1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_methods.h" 6 #include "btree_cache.h" 7 #include "btree_gc.h" 8 #include "btree_journal_iter.h" 9 #include "btree_update.h" 10 #include "btree_update_interior.h" 11 #include "btree_io.h" 12 #include "btree_iter.h" 13 #include "btree_locking.h" 14 #include "buckets.h" 15 #include "clock.h" 16 #include "error.h" 17 #include "extents.h" 18 #include "journal.h" 19 #include "journal_reclaim.h" 20 #include "keylist.h" 21 #include "replicas.h" 22 #include "super-io.h" 23 #include "trace.h" 24 25 #include <linux/random.h> 26 27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 28 struct btree_path *, struct btree *, 29 struct keylist *, unsigned); 30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 31 32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans, 33 enum btree_id btree_id, 34 unsigned level, 35 struct bpos pos) 36 { 37 struct btree_path *path; 38 39 path = bch2_path_get(trans, btree_id, pos, level + 1, level, 40 BTREE_ITER_NOPRESERVE| 41 BTREE_ITER_INTENT, _RET_IP_); 42 path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_); 43 bch2_btree_path_downgrade(trans, path); 44 __bch2_btree_path_unlock(trans, path); 45 return path; 46 } 47 48 /* Debug code: */ 49 50 /* 51 * Verify that child nodes correctly span parent node's range: 52 */ 53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) 54 { 55 #ifdef CONFIG_BCACHEFS_DEBUG 56 struct bpos next_node = b->data->min_key; 57 struct btree_node_iter iter; 58 struct bkey_s_c k; 59 struct bkey_s_c_btree_ptr_v2 bp; 60 struct bkey unpacked; 61 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 62 63 BUG_ON(!b->c.level); 64 65 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) 66 return; 67 68 bch2_btree_node_iter_init_from_start(&iter, b); 69 70 while (1) { 71 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); 72 if (k.k->type != KEY_TYPE_btree_ptr_v2) 73 break; 74 bp = bkey_s_c_to_btree_ptr_v2(k); 75 76 if (!bpos_eq(next_node, bp.v->min_key)) { 77 bch2_dump_btree_node(c, b); 78 bch2_bpos_to_text(&buf1, next_node); 79 bch2_bpos_to_text(&buf2, bp.v->min_key); 80 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); 81 } 82 83 bch2_btree_node_iter_advance(&iter, b); 84 85 if (bch2_btree_node_iter_end(&iter)) { 86 if (!bpos_eq(k.k->p, b->key.k.p)) { 87 bch2_dump_btree_node(c, b); 88 bch2_bpos_to_text(&buf1, b->key.k.p); 89 bch2_bpos_to_text(&buf2, k.k->p); 90 panic("expected end %s got %s\n", buf1.buf, buf2.buf); 91 } 92 break; 93 } 94 95 next_node = bpos_successor(k.k->p); 96 } 97 #endif 98 } 99 100 /* Calculate ideal packed bkey format for new btree nodes: */ 101 102 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 103 { 104 struct bkey_packed *k; 105 struct bset_tree *t; 106 struct bkey uk; 107 108 for_each_bset(b, t) 109 bset_tree_for_each_key(b, t, k) 110 if (!bkey_deleted(k)) { 111 uk = bkey_unpack_key(b, k); 112 bch2_bkey_format_add_key(s, &uk); 113 } 114 } 115 116 static struct bkey_format bch2_btree_calc_format(struct btree *b) 117 { 118 struct bkey_format_state s; 119 120 bch2_bkey_format_init(&s); 121 bch2_bkey_format_add_pos(&s, b->data->min_key); 122 bch2_bkey_format_add_pos(&s, b->data->max_key); 123 __bch2_btree_calc_format(&s, b); 124 125 return bch2_bkey_format_done(&s); 126 } 127 128 static size_t btree_node_u64s_with_format(struct btree *b, 129 struct bkey_format *new_f) 130 { 131 struct bkey_format *old_f = &b->format; 132 133 /* stupid integer promotion rules */ 134 ssize_t delta = 135 (((int) new_f->key_u64s - old_f->key_u64s) * 136 (int) b->nr.packed_keys) + 137 (((int) new_f->key_u64s - BKEY_U64s) * 138 (int) b->nr.unpacked_keys); 139 140 BUG_ON(delta + b->nr.live_u64s < 0); 141 142 return b->nr.live_u64s + delta; 143 } 144 145 /** 146 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 147 * 148 * @c: filesystem handle 149 * @b: btree node to rewrite 150 * @new_f: bkey format to translate keys to 151 * 152 * Returns: true if all re-packed keys will be able to fit in a new node. 153 * 154 * Assumes all keys will successfully pack with the new format. 155 */ 156 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 157 struct bkey_format *new_f) 158 { 159 size_t u64s = btree_node_u64s_with_format(b, new_f); 160 161 return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); 162 } 163 164 /* Btree node freeing/allocation: */ 165 166 static void __btree_node_free(struct bch_fs *c, struct btree *b) 167 { 168 trace_and_count(c, btree_node_free, c, b); 169 170 BUG_ON(btree_node_write_blocked(b)); 171 BUG_ON(btree_node_dirty(b)); 172 BUG_ON(btree_node_need_write(b)); 173 BUG_ON(b == btree_node_root(c, b)); 174 BUG_ON(b->ob.nr); 175 BUG_ON(!list_empty(&b->write_blocked)); 176 BUG_ON(b->will_make_reachable); 177 178 clear_btree_node_noevict(b); 179 180 mutex_lock(&c->btree_cache.lock); 181 list_move(&b->list, &c->btree_cache.freeable); 182 mutex_unlock(&c->btree_cache.lock); 183 } 184 185 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 186 struct btree_path *path, 187 struct btree *b) 188 { 189 struct bch_fs *c = trans->c; 190 unsigned level = b->c.level; 191 192 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 193 bch2_btree_node_hash_remove(&c->btree_cache, b); 194 __btree_node_free(c, b); 195 six_unlock_write(&b->c.lock); 196 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 197 198 trans_for_each_path(trans, path) 199 if (path->l[level].b == b) { 200 btree_node_unlock(trans, path, level); 201 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 202 } 203 } 204 205 static void bch2_btree_node_free_never_used(struct btree_update *as, 206 struct btree_trans *trans, 207 struct btree *b) 208 { 209 struct bch_fs *c = as->c; 210 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 211 struct btree_path *path; 212 unsigned level = b->c.level; 213 214 BUG_ON(!list_empty(&b->write_blocked)); 215 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 216 217 b->will_make_reachable = 0; 218 closure_put(&as->cl); 219 220 clear_btree_node_will_make_reachable(b); 221 clear_btree_node_accessed(b); 222 clear_btree_node_dirty_acct(c, b); 223 clear_btree_node_need_write(b); 224 225 mutex_lock(&c->btree_cache.lock); 226 list_del_init(&b->list); 227 bch2_btree_node_hash_remove(&c->btree_cache, b); 228 mutex_unlock(&c->btree_cache.lock); 229 230 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 231 p->b[p->nr++] = b; 232 233 six_unlock_intent(&b->c.lock); 234 235 trans_for_each_path(trans, path) 236 if (path->l[level].b == b) { 237 btree_node_unlock(trans, path, level); 238 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 239 } 240 } 241 242 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 243 struct disk_reservation *res, 244 struct closure *cl, 245 bool interior_node, 246 unsigned flags) 247 { 248 struct bch_fs *c = trans->c; 249 struct write_point *wp; 250 struct btree *b; 251 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 252 struct open_buckets obs = { .nr = 0 }; 253 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 254 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 255 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim 256 ? BTREE_NODE_RESERVE 257 : 0; 258 int ret; 259 260 mutex_lock(&c->btree_reserve_cache_lock); 261 if (c->btree_reserve_cache_nr > nr_reserve) { 262 struct btree_alloc *a = 263 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 264 265 obs = a->ob; 266 bkey_copy(&tmp.k, &a->k); 267 mutex_unlock(&c->btree_reserve_cache_lock); 268 goto mem_alloc; 269 } 270 mutex_unlock(&c->btree_reserve_cache_lock); 271 272 retry: 273 ret = bch2_alloc_sectors_start_trans(trans, 274 c->opts.metadata_target ?: 275 c->opts.foreground_target, 276 0, 277 writepoint_ptr(&c->btree_write_point), 278 &devs_have, 279 res->nr_replicas, 280 c->opts.metadata_replicas_required, 281 watermark, 0, cl, &wp); 282 if (unlikely(ret)) 283 return ERR_PTR(ret); 284 285 if (wp->sectors_free < btree_sectors(c)) { 286 struct open_bucket *ob; 287 unsigned i; 288 289 open_bucket_for_each(c, &wp->ptrs, ob, i) 290 if (ob->sectors_free < btree_sectors(c)) 291 ob->sectors_free = 0; 292 293 bch2_alloc_sectors_done(c, wp); 294 goto retry; 295 } 296 297 bkey_btree_ptr_v2_init(&tmp.k); 298 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 299 300 bch2_open_bucket_get(c, wp, &obs); 301 bch2_alloc_sectors_done(c, wp); 302 mem_alloc: 303 b = bch2_btree_node_mem_alloc(trans, interior_node); 304 six_unlock_write(&b->c.lock); 305 six_unlock_intent(&b->c.lock); 306 307 /* we hold cannibalize_lock: */ 308 BUG_ON(IS_ERR(b)); 309 BUG_ON(b->ob.nr); 310 311 bkey_copy(&b->key, &tmp.k); 312 b->ob = obs; 313 314 return b; 315 } 316 317 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 318 struct btree_trans *trans, 319 unsigned level) 320 { 321 struct bch_fs *c = as->c; 322 struct btree *b; 323 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 324 int ret; 325 326 BUG_ON(level >= BTREE_MAX_DEPTH); 327 BUG_ON(!p->nr); 328 329 b = p->b[--p->nr]; 330 331 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 332 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 333 334 set_btree_node_accessed(b); 335 set_btree_node_dirty_acct(c, b); 336 set_btree_node_need_write(b); 337 338 bch2_bset_init_first(b, &b->data->keys); 339 b->c.level = level; 340 b->c.btree_id = as->btree_id; 341 b->version_ondisk = c->sb.version; 342 343 memset(&b->nr, 0, sizeof(b->nr)); 344 b->data->magic = cpu_to_le64(bset_magic(c)); 345 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 346 b->data->flags = 0; 347 SET_BTREE_NODE_ID(b->data, as->btree_id); 348 SET_BTREE_NODE_LEVEL(b->data, level); 349 350 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 351 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 352 353 bp->v.mem_ptr = 0; 354 bp->v.seq = b->data->keys.seq; 355 bp->v.sectors_written = 0; 356 } 357 358 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 359 360 bch2_btree_build_aux_trees(b); 361 362 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 363 BUG_ON(ret); 364 365 trace_and_count(c, btree_node_alloc, c, b); 366 bch2_increment_clock(c, btree_sectors(c), WRITE); 367 return b; 368 } 369 370 static void btree_set_min(struct btree *b, struct bpos pos) 371 { 372 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 373 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 374 b->data->min_key = pos; 375 } 376 377 static void btree_set_max(struct btree *b, struct bpos pos) 378 { 379 b->key.k.p = pos; 380 b->data->max_key = pos; 381 } 382 383 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 384 struct btree_trans *trans, 385 struct btree *b) 386 { 387 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 388 struct bkey_format format = bch2_btree_calc_format(b); 389 390 /* 391 * The keys might expand with the new format - if they wouldn't fit in 392 * the btree node anymore, use the old format for now: 393 */ 394 if (!bch2_btree_node_format_fits(as->c, b, &format)) 395 format = b->format; 396 397 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 398 399 btree_set_min(n, b->data->min_key); 400 btree_set_max(n, b->data->max_key); 401 402 n->data->format = format; 403 btree_node_set_format(n, format); 404 405 bch2_btree_sort_into(as->c, n, b); 406 407 btree_node_reset_sib_u64s(n); 408 return n; 409 } 410 411 static struct btree *__btree_root_alloc(struct btree_update *as, 412 struct btree_trans *trans, unsigned level) 413 { 414 struct btree *b = bch2_btree_node_alloc(as, trans, level); 415 416 btree_set_min(b, POS_MIN); 417 btree_set_max(b, SPOS_MAX); 418 b->data->format = bch2_btree_calc_format(b); 419 420 btree_node_set_format(b, b->data->format); 421 bch2_btree_build_aux_trees(b); 422 423 return b; 424 } 425 426 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 427 { 428 struct bch_fs *c = as->c; 429 struct prealloc_nodes *p; 430 431 for (p = as->prealloc_nodes; 432 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 433 p++) { 434 while (p->nr) { 435 struct btree *b = p->b[--p->nr]; 436 437 mutex_lock(&c->btree_reserve_cache_lock); 438 439 if (c->btree_reserve_cache_nr < 440 ARRAY_SIZE(c->btree_reserve_cache)) { 441 struct btree_alloc *a = 442 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 443 444 a->ob = b->ob; 445 b->ob.nr = 0; 446 bkey_copy(&a->k, &b->key); 447 } else { 448 bch2_open_buckets_put(c, &b->ob); 449 } 450 451 mutex_unlock(&c->btree_reserve_cache_lock); 452 453 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 454 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 455 __btree_node_free(c, b); 456 six_unlock_write(&b->c.lock); 457 six_unlock_intent(&b->c.lock); 458 } 459 } 460 } 461 462 static int bch2_btree_reserve_get(struct btree_trans *trans, 463 struct btree_update *as, 464 unsigned nr_nodes[2], 465 unsigned flags, 466 struct closure *cl) 467 { 468 struct bch_fs *c = as->c; 469 struct btree *b; 470 unsigned interior; 471 int ret = 0; 472 473 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 474 475 /* 476 * Protects reaping from the btree node cache and using the btree node 477 * open bucket reserve: 478 * 479 * BTREE_INSERT_NOWAIT only applies to btree node allocation, not 480 * blocking on this lock: 481 */ 482 ret = bch2_btree_cache_cannibalize_lock(c, cl); 483 if (ret) 484 return ret; 485 486 for (interior = 0; interior < 2; interior++) { 487 struct prealloc_nodes *p = as->prealloc_nodes + interior; 488 489 while (p->nr < nr_nodes[interior]) { 490 b = __bch2_btree_node_alloc(trans, &as->disk_res, 491 flags & BTREE_INSERT_NOWAIT ? NULL : cl, 492 interior, flags); 493 if (IS_ERR(b)) { 494 ret = PTR_ERR(b); 495 goto err; 496 } 497 498 p->b[p->nr++] = b; 499 } 500 } 501 err: 502 bch2_btree_cache_cannibalize_unlock(c); 503 return ret; 504 } 505 506 /* Asynchronous interior node update machinery */ 507 508 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 509 { 510 struct bch_fs *c = as->c; 511 512 if (as->took_gc_lock) 513 up_read(&c->gc_lock); 514 as->took_gc_lock = false; 515 516 bch2_journal_pin_drop(&c->journal, &as->journal); 517 bch2_journal_pin_flush(&c->journal, &as->journal); 518 bch2_disk_reservation_put(c, &as->disk_res); 519 bch2_btree_reserve_put(as, trans); 520 521 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 522 as->start_time); 523 524 mutex_lock(&c->btree_interior_update_lock); 525 list_del(&as->unwritten_list); 526 list_del(&as->list); 527 528 closure_debug_destroy(&as->cl); 529 mempool_free(as, &c->btree_interior_update_pool); 530 531 /* 532 * Have to do the wakeup with btree_interior_update_lock still held, 533 * since being on btree_interior_update_list is our ref on @c: 534 */ 535 closure_wake_up(&c->btree_interior_update_wait); 536 537 mutex_unlock(&c->btree_interior_update_lock); 538 } 539 540 static void btree_update_add_key(struct btree_update *as, 541 struct keylist *keys, struct btree *b) 542 { 543 struct bkey_i *k = &b->key; 544 545 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 546 ARRAY_SIZE(as->_old_keys)); 547 548 bkey_copy(keys->top, k); 549 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 550 551 bch2_keylist_push(keys); 552 } 553 554 /* 555 * The transactional part of an interior btree node update, where we journal the 556 * update we did to the interior node and update alloc info: 557 */ 558 static int btree_update_nodes_written_trans(struct btree_trans *trans, 559 struct btree_update *as) 560 { 561 struct bkey_i *k; 562 int ret; 563 564 ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s); 565 if (ret) 566 return ret; 567 568 memcpy(&darray_top(trans->extra_journal_entries), 569 as->journal_entries, 570 as->journal_u64s * sizeof(u64)); 571 trans->extra_journal_entries.nr += as->journal_u64s; 572 573 trans->journal_pin = &as->journal; 574 575 for_each_keylist_key(&as->old_keys, k) { 576 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 577 578 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0); 579 if (ret) 580 return ret; 581 } 582 583 for_each_keylist_key(&as->new_keys, k) { 584 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 585 586 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0); 587 if (ret) 588 return ret; 589 } 590 591 return 0; 592 } 593 594 static void btree_update_nodes_written(struct btree_update *as) 595 { 596 struct bch_fs *c = as->c; 597 struct btree *b; 598 struct btree_trans *trans = bch2_trans_get(c); 599 u64 journal_seq = 0; 600 unsigned i; 601 int ret; 602 603 /* 604 * If we're already in an error state, it might be because a btree node 605 * was never written, and we might be trying to free that same btree 606 * node here, but it won't have been marked as allocated and we'll see 607 * spurious disk usage inconsistencies in the transactional part below 608 * if we don't skip it: 609 */ 610 ret = bch2_journal_error(&c->journal); 611 if (ret) 612 goto err; 613 614 /* 615 * Wait for any in flight writes to finish before we free the old nodes 616 * on disk: 617 */ 618 for (i = 0; i < as->nr_old_nodes; i++) { 619 __le64 seq; 620 621 b = as->old_nodes[i]; 622 623 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 624 seq = b->data ? b->data->keys.seq : 0; 625 six_unlock_read(&b->c.lock); 626 627 if (seq == as->old_nodes_seq[i]) 628 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 629 TASK_UNINTERRUPTIBLE); 630 } 631 632 /* 633 * We did an update to a parent node where the pointers we added pointed 634 * to child nodes that weren't written yet: now, the child nodes have 635 * been written so we can write out the update to the interior node. 636 */ 637 638 /* 639 * We can't call into journal reclaim here: we'd block on the journal 640 * reclaim lock, but we may need to release the open buckets we have 641 * pinned in order for other btree updates to make forward progress, and 642 * journal reclaim does btree updates when flushing bkey_cached entries, 643 * which may require allocations as well. 644 */ 645 ret = commit_do(trans, &as->disk_res, &journal_seq, 646 BCH_WATERMARK_reclaim| 647 BTREE_INSERT_NOFAIL| 648 BTREE_INSERT_NOCHECK_RW| 649 BTREE_INSERT_JOURNAL_RECLAIM, 650 btree_update_nodes_written_trans(trans, as)); 651 bch2_trans_unlock(trans); 652 653 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 654 "%s(): error %s", __func__, bch2_err_str(ret)); 655 err: 656 if (as->b) { 657 struct btree_path *path; 658 659 b = as->b; 660 path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p); 661 /* 662 * @b is the node we did the final insert into: 663 * 664 * On failure to get a journal reservation, we still have to 665 * unblock the write and allow most of the write path to happen 666 * so that shutdown works, but the i->journal_seq mechanism 667 * won't work to prevent the btree write from being visible (we 668 * didn't get a journal sequence number) - instead 669 * __bch2_btree_node_write() doesn't do the actual write if 670 * we're in journal error state: 671 */ 672 673 /* 674 * Ensure transaction is unlocked before using 675 * btree_node_lock_nopath() (the use of which is always suspect, 676 * we need to work on removing this in the future) 677 * 678 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 679 * calls bch2_path_upgrade(), before we call path_make_mut(), so 680 * we may rarely end up with a locked path besides the one we 681 * have here: 682 */ 683 bch2_trans_unlock(trans); 684 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 685 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 686 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 687 path->l[b->c.level].b = b; 688 689 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 690 691 mutex_lock(&c->btree_interior_update_lock); 692 693 list_del(&as->write_blocked_list); 694 if (list_empty(&b->write_blocked)) 695 clear_btree_node_write_blocked(b); 696 697 /* 698 * Node might have been freed, recheck under 699 * btree_interior_update_lock: 700 */ 701 if (as->b == b) { 702 BUG_ON(!b->c.level); 703 BUG_ON(!btree_node_dirty(b)); 704 705 if (!ret) { 706 struct bset *last = btree_bset_last(b); 707 708 last->journal_seq = cpu_to_le64( 709 max(journal_seq, 710 le64_to_cpu(last->journal_seq))); 711 712 bch2_btree_add_journal_pin(c, b, journal_seq); 713 } else { 714 /* 715 * If we didn't get a journal sequence number we 716 * can't write this btree node, because recovery 717 * won't know to ignore this write: 718 */ 719 set_btree_node_never_write(b); 720 } 721 } 722 723 mutex_unlock(&c->btree_interior_update_lock); 724 725 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 726 six_unlock_write(&b->c.lock); 727 728 btree_node_write_if_need(c, b, SIX_LOCK_intent); 729 btree_node_unlock(trans, path, b->c.level); 730 bch2_path_put(trans, path, true); 731 } 732 733 bch2_journal_pin_drop(&c->journal, &as->journal); 734 735 mutex_lock(&c->btree_interior_update_lock); 736 for (i = 0; i < as->nr_new_nodes; i++) { 737 b = as->new_nodes[i]; 738 739 BUG_ON(b->will_make_reachable != (unsigned long) as); 740 b->will_make_reachable = 0; 741 clear_btree_node_will_make_reachable(b); 742 } 743 mutex_unlock(&c->btree_interior_update_lock); 744 745 for (i = 0; i < as->nr_new_nodes; i++) { 746 b = as->new_nodes[i]; 747 748 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 749 btree_node_write_if_need(c, b, SIX_LOCK_read); 750 six_unlock_read(&b->c.lock); 751 } 752 753 for (i = 0; i < as->nr_open_buckets; i++) 754 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 755 756 bch2_btree_update_free(as, trans); 757 bch2_trans_put(trans); 758 } 759 760 static void btree_interior_update_work(struct work_struct *work) 761 { 762 struct bch_fs *c = 763 container_of(work, struct bch_fs, btree_interior_update_work); 764 struct btree_update *as; 765 766 while (1) { 767 mutex_lock(&c->btree_interior_update_lock); 768 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 769 struct btree_update, unwritten_list); 770 if (as && !as->nodes_written) 771 as = NULL; 772 mutex_unlock(&c->btree_interior_update_lock); 773 774 if (!as) 775 break; 776 777 btree_update_nodes_written(as); 778 } 779 } 780 781 static void btree_update_set_nodes_written(struct closure *cl) 782 { 783 struct btree_update *as = container_of(cl, struct btree_update, cl); 784 struct bch_fs *c = as->c; 785 786 mutex_lock(&c->btree_interior_update_lock); 787 as->nodes_written = true; 788 mutex_unlock(&c->btree_interior_update_lock); 789 790 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 791 } 792 793 /* 794 * We're updating @b with pointers to nodes that haven't finished writing yet: 795 * block @b from being written until @as completes 796 */ 797 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 798 { 799 struct bch_fs *c = as->c; 800 801 mutex_lock(&c->btree_interior_update_lock); 802 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 803 804 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 805 BUG_ON(!btree_node_dirty(b)); 806 BUG_ON(!b->c.level); 807 808 as->mode = BTREE_INTERIOR_UPDATING_NODE; 809 as->b = b; 810 811 set_btree_node_write_blocked(b); 812 list_add(&as->write_blocked_list, &b->write_blocked); 813 814 mutex_unlock(&c->btree_interior_update_lock); 815 } 816 817 static void btree_update_reparent(struct btree_update *as, 818 struct btree_update *child) 819 { 820 struct bch_fs *c = as->c; 821 822 lockdep_assert_held(&c->btree_interior_update_lock); 823 824 child->b = NULL; 825 child->mode = BTREE_INTERIOR_UPDATING_AS; 826 827 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL); 828 } 829 830 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 831 { 832 struct bkey_i *insert = &b->key; 833 struct bch_fs *c = as->c; 834 835 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 836 837 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 838 ARRAY_SIZE(as->journal_entries)); 839 840 as->journal_u64s += 841 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 842 BCH_JSET_ENTRY_btree_root, 843 b->c.btree_id, b->c.level, 844 insert, insert->k.u64s); 845 846 mutex_lock(&c->btree_interior_update_lock); 847 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 848 849 as->mode = BTREE_INTERIOR_UPDATING_ROOT; 850 mutex_unlock(&c->btree_interior_update_lock); 851 } 852 853 /* 854 * bch2_btree_update_add_new_node: 855 * 856 * This causes @as to wait on @b to be written, before it gets to 857 * bch2_btree_update_nodes_written 858 * 859 * Additionally, it sets b->will_make_reachable to prevent any additional writes 860 * to @b from happening besides the first until @b is reachable on disk 861 * 862 * And it adds @b to the list of @as's new nodes, so that we can update sector 863 * counts in bch2_btree_update_nodes_written: 864 */ 865 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 866 { 867 struct bch_fs *c = as->c; 868 869 closure_get(&as->cl); 870 871 mutex_lock(&c->btree_interior_update_lock); 872 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 873 BUG_ON(b->will_make_reachable); 874 875 as->new_nodes[as->nr_new_nodes++] = b; 876 b->will_make_reachable = 1UL|(unsigned long) as; 877 set_btree_node_will_make_reachable(b); 878 879 mutex_unlock(&c->btree_interior_update_lock); 880 881 btree_update_add_key(as, &as->new_keys, b); 882 883 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 884 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 885 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 886 887 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 888 cpu_to_le16(sectors); 889 } 890 } 891 892 /* 893 * returns true if @b was a new node 894 */ 895 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 896 { 897 struct btree_update *as; 898 unsigned long v; 899 unsigned i; 900 901 mutex_lock(&c->btree_interior_update_lock); 902 /* 903 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 904 * dropped when it gets written by bch2_btree_complete_write - the 905 * xchg() is for synchronization with bch2_btree_complete_write: 906 */ 907 v = xchg(&b->will_make_reachable, 0); 908 clear_btree_node_will_make_reachable(b); 909 as = (struct btree_update *) (v & ~1UL); 910 911 if (!as) { 912 mutex_unlock(&c->btree_interior_update_lock); 913 return; 914 } 915 916 for (i = 0; i < as->nr_new_nodes; i++) 917 if (as->new_nodes[i] == b) 918 goto found; 919 920 BUG(); 921 found: 922 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 923 mutex_unlock(&c->btree_interior_update_lock); 924 925 if (v & 1) 926 closure_put(&as->cl); 927 } 928 929 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 930 { 931 while (b->ob.nr) 932 as->open_buckets[as->nr_open_buckets++] = 933 b->ob.v[--b->ob.nr]; 934 } 935 936 /* 937 * @b is being split/rewritten: it may have pointers to not-yet-written btree 938 * nodes and thus outstanding btree_updates - redirect @b's 939 * btree_updates to point to this btree_update: 940 */ 941 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 942 struct btree *b) 943 { 944 struct bch_fs *c = as->c; 945 struct btree_update *p, *n; 946 struct btree_write *w; 947 948 set_btree_node_dying(b); 949 950 if (btree_node_fake(b)) 951 return; 952 953 mutex_lock(&c->btree_interior_update_lock); 954 955 /* 956 * Does this node have any btree_update operations preventing 957 * it from being written? 958 * 959 * If so, redirect them to point to this btree_update: we can 960 * write out our new nodes, but we won't make them visible until those 961 * operations complete 962 */ 963 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 964 list_del_init(&p->write_blocked_list); 965 btree_update_reparent(as, p); 966 967 /* 968 * for flush_held_btree_writes() waiting on updates to flush or 969 * nodes to be writeable: 970 */ 971 closure_wake_up(&c->btree_interior_update_wait); 972 } 973 974 clear_btree_node_dirty_acct(c, b); 975 clear_btree_node_need_write(b); 976 clear_btree_node_write_blocked(b); 977 978 /* 979 * Does this node have unwritten data that has a pin on the journal? 980 * 981 * If so, transfer that pin to the btree_update operation - 982 * note that if we're freeing multiple nodes, we only need to keep the 983 * oldest pin of any of the nodes we're freeing. We'll release the pin 984 * when the new nodes are persistent and reachable on disk: 985 */ 986 w = btree_current_write(b); 987 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 988 bch2_journal_pin_drop(&c->journal, &w->journal); 989 990 w = btree_prev_write(b); 991 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 992 bch2_journal_pin_drop(&c->journal, &w->journal); 993 994 mutex_unlock(&c->btree_interior_update_lock); 995 996 /* 997 * Is this a node that isn't reachable on disk yet? 998 * 999 * Nodes that aren't reachable yet have writes blocked until they're 1000 * reachable - now that we've cancelled any pending writes and moved 1001 * things waiting on that write to wait on this update, we can drop this 1002 * node from the list of nodes that the other update is making 1003 * reachable, prior to freeing it: 1004 */ 1005 btree_update_drop_new_node(c, b); 1006 1007 btree_update_add_key(as, &as->old_keys, b); 1008 1009 as->old_nodes[as->nr_old_nodes] = b; 1010 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1011 as->nr_old_nodes++; 1012 } 1013 1014 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1015 { 1016 struct bch_fs *c = as->c; 1017 u64 start_time = as->start_time; 1018 1019 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); 1020 1021 if (as->took_gc_lock) 1022 up_read(&as->c->gc_lock); 1023 as->took_gc_lock = false; 1024 1025 bch2_btree_reserve_put(as, trans); 1026 1027 continue_at(&as->cl, btree_update_set_nodes_written, 1028 as->c->btree_interior_update_worker); 1029 1030 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1031 start_time); 1032 } 1033 1034 static struct btree_update * 1035 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1036 unsigned level, bool split, unsigned flags) 1037 { 1038 struct bch_fs *c = trans->c; 1039 struct btree_update *as; 1040 u64 start_time = local_clock(); 1041 int disk_res_flags = (flags & BTREE_INSERT_NOFAIL) 1042 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1043 unsigned nr_nodes[2] = { 0, 0 }; 1044 unsigned update_level = level; 1045 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1046 int ret = 0; 1047 u32 restart_count = trans->restart_count; 1048 1049 BUG_ON(!path->should_be_locked); 1050 1051 if (watermark == BCH_WATERMARK_copygc) 1052 watermark = BCH_WATERMARK_btree_copygc; 1053 if (watermark < BCH_WATERMARK_btree) 1054 watermark = BCH_WATERMARK_btree; 1055 1056 flags &= ~BCH_WATERMARK_MASK; 1057 flags |= watermark; 1058 1059 while (1) { 1060 nr_nodes[!!update_level] += 1 + split; 1061 update_level++; 1062 1063 ret = bch2_btree_path_upgrade(trans, path, update_level + 1); 1064 if (ret) 1065 return ERR_PTR(ret); 1066 1067 if (!btree_path_node(path, update_level)) { 1068 /* Allocating new root? */ 1069 nr_nodes[1] += split; 1070 update_level = BTREE_MAX_DEPTH; 1071 break; 1072 } 1073 1074 if (bch2_btree_node_insert_fits(c, path->l[update_level].b, 1075 BKEY_BTREE_PTR_U64s_MAX * (1 + split))) 1076 break; 1077 1078 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1079 } 1080 1081 if (flags & BTREE_INSERT_GC_LOCK_HELD) 1082 lockdep_assert_held(&c->gc_lock); 1083 else if (!down_read_trylock(&c->gc_lock)) { 1084 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1085 if (ret) { 1086 up_read(&c->gc_lock); 1087 return ERR_PTR(ret); 1088 } 1089 } 1090 1091 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1092 memset(as, 0, sizeof(*as)); 1093 closure_init(&as->cl, NULL); 1094 as->c = c; 1095 as->start_time = start_time; 1096 as->mode = BTREE_INTERIOR_NO_UPDATE; 1097 as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD); 1098 as->btree_id = path->btree_id; 1099 as->update_level = update_level; 1100 INIT_LIST_HEAD(&as->list); 1101 INIT_LIST_HEAD(&as->unwritten_list); 1102 INIT_LIST_HEAD(&as->write_blocked_list); 1103 bch2_keylist_init(&as->old_keys, as->_old_keys); 1104 bch2_keylist_init(&as->new_keys, as->_new_keys); 1105 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1106 1107 mutex_lock(&c->btree_interior_update_lock); 1108 list_add_tail(&as->list, &c->btree_interior_update_list); 1109 mutex_unlock(&c->btree_interior_update_lock); 1110 1111 /* 1112 * We don't want to allocate if we're in an error state, that can cause 1113 * deadlock on emergency shutdown due to open buckets getting stuck in 1114 * the btree_reserve_cache after allocator shutdown has cleared it out. 1115 * This check needs to come after adding us to the btree_interior_update 1116 * list but before calling bch2_btree_reserve_get, to synchronize with 1117 * __bch2_fs_read_only(). 1118 */ 1119 ret = bch2_journal_error(&c->journal); 1120 if (ret) 1121 goto err; 1122 1123 ret = bch2_disk_reservation_get(c, &as->disk_res, 1124 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1125 c->opts.metadata_replicas, 1126 disk_res_flags); 1127 if (ret) 1128 goto err; 1129 1130 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1131 if (bch2_err_matches(ret, ENOSPC) || 1132 bch2_err_matches(ret, ENOMEM)) { 1133 struct closure cl; 1134 1135 /* 1136 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1137 * flag 1138 */ 1139 if (bch2_err_matches(ret, ENOSPC) && 1140 (flags & BTREE_INSERT_JOURNAL_RECLAIM) && 1141 watermark != BCH_WATERMARK_reclaim) { 1142 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1143 goto err; 1144 } 1145 1146 closure_init_stack(&cl); 1147 1148 do { 1149 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1150 1151 bch2_trans_unlock(trans); 1152 closure_sync(&cl); 1153 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1154 } 1155 1156 if (ret) { 1157 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1158 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1159 goto err; 1160 } 1161 1162 ret = bch2_trans_relock(trans); 1163 if (ret) 1164 goto err; 1165 1166 bch2_trans_verify_not_restarted(trans, restart_count); 1167 return as; 1168 err: 1169 bch2_btree_update_free(as, trans); 1170 return ERR_PTR(ret); 1171 } 1172 1173 /* Btree root updates: */ 1174 1175 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1176 { 1177 /* Root nodes cannot be reaped */ 1178 mutex_lock(&c->btree_cache.lock); 1179 list_del_init(&b->list); 1180 mutex_unlock(&c->btree_cache.lock); 1181 1182 mutex_lock(&c->btree_root_lock); 1183 BUG_ON(btree_node_root(c, b) && 1184 (b->c.level < btree_node_root(c, b)->c.level || 1185 !btree_node_dying(btree_node_root(c, b)))); 1186 1187 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1188 mutex_unlock(&c->btree_root_lock); 1189 1190 bch2_recalc_btree_reserve(c); 1191 } 1192 1193 static void bch2_btree_set_root(struct btree_update *as, 1194 struct btree_trans *trans, 1195 struct btree_path *path, 1196 struct btree *b) 1197 { 1198 struct bch_fs *c = as->c; 1199 struct btree *old; 1200 1201 trace_and_count(c, btree_node_set_root, c, b); 1202 1203 old = btree_node_root(c, b); 1204 1205 /* 1206 * Ensure no one is using the old root while we switch to the 1207 * new root: 1208 */ 1209 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1210 1211 bch2_btree_set_root_inmem(c, b); 1212 1213 btree_update_updated_root(as, b); 1214 1215 /* 1216 * Unlock old root after new root is visible: 1217 * 1218 * The new root isn't persistent, but that's ok: we still have 1219 * an intent lock on the new root, and any updates that would 1220 * depend on the new root would have to update the new root. 1221 */ 1222 bch2_btree_node_unlock_write(trans, path, old); 1223 } 1224 1225 /* Interior node updates: */ 1226 1227 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1228 struct btree_trans *trans, 1229 struct btree_path *path, 1230 struct btree *b, 1231 struct btree_node_iter *node_iter, 1232 struct bkey_i *insert) 1233 { 1234 struct bch_fs *c = as->c; 1235 struct bkey_packed *k; 1236 struct printbuf buf = PRINTBUF; 1237 unsigned long old, new, v; 1238 1239 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1240 !btree_ptr_sectors_written(insert)); 1241 1242 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1243 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1244 1245 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1246 btree_node_type(b), WRITE, &buf) ?: 1247 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1248 printbuf_reset(&buf); 1249 prt_printf(&buf, "inserting invalid bkey\n "); 1250 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1251 prt_printf(&buf, "\n "); 1252 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1253 btree_node_type(b), WRITE, &buf); 1254 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1255 1256 bch2_fs_inconsistent(c, "%s", buf.buf); 1257 dump_stack(); 1258 } 1259 1260 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1261 ARRAY_SIZE(as->journal_entries)); 1262 1263 as->journal_u64s += 1264 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1265 BCH_JSET_ENTRY_btree_keys, 1266 b->c.btree_id, b->c.level, 1267 insert, insert->k.u64s); 1268 1269 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1270 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1271 bch2_btree_node_iter_advance(node_iter, b); 1272 1273 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1274 set_btree_node_dirty_acct(c, b); 1275 1276 v = READ_ONCE(b->flags); 1277 do { 1278 old = new = v; 1279 1280 new &= ~BTREE_WRITE_TYPE_MASK; 1281 new |= BTREE_WRITE_interior; 1282 new |= 1 << BTREE_NODE_need_write; 1283 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1284 1285 printbuf_exit(&buf); 1286 } 1287 1288 static void 1289 __bch2_btree_insert_keys_interior(struct btree_update *as, 1290 struct btree_trans *trans, 1291 struct btree_path *path, 1292 struct btree *b, 1293 struct btree_node_iter node_iter, 1294 struct keylist *keys) 1295 { 1296 struct bkey_i *insert = bch2_keylist_front(keys); 1297 struct bkey_packed *k; 1298 1299 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1300 1301 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1302 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1303 ; 1304 1305 while (!bch2_keylist_empty(keys)) { 1306 insert = bch2_keylist_front(keys); 1307 1308 if (bpos_gt(insert->k.p, b->key.k.p)) 1309 break; 1310 1311 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1312 bch2_keylist_pop_front(keys); 1313 } 1314 } 1315 1316 /* 1317 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1318 * node) 1319 */ 1320 static void __btree_split_node(struct btree_update *as, 1321 struct btree_trans *trans, 1322 struct btree *b, 1323 struct btree *n[2]) 1324 { 1325 struct bkey_packed *k; 1326 struct bpos n1_pos = POS_MIN; 1327 struct btree_node_iter iter; 1328 struct bset *bsets[2]; 1329 struct bkey_format_state format[2]; 1330 struct bkey_packed *out[2]; 1331 struct bkey uk; 1332 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1333 int i; 1334 1335 for (i = 0; i < 2; i++) { 1336 BUG_ON(n[i]->nsets != 1); 1337 1338 bsets[i] = btree_bset_first(n[i]); 1339 out[i] = bsets[i]->start; 1340 1341 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1342 bch2_bkey_format_init(&format[i]); 1343 } 1344 1345 u64s = 0; 1346 for_each_btree_node_key(b, k, &iter) { 1347 if (bkey_deleted(k)) 1348 continue; 1349 1350 i = u64s >= n1_u64s; 1351 u64s += k->u64s; 1352 uk = bkey_unpack_key(b, k); 1353 if (!i) 1354 n1_pos = uk.p; 1355 bch2_bkey_format_add_key(&format[i], &uk); 1356 } 1357 1358 btree_set_min(n[0], b->data->min_key); 1359 btree_set_max(n[0], n1_pos); 1360 btree_set_min(n[1], bpos_successor(n1_pos)); 1361 btree_set_max(n[1], b->data->max_key); 1362 1363 for (i = 0; i < 2; i++) { 1364 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1365 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1366 1367 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1368 btree_node_set_format(n[i], n[i]->data->format); 1369 } 1370 1371 u64s = 0; 1372 for_each_btree_node_key(b, k, &iter) { 1373 if (bkey_deleted(k)) 1374 continue; 1375 1376 i = u64s >= n1_u64s; 1377 u64s += k->u64s; 1378 1379 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1380 ? &b->format: &bch2_bkey_format_current, k)) 1381 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1382 else 1383 bch2_bkey_unpack(b, (void *) out[i], k); 1384 1385 out[i]->needs_whiteout = false; 1386 1387 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1388 out[i] = bkey_p_next(out[i]); 1389 } 1390 1391 for (i = 0; i < 2; i++) { 1392 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1393 1394 BUG_ON(!bsets[i]->u64s); 1395 1396 set_btree_bset_end(n[i], n[i]->set); 1397 1398 btree_node_reset_sib_u64s(n[i]); 1399 1400 bch2_verify_btree_nr_keys(n[i]); 1401 1402 if (b->c.level) 1403 btree_node_interior_verify(as->c, n[i]); 1404 } 1405 } 1406 1407 /* 1408 * For updates to interior nodes, we've got to do the insert before we split 1409 * because the stuff we're inserting has to be inserted atomically. Post split, 1410 * the keys might have to go in different nodes and the split would no longer be 1411 * atomic. 1412 * 1413 * Worse, if the insert is from btree node coalescing, if we do the insert after 1414 * we do the split (and pick the pivot) - the pivot we pick might be between 1415 * nodes that were coalesced, and thus in the middle of a child node post 1416 * coalescing: 1417 */ 1418 static void btree_split_insert_keys(struct btree_update *as, 1419 struct btree_trans *trans, 1420 struct btree_path *path, 1421 struct btree *b, 1422 struct keylist *keys) 1423 { 1424 if (!bch2_keylist_empty(keys) && 1425 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1426 struct btree_node_iter node_iter; 1427 1428 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1429 1430 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1431 1432 btree_node_interior_verify(as->c, b); 1433 } 1434 } 1435 1436 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1437 struct btree_path *path, struct btree *b, 1438 struct keylist *keys, unsigned flags) 1439 { 1440 struct bch_fs *c = as->c; 1441 struct btree *parent = btree_node_parent(path, b); 1442 struct btree *n1, *n2 = NULL, *n3 = NULL; 1443 struct btree_path *path1 = NULL, *path2 = NULL; 1444 u64 start_time = local_clock(); 1445 int ret = 0; 1446 1447 BUG_ON(!parent && (b != btree_node_root(c, b))); 1448 BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1)); 1449 1450 bch2_btree_interior_update_will_free_node(as, b); 1451 1452 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1453 struct btree *n[2]; 1454 1455 trace_and_count(c, btree_node_split, c, b); 1456 1457 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1458 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1459 1460 __btree_split_node(as, trans, b, n); 1461 1462 if (keys) { 1463 btree_split_insert_keys(as, trans, path, n1, keys); 1464 btree_split_insert_keys(as, trans, path, n2, keys); 1465 BUG_ON(!bch2_keylist_empty(keys)); 1466 } 1467 1468 bch2_btree_build_aux_trees(n2); 1469 bch2_btree_build_aux_trees(n1); 1470 1471 bch2_btree_update_add_new_node(as, n1); 1472 bch2_btree_update_add_new_node(as, n2); 1473 six_unlock_write(&n2->c.lock); 1474 six_unlock_write(&n1->c.lock); 1475 1476 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1477 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1478 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1479 bch2_btree_path_level_init(trans, path1, n1); 1480 1481 path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p); 1482 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1483 mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1484 bch2_btree_path_level_init(trans, path2, n2); 1485 1486 /* 1487 * Note that on recursive parent_keys == keys, so we 1488 * can't start adding new keys to parent_keys before emptying it 1489 * out (which we did with btree_split_insert_keys() above) 1490 */ 1491 bch2_keylist_add(&as->parent_keys, &n1->key); 1492 bch2_keylist_add(&as->parent_keys, &n2->key); 1493 1494 if (!parent) { 1495 /* Depth increases, make a new root */ 1496 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1497 1498 bch2_btree_update_add_new_node(as, n3); 1499 six_unlock_write(&n3->c.lock); 1500 1501 path2->locks_want++; 1502 BUG_ON(btree_node_locked(path2, n3->c.level)); 1503 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1504 mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1505 bch2_btree_path_level_init(trans, path2, n3); 1506 1507 n3->sib_u64s[0] = U16_MAX; 1508 n3->sib_u64s[1] = U16_MAX; 1509 1510 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1511 } 1512 } else { 1513 trace_and_count(c, btree_node_compact, c, b); 1514 1515 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1516 1517 if (keys) { 1518 btree_split_insert_keys(as, trans, path, n1, keys); 1519 BUG_ON(!bch2_keylist_empty(keys)); 1520 } 1521 1522 bch2_btree_build_aux_trees(n1); 1523 bch2_btree_update_add_new_node(as, n1); 1524 six_unlock_write(&n1->c.lock); 1525 1526 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1527 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1528 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1529 bch2_btree_path_level_init(trans, path1, n1); 1530 1531 if (parent) 1532 bch2_keylist_add(&as->parent_keys, &n1->key); 1533 } 1534 1535 /* New nodes all written, now make them visible: */ 1536 1537 if (parent) { 1538 /* Split a non root node */ 1539 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1540 if (ret) 1541 goto err; 1542 } else if (n3) { 1543 bch2_btree_set_root(as, trans, path, n3); 1544 } else { 1545 /* Root filled up but didn't need to be split */ 1546 bch2_btree_set_root(as, trans, path, n1); 1547 } 1548 1549 if (n3) { 1550 bch2_btree_update_get_open_buckets(as, n3); 1551 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1552 } 1553 if (n2) { 1554 bch2_btree_update_get_open_buckets(as, n2); 1555 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1556 } 1557 bch2_btree_update_get_open_buckets(as, n1); 1558 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1559 1560 /* 1561 * The old node must be freed (in memory) _before_ unlocking the new 1562 * nodes - else another thread could re-acquire a read lock on the old 1563 * node after another thread has locked and updated the new node, thus 1564 * seeing stale data: 1565 */ 1566 bch2_btree_node_free_inmem(trans, path, b); 1567 1568 if (n3) 1569 bch2_trans_node_add(trans, n3); 1570 if (n2) 1571 bch2_trans_node_add(trans, n2); 1572 bch2_trans_node_add(trans, n1); 1573 1574 if (n3) 1575 six_unlock_intent(&n3->c.lock); 1576 if (n2) 1577 six_unlock_intent(&n2->c.lock); 1578 six_unlock_intent(&n1->c.lock); 1579 out: 1580 if (path2) { 1581 __bch2_btree_path_unlock(trans, path2); 1582 bch2_path_put(trans, path2, true); 1583 } 1584 if (path1) { 1585 __bch2_btree_path_unlock(trans, path1); 1586 bch2_path_put(trans, path1, true); 1587 } 1588 1589 bch2_trans_verify_locks(trans); 1590 1591 bch2_time_stats_update(&c->times[n2 1592 ? BCH_TIME_btree_node_split 1593 : BCH_TIME_btree_node_compact], 1594 start_time); 1595 return ret; 1596 err: 1597 if (n3) 1598 bch2_btree_node_free_never_used(as, trans, n3); 1599 if (n2) 1600 bch2_btree_node_free_never_used(as, trans, n2); 1601 bch2_btree_node_free_never_used(as, trans, n1); 1602 goto out; 1603 } 1604 1605 static void 1606 bch2_btree_insert_keys_interior(struct btree_update *as, 1607 struct btree_trans *trans, 1608 struct btree_path *path, 1609 struct btree *b, 1610 struct keylist *keys) 1611 { 1612 struct btree_path *linked; 1613 1614 __bch2_btree_insert_keys_interior(as, trans, path, b, 1615 path->l[b->c.level].iter, keys); 1616 1617 btree_update_updated_node(as, b); 1618 1619 trans_for_each_path_with_node(trans, b, linked) 1620 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1621 1622 bch2_trans_verify_paths(trans); 1623 } 1624 1625 /** 1626 * bch2_btree_insert_node - insert bkeys into a given btree node 1627 * 1628 * @as: btree_update object 1629 * @trans: btree_trans object 1630 * @path: path that points to current node 1631 * @b: node to insert keys into 1632 * @keys: list of keys to insert 1633 * @flags: transaction commit flags 1634 * 1635 * Returns: 0 on success, typically transaction restart error on failure 1636 * 1637 * Inserts as many keys as it can into a given btree node, splitting it if full. 1638 * If a split occurred, this function will return early. This can only happen 1639 * for leaf nodes -- inserts into interior nodes have to be atomic. 1640 */ 1641 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1642 struct btree_path *path, struct btree *b, 1643 struct keylist *keys, unsigned flags) 1644 { 1645 struct bch_fs *c = as->c; 1646 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1647 int old_live_u64s = b->nr.live_u64s; 1648 int live_u64s_added, u64s_added; 1649 int ret; 1650 1651 lockdep_assert_held(&c->gc_lock); 1652 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1653 BUG_ON(!b->c.level); 1654 BUG_ON(!as || as->b); 1655 bch2_verify_keylist_sorted(keys); 1656 1657 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1658 if (ret) 1659 return ret; 1660 1661 bch2_btree_node_prep_for_write(trans, path, b); 1662 1663 if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) { 1664 bch2_btree_node_unlock_write(trans, path, b); 1665 goto split; 1666 } 1667 1668 btree_node_interior_verify(c, b); 1669 1670 bch2_btree_insert_keys_interior(as, trans, path, b, keys); 1671 1672 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1673 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1674 1675 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1676 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1677 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1678 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1679 1680 if (u64s_added > live_u64s_added && 1681 bch2_maybe_compact_whiteouts(c, b)) 1682 bch2_trans_node_reinit_iter(trans, b); 1683 1684 bch2_btree_node_unlock_write(trans, path, b); 1685 1686 btree_node_interior_verify(c, b); 1687 return 0; 1688 split: 1689 /* 1690 * We could attempt to avoid the transaction restart, by calling 1691 * bch2_btree_path_upgrade() and allocating more nodes: 1692 */ 1693 if (b->c.level >= as->update_level) { 1694 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1695 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1696 } 1697 1698 return btree_split(as, trans, path, b, keys, flags); 1699 } 1700 1701 int bch2_btree_split_leaf(struct btree_trans *trans, 1702 struct btree_path *path, 1703 unsigned flags) 1704 { 1705 struct btree *b = path_l(path)->b; 1706 struct btree_update *as; 1707 unsigned l; 1708 int ret = 0; 1709 1710 as = bch2_btree_update_start(trans, path, path->level, 1711 true, flags); 1712 if (IS_ERR(as)) 1713 return PTR_ERR(as); 1714 1715 ret = btree_split(as, trans, path, b, NULL, flags); 1716 if (ret) { 1717 bch2_btree_update_free(as, trans); 1718 return ret; 1719 } 1720 1721 bch2_btree_update_done(as, trans); 1722 1723 for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++) 1724 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1725 1726 return ret; 1727 } 1728 1729 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1730 struct btree_path *path, 1731 unsigned level, 1732 unsigned flags, 1733 enum btree_node_sibling sib) 1734 { 1735 struct bch_fs *c = trans->c; 1736 struct btree_path *sib_path = NULL, *new_path = NULL; 1737 struct btree_update *as; 1738 struct bkey_format_state new_s; 1739 struct bkey_format new_f; 1740 struct bkey_i delete; 1741 struct btree *b, *m, *n, *prev, *next, *parent; 1742 struct bpos sib_pos; 1743 size_t sib_u64s; 1744 u64 start_time = local_clock(); 1745 int ret = 0; 1746 1747 BUG_ON(!path->should_be_locked); 1748 BUG_ON(!btree_node_locked(path, level)); 1749 1750 b = path->l[level].b; 1751 1752 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1753 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1754 b->sib_u64s[sib] = U16_MAX; 1755 return 0; 1756 } 1757 1758 sib_pos = sib == btree_prev_sib 1759 ? bpos_predecessor(b->data->min_key) 1760 : bpos_successor(b->data->max_key); 1761 1762 sib_path = bch2_path_get(trans, path->btree_id, sib_pos, 1763 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1764 ret = bch2_btree_path_traverse(trans, sib_path, false); 1765 if (ret) 1766 goto err; 1767 1768 btree_path_set_should_be_locked(sib_path); 1769 1770 m = sib_path->l[level].b; 1771 1772 if (btree_node_parent(path, b) != 1773 btree_node_parent(sib_path, m)) { 1774 b->sib_u64s[sib] = U16_MAX; 1775 goto out; 1776 } 1777 1778 if (sib == btree_prev_sib) { 1779 prev = m; 1780 next = b; 1781 } else { 1782 prev = b; 1783 next = m; 1784 } 1785 1786 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 1787 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 1788 1789 bch2_bpos_to_text(&buf1, prev->data->max_key); 1790 bch2_bpos_to_text(&buf2, next->data->min_key); 1791 bch_err(c, 1792 "%s(): btree topology error:\n" 1793 " prev ends at %s\n" 1794 " next starts at %s", 1795 __func__, buf1.buf, buf2.buf); 1796 printbuf_exit(&buf1); 1797 printbuf_exit(&buf2); 1798 bch2_topology_error(c); 1799 ret = -EIO; 1800 goto err; 1801 } 1802 1803 bch2_bkey_format_init(&new_s); 1804 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 1805 __bch2_btree_calc_format(&new_s, prev); 1806 __bch2_btree_calc_format(&new_s, next); 1807 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 1808 new_f = bch2_bkey_format_done(&new_s); 1809 1810 sib_u64s = btree_node_u64s_with_format(b, &new_f) + 1811 btree_node_u64s_with_format(m, &new_f); 1812 1813 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 1814 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1815 sib_u64s /= 2; 1816 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1817 } 1818 1819 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 1820 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 1821 b->sib_u64s[sib] = sib_u64s; 1822 1823 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 1824 goto out; 1825 1826 parent = btree_node_parent(path, b); 1827 as = bch2_btree_update_start(trans, path, level, false, 1828 BTREE_INSERT_NOFAIL|flags); 1829 ret = PTR_ERR_OR_ZERO(as); 1830 if (ret) 1831 goto err; 1832 1833 trace_and_count(c, btree_node_merge, c, b); 1834 1835 bch2_btree_interior_update_will_free_node(as, b); 1836 bch2_btree_interior_update_will_free_node(as, m); 1837 1838 n = bch2_btree_node_alloc(as, trans, b->c.level); 1839 1840 SET_BTREE_NODE_SEQ(n->data, 1841 max(BTREE_NODE_SEQ(b->data), 1842 BTREE_NODE_SEQ(m->data)) + 1); 1843 1844 btree_set_min(n, prev->data->min_key); 1845 btree_set_max(n, next->data->max_key); 1846 1847 n->data->format = new_f; 1848 btree_node_set_format(n, new_f); 1849 1850 bch2_btree_sort_into(c, n, prev); 1851 bch2_btree_sort_into(c, n, next); 1852 1853 bch2_btree_build_aux_trees(n); 1854 bch2_btree_update_add_new_node(as, n); 1855 six_unlock_write(&n->c.lock); 1856 1857 new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p); 1858 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1859 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1860 bch2_btree_path_level_init(trans, new_path, n); 1861 1862 bkey_init(&delete.k); 1863 delete.k.p = prev->key.k.p; 1864 bch2_keylist_add(&as->parent_keys, &delete); 1865 bch2_keylist_add(&as->parent_keys, &n->key); 1866 1867 bch2_trans_verify_paths(trans); 1868 1869 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1870 if (ret) 1871 goto err_free_update; 1872 1873 bch2_trans_verify_paths(trans); 1874 1875 bch2_btree_update_get_open_buckets(as, n); 1876 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1877 1878 bch2_btree_node_free_inmem(trans, path, b); 1879 bch2_btree_node_free_inmem(trans, sib_path, m); 1880 1881 bch2_trans_node_add(trans, n); 1882 1883 bch2_trans_verify_paths(trans); 1884 1885 six_unlock_intent(&n->c.lock); 1886 1887 bch2_btree_update_done(as, trans); 1888 1889 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 1890 out: 1891 err: 1892 if (new_path) 1893 bch2_path_put(trans, new_path, true); 1894 bch2_path_put(trans, sib_path, true); 1895 bch2_trans_verify_locks(trans); 1896 return ret; 1897 err_free_update: 1898 bch2_btree_node_free_never_used(as, trans, n); 1899 bch2_btree_update_free(as, trans); 1900 goto out; 1901 } 1902 1903 int bch2_btree_node_rewrite(struct btree_trans *trans, 1904 struct btree_iter *iter, 1905 struct btree *b, 1906 unsigned flags) 1907 { 1908 struct bch_fs *c = trans->c; 1909 struct btree_path *new_path = NULL; 1910 struct btree *n, *parent; 1911 struct btree_update *as; 1912 int ret; 1913 1914 flags |= BTREE_INSERT_NOFAIL; 1915 1916 parent = btree_node_parent(iter->path, b); 1917 as = bch2_btree_update_start(trans, iter->path, b->c.level, 1918 false, flags); 1919 ret = PTR_ERR_OR_ZERO(as); 1920 if (ret) 1921 goto out; 1922 1923 bch2_btree_interior_update_will_free_node(as, b); 1924 1925 n = bch2_btree_node_alloc_replacement(as, trans, b); 1926 1927 bch2_btree_build_aux_trees(n); 1928 bch2_btree_update_add_new_node(as, n); 1929 six_unlock_write(&n->c.lock); 1930 1931 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 1932 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1933 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1934 bch2_btree_path_level_init(trans, new_path, n); 1935 1936 trace_and_count(c, btree_node_rewrite, c, b); 1937 1938 if (parent) { 1939 bch2_keylist_add(&as->parent_keys, &n->key); 1940 ret = bch2_btree_insert_node(as, trans, iter->path, parent, 1941 &as->parent_keys, flags); 1942 if (ret) 1943 goto err; 1944 } else { 1945 bch2_btree_set_root(as, trans, iter->path, n); 1946 } 1947 1948 bch2_btree_update_get_open_buckets(as, n); 1949 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1950 1951 bch2_btree_node_free_inmem(trans, iter->path, b); 1952 1953 bch2_trans_node_add(trans, n); 1954 six_unlock_intent(&n->c.lock); 1955 1956 bch2_btree_update_done(as, trans); 1957 out: 1958 if (new_path) 1959 bch2_path_put(trans, new_path, true); 1960 bch2_trans_downgrade(trans); 1961 return ret; 1962 err: 1963 bch2_btree_node_free_never_used(as, trans, n); 1964 bch2_btree_update_free(as, trans); 1965 goto out; 1966 } 1967 1968 struct async_btree_rewrite { 1969 struct bch_fs *c; 1970 struct work_struct work; 1971 struct list_head list; 1972 enum btree_id btree_id; 1973 unsigned level; 1974 struct bpos pos; 1975 __le64 seq; 1976 }; 1977 1978 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 1979 struct async_btree_rewrite *a) 1980 { 1981 struct bch_fs *c = trans->c; 1982 struct btree_iter iter; 1983 struct btree *b; 1984 int ret; 1985 1986 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 1987 BTREE_MAX_DEPTH, a->level, 0); 1988 b = bch2_btree_iter_peek_node(&iter); 1989 ret = PTR_ERR_OR_ZERO(b); 1990 if (ret) 1991 goto out; 1992 1993 if (!b || b->data->keys.seq != a->seq) { 1994 struct printbuf buf = PRINTBUF; 1995 1996 if (b) 1997 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 1998 else 1999 prt_str(&buf, "(null"); 2000 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2001 __func__, a->seq, buf.buf); 2002 printbuf_exit(&buf); 2003 goto out; 2004 } 2005 2006 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2007 out: 2008 bch2_trans_iter_exit(trans, &iter); 2009 2010 return ret; 2011 } 2012 2013 static void async_btree_node_rewrite_work(struct work_struct *work) 2014 { 2015 struct async_btree_rewrite *a = 2016 container_of(work, struct async_btree_rewrite, work); 2017 struct bch_fs *c = a->c; 2018 int ret; 2019 2020 ret = bch2_trans_do(c, NULL, NULL, 0, 2021 async_btree_node_rewrite_trans(trans, a)); 2022 if (ret) 2023 bch_err_fn(c, ret); 2024 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2025 kfree(a); 2026 } 2027 2028 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2029 { 2030 struct async_btree_rewrite *a; 2031 int ret; 2032 2033 a = kmalloc(sizeof(*a), GFP_NOFS); 2034 if (!a) { 2035 bch_err(c, "%s: error allocating memory", __func__); 2036 return; 2037 } 2038 2039 a->c = c; 2040 a->btree_id = b->c.btree_id; 2041 a->level = b->c.level; 2042 a->pos = b->key.k.p; 2043 a->seq = b->data->keys.seq; 2044 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2045 2046 if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) { 2047 mutex_lock(&c->pending_node_rewrites_lock); 2048 list_add(&a->list, &c->pending_node_rewrites); 2049 mutex_unlock(&c->pending_node_rewrites_lock); 2050 return; 2051 } 2052 2053 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2054 if (test_bit(BCH_FS_STARTED, &c->flags)) { 2055 bch_err(c, "%s: error getting c->writes ref", __func__); 2056 kfree(a); 2057 return; 2058 } 2059 2060 ret = bch2_fs_read_write_early(c); 2061 if (ret) { 2062 bch_err_msg(c, ret, "going read-write"); 2063 kfree(a); 2064 return; 2065 } 2066 2067 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2068 } 2069 2070 queue_work(c->btree_interior_update_worker, &a->work); 2071 } 2072 2073 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2074 { 2075 struct async_btree_rewrite *a, *n; 2076 2077 mutex_lock(&c->pending_node_rewrites_lock); 2078 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2079 list_del(&a->list); 2080 2081 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2082 queue_work(c->btree_interior_update_worker, &a->work); 2083 } 2084 mutex_unlock(&c->pending_node_rewrites_lock); 2085 } 2086 2087 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2088 { 2089 struct async_btree_rewrite *a, *n; 2090 2091 mutex_lock(&c->pending_node_rewrites_lock); 2092 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2093 list_del(&a->list); 2094 2095 kfree(a); 2096 } 2097 mutex_unlock(&c->pending_node_rewrites_lock); 2098 } 2099 2100 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2101 struct btree_iter *iter, 2102 struct btree *b, struct btree *new_hash, 2103 struct bkey_i *new_key, 2104 unsigned commit_flags, 2105 bool skip_triggers) 2106 { 2107 struct bch_fs *c = trans->c; 2108 struct btree_iter iter2 = { NULL }; 2109 struct btree *parent; 2110 int ret; 2111 2112 if (!skip_triggers) { 2113 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1, 2114 bkey_i_to_s_c(&b->key), 0); 2115 if (ret) 2116 return ret; 2117 2118 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1, 2119 new_key, 0); 2120 if (ret) 2121 return ret; 2122 } 2123 2124 if (new_hash) { 2125 bkey_copy(&new_hash->key, new_key); 2126 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2127 new_hash, b->c.level, b->c.btree_id); 2128 BUG_ON(ret); 2129 } 2130 2131 parent = btree_node_parent(iter->path, b); 2132 if (parent) { 2133 bch2_trans_copy_iter(&iter2, iter); 2134 2135 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2136 iter2.flags & BTREE_ITER_INTENT, 2137 _THIS_IP_); 2138 2139 BUG_ON(iter2.path->level != b->c.level); 2140 BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p)); 2141 2142 btree_path_set_level_up(trans, iter2.path); 2143 2144 trans->paths_sorted = false; 2145 2146 ret = bch2_btree_iter_traverse(&iter2) ?: 2147 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2148 if (ret) 2149 goto err; 2150 } else { 2151 BUG_ON(btree_node_root(c, b) != b); 2152 2153 ret = darray_make_room(&trans->extra_journal_entries, 2154 jset_u64s(new_key->k.u64s)); 2155 if (ret) 2156 return ret; 2157 2158 journal_entry_set((void *) &darray_top(trans->extra_journal_entries), 2159 BCH_JSET_ENTRY_btree_root, 2160 b->c.btree_id, b->c.level, 2161 new_key, new_key->k.u64s); 2162 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s); 2163 } 2164 2165 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2166 if (ret) 2167 goto err; 2168 2169 bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c); 2170 2171 if (new_hash) { 2172 mutex_lock(&c->btree_cache.lock); 2173 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2174 bch2_btree_node_hash_remove(&c->btree_cache, b); 2175 2176 bkey_copy(&b->key, new_key); 2177 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2178 BUG_ON(ret); 2179 mutex_unlock(&c->btree_cache.lock); 2180 } else { 2181 bkey_copy(&b->key, new_key); 2182 } 2183 2184 bch2_btree_node_unlock_write(trans, iter->path, b); 2185 out: 2186 bch2_trans_iter_exit(trans, &iter2); 2187 return ret; 2188 err: 2189 if (new_hash) { 2190 mutex_lock(&c->btree_cache.lock); 2191 bch2_btree_node_hash_remove(&c->btree_cache, b); 2192 mutex_unlock(&c->btree_cache.lock); 2193 } 2194 goto out; 2195 } 2196 2197 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2198 struct btree *b, struct bkey_i *new_key, 2199 unsigned commit_flags, bool skip_triggers) 2200 { 2201 struct bch_fs *c = trans->c; 2202 struct btree *new_hash = NULL; 2203 struct btree_path *path = iter->path; 2204 struct closure cl; 2205 int ret = 0; 2206 2207 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2208 if (ret) 2209 return ret; 2210 2211 closure_init_stack(&cl); 2212 2213 /* 2214 * check btree_ptr_hash_val() after @b is locked by 2215 * btree_iter_traverse(): 2216 */ 2217 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2218 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2219 if (ret) { 2220 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2221 if (ret) 2222 return ret; 2223 } 2224 2225 new_hash = bch2_btree_node_mem_alloc(trans, false); 2226 } 2227 2228 path->intent_ref++; 2229 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2230 commit_flags, skip_triggers); 2231 --path->intent_ref; 2232 2233 if (new_hash) { 2234 mutex_lock(&c->btree_cache.lock); 2235 list_move(&new_hash->list, &c->btree_cache.freeable); 2236 mutex_unlock(&c->btree_cache.lock); 2237 2238 six_unlock_write(&new_hash->c.lock); 2239 six_unlock_intent(&new_hash->c.lock); 2240 } 2241 closure_sync(&cl); 2242 bch2_btree_cache_cannibalize_unlock(c); 2243 return ret; 2244 } 2245 2246 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2247 struct btree *b, struct bkey_i *new_key, 2248 unsigned commit_flags, bool skip_triggers) 2249 { 2250 struct btree_iter iter; 2251 int ret; 2252 2253 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2254 BTREE_MAX_DEPTH, b->c.level, 2255 BTREE_ITER_INTENT); 2256 ret = bch2_btree_iter_traverse(&iter); 2257 if (ret) 2258 goto out; 2259 2260 /* has node been freed? */ 2261 if (iter.path->l[b->c.level].b != b) { 2262 /* node has been freed: */ 2263 BUG_ON(!btree_node_dying(b)); 2264 goto out; 2265 } 2266 2267 BUG_ON(!btree_node_hashed(b)); 2268 2269 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2270 commit_flags, skip_triggers); 2271 out: 2272 bch2_trans_iter_exit(trans, &iter); 2273 return ret; 2274 } 2275 2276 /* Init code: */ 2277 2278 /* 2279 * Only for filesystem bringup, when first reading the btree roots or allocating 2280 * btree roots when initializing a new filesystem: 2281 */ 2282 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2283 { 2284 BUG_ON(btree_node_root(c, b)); 2285 2286 bch2_btree_set_root_inmem(c, b); 2287 } 2288 2289 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) 2290 { 2291 struct bch_fs *c = trans->c; 2292 struct closure cl; 2293 struct btree *b; 2294 int ret; 2295 2296 closure_init_stack(&cl); 2297 2298 do { 2299 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2300 closure_sync(&cl); 2301 } while (ret); 2302 2303 b = bch2_btree_node_mem_alloc(trans, false); 2304 bch2_btree_cache_cannibalize_unlock(c); 2305 2306 set_btree_node_fake(b); 2307 set_btree_node_need_rewrite(b); 2308 b->c.level = 0; 2309 b->c.btree_id = id; 2310 2311 bkey_btree_ptr_init(&b->key); 2312 b->key.k.p = SPOS_MAX; 2313 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2314 2315 bch2_bset_init_first(b, &b->data->keys); 2316 bch2_btree_build_aux_trees(b); 2317 2318 b->data->flags = 0; 2319 btree_set_min(b, POS_MIN); 2320 btree_set_max(b, SPOS_MAX); 2321 b->data->format = bch2_btree_calc_format(b); 2322 btree_node_set_format(b, b->data->format); 2323 2324 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2325 b->c.level, b->c.btree_id); 2326 BUG_ON(ret); 2327 2328 bch2_btree_set_root_inmem(c, b); 2329 2330 six_unlock_write(&b->c.lock); 2331 six_unlock_intent(&b->c.lock); 2332 return 0; 2333 } 2334 2335 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) 2336 { 2337 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); 2338 } 2339 2340 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2341 { 2342 struct btree_update *as; 2343 2344 mutex_lock(&c->btree_interior_update_lock); 2345 list_for_each_entry(as, &c->btree_interior_update_list, list) 2346 prt_printf(out, "%p m %u w %u r %u j %llu\n", 2347 as, 2348 as->mode, 2349 as->nodes_written, 2350 closure_nr_remaining(&as->cl), 2351 as->journal.seq); 2352 mutex_unlock(&c->btree_interior_update_lock); 2353 } 2354 2355 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2356 { 2357 bool ret; 2358 2359 mutex_lock(&c->btree_interior_update_lock); 2360 ret = !list_empty(&c->btree_interior_update_list); 2361 mutex_unlock(&c->btree_interior_update_lock); 2362 2363 return ret; 2364 } 2365 2366 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2367 { 2368 bool ret = bch2_btree_interior_updates_pending(c); 2369 2370 if (ret) 2371 closure_wait_event(&c->btree_interior_update_wait, 2372 !bch2_btree_interior_updates_pending(c)); 2373 return ret; 2374 } 2375 2376 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2377 { 2378 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2379 2380 mutex_lock(&c->btree_root_lock); 2381 2382 r->level = entry->level; 2383 r->alive = true; 2384 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2385 2386 mutex_unlock(&c->btree_root_lock); 2387 } 2388 2389 struct jset_entry * 2390 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2391 struct jset_entry *end, 2392 unsigned long skip) 2393 { 2394 unsigned i; 2395 2396 mutex_lock(&c->btree_root_lock); 2397 2398 for (i = 0; i < btree_id_nr_alive(c); i++) { 2399 struct btree_root *r = bch2_btree_id_root(c, i); 2400 2401 if (r->alive && !test_bit(i, &skip)) { 2402 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2403 i, r->level, &r->key, r->key.k.u64s); 2404 end = vstruct_next(end); 2405 } 2406 } 2407 2408 mutex_unlock(&c->btree_root_lock); 2409 2410 return end; 2411 } 2412 2413 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2414 { 2415 if (c->btree_interior_update_worker) 2416 destroy_workqueue(c->btree_interior_update_worker); 2417 mempool_exit(&c->btree_interior_update_pool); 2418 } 2419 2420 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2421 { 2422 mutex_init(&c->btree_reserve_cache_lock); 2423 INIT_LIST_HEAD(&c->btree_interior_update_list); 2424 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2425 mutex_init(&c->btree_interior_update_lock); 2426 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2427 2428 INIT_LIST_HEAD(&c->pending_node_rewrites); 2429 mutex_init(&c->pending_node_rewrites_lock); 2430 } 2431 2432 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2433 { 2434 c->btree_interior_update_worker = 2435 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 2436 if (!c->btree_interior_update_worker) 2437 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2438 2439 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2440 sizeof(struct btree_update))) 2441 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2442 2443 return 0; 2444 } 2445