1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_buf.h" 6 #include "bkey_methods.h" 7 #include "btree_cache.h" 8 #include "btree_gc.h" 9 #include "btree_journal_iter.h" 10 #include "btree_update.h" 11 #include "btree_update_interior.h" 12 #include "btree_io.h" 13 #include "btree_iter.h" 14 #include "btree_locking.h" 15 #include "buckets.h" 16 #include "clock.h" 17 #include "error.h" 18 #include "extents.h" 19 #include "journal.h" 20 #include "journal_reclaim.h" 21 #include "keylist.h" 22 #include "recovery_passes.h" 23 #include "replicas.h" 24 #include "sb-members.h" 25 #include "super-io.h" 26 #include "trace.h" 27 28 #include <linux/random.h> 29 30 static const char * const bch2_btree_update_modes[] = { 31 #define x(t) #t, 32 BTREE_UPDATE_MODES() 33 #undef x 34 NULL 35 }; 36 37 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 38 btree_path_idx_t, struct btree *, struct keylist *); 39 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 40 41 /* 42 * Verify that child nodes correctly span parent node's range: 43 */ 44 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b) 45 { 46 struct bch_fs *c = trans->c; 47 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2 48 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key 49 : b->data->min_key; 50 struct btree_and_journal_iter iter; 51 struct bkey_s_c k; 52 struct printbuf buf = PRINTBUF; 53 struct bkey_buf prev; 54 int ret = 0; 55 56 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && 57 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, 58 b->data->min_key)); 59 60 if (b == btree_node_root(c, b)) { 61 if (!bpos_eq(b->data->min_key, POS_MIN)) { 62 printbuf_reset(&buf); 63 bch2_bpos_to_text(&buf, b->data->min_key); 64 need_fsck_err(trans, btree_root_bad_min_key, 65 "btree root with incorrect min_key: %s", buf.buf); 66 goto topology_repair; 67 } 68 69 if (!bpos_eq(b->data->max_key, SPOS_MAX)) { 70 printbuf_reset(&buf); 71 bch2_bpos_to_text(&buf, b->data->max_key); 72 need_fsck_err(trans, btree_root_bad_max_key, 73 "btree root with incorrect max_key: %s", buf.buf); 74 goto topology_repair; 75 } 76 } 77 78 if (!b->c.level) 79 return 0; 80 81 bch2_bkey_buf_init(&prev); 82 bkey_init(&prev.k->k); 83 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); 84 85 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { 86 if (k.k->type != KEY_TYPE_btree_ptr_v2) 87 goto out; 88 89 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 90 91 struct bpos expected_min = bkey_deleted(&prev.k->k) 92 ? node_min 93 : bpos_successor(prev.k->k.p); 94 95 if (!bpos_eq(expected_min, bp.v->min_key)) { 96 bch2_topology_error(c); 97 98 printbuf_reset(&buf); 99 prt_str(&buf, "end of prev node doesn't match start of next node\n"), 100 prt_printf(&buf, " in btree %s level %u node ", 101 bch2_btree_id_str(b->c.btree_id), b->c.level); 102 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 103 prt_str(&buf, "\n prev "); 104 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 105 prt_str(&buf, "\n next "); 106 bch2_bkey_val_to_text(&buf, c, k); 107 108 need_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf); 109 goto topology_repair; 110 } 111 112 bch2_bkey_buf_reassemble(&prev, c, k); 113 bch2_btree_and_journal_iter_advance(&iter); 114 } 115 116 if (bkey_deleted(&prev.k->k)) { 117 bch2_topology_error(c); 118 119 printbuf_reset(&buf); 120 prt_str(&buf, "empty interior node\n"); 121 prt_printf(&buf, " in btree %s level %u node ", 122 bch2_btree_id_str(b->c.btree_id), b->c.level); 123 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 124 125 need_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf); 126 goto topology_repair; 127 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) { 128 bch2_topology_error(c); 129 130 printbuf_reset(&buf); 131 prt_str(&buf, "last child node doesn't end at end of parent node\n"); 132 prt_printf(&buf, " in btree %s level %u node ", 133 bch2_btree_id_str(b->c.btree_id), b->c.level); 134 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 135 prt_str(&buf, "\n last key "); 136 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 137 138 need_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf); 139 goto topology_repair; 140 } 141 out: 142 fsck_err: 143 bch2_btree_and_journal_iter_exit(&iter); 144 bch2_bkey_buf_exit(&prev, c); 145 printbuf_exit(&buf); 146 return ret; 147 topology_repair: 148 if ((c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) && 149 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) { 150 bch2_inconsistent_error(c); 151 ret = -BCH_ERR_btree_need_topology_repair; 152 } else { 153 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); 154 } 155 goto out; 156 } 157 158 /* Calculate ideal packed bkey format for new btree nodes: */ 159 160 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 161 { 162 struct bkey_packed *k; 163 struct bkey uk; 164 165 for_each_bset(b, t) 166 bset_tree_for_each_key(b, t, k) 167 if (!bkey_deleted(k)) { 168 uk = bkey_unpack_key(b, k); 169 bch2_bkey_format_add_key(s, &uk); 170 } 171 } 172 173 static struct bkey_format bch2_btree_calc_format(struct btree *b) 174 { 175 struct bkey_format_state s; 176 177 bch2_bkey_format_init(&s); 178 bch2_bkey_format_add_pos(&s, b->data->min_key); 179 bch2_bkey_format_add_pos(&s, b->data->max_key); 180 __bch2_btree_calc_format(&s, b); 181 182 return bch2_bkey_format_done(&s); 183 } 184 185 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 186 struct bkey_format *old_f, 187 struct bkey_format *new_f) 188 { 189 /* stupid integer promotion rules */ 190 ssize_t delta = 191 (((int) new_f->key_u64s - old_f->key_u64s) * 192 (int) nr.packed_keys) + 193 (((int) new_f->key_u64s - BKEY_U64s) * 194 (int) nr.unpacked_keys); 195 196 BUG_ON(delta + nr.live_u64s < 0); 197 198 return nr.live_u64s + delta; 199 } 200 201 /** 202 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 203 * 204 * @c: filesystem handle 205 * @b: btree node to rewrite 206 * @nr: number of keys for new node (i.e. b->nr) 207 * @new_f: bkey format to translate keys to 208 * 209 * Returns: true if all re-packed keys will be able to fit in a new node. 210 * 211 * Assumes all keys will successfully pack with the new format. 212 */ 213 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 214 struct btree_nr_keys nr, 215 struct bkey_format *new_f) 216 { 217 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 218 219 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 220 } 221 222 /* Btree node freeing/allocation: */ 223 224 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 225 { 226 struct bch_fs *c = trans->c; 227 228 trace_and_count(c, btree_node_free, trans, b); 229 230 BUG_ON(btree_node_write_blocked(b)); 231 BUG_ON(btree_node_dirty(b)); 232 BUG_ON(btree_node_need_write(b)); 233 BUG_ON(b == btree_node_root(c, b)); 234 BUG_ON(b->ob.nr); 235 BUG_ON(!list_empty(&b->write_blocked)); 236 BUG_ON(b->will_make_reachable); 237 238 clear_btree_node_noevict(b); 239 240 mutex_lock(&c->btree_cache.lock); 241 list_move(&b->list, &c->btree_cache.freeable); 242 mutex_unlock(&c->btree_cache.lock); 243 } 244 245 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 246 struct btree_path *path, 247 struct btree *b) 248 { 249 struct bch_fs *c = trans->c; 250 unsigned i, level = b->c.level; 251 252 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 253 bch2_btree_node_hash_remove(&c->btree_cache, b); 254 __btree_node_free(trans, b); 255 six_unlock_write(&b->c.lock); 256 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 257 258 trans_for_each_path(trans, path, i) 259 if (path->l[level].b == b) { 260 btree_node_unlock(trans, path, level); 261 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 262 } 263 } 264 265 static void bch2_btree_node_free_never_used(struct btree_update *as, 266 struct btree_trans *trans, 267 struct btree *b) 268 { 269 struct bch_fs *c = as->c; 270 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 271 struct btree_path *path; 272 unsigned i, level = b->c.level; 273 274 BUG_ON(!list_empty(&b->write_blocked)); 275 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 276 277 b->will_make_reachable = 0; 278 closure_put(&as->cl); 279 280 clear_btree_node_will_make_reachable(b); 281 clear_btree_node_accessed(b); 282 clear_btree_node_dirty_acct(c, b); 283 clear_btree_node_need_write(b); 284 285 mutex_lock(&c->btree_cache.lock); 286 list_del_init(&b->list); 287 bch2_btree_node_hash_remove(&c->btree_cache, b); 288 mutex_unlock(&c->btree_cache.lock); 289 290 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 291 p->b[p->nr++] = b; 292 293 six_unlock_intent(&b->c.lock); 294 295 trans_for_each_path(trans, path, i) 296 if (path->l[level].b == b) { 297 btree_node_unlock(trans, path, level); 298 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 299 } 300 } 301 302 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 303 struct disk_reservation *res, 304 struct closure *cl, 305 bool interior_node, 306 unsigned flags) 307 { 308 struct bch_fs *c = trans->c; 309 struct write_point *wp; 310 struct btree *b; 311 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 312 struct open_buckets obs = { .nr = 0 }; 313 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 314 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 315 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim 316 ? BTREE_NODE_RESERVE 317 : 0; 318 int ret; 319 320 mutex_lock(&c->btree_reserve_cache_lock); 321 if (c->btree_reserve_cache_nr > nr_reserve) { 322 struct btree_alloc *a = 323 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 324 325 obs = a->ob; 326 bkey_copy(&tmp.k, &a->k); 327 mutex_unlock(&c->btree_reserve_cache_lock); 328 goto mem_alloc; 329 } 330 mutex_unlock(&c->btree_reserve_cache_lock); 331 332 retry: 333 ret = bch2_alloc_sectors_start_trans(trans, 334 c->opts.metadata_target ?: 335 c->opts.foreground_target, 336 0, 337 writepoint_ptr(&c->btree_write_point), 338 &devs_have, 339 res->nr_replicas, 340 min(res->nr_replicas, 341 c->opts.metadata_replicas_required), 342 watermark, 0, cl, &wp); 343 if (unlikely(ret)) 344 return ERR_PTR(ret); 345 346 if (wp->sectors_free < btree_sectors(c)) { 347 struct open_bucket *ob; 348 unsigned i; 349 350 open_bucket_for_each(c, &wp->ptrs, ob, i) 351 if (ob->sectors_free < btree_sectors(c)) 352 ob->sectors_free = 0; 353 354 bch2_alloc_sectors_done(c, wp); 355 goto retry; 356 } 357 358 bkey_btree_ptr_v2_init(&tmp.k); 359 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 360 361 bch2_open_bucket_get(c, wp, &obs); 362 bch2_alloc_sectors_done(c, wp); 363 mem_alloc: 364 b = bch2_btree_node_mem_alloc(trans, interior_node); 365 six_unlock_write(&b->c.lock); 366 six_unlock_intent(&b->c.lock); 367 368 /* we hold cannibalize_lock: */ 369 BUG_ON(IS_ERR(b)); 370 BUG_ON(b->ob.nr); 371 372 bkey_copy(&b->key, &tmp.k); 373 b->ob = obs; 374 375 return b; 376 } 377 378 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 379 struct btree_trans *trans, 380 unsigned level) 381 { 382 struct bch_fs *c = as->c; 383 struct btree *b; 384 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 385 int ret; 386 387 BUG_ON(level >= BTREE_MAX_DEPTH); 388 BUG_ON(!p->nr); 389 390 b = p->b[--p->nr]; 391 392 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 393 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 394 395 set_btree_node_accessed(b); 396 set_btree_node_dirty_acct(c, b); 397 set_btree_node_need_write(b); 398 399 bch2_bset_init_first(b, &b->data->keys); 400 b->c.level = level; 401 b->c.btree_id = as->btree_id; 402 b->version_ondisk = c->sb.version; 403 404 memset(&b->nr, 0, sizeof(b->nr)); 405 b->data->magic = cpu_to_le64(bset_magic(c)); 406 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 407 b->data->flags = 0; 408 SET_BTREE_NODE_ID(b->data, as->btree_id); 409 SET_BTREE_NODE_LEVEL(b->data, level); 410 411 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 412 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 413 414 bp->v.mem_ptr = 0; 415 bp->v.seq = b->data->keys.seq; 416 bp->v.sectors_written = 0; 417 } 418 419 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 420 421 bch2_btree_build_aux_trees(b); 422 423 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 424 BUG_ON(ret); 425 426 trace_and_count(c, btree_node_alloc, trans, b); 427 bch2_increment_clock(c, btree_sectors(c), WRITE); 428 return b; 429 } 430 431 static void btree_set_min(struct btree *b, struct bpos pos) 432 { 433 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 434 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 435 b->data->min_key = pos; 436 } 437 438 static void btree_set_max(struct btree *b, struct bpos pos) 439 { 440 b->key.k.p = pos; 441 b->data->max_key = pos; 442 } 443 444 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 445 struct btree_trans *trans, 446 struct btree *b) 447 { 448 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 449 struct bkey_format format = bch2_btree_calc_format(b); 450 451 /* 452 * The keys might expand with the new format - if they wouldn't fit in 453 * the btree node anymore, use the old format for now: 454 */ 455 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 456 format = b->format; 457 458 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 459 460 btree_set_min(n, b->data->min_key); 461 btree_set_max(n, b->data->max_key); 462 463 n->data->format = format; 464 btree_node_set_format(n, format); 465 466 bch2_btree_sort_into(as->c, n, b); 467 468 btree_node_reset_sib_u64s(n); 469 return n; 470 } 471 472 static struct btree *__btree_root_alloc(struct btree_update *as, 473 struct btree_trans *trans, unsigned level) 474 { 475 struct btree *b = bch2_btree_node_alloc(as, trans, level); 476 477 btree_set_min(b, POS_MIN); 478 btree_set_max(b, SPOS_MAX); 479 b->data->format = bch2_btree_calc_format(b); 480 481 btree_node_set_format(b, b->data->format); 482 bch2_btree_build_aux_trees(b); 483 484 return b; 485 } 486 487 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 488 { 489 struct bch_fs *c = as->c; 490 struct prealloc_nodes *p; 491 492 for (p = as->prealloc_nodes; 493 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 494 p++) { 495 while (p->nr) { 496 struct btree *b = p->b[--p->nr]; 497 498 mutex_lock(&c->btree_reserve_cache_lock); 499 500 if (c->btree_reserve_cache_nr < 501 ARRAY_SIZE(c->btree_reserve_cache)) { 502 struct btree_alloc *a = 503 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 504 505 a->ob = b->ob; 506 b->ob.nr = 0; 507 bkey_copy(&a->k, &b->key); 508 } else { 509 bch2_open_buckets_put(c, &b->ob); 510 } 511 512 mutex_unlock(&c->btree_reserve_cache_lock); 513 514 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 515 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 516 __btree_node_free(trans, b); 517 six_unlock_write(&b->c.lock); 518 six_unlock_intent(&b->c.lock); 519 } 520 } 521 } 522 523 static int bch2_btree_reserve_get(struct btree_trans *trans, 524 struct btree_update *as, 525 unsigned nr_nodes[2], 526 unsigned flags, 527 struct closure *cl) 528 { 529 struct btree *b; 530 unsigned interior; 531 int ret = 0; 532 533 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 534 535 /* 536 * Protects reaping from the btree node cache and using the btree node 537 * open bucket reserve: 538 */ 539 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 540 if (ret) 541 return ret; 542 543 for (interior = 0; interior < 2; interior++) { 544 struct prealloc_nodes *p = as->prealloc_nodes + interior; 545 546 while (p->nr < nr_nodes[interior]) { 547 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 548 interior, flags); 549 if (IS_ERR(b)) { 550 ret = PTR_ERR(b); 551 goto err; 552 } 553 554 p->b[p->nr++] = b; 555 } 556 } 557 err: 558 bch2_btree_cache_cannibalize_unlock(trans); 559 return ret; 560 } 561 562 /* Asynchronous interior node update machinery */ 563 564 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 565 { 566 struct bch_fs *c = as->c; 567 568 if (as->took_gc_lock) 569 up_read(&c->gc_lock); 570 as->took_gc_lock = false; 571 572 bch2_journal_pin_drop(&c->journal, &as->journal); 573 bch2_journal_pin_flush(&c->journal, &as->journal); 574 bch2_disk_reservation_put(c, &as->disk_res); 575 bch2_btree_reserve_put(as, trans); 576 577 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 578 as->start_time); 579 580 mutex_lock(&c->btree_interior_update_lock); 581 list_del(&as->unwritten_list); 582 list_del(&as->list); 583 584 closure_debug_destroy(&as->cl); 585 mempool_free(as, &c->btree_interior_update_pool); 586 587 /* 588 * Have to do the wakeup with btree_interior_update_lock still held, 589 * since being on btree_interior_update_list is our ref on @c: 590 */ 591 closure_wake_up(&c->btree_interior_update_wait); 592 593 mutex_unlock(&c->btree_interior_update_lock); 594 } 595 596 static void btree_update_add_key(struct btree_update *as, 597 struct keylist *keys, struct btree *b) 598 { 599 struct bkey_i *k = &b->key; 600 601 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 602 ARRAY_SIZE(as->_old_keys)); 603 604 bkey_copy(keys->top, k); 605 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 606 607 bch2_keylist_push(keys); 608 } 609 610 static bool btree_update_new_nodes_marked_sb(struct btree_update *as) 611 { 612 for_each_keylist_key(&as->new_keys, k) 613 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k))) 614 return false; 615 return true; 616 } 617 618 static void btree_update_new_nodes_mark_sb(struct btree_update *as) 619 { 620 struct bch_fs *c = as->c; 621 622 mutex_lock(&c->sb_lock); 623 for_each_keylist_key(&as->new_keys, k) 624 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k)); 625 626 bch2_write_super(c); 627 mutex_unlock(&c->sb_lock); 628 } 629 630 /* 631 * The transactional part of an interior btree node update, where we journal the 632 * update we did to the interior node and update alloc info: 633 */ 634 static int btree_update_nodes_written_trans(struct btree_trans *trans, 635 struct btree_update *as) 636 { 637 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 638 int ret = PTR_ERR_OR_ZERO(e); 639 if (ret) 640 return ret; 641 642 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 643 644 trans->journal_pin = &as->journal; 645 646 for_each_keylist_key(&as->old_keys, k) { 647 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 648 649 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 650 BTREE_TRIGGER_transactional); 651 if (ret) 652 return ret; 653 } 654 655 for_each_keylist_key(&as->new_keys, k) { 656 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 657 658 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 659 BTREE_TRIGGER_transactional); 660 if (ret) 661 return ret; 662 } 663 664 return 0; 665 } 666 667 static void btree_update_nodes_written(struct btree_update *as) 668 { 669 struct bch_fs *c = as->c; 670 struct btree *b; 671 struct btree_trans *trans = bch2_trans_get(c); 672 u64 journal_seq = 0; 673 unsigned i; 674 int ret; 675 676 /* 677 * If we're already in an error state, it might be because a btree node 678 * was never written, and we might be trying to free that same btree 679 * node here, but it won't have been marked as allocated and we'll see 680 * spurious disk usage inconsistencies in the transactional part below 681 * if we don't skip it: 682 */ 683 ret = bch2_journal_error(&c->journal); 684 if (ret) 685 goto err; 686 687 if (!btree_update_new_nodes_marked_sb(as)) 688 btree_update_new_nodes_mark_sb(as); 689 690 /* 691 * Wait for any in flight writes to finish before we free the old nodes 692 * on disk: 693 */ 694 for (i = 0; i < as->nr_old_nodes; i++) { 695 __le64 seq; 696 697 b = as->old_nodes[i]; 698 699 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 700 seq = b->data ? b->data->keys.seq : 0; 701 six_unlock_read(&b->c.lock); 702 703 if (seq == as->old_nodes_seq[i]) 704 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 705 TASK_UNINTERRUPTIBLE); 706 } 707 708 /* 709 * We did an update to a parent node where the pointers we added pointed 710 * to child nodes that weren't written yet: now, the child nodes have 711 * been written so we can write out the update to the interior node. 712 */ 713 714 /* 715 * We can't call into journal reclaim here: we'd block on the journal 716 * reclaim lock, but we may need to release the open buckets we have 717 * pinned in order for other btree updates to make forward progress, and 718 * journal reclaim does btree updates when flushing bkey_cached entries, 719 * which may require allocations as well. 720 */ 721 ret = commit_do(trans, &as->disk_res, &journal_seq, 722 BCH_WATERMARK_interior_updates| 723 BCH_TRANS_COMMIT_no_enospc| 724 BCH_TRANS_COMMIT_no_check_rw| 725 BCH_TRANS_COMMIT_journal_reclaim, 726 btree_update_nodes_written_trans(trans, as)); 727 bch2_trans_unlock(trans); 728 729 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 730 "%s", bch2_err_str(ret)); 731 err: 732 /* 733 * We have to be careful because another thread might be getting ready 734 * to free as->b and calling btree_update_reparent() on us - we'll 735 * recheck under btree_update_lock below: 736 */ 737 b = READ_ONCE(as->b); 738 if (b) { 739 /* 740 * @b is the node we did the final insert into: 741 * 742 * On failure to get a journal reservation, we still have to 743 * unblock the write and allow most of the write path to happen 744 * so that shutdown works, but the i->journal_seq mechanism 745 * won't work to prevent the btree write from being visible (we 746 * didn't get a journal sequence number) - instead 747 * __bch2_btree_node_write() doesn't do the actual write if 748 * we're in journal error state: 749 */ 750 751 /* 752 * Ensure transaction is unlocked before using 753 * btree_node_lock_nopath() (the use of which is always suspect, 754 * we need to work on removing this in the future) 755 * 756 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get() 757 * calls bch2_path_upgrade(), before we call path_make_mut(), so 758 * we may rarely end up with a locked path besides the one we 759 * have here: 760 */ 761 bch2_trans_unlock(trans); 762 bch2_trans_begin(trans); 763 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans, 764 as->btree_id, b->c.level, b->key.k.p); 765 struct btree_path *path = trans->paths + path_idx; 766 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 767 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 768 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 769 path->l[b->c.level].b = b; 770 771 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 772 773 mutex_lock(&c->btree_interior_update_lock); 774 775 list_del(&as->write_blocked_list); 776 if (list_empty(&b->write_blocked)) 777 clear_btree_node_write_blocked(b); 778 779 /* 780 * Node might have been freed, recheck under 781 * btree_interior_update_lock: 782 */ 783 if (as->b == b) { 784 BUG_ON(!b->c.level); 785 BUG_ON(!btree_node_dirty(b)); 786 787 if (!ret) { 788 struct bset *last = btree_bset_last(b); 789 790 last->journal_seq = cpu_to_le64( 791 max(journal_seq, 792 le64_to_cpu(last->journal_seq))); 793 794 bch2_btree_add_journal_pin(c, b, journal_seq); 795 } else { 796 /* 797 * If we didn't get a journal sequence number we 798 * can't write this btree node, because recovery 799 * won't know to ignore this write: 800 */ 801 set_btree_node_never_write(b); 802 } 803 } 804 805 mutex_unlock(&c->btree_interior_update_lock); 806 807 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 808 six_unlock_write(&b->c.lock); 809 810 btree_node_write_if_need(c, b, SIX_LOCK_intent); 811 btree_node_unlock(trans, path, b->c.level); 812 bch2_path_put(trans, path_idx, true); 813 } 814 815 bch2_journal_pin_drop(&c->journal, &as->journal); 816 817 mutex_lock(&c->btree_interior_update_lock); 818 for (i = 0; i < as->nr_new_nodes; i++) { 819 b = as->new_nodes[i]; 820 821 BUG_ON(b->will_make_reachable != (unsigned long) as); 822 b->will_make_reachable = 0; 823 clear_btree_node_will_make_reachable(b); 824 } 825 mutex_unlock(&c->btree_interior_update_lock); 826 827 for (i = 0; i < as->nr_new_nodes; i++) { 828 b = as->new_nodes[i]; 829 830 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 831 btree_node_write_if_need(c, b, SIX_LOCK_read); 832 six_unlock_read(&b->c.lock); 833 } 834 835 for (i = 0; i < as->nr_open_buckets; i++) 836 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 837 838 bch2_btree_update_free(as, trans); 839 bch2_trans_put(trans); 840 } 841 842 static void btree_interior_update_work(struct work_struct *work) 843 { 844 struct bch_fs *c = 845 container_of(work, struct bch_fs, btree_interior_update_work); 846 struct btree_update *as; 847 848 while (1) { 849 mutex_lock(&c->btree_interior_update_lock); 850 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 851 struct btree_update, unwritten_list); 852 if (as && !as->nodes_written) 853 as = NULL; 854 mutex_unlock(&c->btree_interior_update_lock); 855 856 if (!as) 857 break; 858 859 btree_update_nodes_written(as); 860 } 861 } 862 863 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 864 { 865 closure_type(as, struct btree_update, cl); 866 struct bch_fs *c = as->c; 867 868 mutex_lock(&c->btree_interior_update_lock); 869 as->nodes_written = true; 870 mutex_unlock(&c->btree_interior_update_lock); 871 872 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 873 } 874 875 /* 876 * We're updating @b with pointers to nodes that haven't finished writing yet: 877 * block @b from being written until @as completes 878 */ 879 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 880 { 881 struct bch_fs *c = as->c; 882 883 BUG_ON(as->mode != BTREE_UPDATE_none); 884 BUG_ON(as->update_level_end < b->c.level); 885 BUG_ON(!btree_node_dirty(b)); 886 BUG_ON(!b->c.level); 887 888 mutex_lock(&c->btree_interior_update_lock); 889 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 890 891 as->mode = BTREE_UPDATE_node; 892 as->b = b; 893 as->update_level_end = b->c.level; 894 895 set_btree_node_write_blocked(b); 896 list_add(&as->write_blocked_list, &b->write_blocked); 897 898 mutex_unlock(&c->btree_interior_update_lock); 899 } 900 901 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 902 struct journal_entry_pin *_pin, u64 seq) 903 { 904 return 0; 905 } 906 907 static void btree_update_reparent(struct btree_update *as, 908 struct btree_update *child) 909 { 910 struct bch_fs *c = as->c; 911 912 lockdep_assert_held(&c->btree_interior_update_lock); 913 914 child->b = NULL; 915 child->mode = BTREE_UPDATE_update; 916 917 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 918 bch2_update_reparent_journal_pin_flush); 919 } 920 921 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 922 { 923 struct bkey_i *insert = &b->key; 924 struct bch_fs *c = as->c; 925 926 BUG_ON(as->mode != BTREE_UPDATE_none); 927 928 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 929 ARRAY_SIZE(as->journal_entries)); 930 931 as->journal_u64s += 932 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 933 BCH_JSET_ENTRY_btree_root, 934 b->c.btree_id, b->c.level, 935 insert, insert->k.u64s); 936 937 mutex_lock(&c->btree_interior_update_lock); 938 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 939 940 as->mode = BTREE_UPDATE_root; 941 mutex_unlock(&c->btree_interior_update_lock); 942 } 943 944 /* 945 * bch2_btree_update_add_new_node: 946 * 947 * This causes @as to wait on @b to be written, before it gets to 948 * bch2_btree_update_nodes_written 949 * 950 * Additionally, it sets b->will_make_reachable to prevent any additional writes 951 * to @b from happening besides the first until @b is reachable on disk 952 * 953 * And it adds @b to the list of @as's new nodes, so that we can update sector 954 * counts in bch2_btree_update_nodes_written: 955 */ 956 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 957 { 958 struct bch_fs *c = as->c; 959 960 closure_get(&as->cl); 961 962 mutex_lock(&c->btree_interior_update_lock); 963 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 964 BUG_ON(b->will_make_reachable); 965 966 as->new_nodes[as->nr_new_nodes++] = b; 967 b->will_make_reachable = 1UL|(unsigned long) as; 968 set_btree_node_will_make_reachable(b); 969 970 mutex_unlock(&c->btree_interior_update_lock); 971 972 btree_update_add_key(as, &as->new_keys, b); 973 974 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 975 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 976 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 977 978 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 979 cpu_to_le16(sectors); 980 } 981 } 982 983 /* 984 * returns true if @b was a new node 985 */ 986 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 987 { 988 struct btree_update *as; 989 unsigned long v; 990 unsigned i; 991 992 mutex_lock(&c->btree_interior_update_lock); 993 /* 994 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 995 * dropped when it gets written by bch2_btree_complete_write - the 996 * xchg() is for synchronization with bch2_btree_complete_write: 997 */ 998 v = xchg(&b->will_make_reachable, 0); 999 clear_btree_node_will_make_reachable(b); 1000 as = (struct btree_update *) (v & ~1UL); 1001 1002 if (!as) { 1003 mutex_unlock(&c->btree_interior_update_lock); 1004 return; 1005 } 1006 1007 for (i = 0; i < as->nr_new_nodes; i++) 1008 if (as->new_nodes[i] == b) 1009 goto found; 1010 1011 BUG(); 1012 found: 1013 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 1014 mutex_unlock(&c->btree_interior_update_lock); 1015 1016 if (v & 1) 1017 closure_put(&as->cl); 1018 } 1019 1020 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 1021 { 1022 while (b->ob.nr) 1023 as->open_buckets[as->nr_open_buckets++] = 1024 b->ob.v[--b->ob.nr]; 1025 } 1026 1027 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 1028 struct journal_entry_pin *_pin, u64 seq) 1029 { 1030 return 0; 1031 } 1032 1033 /* 1034 * @b is being split/rewritten: it may have pointers to not-yet-written btree 1035 * nodes and thus outstanding btree_updates - redirect @b's 1036 * btree_updates to point to this btree_update: 1037 */ 1038 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 1039 struct btree *b) 1040 { 1041 struct bch_fs *c = as->c; 1042 struct btree_update *p, *n; 1043 struct btree_write *w; 1044 1045 set_btree_node_dying(b); 1046 1047 if (btree_node_fake(b)) 1048 return; 1049 1050 mutex_lock(&c->btree_interior_update_lock); 1051 1052 /* 1053 * Does this node have any btree_update operations preventing 1054 * it from being written? 1055 * 1056 * If so, redirect them to point to this btree_update: we can 1057 * write out our new nodes, but we won't make them visible until those 1058 * operations complete 1059 */ 1060 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 1061 list_del_init(&p->write_blocked_list); 1062 btree_update_reparent(as, p); 1063 1064 /* 1065 * for flush_held_btree_writes() waiting on updates to flush or 1066 * nodes to be writeable: 1067 */ 1068 closure_wake_up(&c->btree_interior_update_wait); 1069 } 1070 1071 clear_btree_node_dirty_acct(c, b); 1072 clear_btree_node_need_write(b); 1073 clear_btree_node_write_blocked(b); 1074 1075 /* 1076 * Does this node have unwritten data that has a pin on the journal? 1077 * 1078 * If so, transfer that pin to the btree_update operation - 1079 * note that if we're freeing multiple nodes, we only need to keep the 1080 * oldest pin of any of the nodes we're freeing. We'll release the pin 1081 * when the new nodes are persistent and reachable on disk: 1082 */ 1083 w = btree_current_write(b); 1084 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1085 bch2_btree_update_will_free_node_journal_pin_flush); 1086 bch2_journal_pin_drop(&c->journal, &w->journal); 1087 1088 w = btree_prev_write(b); 1089 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1090 bch2_btree_update_will_free_node_journal_pin_flush); 1091 bch2_journal_pin_drop(&c->journal, &w->journal); 1092 1093 mutex_unlock(&c->btree_interior_update_lock); 1094 1095 /* 1096 * Is this a node that isn't reachable on disk yet? 1097 * 1098 * Nodes that aren't reachable yet have writes blocked until they're 1099 * reachable - now that we've cancelled any pending writes and moved 1100 * things waiting on that write to wait on this update, we can drop this 1101 * node from the list of nodes that the other update is making 1102 * reachable, prior to freeing it: 1103 */ 1104 btree_update_drop_new_node(c, b); 1105 1106 btree_update_add_key(as, &as->old_keys, b); 1107 1108 as->old_nodes[as->nr_old_nodes] = b; 1109 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1110 as->nr_old_nodes++; 1111 } 1112 1113 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1114 { 1115 struct bch_fs *c = as->c; 1116 u64 start_time = as->start_time; 1117 1118 BUG_ON(as->mode == BTREE_UPDATE_none); 1119 1120 if (as->took_gc_lock) 1121 up_read(&as->c->gc_lock); 1122 as->took_gc_lock = false; 1123 1124 bch2_btree_reserve_put(as, trans); 1125 1126 continue_at(&as->cl, btree_update_set_nodes_written, 1127 as->c->btree_interior_update_worker); 1128 1129 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1130 start_time); 1131 } 1132 1133 static struct btree_update * 1134 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1135 unsigned level_start, bool split, unsigned flags) 1136 { 1137 struct bch_fs *c = trans->c; 1138 struct btree_update *as; 1139 u64 start_time = local_clock(); 1140 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1141 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1142 unsigned nr_nodes[2] = { 0, 0 }; 1143 unsigned level_end = level_start; 1144 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1145 int ret = 0; 1146 u32 restart_count = trans->restart_count; 1147 1148 BUG_ON(!path->should_be_locked); 1149 1150 if (watermark == BCH_WATERMARK_copygc) 1151 watermark = BCH_WATERMARK_btree_copygc; 1152 if (watermark < BCH_WATERMARK_btree) 1153 watermark = BCH_WATERMARK_btree; 1154 1155 flags &= ~BCH_WATERMARK_MASK; 1156 flags |= watermark; 1157 1158 if (watermark < BCH_WATERMARK_reclaim && 1159 test_bit(JOURNAL_space_low, &c->journal.flags)) { 1160 if (flags & BCH_TRANS_COMMIT_journal_reclaim) 1161 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock); 1162 1163 ret = drop_locks_do(trans, 1164 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; })); 1165 if (ret) 1166 return ERR_PTR(ret); 1167 } 1168 1169 while (1) { 1170 nr_nodes[!!level_end] += 1 + split; 1171 level_end++; 1172 1173 ret = bch2_btree_path_upgrade(trans, path, level_end + 1); 1174 if (ret) 1175 return ERR_PTR(ret); 1176 1177 if (!btree_path_node(path, level_end)) { 1178 /* Allocating new root? */ 1179 nr_nodes[1] += split; 1180 level_end = BTREE_MAX_DEPTH; 1181 break; 1182 } 1183 1184 /* 1185 * Always check for space for two keys, even if we won't have to 1186 * split at prior level - it might have been a merge instead: 1187 */ 1188 if (bch2_btree_node_insert_fits(path->l[level_end].b, 1189 BKEY_BTREE_PTR_U64s_MAX * 2)) 1190 break; 1191 1192 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1193 } 1194 1195 if (!down_read_trylock(&c->gc_lock)) { 1196 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1197 if (ret) { 1198 up_read(&c->gc_lock); 1199 return ERR_PTR(ret); 1200 } 1201 } 1202 1203 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1204 memset(as, 0, sizeof(*as)); 1205 closure_init(&as->cl, NULL); 1206 as->c = c; 1207 as->start_time = start_time; 1208 as->ip_started = _RET_IP_; 1209 as->mode = BTREE_UPDATE_none; 1210 as->flags = flags; 1211 as->took_gc_lock = true; 1212 as->btree_id = path->btree_id; 1213 as->update_level_start = level_start; 1214 as->update_level_end = level_end; 1215 INIT_LIST_HEAD(&as->list); 1216 INIT_LIST_HEAD(&as->unwritten_list); 1217 INIT_LIST_HEAD(&as->write_blocked_list); 1218 bch2_keylist_init(&as->old_keys, as->_old_keys); 1219 bch2_keylist_init(&as->new_keys, as->_new_keys); 1220 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1221 1222 mutex_lock(&c->btree_interior_update_lock); 1223 list_add_tail(&as->list, &c->btree_interior_update_list); 1224 mutex_unlock(&c->btree_interior_update_lock); 1225 1226 /* 1227 * We don't want to allocate if we're in an error state, that can cause 1228 * deadlock on emergency shutdown due to open buckets getting stuck in 1229 * the btree_reserve_cache after allocator shutdown has cleared it out. 1230 * This check needs to come after adding us to the btree_interior_update 1231 * list but before calling bch2_btree_reserve_get, to synchronize with 1232 * __bch2_fs_read_only(). 1233 */ 1234 ret = bch2_journal_error(&c->journal); 1235 if (ret) 1236 goto err; 1237 1238 ret = bch2_disk_reservation_get(c, &as->disk_res, 1239 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1240 c->opts.metadata_replicas, 1241 disk_res_flags); 1242 if (ret) 1243 goto err; 1244 1245 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1246 if (bch2_err_matches(ret, ENOSPC) || 1247 bch2_err_matches(ret, ENOMEM)) { 1248 struct closure cl; 1249 1250 /* 1251 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1252 * flag 1253 */ 1254 if (bch2_err_matches(ret, ENOSPC) && 1255 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1256 watermark < BCH_WATERMARK_reclaim) { 1257 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1258 goto err; 1259 } 1260 1261 closure_init_stack(&cl); 1262 1263 do { 1264 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1265 1266 bch2_trans_unlock(trans); 1267 bch2_wait_on_allocator(c, &cl); 1268 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1269 } 1270 1271 if (ret) { 1272 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1273 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1274 goto err; 1275 } 1276 1277 ret = bch2_trans_relock(trans); 1278 if (ret) 1279 goto err; 1280 1281 bch2_trans_verify_not_restarted(trans, restart_count); 1282 return as; 1283 err: 1284 bch2_btree_update_free(as, trans); 1285 if (!bch2_err_matches(ret, ENOSPC) && 1286 !bch2_err_matches(ret, EROFS) && 1287 ret != -BCH_ERR_journal_reclaim_would_deadlock) 1288 bch_err_fn_ratelimited(c, ret); 1289 return ERR_PTR(ret); 1290 } 1291 1292 /* Btree root updates: */ 1293 1294 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1295 { 1296 /* Root nodes cannot be reaped */ 1297 mutex_lock(&c->btree_cache.lock); 1298 list_del_init(&b->list); 1299 mutex_unlock(&c->btree_cache.lock); 1300 1301 mutex_lock(&c->btree_root_lock); 1302 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1303 mutex_unlock(&c->btree_root_lock); 1304 1305 bch2_recalc_btree_reserve(c); 1306 } 1307 1308 static int bch2_btree_set_root(struct btree_update *as, 1309 struct btree_trans *trans, 1310 struct btree_path *path, 1311 struct btree *b, 1312 bool nofail) 1313 { 1314 struct bch_fs *c = as->c; 1315 1316 trace_and_count(c, btree_node_set_root, trans, b); 1317 1318 struct btree *old = btree_node_root(c, b); 1319 1320 /* 1321 * Ensure no one is using the old root while we switch to the 1322 * new root: 1323 */ 1324 if (nofail) { 1325 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1326 } else { 1327 int ret = bch2_btree_node_lock_write(trans, path, &old->c); 1328 if (ret) 1329 return ret; 1330 } 1331 1332 bch2_btree_set_root_inmem(c, b); 1333 1334 btree_update_updated_root(as, b); 1335 1336 /* 1337 * Unlock old root after new root is visible: 1338 * 1339 * The new root isn't persistent, but that's ok: we still have 1340 * an intent lock on the new root, and any updates that would 1341 * depend on the new root would have to update the new root. 1342 */ 1343 bch2_btree_node_unlock_write(trans, path, old); 1344 return 0; 1345 } 1346 1347 /* Interior node updates: */ 1348 1349 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1350 struct btree_trans *trans, 1351 struct btree_path *path, 1352 struct btree *b, 1353 struct btree_node_iter *node_iter, 1354 struct bkey_i *insert) 1355 { 1356 struct bch_fs *c = as->c; 1357 struct bkey_packed *k; 1358 struct printbuf buf = PRINTBUF; 1359 unsigned long old, new; 1360 1361 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1362 !btree_ptr_sectors_written(bkey_i_to_s_c(insert))); 1363 1364 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags))) 1365 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1366 1367 if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), 1368 btree_node_type(b), BCH_VALIDATE_write) ?: 1369 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), BCH_VALIDATE_write)) { 1370 bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__); 1371 dump_stack(); 1372 } 1373 1374 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1375 ARRAY_SIZE(as->journal_entries)); 1376 1377 as->journal_u64s += 1378 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1379 BCH_JSET_ENTRY_btree_keys, 1380 b->c.btree_id, b->c.level, 1381 insert, insert->k.u64s); 1382 1383 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1384 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1385 bch2_btree_node_iter_advance(node_iter, b); 1386 1387 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1388 set_btree_node_dirty_acct(c, b); 1389 1390 old = READ_ONCE(b->flags); 1391 do { 1392 new = old; 1393 1394 new &= ~BTREE_WRITE_TYPE_MASK; 1395 new |= BTREE_WRITE_interior; 1396 new |= 1 << BTREE_NODE_need_write; 1397 } while (!try_cmpxchg(&b->flags, &old, new)); 1398 1399 printbuf_exit(&buf); 1400 } 1401 1402 static void 1403 bch2_btree_insert_keys_interior(struct btree_update *as, 1404 struct btree_trans *trans, 1405 struct btree_path *path, 1406 struct btree *b, 1407 struct btree_node_iter node_iter, 1408 struct keylist *keys) 1409 { 1410 struct bkey_i *insert = bch2_keylist_front(keys); 1411 struct bkey_packed *k; 1412 1413 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1414 1415 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1416 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1417 ; 1418 1419 while (!bch2_keylist_empty(keys)) { 1420 insert = bch2_keylist_front(keys); 1421 1422 if (bpos_gt(insert->k.p, b->key.k.p)) 1423 break; 1424 1425 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1426 bch2_keylist_pop_front(keys); 1427 } 1428 } 1429 1430 /* 1431 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1432 * node) 1433 */ 1434 static void __btree_split_node(struct btree_update *as, 1435 struct btree_trans *trans, 1436 struct btree *b, 1437 struct btree *n[2]) 1438 { 1439 struct bkey_packed *k; 1440 struct bpos n1_pos = POS_MIN; 1441 struct btree_node_iter iter; 1442 struct bset *bsets[2]; 1443 struct bkey_format_state format[2]; 1444 struct bkey_packed *out[2]; 1445 struct bkey uk; 1446 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1447 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1448 int i; 1449 1450 memset(&nr_keys, 0, sizeof(nr_keys)); 1451 1452 for (i = 0; i < 2; i++) { 1453 BUG_ON(n[i]->nsets != 1); 1454 1455 bsets[i] = btree_bset_first(n[i]); 1456 out[i] = bsets[i]->start; 1457 1458 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1459 bch2_bkey_format_init(&format[i]); 1460 } 1461 1462 u64s = 0; 1463 for_each_btree_node_key(b, k, &iter) { 1464 if (bkey_deleted(k)) 1465 continue; 1466 1467 uk = bkey_unpack_key(b, k); 1468 1469 if (b->c.level && 1470 u64s < n1_u64s && 1471 u64s + k->u64s >= n1_u64s && 1472 bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p)) 1473 n1_u64s += k->u64s; 1474 1475 i = u64s >= n1_u64s; 1476 u64s += k->u64s; 1477 if (!i) 1478 n1_pos = uk.p; 1479 bch2_bkey_format_add_key(&format[i], &uk); 1480 1481 nr_keys[i].nr_keys++; 1482 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1483 } 1484 1485 btree_set_min(n[0], b->data->min_key); 1486 btree_set_max(n[0], n1_pos); 1487 btree_set_min(n[1], bpos_successor(n1_pos)); 1488 btree_set_max(n[1], b->data->max_key); 1489 1490 for (i = 0; i < 2; i++) { 1491 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1492 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1493 1494 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1495 1496 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1497 nr_keys[i].val_u64s; 1498 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1499 n[i]->data->format = b->format; 1500 1501 btree_node_set_format(n[i], n[i]->data->format); 1502 } 1503 1504 u64s = 0; 1505 for_each_btree_node_key(b, k, &iter) { 1506 if (bkey_deleted(k)) 1507 continue; 1508 1509 i = u64s >= n1_u64s; 1510 u64s += k->u64s; 1511 1512 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1513 ? &b->format: &bch2_bkey_format_current, k)) 1514 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1515 else 1516 bch2_bkey_unpack(b, (void *) out[i], k); 1517 1518 out[i]->needs_whiteout = false; 1519 1520 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1521 out[i] = bkey_p_next(out[i]); 1522 } 1523 1524 for (i = 0; i < 2; i++) { 1525 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1526 1527 BUG_ON(!bsets[i]->u64s); 1528 1529 set_btree_bset_end(n[i], n[i]->set); 1530 1531 btree_node_reset_sib_u64s(n[i]); 1532 1533 bch2_verify_btree_nr_keys(n[i]); 1534 1535 BUG_ON(bch2_btree_node_check_topology(trans, n[i])); 1536 } 1537 } 1538 1539 /* 1540 * For updates to interior nodes, we've got to do the insert before we split 1541 * because the stuff we're inserting has to be inserted atomically. Post split, 1542 * the keys might have to go in different nodes and the split would no longer be 1543 * atomic. 1544 * 1545 * Worse, if the insert is from btree node coalescing, if we do the insert after 1546 * we do the split (and pick the pivot) - the pivot we pick might be between 1547 * nodes that were coalesced, and thus in the middle of a child node post 1548 * coalescing: 1549 */ 1550 static void btree_split_insert_keys(struct btree_update *as, 1551 struct btree_trans *trans, 1552 btree_path_idx_t path_idx, 1553 struct btree *b, 1554 struct keylist *keys) 1555 { 1556 struct btree_path *path = trans->paths + path_idx; 1557 1558 if (!bch2_keylist_empty(keys) && 1559 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1560 struct btree_node_iter node_iter; 1561 1562 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1563 1564 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1565 1566 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1567 } 1568 } 1569 1570 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1571 btree_path_idx_t path, struct btree *b, 1572 struct keylist *keys) 1573 { 1574 struct bch_fs *c = as->c; 1575 struct btree *parent = btree_node_parent(trans->paths + path, b); 1576 struct btree *n1, *n2 = NULL, *n3 = NULL; 1577 btree_path_idx_t path1 = 0, path2 = 0; 1578 u64 start_time = local_clock(); 1579 int ret = 0; 1580 1581 bch2_verify_btree_nr_keys(b); 1582 BUG_ON(!parent && (b != btree_node_root(c, b))); 1583 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1584 1585 ret = bch2_btree_node_check_topology(trans, b); 1586 if (ret) 1587 return ret; 1588 1589 bch2_btree_interior_update_will_free_node(as, b); 1590 1591 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1592 struct btree *n[2]; 1593 1594 trace_and_count(c, btree_node_split, trans, b); 1595 1596 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1597 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1598 1599 __btree_split_node(as, trans, b, n); 1600 1601 if (keys) { 1602 btree_split_insert_keys(as, trans, path, n1, keys); 1603 btree_split_insert_keys(as, trans, path, n2, keys); 1604 BUG_ON(!bch2_keylist_empty(keys)); 1605 } 1606 1607 bch2_btree_build_aux_trees(n2); 1608 bch2_btree_build_aux_trees(n1); 1609 1610 bch2_btree_update_add_new_node(as, n1); 1611 bch2_btree_update_add_new_node(as, n2); 1612 six_unlock_write(&n2->c.lock); 1613 six_unlock_write(&n1->c.lock); 1614 1615 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1616 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1617 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1618 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1619 1620 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p); 1621 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1622 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1623 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1624 1625 /* 1626 * Note that on recursive parent_keys == keys, so we 1627 * can't start adding new keys to parent_keys before emptying it 1628 * out (which we did with btree_split_insert_keys() above) 1629 */ 1630 bch2_keylist_add(&as->parent_keys, &n1->key); 1631 bch2_keylist_add(&as->parent_keys, &n2->key); 1632 1633 if (!parent) { 1634 /* Depth increases, make a new root */ 1635 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1636 1637 bch2_btree_update_add_new_node(as, n3); 1638 six_unlock_write(&n3->c.lock); 1639 1640 trans->paths[path2].locks_want++; 1641 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1642 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1643 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1644 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1645 1646 n3->sib_u64s[0] = U16_MAX; 1647 n3->sib_u64s[1] = U16_MAX; 1648 1649 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1650 } 1651 } else { 1652 trace_and_count(c, btree_node_compact, trans, b); 1653 1654 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1655 1656 if (keys) { 1657 btree_split_insert_keys(as, trans, path, n1, keys); 1658 BUG_ON(!bch2_keylist_empty(keys)); 1659 } 1660 1661 bch2_btree_build_aux_trees(n1); 1662 bch2_btree_update_add_new_node(as, n1); 1663 six_unlock_write(&n1->c.lock); 1664 1665 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1666 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1667 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1668 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1669 1670 if (parent) 1671 bch2_keylist_add(&as->parent_keys, &n1->key); 1672 } 1673 1674 /* New nodes all written, now make them visible: */ 1675 1676 if (parent) { 1677 /* Split a non root node */ 1678 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1679 } else if (n3) { 1680 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false); 1681 } else { 1682 /* Root filled up but didn't need to be split */ 1683 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false); 1684 } 1685 1686 if (ret) 1687 goto err; 1688 1689 if (n3) { 1690 bch2_btree_update_get_open_buckets(as, n3); 1691 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1692 } 1693 if (n2) { 1694 bch2_btree_update_get_open_buckets(as, n2); 1695 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1696 } 1697 bch2_btree_update_get_open_buckets(as, n1); 1698 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1699 1700 /* 1701 * The old node must be freed (in memory) _before_ unlocking the new 1702 * nodes - else another thread could re-acquire a read lock on the old 1703 * node after another thread has locked and updated the new node, thus 1704 * seeing stale data: 1705 */ 1706 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1707 1708 if (n3) 1709 bch2_trans_node_add(trans, trans->paths + path, n3); 1710 if (n2) 1711 bch2_trans_node_add(trans, trans->paths + path2, n2); 1712 bch2_trans_node_add(trans, trans->paths + path1, n1); 1713 1714 if (n3) 1715 six_unlock_intent(&n3->c.lock); 1716 if (n2) 1717 six_unlock_intent(&n2->c.lock); 1718 six_unlock_intent(&n1->c.lock); 1719 out: 1720 if (path2) { 1721 __bch2_btree_path_unlock(trans, trans->paths + path2); 1722 bch2_path_put(trans, path2, true); 1723 } 1724 if (path1) { 1725 __bch2_btree_path_unlock(trans, trans->paths + path1); 1726 bch2_path_put(trans, path1, true); 1727 } 1728 1729 bch2_trans_verify_locks(trans); 1730 1731 bch2_time_stats_update(&c->times[n2 1732 ? BCH_TIME_btree_node_split 1733 : BCH_TIME_btree_node_compact], 1734 start_time); 1735 return ret; 1736 err: 1737 if (n3) 1738 bch2_btree_node_free_never_used(as, trans, n3); 1739 if (n2) 1740 bch2_btree_node_free_never_used(as, trans, n2); 1741 bch2_btree_node_free_never_used(as, trans, n1); 1742 goto out; 1743 } 1744 1745 /** 1746 * bch2_btree_insert_node - insert bkeys into a given btree node 1747 * 1748 * @as: btree_update object 1749 * @trans: btree_trans object 1750 * @path_idx: path that points to current node 1751 * @b: node to insert keys into 1752 * @keys: list of keys to insert 1753 * 1754 * Returns: 0 on success, typically transaction restart error on failure 1755 * 1756 * Inserts as many keys as it can into a given btree node, splitting it if full. 1757 * If a split occurred, this function will return early. This can only happen 1758 * for leaf nodes -- inserts into interior nodes have to be atomic. 1759 */ 1760 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1761 btree_path_idx_t path_idx, struct btree *b, 1762 struct keylist *keys) 1763 { 1764 struct bch_fs *c = as->c; 1765 struct btree_path *path = trans->paths + path_idx, *linked; 1766 unsigned i; 1767 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1768 int old_live_u64s = b->nr.live_u64s; 1769 int live_u64s_added, u64s_added; 1770 int ret; 1771 1772 lockdep_assert_held(&c->gc_lock); 1773 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1774 BUG_ON(!b->c.level); 1775 BUG_ON(!as || as->b); 1776 bch2_verify_keylist_sorted(keys); 1777 1778 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1779 if (ret) 1780 return ret; 1781 1782 bch2_btree_node_prep_for_write(trans, path, b); 1783 1784 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1785 bch2_btree_node_unlock_write(trans, path, b); 1786 goto split; 1787 } 1788 1789 ret = bch2_btree_node_check_topology(trans, b); 1790 if (ret) { 1791 bch2_btree_node_unlock_write(trans, path, b); 1792 return ret; 1793 } 1794 1795 bch2_btree_insert_keys_interior(as, trans, path, b, 1796 path->l[b->c.level].iter, keys); 1797 1798 trans_for_each_path_with_node(trans, b, linked, i) 1799 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1800 1801 bch2_trans_verify_paths(trans); 1802 1803 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1804 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1805 1806 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1807 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1808 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1809 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1810 1811 if (u64s_added > live_u64s_added && 1812 bch2_maybe_compact_whiteouts(c, b)) 1813 bch2_trans_node_reinit_iter(trans, b); 1814 1815 btree_update_updated_node(as, b); 1816 bch2_btree_node_unlock_write(trans, path, b); 1817 1818 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1819 return 0; 1820 split: 1821 /* 1822 * We could attempt to avoid the transaction restart, by calling 1823 * bch2_btree_path_upgrade() and allocating more nodes: 1824 */ 1825 if (b->c.level >= as->update_level_end) { 1826 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1827 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1828 } 1829 1830 return btree_split(as, trans, path_idx, b, keys); 1831 } 1832 1833 int bch2_btree_split_leaf(struct btree_trans *trans, 1834 btree_path_idx_t path, 1835 unsigned flags) 1836 { 1837 /* btree_split & merge may both cause paths array to be reallocated */ 1838 struct btree *b = path_l(trans->paths + path)->b; 1839 struct btree_update *as; 1840 unsigned l; 1841 int ret = 0; 1842 1843 as = bch2_btree_update_start(trans, trans->paths + path, 1844 trans->paths[path].level, 1845 true, flags); 1846 if (IS_ERR(as)) 1847 return PTR_ERR(as); 1848 1849 ret = btree_split(as, trans, path, b, NULL); 1850 if (ret) { 1851 bch2_btree_update_free(as, trans); 1852 return ret; 1853 } 1854 1855 bch2_btree_update_done(as, trans); 1856 1857 for (l = trans->paths[path].level + 1; 1858 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1859 l++) 1860 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1861 1862 return ret; 1863 } 1864 1865 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans, 1866 btree_path_idx_t path_idx) 1867 { 1868 struct bch_fs *c = as->c; 1869 struct btree_path *path = trans->paths + path_idx; 1870 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b; 1871 1872 BUG_ON(!btree_node_locked(path, b->c.level)); 1873 1874 n = __btree_root_alloc(as, trans, b->c.level + 1); 1875 1876 bch2_btree_update_add_new_node(as, n); 1877 six_unlock_write(&n->c.lock); 1878 1879 path->locks_want++; 1880 BUG_ON(btree_node_locked(path, n->c.level)); 1881 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1882 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1883 bch2_btree_path_level_init(trans, path, n); 1884 1885 n->sib_u64s[0] = U16_MAX; 1886 n->sib_u64s[1] = U16_MAX; 1887 1888 bch2_keylist_add(&as->parent_keys, &b->key); 1889 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys); 1890 1891 int ret = bch2_btree_set_root(as, trans, path, n, true); 1892 BUG_ON(ret); 1893 1894 bch2_btree_update_get_open_buckets(as, n); 1895 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1896 bch2_trans_node_add(trans, path, n); 1897 six_unlock_intent(&n->c.lock); 1898 1899 mutex_lock(&c->btree_cache.lock); 1900 list_add_tail(&b->list, &c->btree_cache.live); 1901 mutex_unlock(&c->btree_cache.lock); 1902 1903 bch2_trans_verify_locks(trans); 1904 } 1905 1906 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) 1907 { 1908 struct bch_fs *c = trans->c; 1909 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b; 1910 1911 if (btree_node_fake(b)) 1912 return bch2_btree_split_leaf(trans, path, flags); 1913 1914 struct btree_update *as = 1915 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags); 1916 if (IS_ERR(as)) 1917 return PTR_ERR(as); 1918 1919 __btree_increase_depth(as, trans, path); 1920 bch2_btree_update_done(as, trans); 1921 return 0; 1922 } 1923 1924 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1925 btree_path_idx_t path, 1926 unsigned level, 1927 unsigned flags, 1928 enum btree_node_sibling sib) 1929 { 1930 struct bch_fs *c = trans->c; 1931 struct btree_update *as; 1932 struct bkey_format_state new_s; 1933 struct bkey_format new_f; 1934 struct bkey_i delete; 1935 struct btree *b, *m, *n, *prev, *next, *parent; 1936 struct bpos sib_pos; 1937 size_t sib_u64s; 1938 enum btree_id btree = trans->paths[path].btree_id; 1939 btree_path_idx_t sib_path = 0, new_path = 0; 1940 u64 start_time = local_clock(); 1941 int ret = 0; 1942 1943 bch2_trans_verify_not_in_restart(trans); 1944 bch2_trans_verify_not_unlocked(trans); 1945 BUG_ON(!trans->paths[path].should_be_locked); 1946 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1947 1948 /* 1949 * Work around a deadlock caused by the btree write buffer not doing 1950 * merges and leaving tons of merges for us to do - we really don't need 1951 * to be doing merges at all from the interior update path, and if the 1952 * interior update path is generating too many new interior updates we 1953 * deadlock: 1954 */ 1955 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates) 1956 return 0; 1957 1958 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) { 1959 flags &= ~BCH_WATERMARK_MASK; 1960 flags |= BCH_WATERMARK_btree; 1961 flags |= BCH_TRANS_COMMIT_journal_reclaim; 1962 } 1963 1964 b = trans->paths[path].l[level].b; 1965 1966 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1967 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1968 b->sib_u64s[sib] = U16_MAX; 1969 return 0; 1970 } 1971 1972 sib_pos = sib == btree_prev_sib 1973 ? bpos_predecessor(b->data->min_key) 1974 : bpos_successor(b->data->max_key); 1975 1976 sib_path = bch2_path_get(trans, btree, sib_pos, 1977 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_); 1978 ret = bch2_btree_path_traverse(trans, sib_path, false); 1979 if (ret) 1980 goto err; 1981 1982 btree_path_set_should_be_locked(trans->paths + sib_path); 1983 1984 m = trans->paths[sib_path].l[level].b; 1985 1986 if (btree_node_parent(trans->paths + path, b) != 1987 btree_node_parent(trans->paths + sib_path, m)) { 1988 b->sib_u64s[sib] = U16_MAX; 1989 goto out; 1990 } 1991 1992 if (sib == btree_prev_sib) { 1993 prev = m; 1994 next = b; 1995 } else { 1996 prev = b; 1997 next = m; 1998 } 1999 2000 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 2001 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 2002 2003 bch2_bpos_to_text(&buf1, prev->data->max_key); 2004 bch2_bpos_to_text(&buf2, next->data->min_key); 2005 bch_err(c, 2006 "%s(): btree topology error:\n" 2007 " prev ends at %s\n" 2008 " next starts at %s", 2009 __func__, buf1.buf, buf2.buf); 2010 printbuf_exit(&buf1); 2011 printbuf_exit(&buf2); 2012 ret = bch2_topology_error(c); 2013 goto err; 2014 } 2015 2016 bch2_bkey_format_init(&new_s); 2017 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 2018 __bch2_btree_calc_format(&new_s, prev); 2019 __bch2_btree_calc_format(&new_s, next); 2020 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 2021 new_f = bch2_bkey_format_done(&new_s); 2022 2023 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 2024 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 2025 2026 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 2027 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2028 sib_u64s /= 2; 2029 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2030 } 2031 2032 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 2033 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 2034 b->sib_u64s[sib] = sib_u64s; 2035 2036 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 2037 goto out; 2038 2039 parent = btree_node_parent(trans->paths + path, b); 2040 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 2041 BCH_TRANS_COMMIT_no_enospc|flags); 2042 ret = PTR_ERR_OR_ZERO(as); 2043 if (ret) 2044 goto err; 2045 2046 trace_and_count(c, btree_node_merge, trans, b); 2047 2048 bch2_btree_interior_update_will_free_node(as, b); 2049 bch2_btree_interior_update_will_free_node(as, m); 2050 2051 n = bch2_btree_node_alloc(as, trans, b->c.level); 2052 2053 SET_BTREE_NODE_SEQ(n->data, 2054 max(BTREE_NODE_SEQ(b->data), 2055 BTREE_NODE_SEQ(m->data)) + 1); 2056 2057 btree_set_min(n, prev->data->min_key); 2058 btree_set_max(n, next->data->max_key); 2059 2060 n->data->format = new_f; 2061 btree_node_set_format(n, new_f); 2062 2063 bch2_btree_sort_into(c, n, prev); 2064 bch2_btree_sort_into(c, n, next); 2065 2066 bch2_btree_build_aux_trees(n); 2067 bch2_btree_update_add_new_node(as, n); 2068 six_unlock_write(&n->c.lock); 2069 2070 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p); 2071 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2072 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2073 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2074 2075 bkey_init(&delete.k); 2076 delete.k.p = prev->key.k.p; 2077 bch2_keylist_add(&as->parent_keys, &delete); 2078 bch2_keylist_add(&as->parent_keys, &n->key); 2079 2080 bch2_trans_verify_paths(trans); 2081 2082 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 2083 if (ret) 2084 goto err_free_update; 2085 2086 bch2_trans_verify_paths(trans); 2087 2088 bch2_btree_update_get_open_buckets(as, n); 2089 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2090 2091 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 2092 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 2093 2094 bch2_trans_node_add(trans, trans->paths + path, n); 2095 2096 bch2_trans_verify_paths(trans); 2097 2098 six_unlock_intent(&n->c.lock); 2099 2100 bch2_btree_update_done(as, trans); 2101 2102 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 2103 out: 2104 err: 2105 if (new_path) 2106 bch2_path_put(trans, new_path, true); 2107 bch2_path_put(trans, sib_path, true); 2108 bch2_trans_verify_locks(trans); 2109 if (ret == -BCH_ERR_journal_reclaim_would_deadlock) 2110 ret = 0; 2111 if (!ret) 2112 ret = bch2_trans_relock(trans); 2113 return ret; 2114 err_free_update: 2115 bch2_btree_node_free_never_used(as, trans, n); 2116 bch2_btree_update_free(as, trans); 2117 goto out; 2118 } 2119 2120 int bch2_btree_node_rewrite(struct btree_trans *trans, 2121 struct btree_iter *iter, 2122 struct btree *b, 2123 unsigned flags) 2124 { 2125 struct bch_fs *c = trans->c; 2126 struct btree *n, *parent; 2127 struct btree_update *as; 2128 btree_path_idx_t new_path = 0; 2129 int ret; 2130 2131 flags |= BCH_TRANS_COMMIT_no_enospc; 2132 2133 struct btree_path *path = btree_iter_path(trans, iter); 2134 parent = btree_node_parent(path, b); 2135 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 2136 ret = PTR_ERR_OR_ZERO(as); 2137 if (ret) 2138 goto out; 2139 2140 bch2_btree_interior_update_will_free_node(as, b); 2141 2142 n = bch2_btree_node_alloc_replacement(as, trans, b); 2143 2144 bch2_btree_build_aux_trees(n); 2145 bch2_btree_update_add_new_node(as, n); 2146 six_unlock_write(&n->c.lock); 2147 2148 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p); 2149 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2150 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2151 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2152 2153 trace_and_count(c, btree_node_rewrite, trans, b); 2154 2155 if (parent) { 2156 bch2_keylist_add(&as->parent_keys, &n->key); 2157 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys); 2158 } else { 2159 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false); 2160 } 2161 2162 if (ret) 2163 goto err; 2164 2165 bch2_btree_update_get_open_buckets(as, n); 2166 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2167 2168 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2169 2170 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2171 six_unlock_intent(&n->c.lock); 2172 2173 bch2_btree_update_done(as, trans); 2174 out: 2175 if (new_path) 2176 bch2_path_put(trans, new_path, true); 2177 bch2_trans_downgrade(trans); 2178 return ret; 2179 err: 2180 bch2_btree_node_free_never_used(as, trans, n); 2181 bch2_btree_update_free(as, trans); 2182 goto out; 2183 } 2184 2185 struct async_btree_rewrite { 2186 struct bch_fs *c; 2187 struct work_struct work; 2188 struct list_head list; 2189 enum btree_id btree_id; 2190 unsigned level; 2191 struct bpos pos; 2192 __le64 seq; 2193 }; 2194 2195 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2196 struct async_btree_rewrite *a) 2197 { 2198 struct bch_fs *c = trans->c; 2199 struct btree_iter iter; 2200 struct btree *b; 2201 int ret; 2202 2203 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2204 BTREE_MAX_DEPTH, a->level, 0); 2205 b = bch2_btree_iter_peek_node(&iter); 2206 ret = PTR_ERR_OR_ZERO(b); 2207 if (ret) 2208 goto out; 2209 2210 if (!b || b->data->keys.seq != a->seq) { 2211 struct printbuf buf = PRINTBUF; 2212 2213 if (b) 2214 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2215 else 2216 prt_str(&buf, "(null"); 2217 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2218 __func__, a->seq, buf.buf); 2219 printbuf_exit(&buf); 2220 goto out; 2221 } 2222 2223 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2224 out: 2225 bch2_trans_iter_exit(trans, &iter); 2226 2227 return ret; 2228 } 2229 2230 static void async_btree_node_rewrite_work(struct work_struct *work) 2231 { 2232 struct async_btree_rewrite *a = 2233 container_of(work, struct async_btree_rewrite, work); 2234 struct bch_fs *c = a->c; 2235 int ret; 2236 2237 ret = bch2_trans_do(c, NULL, NULL, 0, 2238 async_btree_node_rewrite_trans(trans, a)); 2239 bch_err_fn_ratelimited(c, ret); 2240 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2241 kfree(a); 2242 } 2243 2244 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2245 { 2246 struct async_btree_rewrite *a; 2247 int ret; 2248 2249 a = kmalloc(sizeof(*a), GFP_NOFS); 2250 if (!a) { 2251 bch_err(c, "%s: error allocating memory", __func__); 2252 return; 2253 } 2254 2255 a->c = c; 2256 a->btree_id = b->c.btree_id; 2257 a->level = b->c.level; 2258 a->pos = b->key.k.p; 2259 a->seq = b->data->keys.seq; 2260 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2261 2262 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { 2263 mutex_lock(&c->pending_node_rewrites_lock); 2264 list_add(&a->list, &c->pending_node_rewrites); 2265 mutex_unlock(&c->pending_node_rewrites_lock); 2266 return; 2267 } 2268 2269 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2270 if (test_bit(BCH_FS_started, &c->flags)) { 2271 bch_err(c, "%s: error getting c->writes ref", __func__); 2272 kfree(a); 2273 return; 2274 } 2275 2276 ret = bch2_fs_read_write_early(c); 2277 bch_err_msg(c, ret, "going read-write"); 2278 if (ret) { 2279 kfree(a); 2280 return; 2281 } 2282 2283 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2284 } 2285 2286 queue_work(c->btree_node_rewrite_worker, &a->work); 2287 } 2288 2289 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2290 { 2291 struct async_btree_rewrite *a, *n; 2292 2293 mutex_lock(&c->pending_node_rewrites_lock); 2294 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2295 list_del(&a->list); 2296 2297 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2298 queue_work(c->btree_node_rewrite_worker, &a->work); 2299 } 2300 mutex_unlock(&c->pending_node_rewrites_lock); 2301 } 2302 2303 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2304 { 2305 struct async_btree_rewrite *a, *n; 2306 2307 mutex_lock(&c->pending_node_rewrites_lock); 2308 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2309 list_del(&a->list); 2310 2311 kfree(a); 2312 } 2313 mutex_unlock(&c->pending_node_rewrites_lock); 2314 } 2315 2316 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2317 struct btree_iter *iter, 2318 struct btree *b, struct btree *new_hash, 2319 struct bkey_i *new_key, 2320 unsigned commit_flags, 2321 bool skip_triggers) 2322 { 2323 struct bch_fs *c = trans->c; 2324 struct btree_iter iter2 = { NULL }; 2325 struct btree *parent; 2326 int ret; 2327 2328 if (!skip_triggers) { 2329 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2330 bkey_i_to_s_c(&b->key), 2331 BTREE_TRIGGER_transactional) ?: 2332 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2333 bkey_i_to_s(new_key), 2334 BTREE_TRIGGER_transactional); 2335 if (ret) 2336 return ret; 2337 } 2338 2339 if (new_hash) { 2340 bkey_copy(&new_hash->key, new_key); 2341 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2342 new_hash, b->c.level, b->c.btree_id); 2343 BUG_ON(ret); 2344 } 2345 2346 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2347 if (parent) { 2348 bch2_trans_copy_iter(&iter2, iter); 2349 2350 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2351 iter2.flags & BTREE_ITER_intent, 2352 _THIS_IP_); 2353 2354 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2355 BUG_ON(path2->level != b->c.level); 2356 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2357 2358 btree_path_set_level_up(trans, path2); 2359 2360 trans->paths_sorted = false; 2361 2362 ret = bch2_btree_iter_traverse(&iter2) ?: 2363 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun); 2364 if (ret) 2365 goto err; 2366 } else { 2367 BUG_ON(btree_node_root(c, b) != b); 2368 2369 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2370 jset_u64s(new_key->k.u64s)); 2371 ret = PTR_ERR_OR_ZERO(e); 2372 if (ret) 2373 return ret; 2374 2375 journal_entry_set(e, 2376 BCH_JSET_ENTRY_btree_root, 2377 b->c.btree_id, b->c.level, 2378 new_key, new_key->k.u64s); 2379 } 2380 2381 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2382 if (ret) 2383 goto err; 2384 2385 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2386 2387 if (new_hash) { 2388 mutex_lock(&c->btree_cache.lock); 2389 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2390 bch2_btree_node_hash_remove(&c->btree_cache, b); 2391 2392 bkey_copy(&b->key, new_key); 2393 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2394 BUG_ON(ret); 2395 mutex_unlock(&c->btree_cache.lock); 2396 } else { 2397 bkey_copy(&b->key, new_key); 2398 } 2399 2400 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2401 out: 2402 bch2_trans_iter_exit(trans, &iter2); 2403 return ret; 2404 err: 2405 if (new_hash) { 2406 mutex_lock(&c->btree_cache.lock); 2407 bch2_btree_node_hash_remove(&c->btree_cache, b); 2408 mutex_unlock(&c->btree_cache.lock); 2409 } 2410 goto out; 2411 } 2412 2413 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2414 struct btree *b, struct bkey_i *new_key, 2415 unsigned commit_flags, bool skip_triggers) 2416 { 2417 struct bch_fs *c = trans->c; 2418 struct btree *new_hash = NULL; 2419 struct btree_path *path = btree_iter_path(trans, iter); 2420 struct closure cl; 2421 int ret = 0; 2422 2423 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2424 if (ret) 2425 return ret; 2426 2427 closure_init_stack(&cl); 2428 2429 /* 2430 * check btree_ptr_hash_val() after @b is locked by 2431 * btree_iter_traverse(): 2432 */ 2433 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2434 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2435 if (ret) { 2436 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2437 if (ret) 2438 return ret; 2439 } 2440 2441 new_hash = bch2_btree_node_mem_alloc(trans, false); 2442 } 2443 2444 path->intent_ref++; 2445 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2446 commit_flags, skip_triggers); 2447 --path->intent_ref; 2448 2449 if (new_hash) { 2450 mutex_lock(&c->btree_cache.lock); 2451 list_move(&new_hash->list, &c->btree_cache.freeable); 2452 mutex_unlock(&c->btree_cache.lock); 2453 2454 six_unlock_write(&new_hash->c.lock); 2455 six_unlock_intent(&new_hash->c.lock); 2456 } 2457 closure_sync(&cl); 2458 bch2_btree_cache_cannibalize_unlock(trans); 2459 return ret; 2460 } 2461 2462 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2463 struct btree *b, struct bkey_i *new_key, 2464 unsigned commit_flags, bool skip_triggers) 2465 { 2466 struct btree_iter iter; 2467 int ret; 2468 2469 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2470 BTREE_MAX_DEPTH, b->c.level, 2471 BTREE_ITER_intent); 2472 ret = bch2_btree_iter_traverse(&iter); 2473 if (ret) 2474 goto out; 2475 2476 /* has node been freed? */ 2477 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2478 /* node has been freed: */ 2479 BUG_ON(!btree_node_dying(b)); 2480 goto out; 2481 } 2482 2483 BUG_ON(!btree_node_hashed(b)); 2484 2485 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2486 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2487 2488 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2489 commit_flags, skip_triggers); 2490 out: 2491 bch2_trans_iter_exit(trans, &iter); 2492 return ret; 2493 } 2494 2495 /* Init code: */ 2496 2497 /* 2498 * Only for filesystem bringup, when first reading the btree roots or allocating 2499 * btree roots when initializing a new filesystem: 2500 */ 2501 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2502 { 2503 BUG_ON(btree_node_root(c, b)); 2504 2505 bch2_btree_set_root_inmem(c, b); 2506 } 2507 2508 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level) 2509 { 2510 struct bch_fs *c = trans->c; 2511 struct closure cl; 2512 struct btree *b; 2513 int ret; 2514 2515 closure_init_stack(&cl); 2516 2517 do { 2518 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2519 closure_sync(&cl); 2520 } while (ret); 2521 2522 b = bch2_btree_node_mem_alloc(trans, false); 2523 bch2_btree_cache_cannibalize_unlock(trans); 2524 2525 set_btree_node_fake(b); 2526 set_btree_node_need_rewrite(b); 2527 b->c.level = level; 2528 b->c.btree_id = id; 2529 2530 bkey_btree_ptr_init(&b->key); 2531 b->key.k.p = SPOS_MAX; 2532 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2533 2534 bch2_bset_init_first(b, &b->data->keys); 2535 bch2_btree_build_aux_trees(b); 2536 2537 b->data->flags = 0; 2538 btree_set_min(b, POS_MIN); 2539 btree_set_max(b, SPOS_MAX); 2540 b->data->format = bch2_btree_calc_format(b); 2541 btree_node_set_format(b, b->data->format); 2542 2543 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2544 b->c.level, b->c.btree_id); 2545 BUG_ON(ret); 2546 2547 bch2_btree_set_root_inmem(c, b); 2548 2549 six_unlock_write(&b->c.lock); 2550 six_unlock_intent(&b->c.lock); 2551 return 0; 2552 } 2553 2554 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level) 2555 { 2556 bch2_trans_run(c, bch2_btree_root_alloc_fake_trans(trans, id, level)); 2557 } 2558 2559 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as) 2560 { 2561 prt_printf(out, "%ps: ", (void *) as->ip_started); 2562 bch2_trans_commit_flags_to_text(out, as->flags); 2563 2564 prt_printf(out, " btree=%s l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n", 2565 bch2_btree_id_str(as->btree_id), 2566 as->update_level_start, 2567 as->update_level_end, 2568 bch2_btree_update_modes[as->mode], 2569 as->nodes_written, 2570 closure_nr_remaining(&as->cl), 2571 as->journal.seq); 2572 } 2573 2574 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2575 { 2576 struct btree_update *as; 2577 2578 mutex_lock(&c->btree_interior_update_lock); 2579 list_for_each_entry(as, &c->btree_interior_update_list, list) 2580 bch2_btree_update_to_text(out, as); 2581 mutex_unlock(&c->btree_interior_update_lock); 2582 } 2583 2584 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2585 { 2586 bool ret; 2587 2588 mutex_lock(&c->btree_interior_update_lock); 2589 ret = !list_empty(&c->btree_interior_update_list); 2590 mutex_unlock(&c->btree_interior_update_lock); 2591 2592 return ret; 2593 } 2594 2595 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2596 { 2597 bool ret = bch2_btree_interior_updates_pending(c); 2598 2599 if (ret) 2600 closure_wait_event(&c->btree_interior_update_wait, 2601 !bch2_btree_interior_updates_pending(c)); 2602 return ret; 2603 } 2604 2605 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2606 { 2607 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2608 2609 mutex_lock(&c->btree_root_lock); 2610 2611 r->level = entry->level; 2612 r->alive = true; 2613 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2614 2615 mutex_unlock(&c->btree_root_lock); 2616 } 2617 2618 struct jset_entry * 2619 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2620 struct jset_entry *end, 2621 unsigned long skip) 2622 { 2623 unsigned i; 2624 2625 mutex_lock(&c->btree_root_lock); 2626 2627 for (i = 0; i < btree_id_nr_alive(c); i++) { 2628 struct btree_root *r = bch2_btree_id_root(c, i); 2629 2630 if (r->alive && !test_bit(i, &skip)) { 2631 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2632 i, r->level, &r->key, r->key.k.u64s); 2633 end = vstruct_next(end); 2634 } 2635 } 2636 2637 mutex_unlock(&c->btree_root_lock); 2638 2639 return end; 2640 } 2641 2642 static void bch2_btree_alloc_to_text(struct printbuf *out, 2643 struct bch_fs *c, 2644 struct btree_alloc *a) 2645 { 2646 printbuf_indent_add(out, 2); 2647 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k)); 2648 prt_newline(out); 2649 2650 struct open_bucket *ob; 2651 unsigned i; 2652 open_bucket_for_each(c, &a->ob, ob, i) 2653 bch2_open_bucket_to_text(out, c, ob); 2654 2655 printbuf_indent_sub(out, 2); 2656 } 2657 2658 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c) 2659 { 2660 for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++) 2661 bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]); 2662 } 2663 2664 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2665 { 2666 if (c->btree_node_rewrite_worker) 2667 destroy_workqueue(c->btree_node_rewrite_worker); 2668 if (c->btree_interior_update_worker) 2669 destroy_workqueue(c->btree_interior_update_worker); 2670 mempool_exit(&c->btree_interior_update_pool); 2671 } 2672 2673 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2674 { 2675 mutex_init(&c->btree_reserve_cache_lock); 2676 INIT_LIST_HEAD(&c->btree_interior_update_list); 2677 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2678 mutex_init(&c->btree_interior_update_lock); 2679 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2680 2681 INIT_LIST_HEAD(&c->pending_node_rewrites); 2682 mutex_init(&c->pending_node_rewrites_lock); 2683 } 2684 2685 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2686 { 2687 c->btree_interior_update_worker = 2688 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8); 2689 if (!c->btree_interior_update_worker) 2690 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2691 2692 c->btree_node_rewrite_worker = 2693 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND); 2694 if (!c->btree_node_rewrite_worker) 2695 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2696 2697 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2698 sizeof(struct btree_update))) 2699 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2700 2701 return 0; 2702 } 2703