1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_methods.h" 6 #include "btree_cache.h" 7 #include "btree_gc.h" 8 #include "btree_journal_iter.h" 9 #include "btree_update.h" 10 #include "btree_update_interior.h" 11 #include "btree_io.h" 12 #include "btree_iter.h" 13 #include "btree_locking.h" 14 #include "buckets.h" 15 #include "clock.h" 16 #include "error.h" 17 #include "extents.h" 18 #include "journal.h" 19 #include "journal_reclaim.h" 20 #include "keylist.h" 21 #include "replicas.h" 22 #include "super-io.h" 23 #include "trace.h" 24 25 #include <linux/random.h> 26 27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 28 struct btree_path *, struct btree *, 29 struct keylist *, unsigned); 30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 31 32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans, 33 enum btree_id btree_id, 34 unsigned level, 35 struct bpos pos) 36 { 37 struct btree_path *path; 38 39 path = bch2_path_get(trans, btree_id, pos, level + 1, level, 40 BTREE_ITER_NOPRESERVE| 41 BTREE_ITER_INTENT, _RET_IP_); 42 path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_); 43 bch2_btree_path_downgrade(trans, path); 44 __bch2_btree_path_unlock(trans, path); 45 return path; 46 } 47 48 /* Debug code: */ 49 50 /* 51 * Verify that child nodes correctly span parent node's range: 52 */ 53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) 54 { 55 #ifdef CONFIG_BCACHEFS_DEBUG 56 struct bpos next_node = b->data->min_key; 57 struct btree_node_iter iter; 58 struct bkey_s_c k; 59 struct bkey_s_c_btree_ptr_v2 bp; 60 struct bkey unpacked; 61 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 62 63 BUG_ON(!b->c.level); 64 65 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) 66 return; 67 68 bch2_btree_node_iter_init_from_start(&iter, b); 69 70 while (1) { 71 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); 72 if (k.k->type != KEY_TYPE_btree_ptr_v2) 73 break; 74 bp = bkey_s_c_to_btree_ptr_v2(k); 75 76 if (!bpos_eq(next_node, bp.v->min_key)) { 77 bch2_dump_btree_node(c, b); 78 bch2_bpos_to_text(&buf1, next_node); 79 bch2_bpos_to_text(&buf2, bp.v->min_key); 80 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); 81 } 82 83 bch2_btree_node_iter_advance(&iter, b); 84 85 if (bch2_btree_node_iter_end(&iter)) { 86 if (!bpos_eq(k.k->p, b->key.k.p)) { 87 bch2_dump_btree_node(c, b); 88 bch2_bpos_to_text(&buf1, b->key.k.p); 89 bch2_bpos_to_text(&buf2, k.k->p); 90 panic("expected end %s got %s\n", buf1.buf, buf2.buf); 91 } 92 break; 93 } 94 95 next_node = bpos_successor(k.k->p); 96 } 97 #endif 98 } 99 100 /* Calculate ideal packed bkey format for new btree nodes: */ 101 102 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 103 { 104 struct bkey_packed *k; 105 struct bset_tree *t; 106 struct bkey uk; 107 108 for_each_bset(b, t) 109 bset_tree_for_each_key(b, t, k) 110 if (!bkey_deleted(k)) { 111 uk = bkey_unpack_key(b, k); 112 bch2_bkey_format_add_key(s, &uk); 113 } 114 } 115 116 static struct bkey_format bch2_btree_calc_format(struct btree *b) 117 { 118 struct bkey_format_state s; 119 120 bch2_bkey_format_init(&s); 121 bch2_bkey_format_add_pos(&s, b->data->min_key); 122 bch2_bkey_format_add_pos(&s, b->data->max_key); 123 __bch2_btree_calc_format(&s, b); 124 125 return bch2_bkey_format_done(&s); 126 } 127 128 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 129 struct bkey_format *old_f, 130 struct bkey_format *new_f) 131 { 132 /* stupid integer promotion rules */ 133 ssize_t delta = 134 (((int) new_f->key_u64s - old_f->key_u64s) * 135 (int) nr.packed_keys) + 136 (((int) new_f->key_u64s - BKEY_U64s) * 137 (int) nr.unpacked_keys); 138 139 BUG_ON(delta + nr.live_u64s < 0); 140 141 return nr.live_u64s + delta; 142 } 143 144 /** 145 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 146 * 147 * @c: filesystem handle 148 * @b: btree node to rewrite 149 * @nr: number of keys for new node (i.e. b->nr) 150 * @new_f: bkey format to translate keys to 151 * 152 * Returns: true if all re-packed keys will be able to fit in a new node. 153 * 154 * Assumes all keys will successfully pack with the new format. 155 */ 156 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 157 struct btree_nr_keys nr, 158 struct bkey_format *new_f) 159 { 160 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 161 162 return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); 163 } 164 165 /* Btree node freeing/allocation: */ 166 167 static void __btree_node_free(struct bch_fs *c, struct btree *b) 168 { 169 trace_and_count(c, btree_node_free, c, b); 170 171 BUG_ON(btree_node_write_blocked(b)); 172 BUG_ON(btree_node_dirty(b)); 173 BUG_ON(btree_node_need_write(b)); 174 BUG_ON(b == btree_node_root(c, b)); 175 BUG_ON(b->ob.nr); 176 BUG_ON(!list_empty(&b->write_blocked)); 177 BUG_ON(b->will_make_reachable); 178 179 clear_btree_node_noevict(b); 180 181 mutex_lock(&c->btree_cache.lock); 182 list_move(&b->list, &c->btree_cache.freeable); 183 mutex_unlock(&c->btree_cache.lock); 184 } 185 186 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 187 struct btree_path *path, 188 struct btree *b) 189 { 190 struct bch_fs *c = trans->c; 191 unsigned level = b->c.level; 192 193 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 194 bch2_btree_node_hash_remove(&c->btree_cache, b); 195 __btree_node_free(c, b); 196 six_unlock_write(&b->c.lock); 197 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 198 199 trans_for_each_path(trans, path) 200 if (path->l[level].b == b) { 201 btree_node_unlock(trans, path, level); 202 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 203 } 204 } 205 206 static void bch2_btree_node_free_never_used(struct btree_update *as, 207 struct btree_trans *trans, 208 struct btree *b) 209 { 210 struct bch_fs *c = as->c; 211 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 212 struct btree_path *path; 213 unsigned level = b->c.level; 214 215 BUG_ON(!list_empty(&b->write_blocked)); 216 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 217 218 b->will_make_reachable = 0; 219 closure_put(&as->cl); 220 221 clear_btree_node_will_make_reachable(b); 222 clear_btree_node_accessed(b); 223 clear_btree_node_dirty_acct(c, b); 224 clear_btree_node_need_write(b); 225 226 mutex_lock(&c->btree_cache.lock); 227 list_del_init(&b->list); 228 bch2_btree_node_hash_remove(&c->btree_cache, b); 229 mutex_unlock(&c->btree_cache.lock); 230 231 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 232 p->b[p->nr++] = b; 233 234 six_unlock_intent(&b->c.lock); 235 236 trans_for_each_path(trans, path) 237 if (path->l[level].b == b) { 238 btree_node_unlock(trans, path, level); 239 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 240 } 241 } 242 243 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 244 struct disk_reservation *res, 245 struct closure *cl, 246 bool interior_node, 247 unsigned flags) 248 { 249 struct bch_fs *c = trans->c; 250 struct write_point *wp; 251 struct btree *b; 252 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 253 struct open_buckets obs = { .nr = 0 }; 254 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 255 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 256 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim 257 ? BTREE_NODE_RESERVE 258 : 0; 259 int ret; 260 261 mutex_lock(&c->btree_reserve_cache_lock); 262 if (c->btree_reserve_cache_nr > nr_reserve) { 263 struct btree_alloc *a = 264 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 265 266 obs = a->ob; 267 bkey_copy(&tmp.k, &a->k); 268 mutex_unlock(&c->btree_reserve_cache_lock); 269 goto mem_alloc; 270 } 271 mutex_unlock(&c->btree_reserve_cache_lock); 272 273 retry: 274 ret = bch2_alloc_sectors_start_trans(trans, 275 c->opts.metadata_target ?: 276 c->opts.foreground_target, 277 0, 278 writepoint_ptr(&c->btree_write_point), 279 &devs_have, 280 res->nr_replicas, 281 c->opts.metadata_replicas_required, 282 watermark, 0, cl, &wp); 283 if (unlikely(ret)) 284 return ERR_PTR(ret); 285 286 if (wp->sectors_free < btree_sectors(c)) { 287 struct open_bucket *ob; 288 unsigned i; 289 290 open_bucket_for_each(c, &wp->ptrs, ob, i) 291 if (ob->sectors_free < btree_sectors(c)) 292 ob->sectors_free = 0; 293 294 bch2_alloc_sectors_done(c, wp); 295 goto retry; 296 } 297 298 bkey_btree_ptr_v2_init(&tmp.k); 299 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 300 301 bch2_open_bucket_get(c, wp, &obs); 302 bch2_alloc_sectors_done(c, wp); 303 mem_alloc: 304 b = bch2_btree_node_mem_alloc(trans, interior_node); 305 six_unlock_write(&b->c.lock); 306 six_unlock_intent(&b->c.lock); 307 308 /* we hold cannibalize_lock: */ 309 BUG_ON(IS_ERR(b)); 310 BUG_ON(b->ob.nr); 311 312 bkey_copy(&b->key, &tmp.k); 313 b->ob = obs; 314 315 return b; 316 } 317 318 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 319 struct btree_trans *trans, 320 unsigned level) 321 { 322 struct bch_fs *c = as->c; 323 struct btree *b; 324 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 325 int ret; 326 327 BUG_ON(level >= BTREE_MAX_DEPTH); 328 BUG_ON(!p->nr); 329 330 b = p->b[--p->nr]; 331 332 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 333 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 334 335 set_btree_node_accessed(b); 336 set_btree_node_dirty_acct(c, b); 337 set_btree_node_need_write(b); 338 339 bch2_bset_init_first(b, &b->data->keys); 340 b->c.level = level; 341 b->c.btree_id = as->btree_id; 342 b->version_ondisk = c->sb.version; 343 344 memset(&b->nr, 0, sizeof(b->nr)); 345 b->data->magic = cpu_to_le64(bset_magic(c)); 346 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 347 b->data->flags = 0; 348 SET_BTREE_NODE_ID(b->data, as->btree_id); 349 SET_BTREE_NODE_LEVEL(b->data, level); 350 351 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 352 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 353 354 bp->v.mem_ptr = 0; 355 bp->v.seq = b->data->keys.seq; 356 bp->v.sectors_written = 0; 357 } 358 359 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 360 361 bch2_btree_build_aux_trees(b); 362 363 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 364 BUG_ON(ret); 365 366 trace_and_count(c, btree_node_alloc, c, b); 367 bch2_increment_clock(c, btree_sectors(c), WRITE); 368 return b; 369 } 370 371 static void btree_set_min(struct btree *b, struct bpos pos) 372 { 373 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 374 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 375 b->data->min_key = pos; 376 } 377 378 static void btree_set_max(struct btree *b, struct bpos pos) 379 { 380 b->key.k.p = pos; 381 b->data->max_key = pos; 382 } 383 384 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 385 struct btree_trans *trans, 386 struct btree *b) 387 { 388 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 389 struct bkey_format format = bch2_btree_calc_format(b); 390 391 /* 392 * The keys might expand with the new format - if they wouldn't fit in 393 * the btree node anymore, use the old format for now: 394 */ 395 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 396 format = b->format; 397 398 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 399 400 btree_set_min(n, b->data->min_key); 401 btree_set_max(n, b->data->max_key); 402 403 n->data->format = format; 404 btree_node_set_format(n, format); 405 406 bch2_btree_sort_into(as->c, n, b); 407 408 btree_node_reset_sib_u64s(n); 409 return n; 410 } 411 412 static struct btree *__btree_root_alloc(struct btree_update *as, 413 struct btree_trans *trans, unsigned level) 414 { 415 struct btree *b = bch2_btree_node_alloc(as, trans, level); 416 417 btree_set_min(b, POS_MIN); 418 btree_set_max(b, SPOS_MAX); 419 b->data->format = bch2_btree_calc_format(b); 420 421 btree_node_set_format(b, b->data->format); 422 bch2_btree_build_aux_trees(b); 423 424 return b; 425 } 426 427 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 428 { 429 struct bch_fs *c = as->c; 430 struct prealloc_nodes *p; 431 432 for (p = as->prealloc_nodes; 433 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 434 p++) { 435 while (p->nr) { 436 struct btree *b = p->b[--p->nr]; 437 438 mutex_lock(&c->btree_reserve_cache_lock); 439 440 if (c->btree_reserve_cache_nr < 441 ARRAY_SIZE(c->btree_reserve_cache)) { 442 struct btree_alloc *a = 443 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 444 445 a->ob = b->ob; 446 b->ob.nr = 0; 447 bkey_copy(&a->k, &b->key); 448 } else { 449 bch2_open_buckets_put(c, &b->ob); 450 } 451 452 mutex_unlock(&c->btree_reserve_cache_lock); 453 454 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 455 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 456 __btree_node_free(c, b); 457 six_unlock_write(&b->c.lock); 458 six_unlock_intent(&b->c.lock); 459 } 460 } 461 } 462 463 static int bch2_btree_reserve_get(struct btree_trans *trans, 464 struct btree_update *as, 465 unsigned nr_nodes[2], 466 unsigned flags, 467 struct closure *cl) 468 { 469 struct bch_fs *c = as->c; 470 struct btree *b; 471 unsigned interior; 472 int ret = 0; 473 474 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 475 476 /* 477 * Protects reaping from the btree node cache and using the btree node 478 * open bucket reserve: 479 * 480 * BTREE_INSERT_NOWAIT only applies to btree node allocation, not 481 * blocking on this lock: 482 */ 483 ret = bch2_btree_cache_cannibalize_lock(c, cl); 484 if (ret) 485 return ret; 486 487 for (interior = 0; interior < 2; interior++) { 488 struct prealloc_nodes *p = as->prealloc_nodes + interior; 489 490 while (p->nr < nr_nodes[interior]) { 491 b = __bch2_btree_node_alloc(trans, &as->disk_res, 492 flags & BTREE_INSERT_NOWAIT ? NULL : cl, 493 interior, flags); 494 if (IS_ERR(b)) { 495 ret = PTR_ERR(b); 496 goto err; 497 } 498 499 p->b[p->nr++] = b; 500 } 501 } 502 err: 503 bch2_btree_cache_cannibalize_unlock(c); 504 return ret; 505 } 506 507 /* Asynchronous interior node update machinery */ 508 509 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 510 { 511 struct bch_fs *c = as->c; 512 513 if (as->took_gc_lock) 514 up_read(&c->gc_lock); 515 as->took_gc_lock = false; 516 517 bch2_journal_pin_drop(&c->journal, &as->journal); 518 bch2_journal_pin_flush(&c->journal, &as->journal); 519 bch2_disk_reservation_put(c, &as->disk_res); 520 bch2_btree_reserve_put(as, trans); 521 522 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 523 as->start_time); 524 525 mutex_lock(&c->btree_interior_update_lock); 526 list_del(&as->unwritten_list); 527 list_del(&as->list); 528 529 closure_debug_destroy(&as->cl); 530 mempool_free(as, &c->btree_interior_update_pool); 531 532 /* 533 * Have to do the wakeup with btree_interior_update_lock still held, 534 * since being on btree_interior_update_list is our ref on @c: 535 */ 536 closure_wake_up(&c->btree_interior_update_wait); 537 538 mutex_unlock(&c->btree_interior_update_lock); 539 } 540 541 static void btree_update_add_key(struct btree_update *as, 542 struct keylist *keys, struct btree *b) 543 { 544 struct bkey_i *k = &b->key; 545 546 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 547 ARRAY_SIZE(as->_old_keys)); 548 549 bkey_copy(keys->top, k); 550 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 551 552 bch2_keylist_push(keys); 553 } 554 555 /* 556 * The transactional part of an interior btree node update, where we journal the 557 * update we did to the interior node and update alloc info: 558 */ 559 static int btree_update_nodes_written_trans(struct btree_trans *trans, 560 struct btree_update *as) 561 { 562 struct bkey_i *k; 563 int ret; 564 565 ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s); 566 if (ret) 567 return ret; 568 569 memcpy(&darray_top(trans->extra_journal_entries), 570 as->journal_entries, 571 as->journal_u64s * sizeof(u64)); 572 trans->extra_journal_entries.nr += as->journal_u64s; 573 574 trans->journal_pin = &as->journal; 575 576 for_each_keylist_key(&as->old_keys, k) { 577 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 578 579 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0); 580 if (ret) 581 return ret; 582 } 583 584 for_each_keylist_key(&as->new_keys, k) { 585 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 586 587 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0); 588 if (ret) 589 return ret; 590 } 591 592 return 0; 593 } 594 595 static void btree_update_nodes_written(struct btree_update *as) 596 { 597 struct bch_fs *c = as->c; 598 struct btree *b; 599 struct btree_trans *trans = bch2_trans_get(c); 600 u64 journal_seq = 0; 601 unsigned i; 602 int ret; 603 604 /* 605 * If we're already in an error state, it might be because a btree node 606 * was never written, and we might be trying to free that same btree 607 * node here, but it won't have been marked as allocated and we'll see 608 * spurious disk usage inconsistencies in the transactional part below 609 * if we don't skip it: 610 */ 611 ret = bch2_journal_error(&c->journal); 612 if (ret) 613 goto err; 614 615 /* 616 * Wait for any in flight writes to finish before we free the old nodes 617 * on disk: 618 */ 619 for (i = 0; i < as->nr_old_nodes; i++) { 620 __le64 seq; 621 622 b = as->old_nodes[i]; 623 624 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 625 seq = b->data ? b->data->keys.seq : 0; 626 six_unlock_read(&b->c.lock); 627 628 if (seq == as->old_nodes_seq[i]) 629 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 630 TASK_UNINTERRUPTIBLE); 631 } 632 633 /* 634 * We did an update to a parent node where the pointers we added pointed 635 * to child nodes that weren't written yet: now, the child nodes have 636 * been written so we can write out the update to the interior node. 637 */ 638 639 /* 640 * We can't call into journal reclaim here: we'd block on the journal 641 * reclaim lock, but we may need to release the open buckets we have 642 * pinned in order for other btree updates to make forward progress, and 643 * journal reclaim does btree updates when flushing bkey_cached entries, 644 * which may require allocations as well. 645 */ 646 ret = commit_do(trans, &as->disk_res, &journal_seq, 647 BCH_WATERMARK_reclaim| 648 BTREE_INSERT_NOFAIL| 649 BTREE_INSERT_NOCHECK_RW| 650 BTREE_INSERT_JOURNAL_RECLAIM, 651 btree_update_nodes_written_trans(trans, as)); 652 bch2_trans_unlock(trans); 653 654 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 655 "%s(): error %s", __func__, bch2_err_str(ret)); 656 err: 657 if (as->b) { 658 struct btree_path *path; 659 660 b = as->b; 661 path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p); 662 /* 663 * @b is the node we did the final insert into: 664 * 665 * On failure to get a journal reservation, we still have to 666 * unblock the write and allow most of the write path to happen 667 * so that shutdown works, but the i->journal_seq mechanism 668 * won't work to prevent the btree write from being visible (we 669 * didn't get a journal sequence number) - instead 670 * __bch2_btree_node_write() doesn't do the actual write if 671 * we're in journal error state: 672 */ 673 674 /* 675 * Ensure transaction is unlocked before using 676 * btree_node_lock_nopath() (the use of which is always suspect, 677 * we need to work on removing this in the future) 678 * 679 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 680 * calls bch2_path_upgrade(), before we call path_make_mut(), so 681 * we may rarely end up with a locked path besides the one we 682 * have here: 683 */ 684 bch2_trans_unlock(trans); 685 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 686 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 687 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 688 path->l[b->c.level].b = b; 689 690 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 691 692 mutex_lock(&c->btree_interior_update_lock); 693 694 list_del(&as->write_blocked_list); 695 if (list_empty(&b->write_blocked)) 696 clear_btree_node_write_blocked(b); 697 698 /* 699 * Node might have been freed, recheck under 700 * btree_interior_update_lock: 701 */ 702 if (as->b == b) { 703 BUG_ON(!b->c.level); 704 BUG_ON(!btree_node_dirty(b)); 705 706 if (!ret) { 707 struct bset *last = btree_bset_last(b); 708 709 last->journal_seq = cpu_to_le64( 710 max(journal_seq, 711 le64_to_cpu(last->journal_seq))); 712 713 bch2_btree_add_journal_pin(c, b, journal_seq); 714 } else { 715 /* 716 * If we didn't get a journal sequence number we 717 * can't write this btree node, because recovery 718 * won't know to ignore this write: 719 */ 720 set_btree_node_never_write(b); 721 } 722 } 723 724 mutex_unlock(&c->btree_interior_update_lock); 725 726 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 727 six_unlock_write(&b->c.lock); 728 729 btree_node_write_if_need(c, b, SIX_LOCK_intent); 730 btree_node_unlock(trans, path, b->c.level); 731 bch2_path_put(trans, path, true); 732 } 733 734 bch2_journal_pin_drop(&c->journal, &as->journal); 735 736 mutex_lock(&c->btree_interior_update_lock); 737 for (i = 0; i < as->nr_new_nodes; i++) { 738 b = as->new_nodes[i]; 739 740 BUG_ON(b->will_make_reachable != (unsigned long) as); 741 b->will_make_reachable = 0; 742 clear_btree_node_will_make_reachable(b); 743 } 744 mutex_unlock(&c->btree_interior_update_lock); 745 746 for (i = 0; i < as->nr_new_nodes; i++) { 747 b = as->new_nodes[i]; 748 749 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 750 btree_node_write_if_need(c, b, SIX_LOCK_read); 751 six_unlock_read(&b->c.lock); 752 } 753 754 for (i = 0; i < as->nr_open_buckets; i++) 755 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 756 757 bch2_btree_update_free(as, trans); 758 bch2_trans_put(trans); 759 } 760 761 static void btree_interior_update_work(struct work_struct *work) 762 { 763 struct bch_fs *c = 764 container_of(work, struct bch_fs, btree_interior_update_work); 765 struct btree_update *as; 766 767 while (1) { 768 mutex_lock(&c->btree_interior_update_lock); 769 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 770 struct btree_update, unwritten_list); 771 if (as && !as->nodes_written) 772 as = NULL; 773 mutex_unlock(&c->btree_interior_update_lock); 774 775 if (!as) 776 break; 777 778 btree_update_nodes_written(as); 779 } 780 } 781 782 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 783 { 784 closure_type(as, struct btree_update, cl); 785 struct bch_fs *c = as->c; 786 787 mutex_lock(&c->btree_interior_update_lock); 788 as->nodes_written = true; 789 mutex_unlock(&c->btree_interior_update_lock); 790 791 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 792 } 793 794 /* 795 * We're updating @b with pointers to nodes that haven't finished writing yet: 796 * block @b from being written until @as completes 797 */ 798 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 799 { 800 struct bch_fs *c = as->c; 801 802 mutex_lock(&c->btree_interior_update_lock); 803 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 804 805 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 806 BUG_ON(!btree_node_dirty(b)); 807 BUG_ON(!b->c.level); 808 809 as->mode = BTREE_INTERIOR_UPDATING_NODE; 810 as->b = b; 811 812 set_btree_node_write_blocked(b); 813 list_add(&as->write_blocked_list, &b->write_blocked); 814 815 mutex_unlock(&c->btree_interior_update_lock); 816 } 817 818 static void btree_update_reparent(struct btree_update *as, 819 struct btree_update *child) 820 { 821 struct bch_fs *c = as->c; 822 823 lockdep_assert_held(&c->btree_interior_update_lock); 824 825 child->b = NULL; 826 child->mode = BTREE_INTERIOR_UPDATING_AS; 827 828 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL); 829 } 830 831 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 832 { 833 struct bkey_i *insert = &b->key; 834 struct bch_fs *c = as->c; 835 836 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 837 838 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 839 ARRAY_SIZE(as->journal_entries)); 840 841 as->journal_u64s += 842 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 843 BCH_JSET_ENTRY_btree_root, 844 b->c.btree_id, b->c.level, 845 insert, insert->k.u64s); 846 847 mutex_lock(&c->btree_interior_update_lock); 848 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 849 850 as->mode = BTREE_INTERIOR_UPDATING_ROOT; 851 mutex_unlock(&c->btree_interior_update_lock); 852 } 853 854 /* 855 * bch2_btree_update_add_new_node: 856 * 857 * This causes @as to wait on @b to be written, before it gets to 858 * bch2_btree_update_nodes_written 859 * 860 * Additionally, it sets b->will_make_reachable to prevent any additional writes 861 * to @b from happening besides the first until @b is reachable on disk 862 * 863 * And it adds @b to the list of @as's new nodes, so that we can update sector 864 * counts in bch2_btree_update_nodes_written: 865 */ 866 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 867 { 868 struct bch_fs *c = as->c; 869 870 closure_get(&as->cl); 871 872 mutex_lock(&c->btree_interior_update_lock); 873 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 874 BUG_ON(b->will_make_reachable); 875 876 as->new_nodes[as->nr_new_nodes++] = b; 877 b->will_make_reachable = 1UL|(unsigned long) as; 878 set_btree_node_will_make_reachable(b); 879 880 mutex_unlock(&c->btree_interior_update_lock); 881 882 btree_update_add_key(as, &as->new_keys, b); 883 884 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 885 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 886 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 887 888 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 889 cpu_to_le16(sectors); 890 } 891 } 892 893 /* 894 * returns true if @b was a new node 895 */ 896 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 897 { 898 struct btree_update *as; 899 unsigned long v; 900 unsigned i; 901 902 mutex_lock(&c->btree_interior_update_lock); 903 /* 904 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 905 * dropped when it gets written by bch2_btree_complete_write - the 906 * xchg() is for synchronization with bch2_btree_complete_write: 907 */ 908 v = xchg(&b->will_make_reachable, 0); 909 clear_btree_node_will_make_reachable(b); 910 as = (struct btree_update *) (v & ~1UL); 911 912 if (!as) { 913 mutex_unlock(&c->btree_interior_update_lock); 914 return; 915 } 916 917 for (i = 0; i < as->nr_new_nodes; i++) 918 if (as->new_nodes[i] == b) 919 goto found; 920 921 BUG(); 922 found: 923 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 924 mutex_unlock(&c->btree_interior_update_lock); 925 926 if (v & 1) 927 closure_put(&as->cl); 928 } 929 930 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 931 { 932 while (b->ob.nr) 933 as->open_buckets[as->nr_open_buckets++] = 934 b->ob.v[--b->ob.nr]; 935 } 936 937 /* 938 * @b is being split/rewritten: it may have pointers to not-yet-written btree 939 * nodes and thus outstanding btree_updates - redirect @b's 940 * btree_updates to point to this btree_update: 941 */ 942 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 943 struct btree *b) 944 { 945 struct bch_fs *c = as->c; 946 struct btree_update *p, *n; 947 struct btree_write *w; 948 949 set_btree_node_dying(b); 950 951 if (btree_node_fake(b)) 952 return; 953 954 mutex_lock(&c->btree_interior_update_lock); 955 956 /* 957 * Does this node have any btree_update operations preventing 958 * it from being written? 959 * 960 * If so, redirect them to point to this btree_update: we can 961 * write out our new nodes, but we won't make them visible until those 962 * operations complete 963 */ 964 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 965 list_del_init(&p->write_blocked_list); 966 btree_update_reparent(as, p); 967 968 /* 969 * for flush_held_btree_writes() waiting on updates to flush or 970 * nodes to be writeable: 971 */ 972 closure_wake_up(&c->btree_interior_update_wait); 973 } 974 975 clear_btree_node_dirty_acct(c, b); 976 clear_btree_node_need_write(b); 977 clear_btree_node_write_blocked(b); 978 979 /* 980 * Does this node have unwritten data that has a pin on the journal? 981 * 982 * If so, transfer that pin to the btree_update operation - 983 * note that if we're freeing multiple nodes, we only need to keep the 984 * oldest pin of any of the nodes we're freeing. We'll release the pin 985 * when the new nodes are persistent and reachable on disk: 986 */ 987 w = btree_current_write(b); 988 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 989 bch2_journal_pin_drop(&c->journal, &w->journal); 990 991 w = btree_prev_write(b); 992 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 993 bch2_journal_pin_drop(&c->journal, &w->journal); 994 995 mutex_unlock(&c->btree_interior_update_lock); 996 997 /* 998 * Is this a node that isn't reachable on disk yet? 999 * 1000 * Nodes that aren't reachable yet have writes blocked until they're 1001 * reachable - now that we've cancelled any pending writes and moved 1002 * things waiting on that write to wait on this update, we can drop this 1003 * node from the list of nodes that the other update is making 1004 * reachable, prior to freeing it: 1005 */ 1006 btree_update_drop_new_node(c, b); 1007 1008 btree_update_add_key(as, &as->old_keys, b); 1009 1010 as->old_nodes[as->nr_old_nodes] = b; 1011 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1012 as->nr_old_nodes++; 1013 } 1014 1015 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1016 { 1017 struct bch_fs *c = as->c; 1018 u64 start_time = as->start_time; 1019 1020 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); 1021 1022 if (as->took_gc_lock) 1023 up_read(&as->c->gc_lock); 1024 as->took_gc_lock = false; 1025 1026 bch2_btree_reserve_put(as, trans); 1027 1028 continue_at(&as->cl, btree_update_set_nodes_written, 1029 as->c->btree_interior_update_worker); 1030 1031 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1032 start_time); 1033 } 1034 1035 static struct btree_update * 1036 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1037 unsigned level, bool split, unsigned flags) 1038 { 1039 struct bch_fs *c = trans->c; 1040 struct btree_update *as; 1041 u64 start_time = local_clock(); 1042 int disk_res_flags = (flags & BTREE_INSERT_NOFAIL) 1043 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1044 unsigned nr_nodes[2] = { 0, 0 }; 1045 unsigned update_level = level; 1046 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1047 int ret = 0; 1048 u32 restart_count = trans->restart_count; 1049 1050 BUG_ON(!path->should_be_locked); 1051 1052 if (watermark == BCH_WATERMARK_copygc) 1053 watermark = BCH_WATERMARK_btree_copygc; 1054 if (watermark < BCH_WATERMARK_btree) 1055 watermark = BCH_WATERMARK_btree; 1056 1057 flags &= ~BCH_WATERMARK_MASK; 1058 flags |= watermark; 1059 1060 if (!(flags & BTREE_INSERT_JOURNAL_RECLAIM) && 1061 watermark < c->journal.watermark) { 1062 struct journal_res res = { 0 }; 1063 1064 ret = drop_locks_do(trans, 1065 bch2_journal_res_get(&c->journal, &res, 1, 1066 watermark|JOURNAL_RES_GET_CHECK)); 1067 if (ret) 1068 return ERR_PTR(ret); 1069 } 1070 1071 while (1) { 1072 nr_nodes[!!update_level] += 1 + split; 1073 update_level++; 1074 1075 ret = bch2_btree_path_upgrade(trans, path, update_level + 1); 1076 if (ret) 1077 return ERR_PTR(ret); 1078 1079 if (!btree_path_node(path, update_level)) { 1080 /* Allocating new root? */ 1081 nr_nodes[1] += split; 1082 update_level = BTREE_MAX_DEPTH; 1083 break; 1084 } 1085 1086 /* 1087 * Always check for space for two keys, even if we won't have to 1088 * split at prior level - it might have been a merge instead: 1089 */ 1090 if (bch2_btree_node_insert_fits(c, path->l[update_level].b, 1091 BKEY_BTREE_PTR_U64s_MAX * 2)) 1092 break; 1093 1094 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1095 } 1096 1097 if (flags & BTREE_INSERT_GC_LOCK_HELD) 1098 lockdep_assert_held(&c->gc_lock); 1099 else if (!down_read_trylock(&c->gc_lock)) { 1100 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1101 if (ret) { 1102 up_read(&c->gc_lock); 1103 return ERR_PTR(ret); 1104 } 1105 } 1106 1107 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1108 memset(as, 0, sizeof(*as)); 1109 closure_init(&as->cl, NULL); 1110 as->c = c; 1111 as->start_time = start_time; 1112 as->mode = BTREE_INTERIOR_NO_UPDATE; 1113 as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD); 1114 as->btree_id = path->btree_id; 1115 as->update_level = update_level; 1116 INIT_LIST_HEAD(&as->list); 1117 INIT_LIST_HEAD(&as->unwritten_list); 1118 INIT_LIST_HEAD(&as->write_blocked_list); 1119 bch2_keylist_init(&as->old_keys, as->_old_keys); 1120 bch2_keylist_init(&as->new_keys, as->_new_keys); 1121 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1122 1123 mutex_lock(&c->btree_interior_update_lock); 1124 list_add_tail(&as->list, &c->btree_interior_update_list); 1125 mutex_unlock(&c->btree_interior_update_lock); 1126 1127 /* 1128 * We don't want to allocate if we're in an error state, that can cause 1129 * deadlock on emergency shutdown due to open buckets getting stuck in 1130 * the btree_reserve_cache after allocator shutdown has cleared it out. 1131 * This check needs to come after adding us to the btree_interior_update 1132 * list but before calling bch2_btree_reserve_get, to synchronize with 1133 * __bch2_fs_read_only(). 1134 */ 1135 ret = bch2_journal_error(&c->journal); 1136 if (ret) 1137 goto err; 1138 1139 ret = bch2_disk_reservation_get(c, &as->disk_res, 1140 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1141 c->opts.metadata_replicas, 1142 disk_res_flags); 1143 if (ret) 1144 goto err; 1145 1146 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1147 if (bch2_err_matches(ret, ENOSPC) || 1148 bch2_err_matches(ret, ENOMEM)) { 1149 struct closure cl; 1150 1151 /* 1152 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1153 * flag 1154 */ 1155 if (bch2_err_matches(ret, ENOSPC) && 1156 (flags & BTREE_INSERT_JOURNAL_RECLAIM) && 1157 watermark != BCH_WATERMARK_reclaim) { 1158 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1159 goto err; 1160 } 1161 1162 closure_init_stack(&cl); 1163 1164 do { 1165 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1166 1167 bch2_trans_unlock(trans); 1168 closure_sync(&cl); 1169 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1170 } 1171 1172 if (ret) { 1173 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1174 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1175 goto err; 1176 } 1177 1178 ret = bch2_trans_relock(trans); 1179 if (ret) 1180 goto err; 1181 1182 bch2_trans_verify_not_restarted(trans, restart_count); 1183 return as; 1184 err: 1185 bch2_btree_update_free(as, trans); 1186 return ERR_PTR(ret); 1187 } 1188 1189 /* Btree root updates: */ 1190 1191 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1192 { 1193 /* Root nodes cannot be reaped */ 1194 mutex_lock(&c->btree_cache.lock); 1195 list_del_init(&b->list); 1196 mutex_unlock(&c->btree_cache.lock); 1197 1198 mutex_lock(&c->btree_root_lock); 1199 BUG_ON(btree_node_root(c, b) && 1200 (b->c.level < btree_node_root(c, b)->c.level || 1201 !btree_node_dying(btree_node_root(c, b)))); 1202 1203 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1204 mutex_unlock(&c->btree_root_lock); 1205 1206 bch2_recalc_btree_reserve(c); 1207 } 1208 1209 static void bch2_btree_set_root(struct btree_update *as, 1210 struct btree_trans *trans, 1211 struct btree_path *path, 1212 struct btree *b) 1213 { 1214 struct bch_fs *c = as->c; 1215 struct btree *old; 1216 1217 trace_and_count(c, btree_node_set_root, c, b); 1218 1219 old = btree_node_root(c, b); 1220 1221 /* 1222 * Ensure no one is using the old root while we switch to the 1223 * new root: 1224 */ 1225 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1226 1227 bch2_btree_set_root_inmem(c, b); 1228 1229 btree_update_updated_root(as, b); 1230 1231 /* 1232 * Unlock old root after new root is visible: 1233 * 1234 * The new root isn't persistent, but that's ok: we still have 1235 * an intent lock on the new root, and any updates that would 1236 * depend on the new root would have to update the new root. 1237 */ 1238 bch2_btree_node_unlock_write(trans, path, old); 1239 } 1240 1241 /* Interior node updates: */ 1242 1243 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1244 struct btree_trans *trans, 1245 struct btree_path *path, 1246 struct btree *b, 1247 struct btree_node_iter *node_iter, 1248 struct bkey_i *insert) 1249 { 1250 struct bch_fs *c = as->c; 1251 struct bkey_packed *k; 1252 struct printbuf buf = PRINTBUF; 1253 unsigned long old, new, v; 1254 1255 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1256 !btree_ptr_sectors_written(insert)); 1257 1258 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1259 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1260 1261 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1262 btree_node_type(b), WRITE, &buf) ?: 1263 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1264 printbuf_reset(&buf); 1265 prt_printf(&buf, "inserting invalid bkey\n "); 1266 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1267 prt_printf(&buf, "\n "); 1268 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1269 btree_node_type(b), WRITE, &buf); 1270 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1271 1272 bch2_fs_inconsistent(c, "%s", buf.buf); 1273 dump_stack(); 1274 } 1275 1276 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1277 ARRAY_SIZE(as->journal_entries)); 1278 1279 as->journal_u64s += 1280 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1281 BCH_JSET_ENTRY_btree_keys, 1282 b->c.btree_id, b->c.level, 1283 insert, insert->k.u64s); 1284 1285 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1286 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1287 bch2_btree_node_iter_advance(node_iter, b); 1288 1289 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1290 set_btree_node_dirty_acct(c, b); 1291 1292 v = READ_ONCE(b->flags); 1293 do { 1294 old = new = v; 1295 1296 new &= ~BTREE_WRITE_TYPE_MASK; 1297 new |= BTREE_WRITE_interior; 1298 new |= 1 << BTREE_NODE_need_write; 1299 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1300 1301 printbuf_exit(&buf); 1302 } 1303 1304 static void 1305 __bch2_btree_insert_keys_interior(struct btree_update *as, 1306 struct btree_trans *trans, 1307 struct btree_path *path, 1308 struct btree *b, 1309 struct btree_node_iter node_iter, 1310 struct keylist *keys) 1311 { 1312 struct bkey_i *insert = bch2_keylist_front(keys); 1313 struct bkey_packed *k; 1314 1315 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1316 1317 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1318 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1319 ; 1320 1321 while (!bch2_keylist_empty(keys)) { 1322 insert = bch2_keylist_front(keys); 1323 1324 if (bpos_gt(insert->k.p, b->key.k.p)) 1325 break; 1326 1327 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1328 bch2_keylist_pop_front(keys); 1329 } 1330 } 1331 1332 /* 1333 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1334 * node) 1335 */ 1336 static void __btree_split_node(struct btree_update *as, 1337 struct btree_trans *trans, 1338 struct btree *b, 1339 struct btree *n[2]) 1340 { 1341 struct bkey_packed *k; 1342 struct bpos n1_pos = POS_MIN; 1343 struct btree_node_iter iter; 1344 struct bset *bsets[2]; 1345 struct bkey_format_state format[2]; 1346 struct bkey_packed *out[2]; 1347 struct bkey uk; 1348 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1349 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1350 int i; 1351 1352 memset(&nr_keys, 0, sizeof(nr_keys)); 1353 1354 for (i = 0; i < 2; i++) { 1355 BUG_ON(n[i]->nsets != 1); 1356 1357 bsets[i] = btree_bset_first(n[i]); 1358 out[i] = bsets[i]->start; 1359 1360 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1361 bch2_bkey_format_init(&format[i]); 1362 } 1363 1364 u64s = 0; 1365 for_each_btree_node_key(b, k, &iter) { 1366 if (bkey_deleted(k)) 1367 continue; 1368 1369 i = u64s >= n1_u64s; 1370 u64s += k->u64s; 1371 uk = bkey_unpack_key(b, k); 1372 if (!i) 1373 n1_pos = uk.p; 1374 bch2_bkey_format_add_key(&format[i], &uk); 1375 1376 nr_keys[i].nr_keys++; 1377 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1378 } 1379 1380 btree_set_min(n[0], b->data->min_key); 1381 btree_set_max(n[0], n1_pos); 1382 btree_set_min(n[1], bpos_successor(n1_pos)); 1383 btree_set_max(n[1], b->data->max_key); 1384 1385 for (i = 0; i < 2; i++) { 1386 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1387 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1388 1389 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1390 1391 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1392 nr_keys[i].val_u64s; 1393 if (__vstruct_bytes(struct btree_node, u64s) > btree_bytes(as->c)) 1394 n[i]->data->format = b->format; 1395 1396 btree_node_set_format(n[i], n[i]->data->format); 1397 } 1398 1399 u64s = 0; 1400 for_each_btree_node_key(b, k, &iter) { 1401 if (bkey_deleted(k)) 1402 continue; 1403 1404 i = u64s >= n1_u64s; 1405 u64s += k->u64s; 1406 1407 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1408 ? &b->format: &bch2_bkey_format_current, k)) 1409 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1410 else 1411 bch2_bkey_unpack(b, (void *) out[i], k); 1412 1413 out[i]->needs_whiteout = false; 1414 1415 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1416 out[i] = bkey_p_next(out[i]); 1417 } 1418 1419 for (i = 0; i < 2; i++) { 1420 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1421 1422 BUG_ON(!bsets[i]->u64s); 1423 1424 set_btree_bset_end(n[i], n[i]->set); 1425 1426 btree_node_reset_sib_u64s(n[i]); 1427 1428 bch2_verify_btree_nr_keys(n[i]); 1429 1430 if (b->c.level) 1431 btree_node_interior_verify(as->c, n[i]); 1432 } 1433 } 1434 1435 /* 1436 * For updates to interior nodes, we've got to do the insert before we split 1437 * because the stuff we're inserting has to be inserted atomically. Post split, 1438 * the keys might have to go in different nodes and the split would no longer be 1439 * atomic. 1440 * 1441 * Worse, if the insert is from btree node coalescing, if we do the insert after 1442 * we do the split (and pick the pivot) - the pivot we pick might be between 1443 * nodes that were coalesced, and thus in the middle of a child node post 1444 * coalescing: 1445 */ 1446 static void btree_split_insert_keys(struct btree_update *as, 1447 struct btree_trans *trans, 1448 struct btree_path *path, 1449 struct btree *b, 1450 struct keylist *keys) 1451 { 1452 if (!bch2_keylist_empty(keys) && 1453 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1454 struct btree_node_iter node_iter; 1455 1456 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1457 1458 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1459 1460 btree_node_interior_verify(as->c, b); 1461 } 1462 } 1463 1464 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1465 struct btree_path *path, struct btree *b, 1466 struct keylist *keys, unsigned flags) 1467 { 1468 struct bch_fs *c = as->c; 1469 struct btree *parent = btree_node_parent(path, b); 1470 struct btree *n1, *n2 = NULL, *n3 = NULL; 1471 struct btree_path *path1 = NULL, *path2 = NULL; 1472 u64 start_time = local_clock(); 1473 int ret = 0; 1474 1475 BUG_ON(!parent && (b != btree_node_root(c, b))); 1476 BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1)); 1477 1478 bch2_btree_interior_update_will_free_node(as, b); 1479 1480 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1481 struct btree *n[2]; 1482 1483 trace_and_count(c, btree_node_split, c, b); 1484 1485 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1486 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1487 1488 __btree_split_node(as, trans, b, n); 1489 1490 if (keys) { 1491 btree_split_insert_keys(as, trans, path, n1, keys); 1492 btree_split_insert_keys(as, trans, path, n2, keys); 1493 BUG_ON(!bch2_keylist_empty(keys)); 1494 } 1495 1496 bch2_btree_build_aux_trees(n2); 1497 bch2_btree_build_aux_trees(n1); 1498 1499 bch2_btree_update_add_new_node(as, n1); 1500 bch2_btree_update_add_new_node(as, n2); 1501 six_unlock_write(&n2->c.lock); 1502 six_unlock_write(&n1->c.lock); 1503 1504 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1505 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1506 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1507 bch2_btree_path_level_init(trans, path1, n1); 1508 1509 path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p); 1510 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1511 mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1512 bch2_btree_path_level_init(trans, path2, n2); 1513 1514 /* 1515 * Note that on recursive parent_keys == keys, so we 1516 * can't start adding new keys to parent_keys before emptying it 1517 * out (which we did with btree_split_insert_keys() above) 1518 */ 1519 bch2_keylist_add(&as->parent_keys, &n1->key); 1520 bch2_keylist_add(&as->parent_keys, &n2->key); 1521 1522 if (!parent) { 1523 /* Depth increases, make a new root */ 1524 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1525 1526 bch2_btree_update_add_new_node(as, n3); 1527 six_unlock_write(&n3->c.lock); 1528 1529 path2->locks_want++; 1530 BUG_ON(btree_node_locked(path2, n3->c.level)); 1531 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1532 mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1533 bch2_btree_path_level_init(trans, path2, n3); 1534 1535 n3->sib_u64s[0] = U16_MAX; 1536 n3->sib_u64s[1] = U16_MAX; 1537 1538 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1539 } 1540 } else { 1541 trace_and_count(c, btree_node_compact, c, b); 1542 1543 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1544 1545 if (keys) { 1546 btree_split_insert_keys(as, trans, path, n1, keys); 1547 BUG_ON(!bch2_keylist_empty(keys)); 1548 } 1549 1550 bch2_btree_build_aux_trees(n1); 1551 bch2_btree_update_add_new_node(as, n1); 1552 six_unlock_write(&n1->c.lock); 1553 1554 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1555 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1556 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1557 bch2_btree_path_level_init(trans, path1, n1); 1558 1559 if (parent) 1560 bch2_keylist_add(&as->parent_keys, &n1->key); 1561 } 1562 1563 /* New nodes all written, now make them visible: */ 1564 1565 if (parent) { 1566 /* Split a non root node */ 1567 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1568 if (ret) 1569 goto err; 1570 } else if (n3) { 1571 bch2_btree_set_root(as, trans, path, n3); 1572 } else { 1573 /* Root filled up but didn't need to be split */ 1574 bch2_btree_set_root(as, trans, path, n1); 1575 } 1576 1577 if (n3) { 1578 bch2_btree_update_get_open_buckets(as, n3); 1579 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1580 } 1581 if (n2) { 1582 bch2_btree_update_get_open_buckets(as, n2); 1583 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1584 } 1585 bch2_btree_update_get_open_buckets(as, n1); 1586 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1587 1588 /* 1589 * The old node must be freed (in memory) _before_ unlocking the new 1590 * nodes - else another thread could re-acquire a read lock on the old 1591 * node after another thread has locked and updated the new node, thus 1592 * seeing stale data: 1593 */ 1594 bch2_btree_node_free_inmem(trans, path, b); 1595 1596 if (n3) 1597 bch2_trans_node_add(trans, n3); 1598 if (n2) 1599 bch2_trans_node_add(trans, n2); 1600 bch2_trans_node_add(trans, n1); 1601 1602 if (n3) 1603 six_unlock_intent(&n3->c.lock); 1604 if (n2) 1605 six_unlock_intent(&n2->c.lock); 1606 six_unlock_intent(&n1->c.lock); 1607 out: 1608 if (path2) { 1609 __bch2_btree_path_unlock(trans, path2); 1610 bch2_path_put(trans, path2, true); 1611 } 1612 if (path1) { 1613 __bch2_btree_path_unlock(trans, path1); 1614 bch2_path_put(trans, path1, true); 1615 } 1616 1617 bch2_trans_verify_locks(trans); 1618 1619 bch2_time_stats_update(&c->times[n2 1620 ? BCH_TIME_btree_node_split 1621 : BCH_TIME_btree_node_compact], 1622 start_time); 1623 return ret; 1624 err: 1625 if (n3) 1626 bch2_btree_node_free_never_used(as, trans, n3); 1627 if (n2) 1628 bch2_btree_node_free_never_used(as, trans, n2); 1629 bch2_btree_node_free_never_used(as, trans, n1); 1630 goto out; 1631 } 1632 1633 static void 1634 bch2_btree_insert_keys_interior(struct btree_update *as, 1635 struct btree_trans *trans, 1636 struct btree_path *path, 1637 struct btree *b, 1638 struct keylist *keys) 1639 { 1640 struct btree_path *linked; 1641 1642 __bch2_btree_insert_keys_interior(as, trans, path, b, 1643 path->l[b->c.level].iter, keys); 1644 1645 btree_update_updated_node(as, b); 1646 1647 trans_for_each_path_with_node(trans, b, linked) 1648 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1649 1650 bch2_trans_verify_paths(trans); 1651 } 1652 1653 /** 1654 * bch2_btree_insert_node - insert bkeys into a given btree node 1655 * 1656 * @as: btree_update object 1657 * @trans: btree_trans object 1658 * @path: path that points to current node 1659 * @b: node to insert keys into 1660 * @keys: list of keys to insert 1661 * @flags: transaction commit flags 1662 * 1663 * Returns: 0 on success, typically transaction restart error on failure 1664 * 1665 * Inserts as many keys as it can into a given btree node, splitting it if full. 1666 * If a split occurred, this function will return early. This can only happen 1667 * for leaf nodes -- inserts into interior nodes have to be atomic. 1668 */ 1669 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1670 struct btree_path *path, struct btree *b, 1671 struct keylist *keys, unsigned flags) 1672 { 1673 struct bch_fs *c = as->c; 1674 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1675 int old_live_u64s = b->nr.live_u64s; 1676 int live_u64s_added, u64s_added; 1677 int ret; 1678 1679 lockdep_assert_held(&c->gc_lock); 1680 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1681 BUG_ON(!b->c.level); 1682 BUG_ON(!as || as->b); 1683 bch2_verify_keylist_sorted(keys); 1684 1685 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1686 if (ret) 1687 return ret; 1688 1689 bch2_btree_node_prep_for_write(trans, path, b); 1690 1691 if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) { 1692 bch2_btree_node_unlock_write(trans, path, b); 1693 goto split; 1694 } 1695 1696 btree_node_interior_verify(c, b); 1697 1698 bch2_btree_insert_keys_interior(as, trans, path, b, keys); 1699 1700 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1701 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1702 1703 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1704 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1705 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1706 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1707 1708 if (u64s_added > live_u64s_added && 1709 bch2_maybe_compact_whiteouts(c, b)) 1710 bch2_trans_node_reinit_iter(trans, b); 1711 1712 bch2_btree_node_unlock_write(trans, path, b); 1713 1714 btree_node_interior_verify(c, b); 1715 return 0; 1716 split: 1717 /* 1718 * We could attempt to avoid the transaction restart, by calling 1719 * bch2_btree_path_upgrade() and allocating more nodes: 1720 */ 1721 if (b->c.level >= as->update_level) { 1722 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1723 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1724 } 1725 1726 return btree_split(as, trans, path, b, keys, flags); 1727 } 1728 1729 int bch2_btree_split_leaf(struct btree_trans *trans, 1730 struct btree_path *path, 1731 unsigned flags) 1732 { 1733 struct btree *b = path_l(path)->b; 1734 struct btree_update *as; 1735 unsigned l; 1736 int ret = 0; 1737 1738 as = bch2_btree_update_start(trans, path, path->level, 1739 true, flags); 1740 if (IS_ERR(as)) 1741 return PTR_ERR(as); 1742 1743 ret = btree_split(as, trans, path, b, NULL, flags); 1744 if (ret) { 1745 bch2_btree_update_free(as, trans); 1746 return ret; 1747 } 1748 1749 bch2_btree_update_done(as, trans); 1750 1751 for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++) 1752 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1753 1754 return ret; 1755 } 1756 1757 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1758 struct btree_path *path, 1759 unsigned level, 1760 unsigned flags, 1761 enum btree_node_sibling sib) 1762 { 1763 struct bch_fs *c = trans->c; 1764 struct btree_path *sib_path = NULL, *new_path = NULL; 1765 struct btree_update *as; 1766 struct bkey_format_state new_s; 1767 struct bkey_format new_f; 1768 struct bkey_i delete; 1769 struct btree *b, *m, *n, *prev, *next, *parent; 1770 struct bpos sib_pos; 1771 size_t sib_u64s; 1772 u64 start_time = local_clock(); 1773 int ret = 0; 1774 1775 BUG_ON(!path->should_be_locked); 1776 BUG_ON(!btree_node_locked(path, level)); 1777 1778 b = path->l[level].b; 1779 1780 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1781 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1782 b->sib_u64s[sib] = U16_MAX; 1783 return 0; 1784 } 1785 1786 sib_pos = sib == btree_prev_sib 1787 ? bpos_predecessor(b->data->min_key) 1788 : bpos_successor(b->data->max_key); 1789 1790 sib_path = bch2_path_get(trans, path->btree_id, sib_pos, 1791 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1792 ret = bch2_btree_path_traverse(trans, sib_path, false); 1793 if (ret) 1794 goto err; 1795 1796 btree_path_set_should_be_locked(sib_path); 1797 1798 m = sib_path->l[level].b; 1799 1800 if (btree_node_parent(path, b) != 1801 btree_node_parent(sib_path, m)) { 1802 b->sib_u64s[sib] = U16_MAX; 1803 goto out; 1804 } 1805 1806 if (sib == btree_prev_sib) { 1807 prev = m; 1808 next = b; 1809 } else { 1810 prev = b; 1811 next = m; 1812 } 1813 1814 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 1815 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 1816 1817 bch2_bpos_to_text(&buf1, prev->data->max_key); 1818 bch2_bpos_to_text(&buf2, next->data->min_key); 1819 bch_err(c, 1820 "%s(): btree topology error:\n" 1821 " prev ends at %s\n" 1822 " next starts at %s", 1823 __func__, buf1.buf, buf2.buf); 1824 printbuf_exit(&buf1); 1825 printbuf_exit(&buf2); 1826 bch2_topology_error(c); 1827 ret = -EIO; 1828 goto err; 1829 } 1830 1831 bch2_bkey_format_init(&new_s); 1832 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 1833 __bch2_btree_calc_format(&new_s, prev); 1834 __bch2_btree_calc_format(&new_s, next); 1835 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 1836 new_f = bch2_bkey_format_done(&new_s); 1837 1838 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 1839 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 1840 1841 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 1842 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1843 sib_u64s /= 2; 1844 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1845 } 1846 1847 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 1848 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 1849 b->sib_u64s[sib] = sib_u64s; 1850 1851 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 1852 goto out; 1853 1854 parent = btree_node_parent(path, b); 1855 as = bch2_btree_update_start(trans, path, level, false, 1856 BTREE_INSERT_NOFAIL|flags); 1857 ret = PTR_ERR_OR_ZERO(as); 1858 if (ret) 1859 goto err; 1860 1861 trace_and_count(c, btree_node_merge, c, b); 1862 1863 bch2_btree_interior_update_will_free_node(as, b); 1864 bch2_btree_interior_update_will_free_node(as, m); 1865 1866 n = bch2_btree_node_alloc(as, trans, b->c.level); 1867 1868 SET_BTREE_NODE_SEQ(n->data, 1869 max(BTREE_NODE_SEQ(b->data), 1870 BTREE_NODE_SEQ(m->data)) + 1); 1871 1872 btree_set_min(n, prev->data->min_key); 1873 btree_set_max(n, next->data->max_key); 1874 1875 n->data->format = new_f; 1876 btree_node_set_format(n, new_f); 1877 1878 bch2_btree_sort_into(c, n, prev); 1879 bch2_btree_sort_into(c, n, next); 1880 1881 bch2_btree_build_aux_trees(n); 1882 bch2_btree_update_add_new_node(as, n); 1883 six_unlock_write(&n->c.lock); 1884 1885 new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p); 1886 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1887 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1888 bch2_btree_path_level_init(trans, new_path, n); 1889 1890 bkey_init(&delete.k); 1891 delete.k.p = prev->key.k.p; 1892 bch2_keylist_add(&as->parent_keys, &delete); 1893 bch2_keylist_add(&as->parent_keys, &n->key); 1894 1895 bch2_trans_verify_paths(trans); 1896 1897 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1898 if (ret) 1899 goto err_free_update; 1900 1901 bch2_trans_verify_paths(trans); 1902 1903 bch2_btree_update_get_open_buckets(as, n); 1904 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1905 1906 bch2_btree_node_free_inmem(trans, path, b); 1907 bch2_btree_node_free_inmem(trans, sib_path, m); 1908 1909 bch2_trans_node_add(trans, n); 1910 1911 bch2_trans_verify_paths(trans); 1912 1913 six_unlock_intent(&n->c.lock); 1914 1915 bch2_btree_update_done(as, trans); 1916 1917 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 1918 out: 1919 err: 1920 if (new_path) 1921 bch2_path_put(trans, new_path, true); 1922 bch2_path_put(trans, sib_path, true); 1923 bch2_trans_verify_locks(trans); 1924 return ret; 1925 err_free_update: 1926 bch2_btree_node_free_never_used(as, trans, n); 1927 bch2_btree_update_free(as, trans); 1928 goto out; 1929 } 1930 1931 int bch2_btree_node_rewrite(struct btree_trans *trans, 1932 struct btree_iter *iter, 1933 struct btree *b, 1934 unsigned flags) 1935 { 1936 struct bch_fs *c = trans->c; 1937 struct btree_path *new_path = NULL; 1938 struct btree *n, *parent; 1939 struct btree_update *as; 1940 int ret; 1941 1942 flags |= BTREE_INSERT_NOFAIL; 1943 1944 parent = btree_node_parent(iter->path, b); 1945 as = bch2_btree_update_start(trans, iter->path, b->c.level, 1946 false, flags); 1947 ret = PTR_ERR_OR_ZERO(as); 1948 if (ret) 1949 goto out; 1950 1951 bch2_btree_interior_update_will_free_node(as, b); 1952 1953 n = bch2_btree_node_alloc_replacement(as, trans, b); 1954 1955 bch2_btree_build_aux_trees(n); 1956 bch2_btree_update_add_new_node(as, n); 1957 six_unlock_write(&n->c.lock); 1958 1959 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 1960 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1961 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1962 bch2_btree_path_level_init(trans, new_path, n); 1963 1964 trace_and_count(c, btree_node_rewrite, c, b); 1965 1966 if (parent) { 1967 bch2_keylist_add(&as->parent_keys, &n->key); 1968 ret = bch2_btree_insert_node(as, trans, iter->path, parent, 1969 &as->parent_keys, flags); 1970 if (ret) 1971 goto err; 1972 } else { 1973 bch2_btree_set_root(as, trans, iter->path, n); 1974 } 1975 1976 bch2_btree_update_get_open_buckets(as, n); 1977 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1978 1979 bch2_btree_node_free_inmem(trans, iter->path, b); 1980 1981 bch2_trans_node_add(trans, n); 1982 six_unlock_intent(&n->c.lock); 1983 1984 bch2_btree_update_done(as, trans); 1985 out: 1986 if (new_path) 1987 bch2_path_put(trans, new_path, true); 1988 bch2_trans_downgrade(trans); 1989 return ret; 1990 err: 1991 bch2_btree_node_free_never_used(as, trans, n); 1992 bch2_btree_update_free(as, trans); 1993 goto out; 1994 } 1995 1996 struct async_btree_rewrite { 1997 struct bch_fs *c; 1998 struct work_struct work; 1999 struct list_head list; 2000 enum btree_id btree_id; 2001 unsigned level; 2002 struct bpos pos; 2003 __le64 seq; 2004 }; 2005 2006 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2007 struct async_btree_rewrite *a) 2008 { 2009 struct bch_fs *c = trans->c; 2010 struct btree_iter iter; 2011 struct btree *b; 2012 int ret; 2013 2014 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2015 BTREE_MAX_DEPTH, a->level, 0); 2016 b = bch2_btree_iter_peek_node(&iter); 2017 ret = PTR_ERR_OR_ZERO(b); 2018 if (ret) 2019 goto out; 2020 2021 if (!b || b->data->keys.seq != a->seq) { 2022 struct printbuf buf = PRINTBUF; 2023 2024 if (b) 2025 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2026 else 2027 prt_str(&buf, "(null"); 2028 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2029 __func__, a->seq, buf.buf); 2030 printbuf_exit(&buf); 2031 goto out; 2032 } 2033 2034 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2035 out: 2036 bch2_trans_iter_exit(trans, &iter); 2037 2038 return ret; 2039 } 2040 2041 static void async_btree_node_rewrite_work(struct work_struct *work) 2042 { 2043 struct async_btree_rewrite *a = 2044 container_of(work, struct async_btree_rewrite, work); 2045 struct bch_fs *c = a->c; 2046 int ret; 2047 2048 ret = bch2_trans_do(c, NULL, NULL, 0, 2049 async_btree_node_rewrite_trans(trans, a)); 2050 if (ret) 2051 bch_err_fn(c, ret); 2052 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2053 kfree(a); 2054 } 2055 2056 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2057 { 2058 struct async_btree_rewrite *a; 2059 int ret; 2060 2061 a = kmalloc(sizeof(*a), GFP_NOFS); 2062 if (!a) { 2063 bch_err(c, "%s: error allocating memory", __func__); 2064 return; 2065 } 2066 2067 a->c = c; 2068 a->btree_id = b->c.btree_id; 2069 a->level = b->c.level; 2070 a->pos = b->key.k.p; 2071 a->seq = b->data->keys.seq; 2072 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2073 2074 if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) { 2075 mutex_lock(&c->pending_node_rewrites_lock); 2076 list_add(&a->list, &c->pending_node_rewrites); 2077 mutex_unlock(&c->pending_node_rewrites_lock); 2078 return; 2079 } 2080 2081 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2082 if (test_bit(BCH_FS_STARTED, &c->flags)) { 2083 bch_err(c, "%s: error getting c->writes ref", __func__); 2084 kfree(a); 2085 return; 2086 } 2087 2088 ret = bch2_fs_read_write_early(c); 2089 if (ret) { 2090 bch_err_msg(c, ret, "going read-write"); 2091 kfree(a); 2092 return; 2093 } 2094 2095 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2096 } 2097 2098 queue_work(c->btree_interior_update_worker, &a->work); 2099 } 2100 2101 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2102 { 2103 struct async_btree_rewrite *a, *n; 2104 2105 mutex_lock(&c->pending_node_rewrites_lock); 2106 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2107 list_del(&a->list); 2108 2109 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2110 queue_work(c->btree_interior_update_worker, &a->work); 2111 } 2112 mutex_unlock(&c->pending_node_rewrites_lock); 2113 } 2114 2115 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2116 { 2117 struct async_btree_rewrite *a, *n; 2118 2119 mutex_lock(&c->pending_node_rewrites_lock); 2120 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2121 list_del(&a->list); 2122 2123 kfree(a); 2124 } 2125 mutex_unlock(&c->pending_node_rewrites_lock); 2126 } 2127 2128 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2129 struct btree_iter *iter, 2130 struct btree *b, struct btree *new_hash, 2131 struct bkey_i *new_key, 2132 unsigned commit_flags, 2133 bool skip_triggers) 2134 { 2135 struct bch_fs *c = trans->c; 2136 struct btree_iter iter2 = { NULL }; 2137 struct btree *parent; 2138 int ret; 2139 2140 if (!skip_triggers) { 2141 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1, 2142 bkey_i_to_s_c(&b->key), 0); 2143 if (ret) 2144 return ret; 2145 2146 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1, 2147 new_key, 0); 2148 if (ret) 2149 return ret; 2150 } 2151 2152 if (new_hash) { 2153 bkey_copy(&new_hash->key, new_key); 2154 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2155 new_hash, b->c.level, b->c.btree_id); 2156 BUG_ON(ret); 2157 } 2158 2159 parent = btree_node_parent(iter->path, b); 2160 if (parent) { 2161 bch2_trans_copy_iter(&iter2, iter); 2162 2163 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2164 iter2.flags & BTREE_ITER_INTENT, 2165 _THIS_IP_); 2166 2167 BUG_ON(iter2.path->level != b->c.level); 2168 BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p)); 2169 2170 btree_path_set_level_up(trans, iter2.path); 2171 2172 trans->paths_sorted = false; 2173 2174 ret = bch2_btree_iter_traverse(&iter2) ?: 2175 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2176 if (ret) 2177 goto err; 2178 } else { 2179 BUG_ON(btree_node_root(c, b) != b); 2180 2181 ret = darray_make_room(&trans->extra_journal_entries, 2182 jset_u64s(new_key->k.u64s)); 2183 if (ret) 2184 return ret; 2185 2186 journal_entry_set((void *) &darray_top(trans->extra_journal_entries), 2187 BCH_JSET_ENTRY_btree_root, 2188 b->c.btree_id, b->c.level, 2189 new_key, new_key->k.u64s); 2190 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s); 2191 } 2192 2193 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2194 if (ret) 2195 goto err; 2196 2197 bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c); 2198 2199 if (new_hash) { 2200 mutex_lock(&c->btree_cache.lock); 2201 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2202 bch2_btree_node_hash_remove(&c->btree_cache, b); 2203 2204 bkey_copy(&b->key, new_key); 2205 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2206 BUG_ON(ret); 2207 mutex_unlock(&c->btree_cache.lock); 2208 } else { 2209 bkey_copy(&b->key, new_key); 2210 } 2211 2212 bch2_btree_node_unlock_write(trans, iter->path, b); 2213 out: 2214 bch2_trans_iter_exit(trans, &iter2); 2215 return ret; 2216 err: 2217 if (new_hash) { 2218 mutex_lock(&c->btree_cache.lock); 2219 bch2_btree_node_hash_remove(&c->btree_cache, b); 2220 mutex_unlock(&c->btree_cache.lock); 2221 } 2222 goto out; 2223 } 2224 2225 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2226 struct btree *b, struct bkey_i *new_key, 2227 unsigned commit_flags, bool skip_triggers) 2228 { 2229 struct bch_fs *c = trans->c; 2230 struct btree *new_hash = NULL; 2231 struct btree_path *path = iter->path; 2232 struct closure cl; 2233 int ret = 0; 2234 2235 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2236 if (ret) 2237 return ret; 2238 2239 closure_init_stack(&cl); 2240 2241 /* 2242 * check btree_ptr_hash_val() after @b is locked by 2243 * btree_iter_traverse(): 2244 */ 2245 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2246 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2247 if (ret) { 2248 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2249 if (ret) 2250 return ret; 2251 } 2252 2253 new_hash = bch2_btree_node_mem_alloc(trans, false); 2254 } 2255 2256 path->intent_ref++; 2257 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2258 commit_flags, skip_triggers); 2259 --path->intent_ref; 2260 2261 if (new_hash) { 2262 mutex_lock(&c->btree_cache.lock); 2263 list_move(&new_hash->list, &c->btree_cache.freeable); 2264 mutex_unlock(&c->btree_cache.lock); 2265 2266 six_unlock_write(&new_hash->c.lock); 2267 six_unlock_intent(&new_hash->c.lock); 2268 } 2269 closure_sync(&cl); 2270 bch2_btree_cache_cannibalize_unlock(c); 2271 return ret; 2272 } 2273 2274 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2275 struct btree *b, struct bkey_i *new_key, 2276 unsigned commit_flags, bool skip_triggers) 2277 { 2278 struct btree_iter iter; 2279 int ret; 2280 2281 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2282 BTREE_MAX_DEPTH, b->c.level, 2283 BTREE_ITER_INTENT); 2284 ret = bch2_btree_iter_traverse(&iter); 2285 if (ret) 2286 goto out; 2287 2288 /* has node been freed? */ 2289 if (iter.path->l[b->c.level].b != b) { 2290 /* node has been freed: */ 2291 BUG_ON(!btree_node_dying(b)); 2292 goto out; 2293 } 2294 2295 BUG_ON(!btree_node_hashed(b)); 2296 2297 struct bch_extent_ptr *ptr; 2298 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2299 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2300 2301 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2302 commit_flags, skip_triggers); 2303 out: 2304 bch2_trans_iter_exit(trans, &iter); 2305 return ret; 2306 } 2307 2308 /* Init code: */ 2309 2310 /* 2311 * Only for filesystem bringup, when first reading the btree roots or allocating 2312 * btree roots when initializing a new filesystem: 2313 */ 2314 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2315 { 2316 BUG_ON(btree_node_root(c, b)); 2317 2318 bch2_btree_set_root_inmem(c, b); 2319 } 2320 2321 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) 2322 { 2323 struct bch_fs *c = trans->c; 2324 struct closure cl; 2325 struct btree *b; 2326 int ret; 2327 2328 closure_init_stack(&cl); 2329 2330 do { 2331 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2332 closure_sync(&cl); 2333 } while (ret); 2334 2335 b = bch2_btree_node_mem_alloc(trans, false); 2336 bch2_btree_cache_cannibalize_unlock(c); 2337 2338 set_btree_node_fake(b); 2339 set_btree_node_need_rewrite(b); 2340 b->c.level = 0; 2341 b->c.btree_id = id; 2342 2343 bkey_btree_ptr_init(&b->key); 2344 b->key.k.p = SPOS_MAX; 2345 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2346 2347 bch2_bset_init_first(b, &b->data->keys); 2348 bch2_btree_build_aux_trees(b); 2349 2350 b->data->flags = 0; 2351 btree_set_min(b, POS_MIN); 2352 btree_set_max(b, SPOS_MAX); 2353 b->data->format = bch2_btree_calc_format(b); 2354 btree_node_set_format(b, b->data->format); 2355 2356 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2357 b->c.level, b->c.btree_id); 2358 BUG_ON(ret); 2359 2360 bch2_btree_set_root_inmem(c, b); 2361 2362 six_unlock_write(&b->c.lock); 2363 six_unlock_intent(&b->c.lock); 2364 return 0; 2365 } 2366 2367 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) 2368 { 2369 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); 2370 } 2371 2372 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2373 { 2374 struct btree_update *as; 2375 2376 mutex_lock(&c->btree_interior_update_lock); 2377 list_for_each_entry(as, &c->btree_interior_update_list, list) 2378 prt_printf(out, "%p m %u w %u r %u j %llu\n", 2379 as, 2380 as->mode, 2381 as->nodes_written, 2382 closure_nr_remaining(&as->cl), 2383 as->journal.seq); 2384 mutex_unlock(&c->btree_interior_update_lock); 2385 } 2386 2387 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2388 { 2389 bool ret; 2390 2391 mutex_lock(&c->btree_interior_update_lock); 2392 ret = !list_empty(&c->btree_interior_update_list); 2393 mutex_unlock(&c->btree_interior_update_lock); 2394 2395 return ret; 2396 } 2397 2398 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2399 { 2400 bool ret = bch2_btree_interior_updates_pending(c); 2401 2402 if (ret) 2403 closure_wait_event(&c->btree_interior_update_wait, 2404 !bch2_btree_interior_updates_pending(c)); 2405 return ret; 2406 } 2407 2408 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2409 { 2410 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2411 2412 mutex_lock(&c->btree_root_lock); 2413 2414 r->level = entry->level; 2415 r->alive = true; 2416 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2417 2418 mutex_unlock(&c->btree_root_lock); 2419 } 2420 2421 struct jset_entry * 2422 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2423 struct jset_entry *end, 2424 unsigned long skip) 2425 { 2426 unsigned i; 2427 2428 mutex_lock(&c->btree_root_lock); 2429 2430 for (i = 0; i < btree_id_nr_alive(c); i++) { 2431 struct btree_root *r = bch2_btree_id_root(c, i); 2432 2433 if (r->alive && !test_bit(i, &skip)) { 2434 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2435 i, r->level, &r->key, r->key.k.u64s); 2436 end = vstruct_next(end); 2437 } 2438 } 2439 2440 mutex_unlock(&c->btree_root_lock); 2441 2442 return end; 2443 } 2444 2445 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2446 { 2447 if (c->btree_interior_update_worker) 2448 destroy_workqueue(c->btree_interior_update_worker); 2449 mempool_exit(&c->btree_interior_update_pool); 2450 } 2451 2452 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2453 { 2454 mutex_init(&c->btree_reserve_cache_lock); 2455 INIT_LIST_HEAD(&c->btree_interior_update_list); 2456 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2457 mutex_init(&c->btree_interior_update_lock); 2458 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2459 2460 INIT_LIST_HEAD(&c->pending_node_rewrites); 2461 mutex_init(&c->pending_node_rewrites_lock); 2462 } 2463 2464 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2465 { 2466 c->btree_interior_update_worker = 2467 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 2468 if (!c->btree_interior_update_worker) 2469 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2470 2471 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2472 sizeof(struct btree_update))) 2473 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2474 2475 return 0; 2476 } 2477