOR_UPDATING_ROOT;
851 	mutex_unlock(&c->btree_interior_update_lock);
852 }
853 
854 /*
855  * bch2_btree_update_add_new_node:
856  *
857  * This causes @as to wait on @b to be written, before it gets to
858  * bch2_btree_update_nodes_written
859  *
860  * Additionally, it sets b->will_make_reachable to prevent any additional writes
861  * to @b from happening besides the first until @b is reachable on disk
862  *
863  * And it adds @b to the list of @as's new nodes, so that we can update sector
864  * counts in bch2_btree_update_nodes_written:
865  */
866 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
867 {
868 	struct bch_fs *c = as->c;
869 
870 	closure_get(&as->cl);
871 
872 	mutex_lock(&c->btree_interior_update_lock);
873 	BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
874 	BUG_ON(b->will_make_reachable);
875 
876 	as->new_nodes[as->nr_new_nodes++] = b;
877 	b->will_make_reachable = 1UL|(unsigned long) as;
878 	set_btree_node_will_make_reachable(b);
879 
880 	mutex_unlock(&c->btree_interior_update_lock);
881 
882 	btree_update_add_key(as, &as->new_keys, b);
883 
884 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
885 		unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
886 		unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
887 
888 		bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
889 			cpu_to_le16(sectors);
890 	}
891 }
892 
893 /*
894  * returns true if @b was a new node
895  */
896 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
897 {
898 	struct btree_update *as;
899 	unsigned long v;
900 	unsigned i;
901 
902 	mutex_lock(&c->btree_interior_update_lock);
903 	/*
904 	 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
905 	 * dropped when it gets written by bch2_btree_complete_write - the
906 	 * xchg() is for synchronization with bch2_btree_complete_write:
907 	 */
908 	v = xchg(&b->will_make_reachable, 0);
909 	clear_btree_node_will_make_reachable(b);
910 	as = (struct btree_update *) (v & ~1UL);
911 
912 	if (!as) {
913 		mutex_unlock(&c->btree_interior_update_lock);
914 		return;
915 	}
916 
917 	for (i = 0; i < as->nr_new_nodes; i++)
918 		if (as->new_nodes[i] == b)
919 			goto found;
920 
921 	BUG();
922 found:
923 	array_remove_item(as->new_nodes, as->nr_new_nodes, i);
924 	mutex_unlock(&c->btree_interior_update_lock);
925 
926 	if (v & 1)
927 		closure_put(&as->cl);
928 }
929 
930 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
931 {
932 	while (b->ob.nr)
933 		as->open_buckets[as->nr_open_buckets++] =
934 			b->ob.v[--b->ob.nr];
935 }
936 
937 /*
938  * @b is being split/rewritten: it may have pointers to not-yet-written btree
939  * nodes and thus outstanding btree_updates - redirect @b's
940  * btree_updates to point to this btree_update:
941  */
942 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
943 						      struct btree *b)
944 {
945 	struct bch_fs *c = as->c;
946 	struct btree_update *p, *n;
947 	struct btree_write *w;
948 
949 	set_btree_node_dying(b);
950 
951 	if (btree_node_fake(b))
952 		return;
953 
954 	mutex_lock(&c->btree_interior_update_lock);
955 
956 	/*
957 	 * Does this node have any btree_update operations preventing
958 	 * it from being written?
959 	 *
960 	 * If so, redirect them to point to this btree_update: we can
961 	 * write out our new nodes, but we won't make them visible until those
962 	 * operations complete
963 	 */
964 	list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
965 		list_del_init(&p->write_blocked_list);
966 		btree_update_reparent(as, p);
967 
968 		/*
969 		 * for flush_held_btree_writes() waiting on updates to flush or
970 		 * nodes to be writeable:
971 		 */
972 		closure_wake_up(&c->btree_interior_update_wait);
973 	}
974 
975 	clear_btree_node_dirty_acct(c, b);
976 	clear_btree_node_need_write(b);
977 	clear_btree_node_write_blocked(b);
978 
979 	/*
980 	 * Does this node have unwritten data that has a pin on the journal?
981 	 *
982 	 * If so, transfer that pin to the btree_update operation -
983 	 * note that if we're freeing multiple nodes, we only need to keep the
984 	 * oldest pin of any of the nodes we're freeing. We'll release the pin
985 	 * when the new nodes are persistent and reachable on disk:
986 	 */
987 	w = btree_current_write(b);
988 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
989 	bch2_journal_pin_drop(&c->journal, &w->journal);
990 
991 	w = btree_prev_write(b);
992 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
993 	bch2_journal_pin_drop(&c->journal, &w->journal);
994 
995 	mutex_unlock(&c->btree_interior_update_lock);
996 
997 	/*
998 	 * Is this a node that isn't reachable on disk yet?
999 	 *
1000 	 * Nodes that aren't reachable yet have writes blocked until they're
1001 	 * reachable - now that we've cancelled any pending writes and moved
1002 	 * things waiting on that write to wait on this update, we can drop this
1003 	 * node from the list of nodes that the other update is making
1004 	 * reachable, prior to freeing it:
1005 	 */
1006 	btree_update_drop_new_node(c, b);
1007 
1008 	btree_update_add_key(as, &as->old_keys, b);
1009 
1010 	as->old_nodes[as->nr_old_nodes] = b;
1011 	as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1012 	as->nr_old_nodes++;
1013 }
1014 
1015 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1016 {
1017 	struct bch_fs *c = as->c;
1018 	u64 start_time = as->start_time;
1019 
1020 	BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1021 
1022 	if (as->took_gc_lock)
1023 		up_read(&as->c->gc_lock);
1024 	as->took_gc_lock = false;
1025 
1026 	bch2_btree_reserve_put(as, trans);
1027 
1028 	continue_at(&as->cl, btree_update_set_nodes_written,
1029 		    as->c->btree_interior_update_worker);
1030 
1031 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1032 			       start_time);
1033 }
1034 
1035 static struct btree_update *
1036 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1037 			unsigned level, bool split, unsigned flags)
1038 {
1039 	struct bch_fs *c = trans->c;
1040 	struct btree_update *as;
1041 	u64 start_time = local_clock();
1042 	int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
1043 		? BCH_DISK_RESERVATION_NOFAIL : 0;
1044 	unsigned nr_nodes[2] = { 0, 0 };
1045 	unsigned update_level = level;
1046 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1047 	int ret = 0;
1048 	u32 restart_count = trans->restart_count;
1049 
1050 	BUG_ON(!path->should_be_locked);
1051 
1052 	if (watermark == BCH_WATERMARK_copygc)
1053 		watermark = BCH_WATERMARK_btree_copygc;
1054 	if (watermark < BCH_WATERMARK_btree)
1055 		watermark = BCH_WATERMARK_btree;
1056 
1057 	flags &= ~BCH_WATERMARK_MASK;
1058 	flags |= watermark;
1059 
1060 	if (!(flags & BTREE_INSERT_JOURNAL_RECLAIM) &&
1061 	    watermark < c->journal.watermark) {
1062 		struct journal_res res = { 0 };
1063 
1064 		ret = drop_locks_do(trans,
1065 			bch2_journal_res_get(&c->journal, &res, 1,
1066 					     watermark|JOURNAL_RES_GET_CHECK));
1067 		if (ret)
1068 			return ERR_PTR(ret);
1069 	}
1070 
1071 	while (1) {
1072 		nr_nodes[!!update_level] += 1 + split;
1073 		update_level++;
1074 
1075 		ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1076 		if (ret)
1077 			return ERR_PTR(ret);
1078 
1079 		if (!btree_path_node(path, update_level)) {
1080 			/* Allocating new root? */
1081 			nr_nodes[1] += split;
1082 			update_level = BTREE_MAX_DEPTH;
1083 			break;
1084 		}
1085 
1086 		/*
1087 		 * Always check for space for two keys, even if we won't have to
1088 		 * split at prior level - it might have been a merge instead:
1089 		 */
1090 		if (bch2_btree_node_insert_fits(c, path->l[update_level].b,
1091 						BKEY_BTREE_PTR_U64s_MAX * 2))
1092 			break;
1093 
1094 		split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1095 	}
1096 
1097 	if (flags & BTREE_INSERT_GC_LOCK_HELD)
1098 		lockdep_assert_held(&c->gc_lock);
1099 	else if (!down_read_trylock(&c->gc_lock)) {
1100 		ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1101 		if (ret) {
1102 			up_read(&c->gc_lock);
1103 			return ERR_PTR(ret);
1104 		}
1105 	}
1106 
1107 	as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1108 	memset(as, 0, sizeof(*as));
1109 	closure_init(&as->cl, NULL);
1110 	as->c		= c;
1111 	as->start_time	= start_time;
1112 	as->mode	= BTREE_INTERIOR_NO_UPDATE;
1113 	as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
1114 	as->btree_id	= path->btree_id;
1115 	as->update_level = update_level;
1116 	INIT_LIST_HEAD(&as->list);
1117 	INIT_LIST_HEAD(&as->unwritten_list);
1118 	INIT_LIST_HEAD(&as->write_blocked_list);
1119 	bch2_keylist_init(&as->old_keys, as->_old_keys);
1120 	bch2_keylist_init(&as->new_keys, as->_new_keys);
1121 	bch2_keylist_init(&as->parent_keys, as->inline_keys);
1122 
1123 	mutex_lock(&c->btree_interior_update_lock);
1124 	list_add_tail(&as->list, &c->btree_interior_update_list);
1125 	mutex_unlock(&c->btree_interior_update_lock);
1126 
1127 	/*
1128 	 * We don't want to allocate if we're in an error state, that can cause
1129 	 * deadlock on emergency shutdown due to open buckets getting stuck in
1130 	 * the btree_reserve_cache after allocator shutdown has cleared it out.
1131 	 * This check needs to come after adding us to the btree_interior_update
1132 	 * list but before calling bch2_btree_reserve_get, to synchronize with
1133 	 * __bch2_fs_read_only().
1134 	 */
1135 	ret = bch2_journal_error(&c->journal);
1136 	if (ret)
1137 		goto err;
1138 
1139 	ret = bch2_disk_reservation_get(c, &as->disk_res,
1140 			(nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1141 			c->opts.metadata_replicas,
1142 			disk_res_flags);
1143 	if (ret)
1144 		goto err;
1145 
1146 	ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1147 	if (bch2_err_matches(ret, ENOSPC) ||
1148 	    bch2_err_matches(ret, ENOMEM)) {
1149 		struct closure cl;
1150 
1151 		/*
1152 		 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1153 		 * flag
1154 		 */
1155 		if (bch2_err_matches(ret, ENOSPC) &&
1156 		    (flags & BTREE_INSERT_JOURNAL_RECLAIM) &&
1157 		    watermark != BCH_WATERMARK_reclaim) {
1158 			ret = -BCH_ERR_journal_reclaim_would_deadlock;
1159 			goto err;
1160 		}
1161 
1162 		closure_init_stack(&cl);
1163 
1164 		do {
1165 			ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1166 
1167 			bch2_trans_unlock(trans);
1168 			closure_sync(&cl);
1169 		} while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1170 	}
1171 
1172 	if (ret) {
1173 		trace_and_count(c, btree_reserve_get_fail, trans->fn,
1174 				_RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1175 		goto err;
1176 	}
1177 
1178 	ret = bch2_trans_relock(trans);
1179 	if (ret)
1180 		goto err;
1181 
1182 	bch2_trans_verify_not_restarted(trans, restart_count);
1183 	return as;
1184 err:
1185 	bch2_btree_update_free(as, trans);
1186 	return ERR_PTR(ret);
1187 }
1188 
1189 /* Btree root updates: */
1190 
1191 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1192 {
1193 	/* Root nodes cannot be reaped */
1194 	mutex_lock(&c->btree_cache.lock);
1195 	list_del_init(&b->list);
1196 	mutex_unlock(&c->btree_cache.lock);
1197 
1198 	mutex_lock(&c->btree_root_lock);
1199 	BUG_ON(btree_node_root(c, b) &&
1200 	       (b->c.level < btree_node_root(c, b)->c.level ||
1201 		!btree_node_dying(btree_node_root(c, b))));
1202 
1203 	bch2_btree_id_root(c, b->c.btree_id)->b = b;
1204 	mutex_unlock(&c->btree_root_lock);
1205 
1206 	bch2_recalc_btree_reserve(c);
1207 }
1208 
1209 static void bch2_btree_set_root(struct btree_update *as,
1210 				struct btree_trans *trans,
1211 				struct btree_path *path,
1212 				struct btree *b)
1213 {
1214 	struct bch_fs *c = as->c;
1215 	struct btree *old;
1216 
1217 	trace_and_count(c, btree_node_set_root, c, b);
1218 
1219 	old = btree_node_root(c, b);
1220 
1221 	/*
1222 	 * Ensure no one is using the old root while we switch to the
1223 	 * new root:
1224 	 */
1225 	bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1226 
1227 	bch2_btree_set_root_inmem(c, b);
1228 
1229 	btree_update_updated_root(as, b);
1230 
1231 	/*
1232 	 * Unlock old root after new root is visible:
1233 	 *
1234 	 * The new root isn't persistent, but that's ok: we still have
1235 	 * an intent lock on the new root, and any updates that would
1236 	 * depend on the new root would have to update the new root.
1237 	 */
1238 	bch2_btree_node_unlock_write(trans, path, old);
1239 }
1240 
1241 /* Interior node updates: */
1242 
1243 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1244 					struct btree_trans *trans,
1245 					struct btree_path *path,
1246 					struct btree *b,
1247 					struct btree_node_iter *node_iter,
1248 					struct bkey_i *insert)
1249 {
1250 	struct bch_fs *c = as->c;
1251 	struct bkey_packed *k;
1252 	struct printbuf buf = PRINTBUF;
1253 	unsigned long old, new, v;
1254 
1255 	BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1256 	       !btree_ptr_sectors_written(insert));
1257 
1258 	if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1259 		bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1260 
1261 	if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1262 			      btree_node_type(b), WRITE, &buf) ?:
1263 	    bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) {
1264 		printbuf_reset(&buf);
1265 		prt_printf(&buf, "inserting invalid bkey\n  ");
1266 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1267 		prt_printf(&buf, "\n  ");
1268 		bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1269 				  btree_node_type(b), WRITE, &buf);
1270 		bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf);
1271 
1272 		bch2_fs_inconsistent(c, "%s", buf.buf);
1273 		dump_stack();
1274 	}
1275 
1276 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1277 	       ARRAY_SIZE(as->journal_entries));
1278 
1279 	as->journal_u64s +=
1280 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1281 				  BCH_JSET_ENTRY_btree_keys,
1282 				  b->c.btree_id, b->c.level,
1283 				  insert, insert->k.u64s);
1284 
1285 	while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1286 	       bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1287 		bch2_btree_node_iter_advance(node_iter, b);
1288 
1289 	bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1290 	set_btree_node_dirty_acct(c, b);
1291 
1292 	v = READ_ONCE(b->flags);
1293 	do {
1294 		old = new = v;
1295 
1296 		new &= ~BTREE_WRITE_TYPE_MASK;
1297 		new |= BTREE_WRITE_interior;
1298 		new |= 1 << BTREE_NODE_need_write;
1299 	} while ((v = cmpxchg(&b->flags, old, new)) != old);
1300 
1301 	printbuf_exit(&buf);
1302 }
1303 
1304 static void
1305 __bch2_btree_insert_keys_interior(struct btree_update *as,
1306 				  struct btree_trans *trans,
1307 				  struct btree_path *path,
1308 				  struct btree *b,
1309 				  struct btree_node_iter node_iter,
1310 				  struct keylist *keys)
1311 {
1312 	struct bkey_i *insert = bch2_keylist_front(keys);
1313 	struct bkey_packed *k;
1314 
1315 	BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1316 
1317 	while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1318 	       (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1319 		;
1320 
1321 	while (!bch2_keylist_empty(keys)) {
1322 		insert = bch2_keylist_front(keys);
1323 
1324 		if (bpos_gt(insert->k.p, b->key.k.p))
1325 			break;
1326 
1327 		bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1328 		bch2_keylist_pop_front(keys);
1329 	}
1330 }
1331 
1332 /*
1333  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1334  * node)
1335  */
1336 static void __btree_split_node(struct btree_update *as,
1337 			       struct btree_trans *trans,
1338 			       struct btree *b,
1339 			       struct btree *n[2])
1340 {
1341 	struct bkey_packed *k;
1342 	struct bpos n1_pos = POS_MIN;
1343 	struct btree_node_iter iter;
1344 	struct bset *bsets[2];
1345 	struct bkey_format_state format[2];
1346 	struct bkey_packed *out[2];
1347 	struct bkey uk;
1348 	unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1349 	struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1350 	int i;
1351 
1352 	memset(&nr_keys, 0, sizeof(nr_keys));
1353 
1354 	for (i = 0; i < 2; i++) {
1355 		BUG_ON(n[i]->nsets != 1);
1356 
1357 		bsets[i] = btree_bset_first(n[i]);
1358 		out[i] = bsets[i]->start;
1359 
1360 		SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1361 		bch2_bkey_format_init(&format[i]);
1362 	}
1363 
1364 	u64s = 0;
1365 	for_each_btree_node_key(b, k, &iter) {
1366 		if (bkey_deleted(k))
1367 			continue;
1368 
1369 		i = u64s >= n1_u64s;
1370 		u64s += k->u64s;
1371 		uk = bkey_unpack_key(b, k);
1372 		if (!i)
1373 			n1_pos = uk.p;
1374 		bch2_bkey_format_add_key(&format[i], &uk);
1375 
1376 		nr_keys[i].nr_keys++;
1377 		nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1378 	}
1379 
1380 	btree_set_min(n[0], b->data->min_key);
1381 	btree_set_max(n[0], n1_pos);
1382 	btree_set_min(n[1], bpos_successor(n1_pos));
1383 	btree_set_max(n[1], b->data->max_key);
1384 
1385 	for (i = 0; i < 2; i++) {
1386 		bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1387 		bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1388 
1389 		n[i]->data->format = bch2_bkey_format_done(&format[i]);
1390 
1391 		unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1392 			nr_keys[i].val_u64s;
1393 		if (__vstruct_bytes(struct btree_node, u64s) > btree_bytes(as->c))
1394 			n[i]->data->format = b->format;
1395 
1396 		btree_node_set_format(n[i], n[i]->data->format);
1397 	}
1398 
1399 	u64s = 0;
1400 	for_each_btree_node_key(b, k, &iter) {
1401 		if (bkey_deleted(k))
1402 			continue;
1403 
1404 		i = u64s >= n1_u64s;
1405 		u64s += k->u64s;
1406 
1407 		if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1408 					? &b->format: &bch2_bkey_format_current, k))
1409 			out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1410 		else
1411 			bch2_bkey_unpack(b, (void *) out[i], k);
1412 
1413 		out[i]->needs_whiteout = false;
1414 
1415 		btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1416 		out[i] = bkey_p_next(out[i]);
1417 	}
1418 
1419 	for (i = 0; i < 2; i++) {
1420 		bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1421 
1422 		BUG_ON(!bsets[i]->u64s);
1423 
1424 		set_btree_bset_end(n[i], n[i]->set);
1425 
1426 		btree_node_reset_sib_u64s(n[i]);
1427 
1428 		bch2_verify_btree_nr_keys(n[i]);
1429 
1430 		if (b->c.level)
1431 			btree_node_interior_verify(as->c, n[i]);
1432 	}
1433 }
1434 
1435 /*
1436  * For updates to interior nodes, we've got to do the insert before we split
1437  * because the stuff we're inserting has to be inserted atomically. Post split,
1438  * the keys might have to go in different nodes and the split would no longer be
1439  * atomic.
1440  *
1441  * Worse, if the insert is from btree node coalescing, if we do the insert after
1442  * we do the split (and pick the pivot) - the pivot we pick might be between
1443  * nodes that were coalesced, and thus in the middle of a child node post
1444  * coalescing:
1445  */
1446 static void btree_split_insert_keys(struct btree_update *as,
1447 				    struct btree_trans *trans,
1448 				    struct btree_path *path,
1449 				    struct btree *b,
1450 				    struct keylist *keys)
1451 {
1452 	if (!bch2_keylist_empty(keys) &&
1453 	    bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1454 		struct btree_node_iter node_iter;
1455 
1456 		bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1457 
1458 		__bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1459 
1460 		btree_node_interior_verify(as->c, b);
1461 	}
1462 }
1463 
1464 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1465 		       struct btree_path *path, struct btree *b,
1466 		       struct keylist *keys, unsigned flags)
1467 {
1468 	struct bch_fs *c = as->c;
1469 	struct btree *parent = btree_node_parent(path, b);
1470 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1471 	struct btree_path *path1 = NULL, *path2 = NULL;
1472 	u64 start_time = local_clock();
1473 	int ret = 0;
1474 
1475 	BUG_ON(!parent && (b != btree_node_root(c, b)));
1476 	BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1));
1477 
1478 	bch2_btree_interior_update_will_free_node(as, b);
1479 
1480 	if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1481 		struct btree *n[2];
1482 
1483 		trace_and_count(c, btree_node_split, c, b);
1484 
1485 		n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1486 		n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1487 
1488 		__btree_split_node(as, trans, b, n);
1489 
1490 		if (keys) {
1491 			btree_split_insert_keys(as, trans, path, n1, keys);
1492 			btree_split_insert_keys(as, trans, path, n2, keys);
1493 			BUG_ON(!bch2_keylist_empty(keys));
1494 		}
1495 
1496 		bch2_btree_build_aux_trees(n2);
1497 		bch2_btree_build_aux_trees(n1);
1498 
1499 		bch2_btree_update_add_new_node(as, n1);
1500 		bch2_btree_update_add_new_node(as, n2);
1501 		six_unlock_write(&n2->c.lock);
1502 		six_unlock_write(&n1->c.lock);
1503 
1504 		path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1505 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1506 		mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1507 		bch2_btree_path_level_init(trans, path1, n1);
1508 
1509 		path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p);
1510 		six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1511 		mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1512 		bch2_btree_path_level_init(trans, path2, n2);
1513 
1514 		/*
1515 		 * Note that on recursive parent_keys == keys, so we
1516 		 * can't start adding new keys to parent_keys before emptying it
1517 		 * out (which we did with btree_split_insert_keys() above)
1518 		 */
1519 		bch2_keylist_add(&as->parent_keys, &n1->key);
1520 		bch2_keylist_add(&as->parent_keys, &n2->key);
1521 
1522 		if (!parent) {
1523 			/* Depth increases, make a new root */
1524 			n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1525 
1526 			bch2_btree_update_add_new_node(as, n3);
1527 			six_unlock_write(&n3->c.lock);
1528 
1529 			path2->locks_want++;
1530 			BUG_ON(btree_node_locked(path2, n3->c.level));
1531 			six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1532 			mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1533 			bch2_btree_path_level_init(trans, path2, n3);
1534 
1535 			n3->sib_u64s[0] = U16_MAX;
1536 			n3->sib_u64s[1] = U16_MAX;
1537 
1538 			btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1539 		}
1540 	} else {
1541 		trace_and_count(c, btree_node_compact, c, b);
1542 
1543 		n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1544 
1545 		if (keys) {
1546 			btree_split_insert_keys(as, trans, path, n1, keys);
1547 			BUG_ON(!bch2_keylist_empty(keys));
1548 		}
1549 
1550 		bch2_btree_build_aux_trees(n1);
1551 		bch2_btree_update_add_new_node(as, n1);
1552 		six_unlock_write(&n1->c.lock);
1553 
1554 		path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1555 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1556 		mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1557 		bch2_btree_path_level_init(trans, path1, n1);
1558 
1559 		if (parent)
1560 			bch2_keylist_add(&as->parent_keys, &n1->key);
1561 	}
1562 
1563 	/* New nodes all written, now make them visible: */
1564 
1565 	if (parent) {
1566 		/* Split a non root node */
1567 		ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1568 		if (ret)
1569 			goto err;
1570 	} else if (n3) {
1571 		bch2_btree_set_root(as, trans, path, n3);
1572 	} else {
1573 		/* Root filled up but didn't need to be split */
1574 		bch2_btree_set_root(as, trans, path, n1);
1575 	}
1576 
1577 	if (n3) {
1578 		bch2_btree_update_get_open_buckets(as, n3);
1579 		bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1580 	}
1581 	if (n2) {
1582 		bch2_btree_update_get_open_buckets(as, n2);
1583 		bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1584 	}
1585 	bch2_btree_update_get_open_buckets(as, n1);
1586 	bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1587 
1588 	/*
1589 	 * The old node must be freed (in memory) _before_ unlocking the new
1590 	 * nodes - else another thread could re-acquire a read lock on the old
1591 	 * node after another thread has locked and updated the new node, thus
1592 	 * seeing stale data:
1593 	 */
1594 	bch2_btree_node_free_inmem(trans, path, b);
1595 
1596 	if (n3)
1597 		bch2_trans_node_add(trans, n3);
1598 	if (n2)
1599 		bch2_trans_node_add(trans, n2);
1600 	bch2_trans_node_add(trans, n1);
1601 
1602 	if (n3)
1603 		six_unlock_intent(&n3->c.lock);
1604 	if (n2)
1605 		six_unlock_intent(&n2->c.lock);
1606 	six_unlock_intent(&n1->c.lock);
1607 out:
1608 	if (path2) {
1609 		__bch2_btree_path_unlock(trans, path2);
1610 		bch2_path_put(trans, path2, true);
1611 	}
1612 	if (path1) {
1613 		__bch2_btree_path_unlock(trans, path1);
1614 		bch2_path_put(trans, path1, true);
1615 	}
1616 
1617 	bch2_trans_verify_locks(trans);
1618 
1619 	bch2_time_stats_update(&c->times[n2
1620 			       ? BCH_TIME_btree_node_split
1621 			       : BCH_TIME_btree_node_compact],
1622 			       start_time);
1623 	return ret;
1624 err:
1625 	if (n3)
1626 		bch2_btree_node_free_never_used(as, trans, n3);
1627 	if (n2)
1628 		bch2_btree_node_free_never_used(as, trans, n2);
1629 	bch2_btree_node_free_never_used(as, trans, n1);
1630 	goto out;
1631 }
1632 
1633 static void
1634 bch2_btree_insert_keys_interior(struct btree_update *as,
1635 				struct btree_trans *trans,
1636 				struct btree_path *path,
1637 				struct btree *b,
1638 				struct keylist *keys)
1639 {
1640 	struct btree_path *linked;
1641 
1642 	__bch2_btree_insert_keys_interior(as, trans, path, b,
1643 					  path->l[b->c.level].iter, keys);
1644 
1645 	btree_update_updated_node(as, b);
1646 
1647 	trans_for_each_path_with_node(trans, b, linked)
1648 		bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1649 
1650 	bch2_trans_verify_paths(trans);
1651 }
1652 
1653 /**
1654  * bch2_btree_insert_node - insert bkeys into a given btree node
1655  *
1656  * @as:			btree_update object
1657  * @trans:		btree_trans object
1658  * @path:		path that points to current node
1659  * @b:			node to insert keys into
1660  * @keys:		list of keys to insert
1661  * @flags:		transaction commit flags
1662  *
1663  * Returns: 0 on success, typically transaction restart error on failure
1664  *
1665  * Inserts as many keys as it can into a given btree node, splitting it if full.
1666  * If a split occurred, this function will return early. This can only happen
1667  * for leaf nodes -- inserts into interior nodes have to be atomic.
1668  */
1669 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1670 				  struct btree_path *path, struct btree *b,
1671 				  struct keylist *keys, unsigned flags)
1672 {
1673 	struct bch_fs *c = as->c;
1674 	int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1675 	int old_live_u64s = b->nr.live_u64s;
1676 	int live_u64s_added, u64s_added;
1677 	int ret;
1678 
1679 	lockdep_assert_held(&c->gc_lock);
1680 	BUG_ON(!btree_node_intent_locked(path, b->c.level));
1681 	BUG_ON(!b->c.level);
1682 	BUG_ON(!as || as->b);
1683 	bch2_verify_keylist_sorted(keys);
1684 
1685 	ret = bch2_btree_node_lock_write(trans, path, &b->c);
1686 	if (ret)
1687 		return ret;
1688 
1689 	bch2_btree_node_prep_for_write(trans, path, b);
1690 
1691 	if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1692 		bch2_btree_node_unlock_write(trans, path, b);
1693 		goto split;
1694 	}
1695 
1696 	btree_node_interior_verify(c, b);
1697 
1698 	bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1699 
1700 	live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1701 	u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1702 
1703 	if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1704 		b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1705 	if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1706 		b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1707 
1708 	if (u64s_added > live_u64s_added &&
1709 	    bch2_maybe_compact_whiteouts(c, b))
1710 		bch2_trans_node_reinit_iter(trans, b);
1711 
1712 	bch2_btree_node_unlock_write(trans, path, b);
1713 
1714 	btree_node_interior_verify(c, b);
1715 	return 0;
1716 split:
1717 	/*
1718 	 * We could attempt to avoid the transaction restart, by calling
1719 	 * bch2_btree_path_upgrade() and allocating more nodes:
1720 	 */
1721 	if (b->c.level >= as->update_level) {
1722 		trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1723 		return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1724 	}
1725 
1726 	return btree_split(as, trans, path, b, keys, flags);
1727 }
1728 
1729 int bch2_btree_split_leaf(struct btree_trans *trans,
1730 			  struct btree_path *path,
1731 			  unsigned flags)
1732 {
1733 	struct btree *b = path_l(path)->b;
1734 	struct btree_update *as;
1735 	unsigned l;
1736 	int ret = 0;
1737 
1738 	as = bch2_btree_update_start(trans, path, path->level,
1739 				     true, flags);
1740 	if (IS_ERR(as))
1741 		return PTR_ERR(as);
1742 
1743 	ret = btree_split(as, trans, path, b, NULL, flags);
1744 	if (ret) {
1745 		bch2_btree_update_free(as, trans);
1746 		return ret;
1747 	}
1748 
1749 	bch2_btree_update_done(as, trans);
1750 
1751 	for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++)
1752 		ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1753 
1754 	return ret;
1755 }
1756 
1757 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1758 				  struct btree_path *path,
1759 				  unsigned level,
1760 				  unsigned flags,
1761 				  enum btree_node_sibling sib)
1762 {
1763 	struct bch_fs *c = trans->c;
1764 	struct btree_path *sib_path = NULL, *new_path = NULL;
1765 	struct btree_update *as;
1766 	struct bkey_format_state new_s;
1767 	struct bkey_format new_f;
1768 	struct bkey_i delete;
1769 	struct btree *b, *m, *n, *prev, *next, *parent;
1770 	struct bpos sib_pos;
1771 	size_t sib_u64s;
1772 	u64 start_time = local_clock();
1773 	int ret = 0;
1774 
1775 	BUG_ON(!path->should_be_locked);
1776 	BUG_ON(!btree_node_locked(path, level));
1777 
1778 	b = path->l[level].b;
1779 
1780 	if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1781 	    (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1782 		b->sib_u64s[sib] = U16_MAX;
1783 		return 0;
1784 	}
1785 
1786 	sib_pos = sib == btree_prev_sib
1787 		? bpos_predecessor(b->data->min_key)
1788 		: bpos_successor(b->data->max_key);
1789 
1790 	sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
1791 				 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1792 	ret = bch2_btree_path_traverse(trans, sib_path, false);
1793 	if (ret)
1794 		goto err;
1795 
1796 	btree_path_set_should_be_locked(sib_path);
1797 
1798 	m = sib_path->l[level].b;
1799 
1800 	if (btree_node_parent(path, b) !=
1801 	    btree_node_parent(sib_path, m)) {
1802 		b->sib_u64s[sib] = U16_MAX;
1803 		goto out;
1804 	}
1805 
1806 	if (sib == btree_prev_sib) {
1807 		prev = m;
1808 		next = b;
1809 	} else {
1810 		prev = b;
1811 		next = m;
1812 	}
1813 
1814 	if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
1815 		struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1816 
1817 		bch2_bpos_to_text(&buf1, prev->data->max_key);
1818 		bch2_bpos_to_text(&buf2, next->data->min_key);
1819 		bch_err(c,
1820 			"%s(): btree topology error:\n"
1821 			"  prev ends at   %s\n"
1822 			"  next starts at %s",
1823 			__func__, buf1.buf, buf2.buf);
1824 		printbuf_exit(&buf1);
1825 		printbuf_exit(&buf2);
1826 		bch2_topology_error(c);
1827 		ret = -EIO;
1828 		goto err;
1829 	}
1830 
1831 	bch2_bkey_format_init(&new_s);
1832 	bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1833 	__bch2_btree_calc_format(&new_s, prev);
1834 	__bch2_btree_calc_format(&new_s, next);
1835 	bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1836 	new_f = bch2_bkey_format_done(&new_s);
1837 
1838 	sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
1839 		btree_node_u64s_with_format(m->nr, &m->format, &new_f);
1840 
1841 	if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1842 		sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1843 		sib_u64s /= 2;
1844 		sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1845 	}
1846 
1847 	sib_u64s = min(sib_u64s, btree_max_u64s(c));
1848 	sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1849 	b->sib_u64s[sib] = sib_u64s;
1850 
1851 	if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1852 		goto out;
1853 
1854 	parent = btree_node_parent(path, b);
1855 	as = bch2_btree_update_start(trans, path, level, false,
1856 				     BTREE_INSERT_NOFAIL|flags);
1857 	ret = PTR_ERR_OR_ZERO(as);
1858 	if (ret)
1859 		goto err;
1860 
1861 	trace_and_count(c, btree_node_merge, c, b);
1862 
1863 	bch2_btree_interior_update_will_free_node(as, b);
1864 	bch2_btree_interior_update_will_free_node(as, m);
1865 
1866 	n = bch2_btree_node_alloc(as, trans, b->c.level);
1867 
1868 	SET_BTREE_NODE_SEQ(n->data,
1869 			   max(BTREE_NODE_SEQ(b->data),
1870 			       BTREE_NODE_SEQ(m->data)) + 1);
1871 
1872 	btree_set_min(n, prev->data->min_key);
1873 	btree_set_max(n, next->data->max_key);
1874 
1875 	n->data->format	 = new_f;
1876 	btree_node_set_format(n, new_f);
1877 
1878 	bch2_btree_sort_into(c, n, prev);
1879 	bch2_btree_sort_into(c, n, next);
1880 
1881 	bch2_btree_build_aux_trees(n);
1882 	bch2_btree_update_add_new_node(as, n);
1883 	six_unlock_write(&n->c.lock);
1884 
1885 	new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p);
1886 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1887 	mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1888 	bch2_btree_path_level_init(trans, new_path, n);
1889 
1890 	bkey_init(&delete.k);
1891 	delete.k.p = prev->key.k.p;
1892 	bch2_keylist_add(&as->parent_keys, &delete);
1893 	bch2_keylist_add(&as->parent_keys, &n->key);
1894 
1895 	bch2_trans_verify_paths(trans);
1896 
1897 	ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1898 	if (ret)
1899 		goto err_free_update;
1900 
1901 	bch2_trans_verify_paths(trans);
1902 
1903 	bch2_btree_update_get_open_buckets(as, n);
1904 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1905 
1906 	bch2_btree_node_free_inmem(trans, path, b);
1907 	bch2_btree_node_free_inmem(trans, sib_path, m);
1908 
1909 	bch2_trans_node_add(trans, n);
1910 
1911 	bch2_trans_verify_paths(trans);
1912 
1913 	six_unlock_intent(&n->c.lock);
1914 
1915 	bch2_btree_update_done(as, trans);
1916 
1917 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1918 out:
1919 err:
1920 	if (new_path)
1921 		bch2_path_put(trans, new_path, true);
1922 	bch2_path_put(trans, sib_path, true);
1923 	bch2_trans_verify_locks(trans);
1924 	return ret;
1925 err_free_update:
1926 	bch2_btree_node_free_never_used(as, trans, n);
1927 	bch2_btree_update_free(as, trans);
1928 	goto out;
1929 }
1930 
1931 int bch2_btree_node_rewrite(struct btree_trans *trans,
1932 			    struct btree_iter *iter,
1933 			    struct btree *b,
1934 			    unsigned flags)
1935 {
1936 	struct bch_fs *c = trans->c;
1937 	struct btree_path *new_path = NULL;
1938 	struct btree *n, *parent;
1939 	struct btree_update *as;
1940 	int ret;
1941 
1942 	flags |= BTREE_INSERT_NOFAIL;
1943 
1944 	parent = btree_node_parent(iter->path, b);
1945 	as = bch2_btree_update_start(trans, iter->path, b->c.level,
1946 				     false, flags);
1947 	ret = PTR_ERR_OR_ZERO(as);
1948 	if (ret)
1949 		goto out;
1950 
1951 	bch2_btree_interior_update_will_free_node(as, b);
1952 
1953 	n = bch2_btree_node_alloc_replacement(as, trans, b);
1954 
1955 	bch2_btree_build_aux_trees(n);
1956 	bch2_btree_update_add_new_node(as, n);
1957 	six_unlock_write(&n->c.lock);
1958 
1959 	new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
1960 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1961 	mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1962 	bch2_btree_path_level_init(trans, new_path, n);
1963 
1964 	trace_and_count(c, btree_node_rewrite, c, b);
1965 
1966 	if (parent) {
1967 		bch2_keylist_add(&as->parent_keys, &n->key);
1968 		ret = bch2_btree_insert_node(as, trans, iter->path, parent,
1969 					     &as->parent_keys, flags);
1970 		if (ret)
1971 			goto err;
1972 	} else {
1973 		bch2_btree_set_root(as, trans, iter->path, n);
1974 	}
1975 
1976 	bch2_btree_update_get_open_buckets(as, n);
1977 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1978 
1979 	bch2_btree_node_free_inmem(trans, iter->path, b);
1980 
1981 	bch2_trans_node_add(trans, n);
1982 	six_unlock_intent(&n->c.lock);
1983 
1984 	bch2_btree_update_done(as, trans);
1985 out:
1986 	if (new_path)
1987 		bch2_path_put(trans, new_path, true);
1988 	bch2_trans_downgrade(trans);
1989 	return ret;
1990 err:
1991 	bch2_btree_node_free_never_used(as, trans, n);
1992 	bch2_btree_update_free(as, trans);
1993 	goto out;
1994 }
1995 
1996 struct async_btree_rewrite {
1997 	struct bch_fs		*c;
1998 	struct work_struct	work;
1999 	struct list_head	list;
2000 	enum btree_id		btree_id;
2001 	unsigned		level;
2002 	struct bpos		pos;
2003 	__le64			seq;
2004 };
2005 
2006 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2007 					  struct async_btree_rewrite *a)
2008 {
2009 	struct bch_fs *c = trans->c;
2010 	struct btree_iter iter;
2011 	struct btree *b;
2012 	int ret;
2013 
2014 	bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2015 				  BTREE_MAX_DEPTH, a->level, 0);
2016 	b = bch2_btree_iter_peek_node(&iter);
2017 	ret = PTR_ERR_OR_ZERO(b);
2018 	if (ret)
2019 		goto out;
2020 
2021 	if (!b || b->data->keys.seq != a->seq) {
2022 		struct printbuf buf = PRINTBUF;
2023 
2024 		if (b)
2025 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2026 		else
2027 			prt_str(&buf, "(null");
2028 		bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2029 			 __func__, a->seq, buf.buf);
2030 		printbuf_exit(&buf);
2031 		goto out;
2032 	}
2033 
2034 	ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2035 out:
2036 	bch2_trans_iter_exit(trans, &iter);
2037 
2038 	return ret;
2039 }
2040 
2041 static void async_btree_node_rewrite_work(struct work_struct *work)
2042 {
2043 	struct async_btree_rewrite *a =
2044 		container_of(work, struct async_btree_rewrite, work);
2045 	struct bch_fs *c = a->c;
2046 	int ret;
2047 
2048 	ret = bch2_trans_do(c, NULL, NULL, 0,
2049 		      async_btree_node_rewrite_trans(trans, a));
2050 	if (ret)
2051 		bch_err_fn(c, ret);
2052 	bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2053 	kfree(a);
2054 }
2055 
2056 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2057 {
2058 	struct async_btree_rewrite *a;
2059 	int ret;
2060 
2061 	a = kmalloc(sizeof(*a), GFP_NOFS);
2062 	if (!a) {
2063 		bch_err(c, "%s: error allocating memory", __func__);
2064 		return;
2065 	}
2066 
2067 	a->c		= c;
2068 	a->btree_id	= b->c.btree_id;
2069 	a->level	= b->c.level;
2070 	a->pos		= b->key.k.p;
2071 	a->seq		= b->data->keys.seq;
2072 	INIT_WORK(&a->work, async_btree_node_rewrite_work);
2073 
2074 	if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) {
2075 		mutex_lock(&c->pending_node_rewrites_lock);
2076 		list_add(&a->list, &c->pending_node_rewrites);
2077 		mutex_unlock(&c->pending_node_rewrites_lock);
2078 		return;
2079 	}
2080 
2081 	if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2082 		if (test_bit(BCH_FS_STARTED, &c->flags)) {
2083 			bch_err(c, "%s: error getting c->writes ref", __func__);
2084 			kfree(a);
2085 			return;
2086 		}
2087 
2088 		ret = bch2_fs_read_write_early(c);
2089 		if (ret) {
2090 			bch_err_msg(c, ret, "going read-write");
2091 			kfree(a);
2092 			return;
2093 		}
2094 
2095 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2096 	}
2097 
2098 	queue_work(c->btree_interior_update_worker, &a->work);
2099 }
2100 
2101 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2102 {
2103 	struct async_btree_rewrite *a, *n;
2104 
2105 	mutex_lock(&c->pending_node_rewrites_lock);
2106 	list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2107 		list_del(&a->list);
2108 
2109 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2110 		queue_work(c->btree_interior_update_worker, &a->work);
2111 	}
2112 	mutex_unlock(&c->pending_node_rewrites_lock);
2113 }
2114 
2115 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2116 {
2117 	struct async_btree_rewrite *a, *n;
2118 
2119 	mutex_lock(&c->pending_node_rewrites_lock);
2120 	list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2121 		list_del(&a->list);
2122 
2123 		kfree(a);
2124 	}
2125 	mutex_unlock(&c->pending_node_rewrites_lock);
2126 }
2127 
2128 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2129 					struct btree_iter *iter,
2130 					struct btree *b, struct btree *new_hash,
2131 					struct bkey_i *new_key,
2132 					unsigned commit_flags,
2133 					bool skip_triggers)
2134 {
2135 	struct bch_fs *c = trans->c;
2136 	struct btree_iter iter2 = { NULL };
2137 	struct btree *parent;
2138 	int ret;
2139 
2140 	if (!skip_triggers) {
2141 		ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1,
2142 					  bkey_i_to_s_c(&b->key), 0);
2143 		if (ret)
2144 			return ret;
2145 
2146 		ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1,
2147 					  new_key, 0);
2148 		if (ret)
2149 			return ret;
2150 	}
2151 
2152 	if (new_hash) {
2153 		bkey_copy(&new_hash->key, new_key);
2154 		ret = bch2_btree_node_hash_insert(&c->btree_cache,
2155 				new_hash, b->c.level, b->c.btree_id);
2156 		BUG_ON(ret);
2157 	}
2158 
2159 	parent = btree_node_parent(iter->path, b);
2160 	if (parent) {
2161 		bch2_trans_copy_iter(&iter2, iter);
2162 
2163 		iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2164 				iter2.flags & BTREE_ITER_INTENT,
2165 				_THIS_IP_);
2166 
2167 		BUG_ON(iter2.path->level != b->c.level);
2168 		BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p));
2169 
2170 		btree_path_set_level_up(trans, iter2.path);
2171 
2172 		trans->paths_sorted = false;
2173 
2174 		ret   = bch2_btree_iter_traverse(&iter2) ?:
2175 			bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2176 		if (ret)
2177 			goto err;
2178 	} else {
2179 		BUG_ON(btree_node_root(c, b) != b);
2180 
2181 		ret = darray_make_room(&trans->extra_journal_entries,
2182 				       jset_u64s(new_key->k.u64s));
2183 		if (ret)
2184 			return ret;
2185 
2186 		journal_entry_set((void *) &darray_top(trans->extra_journal_entries),
2187 				  BCH_JSET_ENTRY_btree_root,
2188 				  b->c.btree_id, b->c.level,
2189 				  new_key, new_key->k.u64s);
2190 		trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s);
2191 	}
2192 
2193 	ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2194 	if (ret)
2195 		goto err;
2196 
2197 	bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c);
2198 
2199 	if (new_hash) {
2200 		mutex_lock(&c->btree_cache.lock);
2201 		bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2202 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2203 
2204 		bkey_copy(&b->key, new_key);
2205 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2206 		BUG_ON(ret);
2207 		mutex_unlock(&c->btree_cache.lock);
2208 	} else {
2209 		bkey_copy(&b->key, new_key);
2210 	}
2211 
2212 	bch2_btree_node_unlock_write(trans, iter->path, b);
2213 out:
2214 	bch2_trans_iter_exit(trans, &iter2);
2215 	return ret;
2216 err:
2217 	if (new_hash) {
2218 		mutex_lock(&c->btree_cache.lock);
2219 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2220 		mutex_unlock(&c->btree_cache.lock);
2221 	}
2222 	goto out;
2223 }
2224 
2225 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2226 			       struct btree *b, struct bkey_i *new_key,
2227 			       unsigned commit_flags, bool skip_triggers)
2228 {
2229 	struct bch_fs *c = trans->c;
2230 	struct btree *new_hash = NULL;
2231 	struct btree_path *path = iter->path;
2232 	struct closure cl;
2233 	int ret = 0;
2234 
2235 	ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2236 	if (ret)
2237 		return ret;
2238 
2239 	closure_init_stack(&cl);
2240 
2241 	/*
2242 	 * check btree_ptr_hash_val() after @b is locked by
2243 	 * btree_iter_traverse():
2244 	 */
2245 	if (btree_ptr_hash_val(new_key) != b->hash_val) {
2246 		ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2247 		if (ret) {
2248 			ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2249 			if (ret)
2250 				return ret;
2251 		}
2252 
2253 		new_hash = bch2_btree_node_mem_alloc(trans, false);
2254 	}
2255 
2256 	path->intent_ref++;
2257 	ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2258 					   commit_flags, skip_triggers);
2259 	--path->intent_ref;
2260 
2261 	if (new_hash) {
2262 		mutex_lock(&c->btree_cache.lock);
2263 		list_move(&new_hash->list, &c->btree_cache.freeable);
2264 		mutex_unlock(&c->btree_cache.lock);
2265 
2266 		six_unlock_write(&new_hash->c.lock);
2267 		six_unlock_intent(&new_hash->c.lock);
2268 	}
2269 	closure_sync(&cl);
2270 	bch2_btree_cache_cannibalize_unlock(c);
2271 	return ret;
2272 }
2273 
2274 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2275 					struct btree *b, struct bkey_i *new_key,
2276 					unsigned commit_flags, bool skip_triggers)
2277 {
2278 	struct btree_iter iter;
2279 	int ret;
2280 
2281 	bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2282 				  BTREE_MAX_DEPTH, b->c.level,
2283 				  BTREE_ITER_INTENT);
2284 	ret = bch2_btree_iter_traverse(&iter);
2285 	if (ret)
2286 		goto out;
2287 
2288 	/* has node been freed? */
2289 	if (iter.path->l[b->c.level].b != b) {
2290 		/* node has been freed: */
2291 		BUG_ON(!btree_node_dying(b));
2292 		goto out;
2293 	}
2294 
2295 	BUG_ON(!btree_node_hashed(b));
2296 
2297 	struct bch_extent_ptr *ptr;
2298 	bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2299 			    !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2300 
2301 	ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2302 					 commit_flags, skip_triggers);
2303 out:
2304 	bch2_trans_iter_exit(trans, &iter);
2305 	return ret;
2306 }
2307 
2308 /* Init code: */
2309 
2310 /*
2311  * Only for filesystem bringup, when first reading the btree roots or allocating
2312  * btree roots when initializing a new filesystem:
2313  */
2314 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2315 {
2316 	BUG_ON(btree_node_root(c, b));
2317 
2318 	bch2_btree_set_root_inmem(c, b);
2319 }
2320 
2321 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id)
2322 {
2323 	struct bch_fs *c = trans->c;
2324 	struct closure cl;
2325 	struct btree *b;
2326 	int ret;
2327 
2328 	closure_init_stack(&cl);
2329 
2330 	do {
2331 		ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2332 		closure_sync(&cl);
2333 	} while (ret);
2334 
2335 	b = bch2_btree_node_mem_alloc(trans, false);
2336 	bch2_btree_cache_cannibalize_unlock(c);
2337 
2338 	set_btree_node_fake(b);
2339 	set_btree_node_need_rewrite(b);
2340 	b->c.level	= 0;
2341 	b->c.btree_id	= id;
2342 
2343 	bkey_btree_ptr_init(&b->key);
2344 	b->key.k.p = SPOS_MAX;
2345 	*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2346 
2347 	bch2_bset_init_first(b, &b->data->keys);
2348 	bch2_btree_build_aux_trees(b);
2349 
2350 	b->data->flags = 0;
2351 	btree_set_min(b, POS_MIN);
2352 	btree_set_max(b, SPOS_MAX);
2353 	b->data->format = bch2_btree_calc_format(b);
2354 	btree_node_set_format(b, b->data->format);
2355 
2356 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2357 					  b->c.level, b->c.btree_id);
2358 	BUG_ON(ret);
2359 
2360 	bch2_btree_set_root_inmem(c, b);
2361 
2362 	six_unlock_write(&b->c.lock);
2363 	six_unlock_intent(&b->c.lock);
2364 	return 0;
2365 }
2366 
2367 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2368 {
2369 	bch2_trans_run(c, __bch2_btree_root_alloc(trans, id));
2370 }
2371 
2372 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2373 {
2374 	struct btree_update *as;
2375 
2376 	mutex_lock(&c->btree_interior_update_lock);
2377 	list_for_each_entry(as, &c->btree_interior_update_list, list)
2378 		prt_printf(out, "%p m %u w %u r %u j %llu\n",
2379 		       as,
2380 		       as->mode,
2381 		       as->nodes_written,
2382 		       closure_nr_remaining(&as->cl),
2383 		       as->journal.seq);
2384 	mutex_unlock(&c->btree_interior_update_lock);
2385 }
2386 
2387 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2388 {
2389 	bool ret;
2390 
2391 	mutex_lock(&c->btree_interior_update_lock);
2392 	ret = !list_empty(&c->btree_interior_update_list);
2393 	mutex_unlock(&c->btree_interior_update_lock);
2394 
2395 	return ret;
2396 }
2397 
2398 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2399 {
2400 	bool ret = bch2_btree_interior_updates_pending(c);
2401 
2402 	if (ret)
2403 		closure_wait_event(&c->btree_interior_update_wait,
2404 				   !bch2_btree_interior_updates_pending(c));
2405 	return ret;
2406 }
2407 
2408 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2409 {
2410 	struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2411 
2412 	mutex_lock(&c->btree_root_lock);
2413 
2414 	r->level = entry->level;
2415 	r->alive = true;
2416 	bkey_copy(&r->key, (struct bkey_i *) entry->start);
2417 
2418 	mutex_unlock(&c->btree_root_lock);
2419 }
2420 
2421 struct jset_entry *
2422 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2423 				    struct jset_entry *end,
2424 				    unsigned long skip)
2425 {
2426 	unsigned i;
2427 
2428 	mutex_lock(&c->btree_root_lock);
2429 
2430 	for (i = 0; i < btree_id_nr_alive(c); i++) {
2431 		struct btree_root *r = bch2_btree_id_root(c, i);
2432 
2433 		if (r->alive && !test_bit(i, &skip)) {
2434 			journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2435 					  i, r->level, &r->key, r->key.k.u64s);
2436 			end = vstruct_next(end);
2437 		}
2438 	}
2439 
2440 	mutex_unlock(&c->btree_root_lock);
2441 
2442 	return end;
2443 }
2444 
2445 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2446 {
2447 	if (c->btree_interior_update_worker)
2448 		destroy_workqueue(c->btree_interior_update_worker);
2449 	mempool_exit(&c->btree_interior_update_pool);
2450 }
2451 
2452 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2453 {
2454 	mutex_init(&c->btree_reserve_cache_lock);
2455 	INIT_LIST_HEAD(&c->btree_interior_update_list);
2456 	INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2457 	mutex_init(&c->btree_interior_update_lock);
2458 	INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2459 
2460 	INIT_LIST_HEAD(&c->pending_node_rewrites);
2461 	mutex_init(&c->pending_node_rewrites_lock);
2462 }
2463 
2464 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2465 {
2466 	c->btree_interior_update_worker =
2467 		alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2468 	if (!c->btree_interior_update_worker)
2469 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2470 
2471 	if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2472 				      sizeof(struct btree_update)))
2473 		return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2474 
2475 	return 0;
2476 }
2477