xref: /linux/fs/bcachefs/btree_update_interior.c (revision c2dfe29f30d8850af324449f416491b171af19aa)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "btree_iter.h"
13 #include "btree_locking.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "journal_reclaim.h"
20 #include "keylist.h"
21 #include "replicas.h"
22 #include "super-io.h"
23 #include "trace.h"
24 
25 #include <linux/random.h>
26 
27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
28 				  struct btree_path *, struct btree *,
29 				  struct keylist *, unsigned);
30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
31 
32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans,
33 						enum btree_id btree_id,
34 						unsigned level,
35 						struct bpos pos)
36 {
37 	struct btree_path *path;
38 
39 	path = bch2_path_get(trans, btree_id, pos, level + 1, level,
40 			     BTREE_ITER_NOPRESERVE|
41 			     BTREE_ITER_INTENT, _RET_IP_);
42 	path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_);
43 	bch2_btree_path_downgrade(trans, path);
44 	__bch2_btree_path_unlock(trans, path);
45 	return path;
46 }
47 
48 /* Debug code: */
49 
50 /*
51  * Verify that child nodes correctly span parent node's range:
52  */
53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
54 {
55 #ifdef CONFIG_BCACHEFS_DEBUG
56 	struct bpos next_node = b->data->min_key;
57 	struct btree_node_iter iter;
58 	struct bkey_s_c k;
59 	struct bkey_s_c_btree_ptr_v2 bp;
60 	struct bkey unpacked;
61 	struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
62 
63 	BUG_ON(!b->c.level);
64 
65 	if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
66 		return;
67 
68 	bch2_btree_node_iter_init_from_start(&iter, b);
69 
70 	while (1) {
71 		k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
72 		if (k.k->type != KEY_TYPE_btree_ptr_v2)
73 			break;
74 		bp = bkey_s_c_to_btree_ptr_v2(k);
75 
76 		if (!bpos_eq(next_node, bp.v->min_key)) {
77 			bch2_dump_btree_node(c, b);
78 			bch2_bpos_to_text(&buf1, next_node);
79 			bch2_bpos_to_text(&buf2, bp.v->min_key);
80 			panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
81 		}
82 
83 		bch2_btree_node_iter_advance(&iter, b);
84 
85 		if (bch2_btree_node_iter_end(&iter)) {
86 			if (!bpos_eq(k.k->p, b->key.k.p)) {
87 				bch2_dump_btree_node(c, b);
88 				bch2_bpos_to_text(&buf1, b->key.k.p);
89 				bch2_bpos_to_text(&buf2, k.k->p);
90 				panic("expected end %s got %s\n", buf1.buf, buf2.buf);
91 			}
92 			break;
93 		}
94 
95 		next_node = bpos_successor(k.k->p);
96 	}
97 #endif
98 }
99 
100 /* Calculate ideal packed bkey format for new btree nodes: */
101 
102 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
103 {
104 	struct bkey_packed *k;
105 	struct bset_tree *t;
106 	struct bkey uk;
107 
108 	for_each_bset(b, t)
109 		bset_tree_for_each_key(b, t, k)
110 			if (!bkey_deleted(k)) {
111 				uk = bkey_unpack_key(b, k);
112 				bch2_bkey_format_add_key(s, &uk);
113 			}
114 }
115 
116 static struct bkey_format bch2_btree_calc_format(struct btree *b)
117 {
118 	struct bkey_format_state s;
119 
120 	bch2_bkey_format_init(&s);
121 	bch2_bkey_format_add_pos(&s, b->data->min_key);
122 	bch2_bkey_format_add_pos(&s, b->data->max_key);
123 	__bch2_btree_calc_format(&s, b);
124 
125 	return bch2_bkey_format_done(&s);
126 }
127 
128 static size_t btree_node_u64s_with_format(struct btree *b,
129 					  struct bkey_format *new_f)
130 {
131 	struct bkey_format *old_f = &b->format;
132 
133 	/* stupid integer promotion rules */
134 	ssize_t delta =
135 	    (((int) new_f->key_u64s - old_f->key_u64s) *
136 	     (int) b->nr.packed_keys) +
137 	    (((int) new_f->key_u64s - BKEY_U64s) *
138 	     (int) b->nr.unpacked_keys);
139 
140 	BUG_ON(delta + b->nr.live_u64s < 0);
141 
142 	return b->nr.live_u64s + delta;
143 }
144 
145 /**
146  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
147  *
148  * @c:		filesystem handle
149  * @b:		btree node to rewrite
150  * @new_f:	bkey format to translate keys to
151  *
152  * Returns: true if all re-packed keys will be able to fit in a new node.
153  *
154  * Assumes all keys will successfully pack with the new format.
155  */
156 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
157 				 struct bkey_format *new_f)
158 {
159 	size_t u64s = btree_node_u64s_with_format(b, new_f);
160 
161 	return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
162 }
163 
164 /* Btree node freeing/allocation: */
165 
166 static void __btree_node_free(struct bch_fs *c, struct btree *b)
167 {
168 	trace_and_count(c, btree_node_free, c, b);
169 
170 	BUG_ON(btree_node_write_blocked(b));
171 	BUG_ON(btree_node_dirty(b));
172 	BUG_ON(btree_node_need_write(b));
173 	BUG_ON(b == btree_node_root(c, b));
174 	BUG_ON(b->ob.nr);
175 	BUG_ON(!list_empty(&b->write_blocked));
176 	BUG_ON(b->will_make_reachable);
177 
178 	clear_btree_node_noevict(b);
179 
180 	mutex_lock(&c->btree_cache.lock);
181 	list_move(&b->list, &c->btree_cache.freeable);
182 	mutex_unlock(&c->btree_cache.lock);
183 }
184 
185 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
186 				       struct btree_path *path,
187 				       struct btree *b)
188 {
189 	struct bch_fs *c = trans->c;
190 	unsigned level = b->c.level;
191 
192 	bch2_btree_node_lock_write_nofail(trans, path, &b->c);
193 	bch2_btree_node_hash_remove(&c->btree_cache, b);
194 	__btree_node_free(c, b);
195 	six_unlock_write(&b->c.lock);
196 	mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
197 
198 	trans_for_each_path(trans, path)
199 		if (path->l[level].b == b) {
200 			btree_node_unlock(trans, path, level);
201 			path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
202 		}
203 }
204 
205 static void bch2_btree_node_free_never_used(struct btree_update *as,
206 					    struct btree_trans *trans,
207 					    struct btree *b)
208 {
209 	struct bch_fs *c = as->c;
210 	struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
211 	struct btree_path *path;
212 	unsigned level = b->c.level;
213 
214 	BUG_ON(!list_empty(&b->write_blocked));
215 	BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
216 
217 	b->will_make_reachable = 0;
218 	closure_put(&as->cl);
219 
220 	clear_btree_node_will_make_reachable(b);
221 	clear_btree_node_accessed(b);
222 	clear_btree_node_dirty_acct(c, b);
223 	clear_btree_node_need_write(b);
224 
225 	mutex_lock(&c->btree_cache.lock);
226 	list_del_init(&b->list);
227 	bch2_btree_node_hash_remove(&c->btree_cache, b);
228 	mutex_unlock(&c->btree_cache.lock);
229 
230 	BUG_ON(p->nr >= ARRAY_SIZE(p->b));
231 	p->b[p->nr++] = b;
232 
233 	six_unlock_intent(&b->c.lock);
234 
235 	trans_for_each_path(trans, path)
236 		if (path->l[level].b == b) {
237 			btree_node_unlock(trans, path, level);
238 			path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
239 		}
240 }
241 
242 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
243 					     struct disk_reservation *res,
244 					     struct closure *cl,
245 					     bool interior_node,
246 					     unsigned flags)
247 {
248 	struct bch_fs *c = trans->c;
249 	struct write_point *wp;
250 	struct btree *b;
251 	BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
252 	struct open_buckets obs = { .nr = 0 };
253 	struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
254 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
255 	unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim
256 		? BTREE_NODE_RESERVE
257 		: 0;
258 	int ret;
259 
260 	mutex_lock(&c->btree_reserve_cache_lock);
261 	if (c->btree_reserve_cache_nr > nr_reserve) {
262 		struct btree_alloc *a =
263 			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
264 
265 		obs = a->ob;
266 		bkey_copy(&tmp.k, &a->k);
267 		mutex_unlock(&c->btree_reserve_cache_lock);
268 		goto mem_alloc;
269 	}
270 	mutex_unlock(&c->btree_reserve_cache_lock);
271 
272 retry:
273 	ret = bch2_alloc_sectors_start_trans(trans,
274 				      c->opts.metadata_target ?:
275 				      c->opts.foreground_target,
276 				      0,
277 				      writepoint_ptr(&c->btree_write_point),
278 				      &devs_have,
279 				      res->nr_replicas,
280 				      c->opts.metadata_replicas_required,
281 				      watermark, 0, cl, &wp);
282 	if (unlikely(ret))
283 		return ERR_PTR(ret);
284 
285 	if (wp->sectors_free < btree_sectors(c)) {
286 		struct open_bucket *ob;
287 		unsigned i;
288 
289 		open_bucket_for_each(c, &wp->ptrs, ob, i)
290 			if (ob->sectors_free < btree_sectors(c))
291 				ob->sectors_free = 0;
292 
293 		bch2_alloc_sectors_done(c, wp);
294 		goto retry;
295 	}
296 
297 	bkey_btree_ptr_v2_init(&tmp.k);
298 	bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
299 
300 	bch2_open_bucket_get(c, wp, &obs);
301 	bch2_alloc_sectors_done(c, wp);
302 mem_alloc:
303 	b = bch2_btree_node_mem_alloc(trans, interior_node);
304 	six_unlock_write(&b->c.lock);
305 	six_unlock_intent(&b->c.lock);
306 
307 	/* we hold cannibalize_lock: */
308 	BUG_ON(IS_ERR(b));
309 	BUG_ON(b->ob.nr);
310 
311 	bkey_copy(&b->key, &tmp.k);
312 	b->ob = obs;
313 
314 	return b;
315 }
316 
317 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
318 					   struct btree_trans *trans,
319 					   unsigned level)
320 {
321 	struct bch_fs *c = as->c;
322 	struct btree *b;
323 	struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
324 	int ret;
325 
326 	BUG_ON(level >= BTREE_MAX_DEPTH);
327 	BUG_ON(!p->nr);
328 
329 	b = p->b[--p->nr];
330 
331 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
332 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
333 
334 	set_btree_node_accessed(b);
335 	set_btree_node_dirty_acct(c, b);
336 	set_btree_node_need_write(b);
337 
338 	bch2_bset_init_first(b, &b->data->keys);
339 	b->c.level	= level;
340 	b->c.btree_id	= as->btree_id;
341 	b->version_ondisk = c->sb.version;
342 
343 	memset(&b->nr, 0, sizeof(b->nr));
344 	b->data->magic = cpu_to_le64(bset_magic(c));
345 	memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
346 	b->data->flags = 0;
347 	SET_BTREE_NODE_ID(b->data, as->btree_id);
348 	SET_BTREE_NODE_LEVEL(b->data, level);
349 
350 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
351 		struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
352 
353 		bp->v.mem_ptr		= 0;
354 		bp->v.seq		= b->data->keys.seq;
355 		bp->v.sectors_written	= 0;
356 	}
357 
358 	SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
359 
360 	bch2_btree_build_aux_trees(b);
361 
362 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
363 	BUG_ON(ret);
364 
365 	trace_and_count(c, btree_node_alloc, c, b);
366 	bch2_increment_clock(c, btree_sectors(c), WRITE);
367 	return b;
368 }
369 
370 static void btree_set_min(struct btree *b, struct bpos pos)
371 {
372 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
373 		bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
374 	b->data->min_key = pos;
375 }
376 
377 static void btree_set_max(struct btree *b, struct bpos pos)
378 {
379 	b->key.k.p = pos;
380 	b->data->max_key = pos;
381 }
382 
383 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
384 						       struct btree_trans *trans,
385 						       struct btree *b)
386 {
387 	struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
388 	struct bkey_format format = bch2_btree_calc_format(b);
389 
390 	/*
391 	 * The keys might expand with the new format - if they wouldn't fit in
392 	 * the btree node anymore, use the old format for now:
393 	 */
394 	if (!bch2_btree_node_format_fits(as->c, b, &format))
395 		format = b->format;
396 
397 	SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
398 
399 	btree_set_min(n, b->data->min_key);
400 	btree_set_max(n, b->data->max_key);
401 
402 	n->data->format		= format;
403 	btree_node_set_format(n, format);
404 
405 	bch2_btree_sort_into(as->c, n, b);
406 
407 	btree_node_reset_sib_u64s(n);
408 	return n;
409 }
410 
411 static struct btree *__btree_root_alloc(struct btree_update *as,
412 				struct btree_trans *trans, unsigned level)
413 {
414 	struct btree *b = bch2_btree_node_alloc(as, trans, level);
415 
416 	btree_set_min(b, POS_MIN);
417 	btree_set_max(b, SPOS_MAX);
418 	b->data->format = bch2_btree_calc_format(b);
419 
420 	btree_node_set_format(b, b->data->format);
421 	bch2_btree_build_aux_trees(b);
422 
423 	return b;
424 }
425 
426 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
427 {
428 	struct bch_fs *c = as->c;
429 	struct prealloc_nodes *p;
430 
431 	for (p = as->prealloc_nodes;
432 	     p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
433 	     p++) {
434 		while (p->nr) {
435 			struct btree *b = p->b[--p->nr];
436 
437 			mutex_lock(&c->btree_reserve_cache_lock);
438 
439 			if (c->btree_reserve_cache_nr <
440 			    ARRAY_SIZE(c->btree_reserve_cache)) {
441 				struct btree_alloc *a =
442 					&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
443 
444 				a->ob = b->ob;
445 				b->ob.nr = 0;
446 				bkey_copy(&a->k, &b->key);
447 			} else {
448 				bch2_open_buckets_put(c, &b->ob);
449 			}
450 
451 			mutex_unlock(&c->btree_reserve_cache_lock);
452 
453 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
454 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
455 			__btree_node_free(c, b);
456 			six_unlock_write(&b->c.lock);
457 			six_unlock_intent(&b->c.lock);
458 		}
459 	}
460 }
461 
462 static int bch2_btree_reserve_get(struct btree_trans *trans,
463 				  struct btree_update *as,
464 				  unsigned nr_nodes[2],
465 				  unsigned flags,
466 				  struct closure *cl)
467 {
468 	struct bch_fs *c = as->c;
469 	struct btree *b;
470 	unsigned interior;
471 	int ret = 0;
472 
473 	BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
474 
475 	/*
476 	 * Protects reaping from the btree node cache and using the btree node
477 	 * open bucket reserve:
478 	 *
479 	 * BTREE_INSERT_NOWAIT only applies to btree node allocation, not
480 	 * blocking on this lock:
481 	 */
482 	ret = bch2_btree_cache_cannibalize_lock(c, cl);
483 	if (ret)
484 		return ret;
485 
486 	for (interior = 0; interior < 2; interior++) {
487 		struct prealloc_nodes *p = as->prealloc_nodes + interior;
488 
489 		while (p->nr < nr_nodes[interior]) {
490 			b = __bch2_btree_node_alloc(trans, &as->disk_res,
491 					flags & BTREE_INSERT_NOWAIT ? NULL : cl,
492 					interior, flags);
493 			if (IS_ERR(b)) {
494 				ret = PTR_ERR(b);
495 				goto err;
496 			}
497 
498 			p->b[p->nr++] = b;
499 		}
500 	}
501 err:
502 	bch2_btree_cache_cannibalize_unlock(c);
503 	return ret;
504 }
505 
506 /* Asynchronous interior node update machinery */
507 
508 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
509 {
510 	struct bch_fs *c = as->c;
511 
512 	if (as->took_gc_lock)
513 		up_read(&c->gc_lock);
514 	as->took_gc_lock = false;
515 
516 	bch2_journal_pin_drop(&c->journal, &as->journal);
517 	bch2_journal_pin_flush(&c->journal, &as->journal);
518 	bch2_disk_reservation_put(c, &as->disk_res);
519 	bch2_btree_reserve_put(as, trans);
520 
521 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
522 			       as->start_time);
523 
524 	mutex_lock(&c->btree_interior_update_lock);
525 	list_del(&as->unwritten_list);
526 	list_del(&as->list);
527 
528 	closure_debug_destroy(&as->cl);
529 	mempool_free(as, &c->btree_interior_update_pool);
530 
531 	/*
532 	 * Have to do the wakeup with btree_interior_update_lock still held,
533 	 * since being on btree_interior_update_list is our ref on @c:
534 	 */
535 	closure_wake_up(&c->btree_interior_update_wait);
536 
537 	mutex_unlock(&c->btree_interior_update_lock);
538 }
539 
540 static void btree_update_add_key(struct btree_update *as,
541 				 struct keylist *keys, struct btree *b)
542 {
543 	struct bkey_i *k = &b->key;
544 
545 	BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
546 	       ARRAY_SIZE(as->_old_keys));
547 
548 	bkey_copy(keys->top, k);
549 	bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
550 
551 	bch2_keylist_push(keys);
552 }
553 
554 /*
555  * The transactional part of an interior btree node update, where we journal the
556  * update we did to the interior node and update alloc info:
557  */
558 static int btree_update_nodes_written_trans(struct btree_trans *trans,
559 					    struct btree_update *as)
560 {
561 	struct bkey_i *k;
562 	int ret;
563 
564 	ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s);
565 	if (ret)
566 		return ret;
567 
568 	memcpy(&darray_top(trans->extra_journal_entries),
569 	       as->journal_entries,
570 	       as->journal_u64s * sizeof(u64));
571 	trans->extra_journal_entries.nr += as->journal_u64s;
572 
573 	trans->journal_pin = &as->journal;
574 
575 	for_each_keylist_key(&as->old_keys, k) {
576 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
577 
578 		ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0);
579 		if (ret)
580 			return ret;
581 	}
582 
583 	for_each_keylist_key(&as->new_keys, k) {
584 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
585 
586 		ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0);
587 		if (ret)
588 			return ret;
589 	}
590 
591 	return 0;
592 }
593 
594 static void btree_update_nodes_written(struct btree_update *as)
595 {
596 	struct bch_fs *c = as->c;
597 	struct btree *b;
598 	struct btree_trans *trans = bch2_trans_get(c);
599 	u64 journal_seq = 0;
600 	unsigned i;
601 	int ret;
602 
603 	/*
604 	 * If we're already in an error state, it might be because a btree node
605 	 * was never written, and we might be trying to free that same btree
606 	 * node here, but it won't have been marked as allocated and we'll see
607 	 * spurious disk usage inconsistencies in the transactional part below
608 	 * if we don't skip it:
609 	 */
610 	ret = bch2_journal_error(&c->journal);
611 	if (ret)
612 		goto err;
613 
614 	/*
615 	 * Wait for any in flight writes to finish before we free the old nodes
616 	 * on disk:
617 	 */
618 	for (i = 0; i < as->nr_old_nodes; i++) {
619 		__le64 seq;
620 
621 		b = as->old_nodes[i];
622 
623 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
624 		seq = b->data ? b->data->keys.seq : 0;
625 		six_unlock_read(&b->c.lock);
626 
627 		if (seq == as->old_nodes_seq[i])
628 			wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
629 				       TASK_UNINTERRUPTIBLE);
630 	}
631 
632 	/*
633 	 * We did an update to a parent node where the pointers we added pointed
634 	 * to child nodes that weren't written yet: now, the child nodes have
635 	 * been written so we can write out the update to the interior node.
636 	 */
637 
638 	/*
639 	 * We can't call into journal reclaim here: we'd block on the journal
640 	 * reclaim lock, but we may need to release the open buckets we have
641 	 * pinned in order for other btree updates to make forward progress, and
642 	 * journal reclaim does btree updates when flushing bkey_cached entries,
643 	 * which may require allocations as well.
644 	 */
645 	ret = commit_do(trans, &as->disk_res, &journal_seq,
646 			BCH_WATERMARK_reclaim|
647 			BTREE_INSERT_NOFAIL|
648 			BTREE_INSERT_NOCHECK_RW|
649 			BTREE_INSERT_JOURNAL_RECLAIM,
650 			btree_update_nodes_written_trans(trans, as));
651 	bch2_trans_unlock(trans);
652 
653 	bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
654 			     "%s(): error %s", __func__, bch2_err_str(ret));
655 err:
656 	if (as->b) {
657 		struct btree_path *path;
658 
659 		b = as->b;
660 		path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p);
661 		/*
662 		 * @b is the node we did the final insert into:
663 		 *
664 		 * On failure to get a journal reservation, we still have to
665 		 * unblock the write and allow most of the write path to happen
666 		 * so that shutdown works, but the i->journal_seq mechanism
667 		 * won't work to prevent the btree write from being visible (we
668 		 * didn't get a journal sequence number) - instead
669 		 * __bch2_btree_node_write() doesn't do the actual write if
670 		 * we're in journal error state:
671 		 */
672 
673 		/*
674 		 * Ensure transaction is unlocked before using
675 		 * btree_node_lock_nopath() (the use of which is always suspect,
676 		 * we need to work on removing this in the future)
677 		 *
678 		 * It should be, but get_unlocked_mut_path() -> bch2_path_get()
679 		 * calls bch2_path_upgrade(), before we call path_make_mut(), so
680 		 * we may rarely end up with a locked path besides the one we
681 		 * have here:
682 		 */
683 		bch2_trans_unlock(trans);
684 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
685 		mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
686 		path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
687 		path->l[b->c.level].b = b;
688 
689 		bch2_btree_node_lock_write_nofail(trans, path, &b->c);
690 
691 		mutex_lock(&c->btree_interior_update_lock);
692 
693 		list_del(&as->write_blocked_list);
694 		if (list_empty(&b->write_blocked))
695 			clear_btree_node_write_blocked(b);
696 
697 		/*
698 		 * Node might have been freed, recheck under
699 		 * btree_interior_update_lock:
700 		 */
701 		if (as->b == b) {
702 			BUG_ON(!b->c.level);
703 			BUG_ON(!btree_node_dirty(b));
704 
705 			if (!ret) {
706 				struct bset *last = btree_bset_last(b);
707 
708 				last->journal_seq = cpu_to_le64(
709 							     max(journal_seq,
710 								 le64_to_cpu(last->journal_seq)));
711 
712 				bch2_btree_add_journal_pin(c, b, journal_seq);
713 			} else {
714 				/*
715 				 * If we didn't get a journal sequence number we
716 				 * can't write this btree node, because recovery
717 				 * won't know to ignore this write:
718 				 */
719 				set_btree_node_never_write(b);
720 			}
721 		}
722 
723 		mutex_unlock(&c->btree_interior_update_lock);
724 
725 		mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
726 		six_unlock_write(&b->c.lock);
727 
728 		btree_node_write_if_need(c, b, SIX_LOCK_intent);
729 		btree_node_unlock(trans, path, b->c.level);
730 		bch2_path_put(trans, path, true);
731 	}
732 
733 	bch2_journal_pin_drop(&c->journal, &as->journal);
734 
735 	mutex_lock(&c->btree_interior_update_lock);
736 	for (i = 0; i < as->nr_new_nodes; i++) {
737 		b = as->new_nodes[i];
738 
739 		BUG_ON(b->will_make_reachable != (unsigned long) as);
740 		b->will_make_reachable = 0;
741 		clear_btree_node_will_make_reachable(b);
742 	}
743 	mutex_unlock(&c->btree_interior_update_lock);
744 
745 	for (i = 0; i < as->nr_new_nodes; i++) {
746 		b = as->new_nodes[i];
747 
748 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
749 		btree_node_write_if_need(c, b, SIX_LOCK_read);
750 		six_unlock_read(&b->c.lock);
751 	}
752 
753 	for (i = 0; i < as->nr_open_buckets; i++)
754 		bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
755 
756 	bch2_btree_update_free(as, trans);
757 	bch2_trans_put(trans);
758 }
759 
760 static void btree_interior_update_work(struct work_struct *work)
761 {
762 	struct bch_fs *c =
763 		container_of(work, struct bch_fs, btree_interior_update_work);
764 	struct btree_update *as;
765 
766 	while (1) {
767 		mutex_lock(&c->btree_interior_update_lock);
768 		as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
769 					      struct btree_update, unwritten_list);
770 		if (as && !as->nodes_written)
771 			as = NULL;
772 		mutex_unlock(&c->btree_interior_update_lock);
773 
774 		if (!as)
775 			break;
776 
777 		btree_update_nodes_written(as);
778 	}
779 }
780 
781 static void btree_update_set_nodes_written(struct closure *cl)
782 {
783 	struct btree_update *as = container_of(cl, struct btree_update, cl);
784 	struct bch_fs *c = as->c;
785 
786 	mutex_lock(&c->btree_interior_update_lock);
787 	as->nodes_written = true;
788 	mutex_unlock(&c->btree_interior_update_lock);
789 
790 	queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
791 }
792 
793 /*
794  * We're updating @b with pointers to nodes that haven't finished writing yet:
795  * block @b from being written until @as completes
796  */
797 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
798 {
799 	struct bch_fs *c = as->c;
800 
801 	mutex_lock(&c->btree_interior_update_lock);
802 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
803 
804 	BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
805 	BUG_ON(!btree_node_dirty(b));
806 	BUG_ON(!b->c.level);
807 
808 	as->mode	= BTREE_INTERIOR_UPDATING_NODE;
809 	as->b		= b;
810 
811 	set_btree_node_write_blocked(b);
812 	list_add(&as->write_blocked_list, &b->write_blocked);
813 
814 	mutex_unlock(&c->btree_interior_update_lock);
815 }
816 
817 static void btree_update_reparent(struct btree_update *as,
818 				  struct btree_update *child)
819 {
820 	struct bch_fs *c = as->c;
821 
822 	lockdep_assert_held(&c->btree_interior_update_lock);
823 
824 	child->b = NULL;
825 	child->mode = BTREE_INTERIOR_UPDATING_AS;
826 
827 	bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
828 }
829 
830 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
831 {
832 	struct bkey_i *insert = &b->key;
833 	struct bch_fs *c = as->c;
834 
835 	BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
836 
837 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
838 	       ARRAY_SIZE(as->journal_entries));
839 
840 	as->journal_u64s +=
841 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
842 				  BCH_JSET_ENTRY_btree_root,
843 				  b->c.btree_id, b->c.level,
844 				  insert, insert->k.u64s);
845 
846 	mutex_lock(&c->btree_interior_update_lock);
847 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
848 
849 	as->mode	= BTREE_INTERIOR_UPDATING_ROOT;
850 	mutex_unlock(&c->btree_interior_update_lock);
851 }
852 
853 /*
854  * bch2_btree_update_add_new_node:
855  *
856  * This causes @as to wait on @b to be written, before it gets to
857  * bch2_btree_update_nodes_written
858  *
859  * Additionally, it sets b->will_make_reachable to prevent any additional writes
860  * to @b from happening besides the first until @b is reachable on disk
861  *
862  * And it adds @b to the list of @as's new nodes, so that we can update sector
863  * counts in bch2_btree_update_nodes_written:
864  */
865 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
866 {
867 	struct bch_fs *c = as->c;
868 
869 	closure_get(&as->cl);
870 
871 	mutex_lock(&c->btree_interior_update_lock);
872 	BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
873 	BUG_ON(b->will_make_reachable);
874 
875 	as->new_nodes[as->nr_new_nodes++] = b;
876 	b->will_make_reachable = 1UL|(unsigned long) as;
877 	set_btree_node_will_make_reachable(b);
878 
879 	mutex_unlock(&c->btree_interior_update_lock);
880 
881 	btree_update_add_key(as, &as->new_keys, b);
882 
883 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
884 		unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
885 		unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
886 
887 		bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
888 			cpu_to_le16(sectors);
889 	}
890 }
891 
892 /*
893  * returns true if @b was a new node
894  */
895 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
896 {
897 	struct btree_update *as;
898 	unsigned long v;
899 	unsigned i;
900 
901 	mutex_lock(&c->btree_interior_update_lock);
902 	/*
903 	 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
904 	 * dropped when it gets written by bch2_btree_complete_write - the
905 	 * xchg() is for synchronization with bch2_btree_complete_write:
906 	 */
907 	v = xchg(&b->will_make_reachable, 0);
908 	clear_btree_node_will_make_reachable(b);
909 	as = (struct btree_update *) (v & ~1UL);
910 
911 	if (!as) {
912 		mutex_unlock(&c->btree_interior_update_lock);
913 		return;
914 	}
915 
916 	for (i = 0; i < as->nr_new_nodes; i++)
917 		if (as->new_nodes[i] == b)
918 			goto found;
919 
920 	BUG();
921 found:
922 	array_remove_item(as->new_nodes, as->nr_new_nodes, i);
923 	mutex_unlock(&c->btree_interior_update_lock);
924 
925 	if (v & 1)
926 		closure_put(&as->cl);
927 }
928 
929 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
930 {
931 	while (b->ob.nr)
932 		as->open_buckets[as->nr_open_buckets++] =
933 			b->ob.v[--b->ob.nr];
934 }
935 
936 /*
937  * @b is being split/rewritten: it may have pointers to not-yet-written btree
938  * nodes and thus outstanding btree_updates - redirect @b's
939  * btree_updates to point to this btree_update:
940  */
941 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
942 						      struct btree *b)
943 {
944 	struct bch_fs *c = as->c;
945 	struct btree_update *p, *n;
946 	struct btree_write *w;
947 
948 	set_btree_node_dying(b);
949 
950 	if (btree_node_fake(b))
951 		return;
952 
953 	mutex_lock(&c->btree_interior_update_lock);
954 
955 	/*
956 	 * Does this node have any btree_update operations preventing
957 	 * it from being written?
958 	 *
959 	 * If so, redirect them to point to this btree_update: we can
960 	 * write out our new nodes, but we won't make them visible until those
961 	 * operations complete
962 	 */
963 	list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
964 		list_del_init(&p->write_blocked_list);
965 		btree_update_reparent(as, p);
966 
967 		/*
968 		 * for flush_held_btree_writes() waiting on updates to flush or
969 		 * nodes to be writeable:
970 		 */
971 		closure_wake_up(&c->btree_interior_update_wait);
972 	}
973 
974 	clear_btree_node_dirty_acct(c, b);
975 	clear_btree_node_need_write(b);
976 	clear_btree_node_write_blocked(b);
977 
978 	/*
979 	 * Does this node have unwritten data that has a pin on the journal?
980 	 *
981 	 * If so, transfer that pin to the btree_update operation -
982 	 * note that if we're freeing multiple nodes, we only need to keep the
983 	 * oldest pin of any of the nodes we're freeing. We'll release the pin
984 	 * when the new nodes are persistent and reachable on disk:
985 	 */
986 	w = btree_current_write(b);
987 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
988 	bch2_journal_pin_drop(&c->journal, &w->journal);
989 
990 	w = btree_prev_write(b);
991 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
992 	bch2_journal_pin_drop(&c->journal, &w->journal);
993 
994 	mutex_unlock(&c->btree_interior_update_lock);
995 
996 	/*
997 	 * Is this a node that isn't reachable on disk yet?
998 	 *
999 	 * Nodes that aren't reachable yet have writes blocked until they're
1000 	 * reachable - now that we've cancelled any pending writes and moved
1001 	 * things waiting on that write to wait on this update, we can drop this
1002 	 * node from the list of nodes that the other update is making
1003 	 * reachable, prior to freeing it:
1004 	 */
1005 	btree_update_drop_new_node(c, b);
1006 
1007 	btree_update_add_key(as, &as->old_keys, b);
1008 
1009 	as->old_nodes[as->nr_old_nodes] = b;
1010 	as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1011 	as->nr_old_nodes++;
1012 }
1013 
1014 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1015 {
1016 	struct bch_fs *c = as->c;
1017 	u64 start_time = as->start_time;
1018 
1019 	BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1020 
1021 	if (as->took_gc_lock)
1022 		up_read(&as->c->gc_lock);
1023 	as->took_gc_lock = false;
1024 
1025 	bch2_btree_reserve_put(as, trans);
1026 
1027 	continue_at(&as->cl, btree_update_set_nodes_written,
1028 		    as->c->btree_interior_update_worker);
1029 
1030 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1031 			       start_time);
1032 }
1033 
1034 static struct btree_update *
1035 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1036 			unsigned level, bool split, unsigned flags)
1037 {
1038 	struct bch_fs *c = trans->c;
1039 	struct btree_update *as;
1040 	u64 start_time = local_clock();
1041 	int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
1042 		? BCH_DISK_RESERVATION_NOFAIL : 0;
1043 	unsigned nr_nodes[2] = { 0, 0 };
1044 	unsigned update_level = level;
1045 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1046 	int ret = 0;
1047 	u32 restart_count = trans->restart_count;
1048 
1049 	BUG_ON(!path->should_be_locked);
1050 
1051 	if (watermark == BCH_WATERMARK_copygc)
1052 		watermark = BCH_WATERMARK_btree_copygc;
1053 	if (watermark < BCH_WATERMARK_btree)
1054 		watermark = BCH_WATERMARK_btree;
1055 
1056 	flags &= ~BCH_WATERMARK_MASK;
1057 	flags |= watermark;
1058 
1059 	while (1) {
1060 		nr_nodes[!!update_level] += 1 + split;
1061 		update_level++;
1062 
1063 		ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1064 		if (ret)
1065 			return ERR_PTR(ret);
1066 
1067 		if (!btree_path_node(path, update_level)) {
1068 			/* Allocating new root? */
1069 			nr_nodes[1] += split;
1070 			update_level = BTREE_MAX_DEPTH;
1071 			break;
1072 		}
1073 
1074 		if (bch2_btree_node_insert_fits(c, path->l[update_level].b,
1075 					BKEY_BTREE_PTR_U64s_MAX * (1 + split)))
1076 			break;
1077 
1078 		split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1079 	}
1080 
1081 	if (flags & BTREE_INSERT_GC_LOCK_HELD)
1082 		lockdep_assert_held(&c->gc_lock);
1083 	else if (!down_read_trylock(&c->gc_lock)) {
1084 		ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1085 		if (ret) {
1086 			up_read(&c->gc_lock);
1087 			return ERR_PTR(ret);
1088 		}
1089 	}
1090 
1091 	as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1092 	memset(as, 0, sizeof(*as));
1093 	closure_init(&as->cl, NULL);
1094 	as->c		= c;
1095 	as->start_time	= start_time;
1096 	as->mode	= BTREE_INTERIOR_NO_UPDATE;
1097 	as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
1098 	as->btree_id	= path->btree_id;
1099 	as->update_level = update_level;
1100 	INIT_LIST_HEAD(&as->list);
1101 	INIT_LIST_HEAD(&as->unwritten_list);
1102 	INIT_LIST_HEAD(&as->write_blocked_list);
1103 	bch2_keylist_init(&as->old_keys, as->_old_keys);
1104 	bch2_keylist_init(&as->new_keys, as->_new_keys);
1105 	bch2_keylist_init(&as->parent_keys, as->inline_keys);
1106 
1107 	mutex_lock(&c->btree_interior_update_lock);
1108 	list_add_tail(&as->list, &c->btree_interior_update_list);
1109 	mutex_unlock(&c->btree_interior_update_lock);
1110 
1111 	/*
1112 	 * We don't want to allocate if we're in an error state, that can cause
1113 	 * deadlock on emergency shutdown due to open buckets getting stuck in
1114 	 * the btree_reserve_cache after allocator shutdown has cleared it out.
1115 	 * This check needs to come after adding us to the btree_interior_update
1116 	 * list but before calling bch2_btree_reserve_get, to synchronize with
1117 	 * __bch2_fs_read_only().
1118 	 */
1119 	ret = bch2_journal_error(&c->journal);
1120 	if (ret)
1121 		goto err;
1122 
1123 	ret = bch2_disk_reservation_get(c, &as->disk_res,
1124 			(nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1125 			c->opts.metadata_replicas,
1126 			disk_res_flags);
1127 	if (ret)
1128 		goto err;
1129 
1130 	ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1131 	if (bch2_err_matches(ret, ENOSPC) ||
1132 	    bch2_err_matches(ret, ENOMEM)) {
1133 		struct closure cl;
1134 
1135 		/*
1136 		 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1137 		 * flag
1138 		 */
1139 		if (bch2_err_matches(ret, ENOSPC) &&
1140 		    (flags & BTREE_INSERT_JOURNAL_RECLAIM) &&
1141 		    watermark != BCH_WATERMARK_reclaim) {
1142 			ret = -BCH_ERR_journal_reclaim_would_deadlock;
1143 			goto err;
1144 		}
1145 
1146 		closure_init_stack(&cl);
1147 
1148 		do {
1149 			ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1150 
1151 			bch2_trans_unlock(trans);
1152 			closure_sync(&cl);
1153 		} while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1154 	}
1155 
1156 	if (ret) {
1157 		trace_and_count(c, btree_reserve_get_fail, trans->fn,
1158 				_RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1159 		goto err;
1160 	}
1161 
1162 	ret = bch2_trans_relock(trans);
1163 	if (ret)
1164 		goto err;
1165 
1166 	bch2_trans_verify_not_restarted(trans, restart_count);
1167 	return as;
1168 err:
1169 	bch2_btree_update_free(as, trans);
1170 	return ERR_PTR(ret);
1171 }
1172 
1173 /* Btree root updates: */
1174 
1175 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1176 {
1177 	/* Root nodes cannot be reaped */
1178 	mutex_lock(&c->btree_cache.lock);
1179 	list_del_init(&b->list);
1180 	mutex_unlock(&c->btree_cache.lock);
1181 
1182 	mutex_lock(&c->btree_root_lock);
1183 	BUG_ON(btree_node_root(c, b) &&
1184 	       (b->c.level < btree_node_root(c, b)->c.level ||
1185 		!btree_node_dying(btree_node_root(c, b))));
1186 
1187 	bch2_btree_id_root(c, b->c.btree_id)->b = b;
1188 	mutex_unlock(&c->btree_root_lock);
1189 
1190 	bch2_recalc_btree_reserve(c);
1191 }
1192 
1193 static void bch2_btree_set_root(struct btree_update *as,
1194 				struct btree_trans *trans,
1195 				struct btree_path *path,
1196 				struct btree *b)
1197 {
1198 	struct bch_fs *c = as->c;
1199 	struct btree *old;
1200 
1201 	trace_and_count(c, btree_node_set_root, c, b);
1202 
1203 	old = btree_node_root(c, b);
1204 
1205 	/*
1206 	 * Ensure no one is using the old root while we switch to the
1207 	 * new root:
1208 	 */
1209 	bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1210 
1211 	bch2_btree_set_root_inmem(c, b);
1212 
1213 	btree_update_updated_root(as, b);
1214 
1215 	/*
1216 	 * Unlock old root after new root is visible:
1217 	 *
1218 	 * The new root isn't persistent, but that's ok: we still have
1219 	 * an intent lock on the new root, and any updates that would
1220 	 * depend on the new root would have to update the new root.
1221 	 */
1222 	bch2_btree_node_unlock_write(trans, path, old);
1223 }
1224 
1225 /* Interior node updates: */
1226 
1227 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1228 					struct btree_trans *trans,
1229 					struct btree_path *path,
1230 					struct btree *b,
1231 					struct btree_node_iter *node_iter,
1232 					struct bkey_i *insert)
1233 {
1234 	struct bch_fs *c = as->c;
1235 	struct bkey_packed *k;
1236 	struct printbuf buf = PRINTBUF;
1237 	unsigned long old, new, v;
1238 
1239 	BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1240 	       !btree_ptr_sectors_written(insert));
1241 
1242 	if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1243 		bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1244 
1245 	if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1246 			      btree_node_type(b), WRITE, &buf) ?:
1247 	    bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) {
1248 		printbuf_reset(&buf);
1249 		prt_printf(&buf, "inserting invalid bkey\n  ");
1250 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1251 		prt_printf(&buf, "\n  ");
1252 		bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1253 				  btree_node_type(b), WRITE, &buf);
1254 		bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf);
1255 
1256 		bch2_fs_inconsistent(c, "%s", buf.buf);
1257 		dump_stack();
1258 	}
1259 
1260 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1261 	       ARRAY_SIZE(as->journal_entries));
1262 
1263 	as->journal_u64s +=
1264 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1265 				  BCH_JSET_ENTRY_btree_keys,
1266 				  b->c.btree_id, b->c.level,
1267 				  insert, insert->k.u64s);
1268 
1269 	while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1270 	       bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1271 		bch2_btree_node_iter_advance(node_iter, b);
1272 
1273 	bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1274 	set_btree_node_dirty_acct(c, b);
1275 
1276 	v = READ_ONCE(b->flags);
1277 	do {
1278 		old = new = v;
1279 
1280 		new &= ~BTREE_WRITE_TYPE_MASK;
1281 		new |= BTREE_WRITE_interior;
1282 		new |= 1 << BTREE_NODE_need_write;
1283 	} while ((v = cmpxchg(&b->flags, old, new)) != old);
1284 
1285 	printbuf_exit(&buf);
1286 }
1287 
1288 static void
1289 __bch2_btree_insert_keys_interior(struct btree_update *as,
1290 				  struct btree_trans *trans,
1291 				  struct btree_path *path,
1292 				  struct btree *b,
1293 				  struct btree_node_iter node_iter,
1294 				  struct keylist *keys)
1295 {
1296 	struct bkey_i *insert = bch2_keylist_front(keys);
1297 	struct bkey_packed *k;
1298 
1299 	BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1300 
1301 	while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1302 	       (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1303 		;
1304 
1305 	while (!bch2_keylist_empty(keys)) {
1306 		insert = bch2_keylist_front(keys);
1307 
1308 		if (bpos_gt(insert->k.p, b->key.k.p))
1309 			break;
1310 
1311 		bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1312 		bch2_keylist_pop_front(keys);
1313 	}
1314 }
1315 
1316 /*
1317  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1318  * node)
1319  */
1320 static void __btree_split_node(struct btree_update *as,
1321 			       struct btree_trans *trans,
1322 			       struct btree *b,
1323 			       struct btree *n[2])
1324 {
1325 	struct bkey_packed *k;
1326 	struct bpos n1_pos = POS_MIN;
1327 	struct btree_node_iter iter;
1328 	struct bset *bsets[2];
1329 	struct bkey_format_state format[2];
1330 	struct bkey_packed *out[2];
1331 	struct bkey uk;
1332 	unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1333 	int i;
1334 
1335 	for (i = 0; i < 2; i++) {
1336 		BUG_ON(n[i]->nsets != 1);
1337 
1338 		bsets[i] = btree_bset_first(n[i]);
1339 		out[i] = bsets[i]->start;
1340 
1341 		SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1342 		bch2_bkey_format_init(&format[i]);
1343 	}
1344 
1345 	u64s = 0;
1346 	for_each_btree_node_key(b, k, &iter) {
1347 		if (bkey_deleted(k))
1348 			continue;
1349 
1350 		i = u64s >= n1_u64s;
1351 		u64s += k->u64s;
1352 		uk = bkey_unpack_key(b, k);
1353 		if (!i)
1354 			n1_pos = uk.p;
1355 		bch2_bkey_format_add_key(&format[i], &uk);
1356 	}
1357 
1358 	btree_set_min(n[0], b->data->min_key);
1359 	btree_set_max(n[0], n1_pos);
1360 	btree_set_min(n[1], bpos_successor(n1_pos));
1361 	btree_set_max(n[1], b->data->max_key);
1362 
1363 	for (i = 0; i < 2; i++) {
1364 		bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1365 		bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1366 
1367 		n[i]->data->format = bch2_bkey_format_done(&format[i]);
1368 		btree_node_set_format(n[i], n[i]->data->format);
1369 	}
1370 
1371 	u64s = 0;
1372 	for_each_btree_node_key(b, k, &iter) {
1373 		if (bkey_deleted(k))
1374 			continue;
1375 
1376 		i = u64s >= n1_u64s;
1377 		u64s += k->u64s;
1378 
1379 		if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1380 					? &b->format: &bch2_bkey_format_current, k))
1381 			out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1382 		else
1383 			bch2_bkey_unpack(b, (void *) out[i], k);
1384 
1385 		out[i]->needs_whiteout = false;
1386 
1387 		btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1388 		out[i] = bkey_p_next(out[i]);
1389 	}
1390 
1391 	for (i = 0; i < 2; i++) {
1392 		bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1393 
1394 		BUG_ON(!bsets[i]->u64s);
1395 
1396 		set_btree_bset_end(n[i], n[i]->set);
1397 
1398 		btree_node_reset_sib_u64s(n[i]);
1399 
1400 		bch2_verify_btree_nr_keys(n[i]);
1401 
1402 		if (b->c.level)
1403 			btree_node_interior_verify(as->c, n[i]);
1404 	}
1405 }
1406 
1407 /*
1408  * For updates to interior nodes, we've got to do the insert before we split
1409  * because the stuff we're inserting has to be inserted atomically. Post split,
1410  * the keys might have to go in different nodes and the split would no longer be
1411  * atomic.
1412  *
1413  * Worse, if the insert is from btree node coalescing, if we do the insert after
1414  * we do the split (and pick the pivot) - the pivot we pick might be between
1415  * nodes that were coalesced, and thus in the middle of a child node post
1416  * coalescing:
1417  */
1418 static void btree_split_insert_keys(struct btree_update *as,
1419 				    struct btree_trans *trans,
1420 				    struct btree_path *path,
1421 				    struct btree *b,
1422 				    struct keylist *keys)
1423 {
1424 	if (!bch2_keylist_empty(keys) &&
1425 	    bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1426 		struct btree_node_iter node_iter;
1427 
1428 		bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1429 
1430 		__bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1431 
1432 		btree_node_interior_verify(as->c, b);
1433 	}
1434 }
1435 
1436 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1437 		       struct btree_path *path, struct btree *b,
1438 		       struct keylist *keys, unsigned flags)
1439 {
1440 	struct bch_fs *c = as->c;
1441 	struct btree *parent = btree_node_parent(path, b);
1442 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1443 	struct btree_path *path1 = NULL, *path2 = NULL;
1444 	u64 start_time = local_clock();
1445 	int ret = 0;
1446 
1447 	BUG_ON(!parent && (b != btree_node_root(c, b)));
1448 	BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1));
1449 
1450 	bch2_btree_interior_update_will_free_node(as, b);
1451 
1452 	if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1453 		struct btree *n[2];
1454 
1455 		trace_and_count(c, btree_node_split, c, b);
1456 
1457 		n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1458 		n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1459 
1460 		__btree_split_node(as, trans, b, n);
1461 
1462 		if (keys) {
1463 			btree_split_insert_keys(as, trans, path, n1, keys);
1464 			btree_split_insert_keys(as, trans, path, n2, keys);
1465 			BUG_ON(!bch2_keylist_empty(keys));
1466 		}
1467 
1468 		bch2_btree_build_aux_trees(n2);
1469 		bch2_btree_build_aux_trees(n1);
1470 
1471 		bch2_btree_update_add_new_node(as, n1);
1472 		bch2_btree_update_add_new_node(as, n2);
1473 		six_unlock_write(&n2->c.lock);
1474 		six_unlock_write(&n1->c.lock);
1475 
1476 		path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1477 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1478 		mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1479 		bch2_btree_path_level_init(trans, path1, n1);
1480 
1481 		path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p);
1482 		six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1483 		mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1484 		bch2_btree_path_level_init(trans, path2, n2);
1485 
1486 		/*
1487 		 * Note that on recursive parent_keys == keys, so we
1488 		 * can't start adding new keys to parent_keys before emptying it
1489 		 * out (which we did with btree_split_insert_keys() above)
1490 		 */
1491 		bch2_keylist_add(&as->parent_keys, &n1->key);
1492 		bch2_keylist_add(&as->parent_keys, &n2->key);
1493 
1494 		if (!parent) {
1495 			/* Depth increases, make a new root */
1496 			n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1497 
1498 			bch2_btree_update_add_new_node(as, n3);
1499 			six_unlock_write(&n3->c.lock);
1500 
1501 			path2->locks_want++;
1502 			BUG_ON(btree_node_locked(path2, n3->c.level));
1503 			six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1504 			mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1505 			bch2_btree_path_level_init(trans, path2, n3);
1506 
1507 			n3->sib_u64s[0] = U16_MAX;
1508 			n3->sib_u64s[1] = U16_MAX;
1509 
1510 			btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1511 		}
1512 	} else {
1513 		trace_and_count(c, btree_node_compact, c, b);
1514 
1515 		n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1516 
1517 		if (keys) {
1518 			btree_split_insert_keys(as, trans, path, n1, keys);
1519 			BUG_ON(!bch2_keylist_empty(keys));
1520 		}
1521 
1522 		bch2_btree_build_aux_trees(n1);
1523 		bch2_btree_update_add_new_node(as, n1);
1524 		six_unlock_write(&n1->c.lock);
1525 
1526 		path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1527 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1528 		mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1529 		bch2_btree_path_level_init(trans, path1, n1);
1530 
1531 		if (parent)
1532 			bch2_keylist_add(&as->parent_keys, &n1->key);
1533 	}
1534 
1535 	/* New nodes all written, now make them visible: */
1536 
1537 	if (parent) {
1538 		/* Split a non root node */
1539 		ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1540 		if (ret)
1541 			goto err;
1542 	} else if (n3) {
1543 		bch2_btree_set_root(as, trans, path, n3);
1544 	} else {
1545 		/* Root filled up but didn't need to be split */
1546 		bch2_btree_set_root(as, trans, path, n1);
1547 	}
1548 
1549 	if (n3) {
1550 		bch2_btree_update_get_open_buckets(as, n3);
1551 		bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1552 	}
1553 	if (n2) {
1554 		bch2_btree_update_get_open_buckets(as, n2);
1555 		bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1556 	}
1557 	bch2_btree_update_get_open_buckets(as, n1);
1558 	bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1559 
1560 	/*
1561 	 * The old node must be freed (in memory) _before_ unlocking the new
1562 	 * nodes - else another thread could re-acquire a read lock on the old
1563 	 * node after another thread has locked and updated the new node, thus
1564 	 * seeing stale data:
1565 	 */
1566 	bch2_btree_node_free_inmem(trans, path, b);
1567 
1568 	if (n3)
1569 		bch2_trans_node_add(trans, n3);
1570 	if (n2)
1571 		bch2_trans_node_add(trans, n2);
1572 	bch2_trans_node_add(trans, n1);
1573 
1574 	if (n3)
1575 		six_unlock_intent(&n3->c.lock);
1576 	if (n2)
1577 		six_unlock_intent(&n2->c.lock);
1578 	six_unlock_intent(&n1->c.lock);
1579 out:
1580 	if (path2) {
1581 		__bch2_btree_path_unlock(trans, path2);
1582 		bch2_path_put(trans, path2, true);
1583 	}
1584 	if (path1) {
1585 		__bch2_btree_path_unlock(trans, path1);
1586 		bch2_path_put(trans, path1, true);
1587 	}
1588 
1589 	bch2_trans_verify_locks(trans);
1590 
1591 	bch2_time_stats_update(&c->times[n2
1592 			       ? BCH_TIME_btree_node_split
1593 			       : BCH_TIME_btree_node_compact],
1594 			       start_time);
1595 	return ret;
1596 err:
1597 	if (n3)
1598 		bch2_btree_node_free_never_used(as, trans, n3);
1599 	if (n2)
1600 		bch2_btree_node_free_never_used(as, trans, n2);
1601 	bch2_btree_node_free_never_used(as, trans, n1);
1602 	goto out;
1603 }
1604 
1605 static void
1606 bch2_btree_insert_keys_interior(struct btree_update *as,
1607 				struct btree_trans *trans,
1608 				struct btree_path *path,
1609 				struct btree *b,
1610 				struct keylist *keys)
1611 {
1612 	struct btree_path *linked;
1613 
1614 	__bch2_btree_insert_keys_interior(as, trans, path, b,
1615 					  path->l[b->c.level].iter, keys);
1616 
1617 	btree_update_updated_node(as, b);
1618 
1619 	trans_for_each_path_with_node(trans, b, linked)
1620 		bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1621 
1622 	bch2_trans_verify_paths(trans);
1623 }
1624 
1625 /**
1626  * bch2_btree_insert_node - insert bkeys into a given btree node
1627  *
1628  * @as:			btree_update object
1629  * @trans:		btree_trans object
1630  * @path:		path that points to current node
1631  * @b:			node to insert keys into
1632  * @keys:		list of keys to insert
1633  * @flags:		transaction commit flags
1634  *
1635  * Returns: 0 on success, typically transaction restart error on failure
1636  *
1637  * Inserts as many keys as it can into a given btree node, splitting it if full.
1638  * If a split occurred, this function will return early. This can only happen
1639  * for leaf nodes -- inserts into interior nodes have to be atomic.
1640  */
1641 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1642 				  struct btree_path *path, struct btree *b,
1643 				  struct keylist *keys, unsigned flags)
1644 {
1645 	struct bch_fs *c = as->c;
1646 	int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1647 	int old_live_u64s = b->nr.live_u64s;
1648 	int live_u64s_added, u64s_added;
1649 	int ret;
1650 
1651 	lockdep_assert_held(&c->gc_lock);
1652 	BUG_ON(!btree_node_intent_locked(path, b->c.level));
1653 	BUG_ON(!b->c.level);
1654 	BUG_ON(!as || as->b);
1655 	bch2_verify_keylist_sorted(keys);
1656 
1657 	ret = bch2_btree_node_lock_write(trans, path, &b->c);
1658 	if (ret)
1659 		return ret;
1660 
1661 	bch2_btree_node_prep_for_write(trans, path, b);
1662 
1663 	if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1664 		bch2_btree_node_unlock_write(trans, path, b);
1665 		goto split;
1666 	}
1667 
1668 	btree_node_interior_verify(c, b);
1669 
1670 	bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1671 
1672 	live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1673 	u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1674 
1675 	if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1676 		b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1677 	if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1678 		b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1679 
1680 	if (u64s_added > live_u64s_added &&
1681 	    bch2_maybe_compact_whiteouts(c, b))
1682 		bch2_trans_node_reinit_iter(trans, b);
1683 
1684 	bch2_btree_node_unlock_write(trans, path, b);
1685 
1686 	btree_node_interior_verify(c, b);
1687 	return 0;
1688 split:
1689 	/*
1690 	 * We could attempt to avoid the transaction restart, by calling
1691 	 * bch2_btree_path_upgrade() and allocating more nodes:
1692 	 */
1693 	if (b->c.level >= as->update_level) {
1694 		trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1695 		return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1696 	}
1697 
1698 	return btree_split(as, trans, path, b, keys, flags);
1699 }
1700 
1701 int bch2_btree_split_leaf(struct btree_trans *trans,
1702 			  struct btree_path *path,
1703 			  unsigned flags)
1704 {
1705 	struct btree *b = path_l(path)->b;
1706 	struct btree_update *as;
1707 	unsigned l;
1708 	int ret = 0;
1709 
1710 	as = bch2_btree_update_start(trans, path, path->level,
1711 				     true, flags);
1712 	if (IS_ERR(as))
1713 		return PTR_ERR(as);
1714 
1715 	ret = btree_split(as, trans, path, b, NULL, flags);
1716 	if (ret) {
1717 		bch2_btree_update_free(as, trans);
1718 		return ret;
1719 	}
1720 
1721 	bch2_btree_update_done(as, trans);
1722 
1723 	for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++)
1724 		ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1725 
1726 	return ret;
1727 }
1728 
1729 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1730 				  struct btree_path *path,
1731 				  unsigned level,
1732 				  unsigned flags,
1733 				  enum btree_node_sibling sib)
1734 {
1735 	struct bch_fs *c = trans->c;
1736 	struct btree_path *sib_path = NULL, *new_path = NULL;
1737 	struct btree_update *as;
1738 	struct bkey_format_state new_s;
1739 	struct bkey_format new_f;
1740 	struct bkey_i delete;
1741 	struct btree *b, *m, *n, *prev, *next, *parent;
1742 	struct bpos sib_pos;
1743 	size_t sib_u64s;
1744 	u64 start_time = local_clock();
1745 	int ret = 0;
1746 
1747 	BUG_ON(!path->should_be_locked);
1748 	BUG_ON(!btree_node_locked(path, level));
1749 
1750 	b = path->l[level].b;
1751 
1752 	if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1753 	    (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1754 		b->sib_u64s[sib] = U16_MAX;
1755 		return 0;
1756 	}
1757 
1758 	sib_pos = sib == btree_prev_sib
1759 		? bpos_predecessor(b->data->min_key)
1760 		: bpos_successor(b->data->max_key);
1761 
1762 	sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
1763 				 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1764 	ret = bch2_btree_path_traverse(trans, sib_path, false);
1765 	if (ret)
1766 		goto err;
1767 
1768 	btree_path_set_should_be_locked(sib_path);
1769 
1770 	m = sib_path->l[level].b;
1771 
1772 	if (btree_node_parent(path, b) !=
1773 	    btree_node_parent(sib_path, m)) {
1774 		b->sib_u64s[sib] = U16_MAX;
1775 		goto out;
1776 	}
1777 
1778 	if (sib == btree_prev_sib) {
1779 		prev = m;
1780 		next = b;
1781 	} else {
1782 		prev = b;
1783 		next = m;
1784 	}
1785 
1786 	if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
1787 		struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1788 
1789 		bch2_bpos_to_text(&buf1, prev->data->max_key);
1790 		bch2_bpos_to_text(&buf2, next->data->min_key);
1791 		bch_err(c,
1792 			"%s(): btree topology error:\n"
1793 			"  prev ends at   %s\n"
1794 			"  next starts at %s",
1795 			__func__, buf1.buf, buf2.buf);
1796 		printbuf_exit(&buf1);
1797 		printbuf_exit(&buf2);
1798 		bch2_topology_error(c);
1799 		ret = -EIO;
1800 		goto err;
1801 	}
1802 
1803 	bch2_bkey_format_init(&new_s);
1804 	bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1805 	__bch2_btree_calc_format(&new_s, prev);
1806 	__bch2_btree_calc_format(&new_s, next);
1807 	bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1808 	new_f = bch2_bkey_format_done(&new_s);
1809 
1810 	sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1811 		btree_node_u64s_with_format(m, &new_f);
1812 
1813 	if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1814 		sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1815 		sib_u64s /= 2;
1816 		sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1817 	}
1818 
1819 	sib_u64s = min(sib_u64s, btree_max_u64s(c));
1820 	sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1821 	b->sib_u64s[sib] = sib_u64s;
1822 
1823 	if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1824 		goto out;
1825 
1826 	parent = btree_node_parent(path, b);
1827 	as = bch2_btree_update_start(trans, path, level, false,
1828 				     BTREE_INSERT_NOFAIL|flags);
1829 	ret = PTR_ERR_OR_ZERO(as);
1830 	if (ret)
1831 		goto err;
1832 
1833 	trace_and_count(c, btree_node_merge, c, b);
1834 
1835 	bch2_btree_interior_update_will_free_node(as, b);
1836 	bch2_btree_interior_update_will_free_node(as, m);
1837 
1838 	n = bch2_btree_node_alloc(as, trans, b->c.level);
1839 
1840 	SET_BTREE_NODE_SEQ(n->data,
1841 			   max(BTREE_NODE_SEQ(b->data),
1842 			       BTREE_NODE_SEQ(m->data)) + 1);
1843 
1844 	btree_set_min(n, prev->data->min_key);
1845 	btree_set_max(n, next->data->max_key);
1846 
1847 	n->data->format	 = new_f;
1848 	btree_node_set_format(n, new_f);
1849 
1850 	bch2_btree_sort_into(c, n, prev);
1851 	bch2_btree_sort_into(c, n, next);
1852 
1853 	bch2_btree_build_aux_trees(n);
1854 	bch2_btree_update_add_new_node(as, n);
1855 	six_unlock_write(&n->c.lock);
1856 
1857 	new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p);
1858 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1859 	mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1860 	bch2_btree_path_level_init(trans, new_path, n);
1861 
1862 	bkey_init(&delete.k);
1863 	delete.k.p = prev->key.k.p;
1864 	bch2_keylist_add(&as->parent_keys, &delete);
1865 	bch2_keylist_add(&as->parent_keys, &n->key);
1866 
1867 	bch2_trans_verify_paths(trans);
1868 
1869 	ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1870 	if (ret)
1871 		goto err_free_update;
1872 
1873 	bch2_trans_verify_paths(trans);
1874 
1875 	bch2_btree_update_get_open_buckets(as, n);
1876 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1877 
1878 	bch2_btree_node_free_inmem(trans, path, b);
1879 	bch2_btree_node_free_inmem(trans, sib_path, m);
1880 
1881 	bch2_trans_node_add(trans, n);
1882 
1883 	bch2_trans_verify_paths(trans);
1884 
1885 	six_unlock_intent(&n->c.lock);
1886 
1887 	bch2_btree_update_done(as, trans);
1888 
1889 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1890 out:
1891 err:
1892 	if (new_path)
1893 		bch2_path_put(trans, new_path, true);
1894 	bch2_path_put(trans, sib_path, true);
1895 	bch2_trans_verify_locks(trans);
1896 	return ret;
1897 err_free_update:
1898 	bch2_btree_node_free_never_used(as, trans, n);
1899 	bch2_btree_update_free(as, trans);
1900 	goto out;
1901 }
1902 
1903 int bch2_btree_node_rewrite(struct btree_trans *trans,
1904 			    struct btree_iter *iter,
1905 			    struct btree *b,
1906 			    unsigned flags)
1907 {
1908 	struct bch_fs *c = trans->c;
1909 	struct btree_path *new_path = NULL;
1910 	struct btree *n, *parent;
1911 	struct btree_update *as;
1912 	int ret;
1913 
1914 	flags |= BTREE_INSERT_NOFAIL;
1915 
1916 	parent = btree_node_parent(iter->path, b);
1917 	as = bch2_btree_update_start(trans, iter->path, b->c.level,
1918 				     false, flags);
1919 	ret = PTR_ERR_OR_ZERO(as);
1920 	if (ret)
1921 		goto out;
1922 
1923 	bch2_btree_interior_update_will_free_node(as, b);
1924 
1925 	n = bch2_btree_node_alloc_replacement(as, trans, b);
1926 
1927 	bch2_btree_build_aux_trees(n);
1928 	bch2_btree_update_add_new_node(as, n);
1929 	six_unlock_write(&n->c.lock);
1930 
1931 	new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
1932 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1933 	mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1934 	bch2_btree_path_level_init(trans, new_path, n);
1935 
1936 	trace_and_count(c, btree_node_rewrite, c, b);
1937 
1938 	if (parent) {
1939 		bch2_keylist_add(&as->parent_keys, &n->key);
1940 		ret = bch2_btree_insert_node(as, trans, iter->path, parent,
1941 					     &as->parent_keys, flags);
1942 		if (ret)
1943 			goto err;
1944 	} else {
1945 		bch2_btree_set_root(as, trans, iter->path, n);
1946 	}
1947 
1948 	bch2_btree_update_get_open_buckets(as, n);
1949 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1950 
1951 	bch2_btree_node_free_inmem(trans, iter->path, b);
1952 
1953 	bch2_trans_node_add(trans, n);
1954 	six_unlock_intent(&n->c.lock);
1955 
1956 	bch2_btree_update_done(as, trans);
1957 out:
1958 	if (new_path)
1959 		bch2_path_put(trans, new_path, true);
1960 	bch2_trans_downgrade(trans);
1961 	return ret;
1962 err:
1963 	bch2_btree_node_free_never_used(as, trans, n);
1964 	bch2_btree_update_free(as, trans);
1965 	goto out;
1966 }
1967 
1968 struct async_btree_rewrite {
1969 	struct bch_fs		*c;
1970 	struct work_struct	work;
1971 	struct list_head	list;
1972 	enum btree_id		btree_id;
1973 	unsigned		level;
1974 	struct bpos		pos;
1975 	__le64			seq;
1976 };
1977 
1978 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
1979 					  struct async_btree_rewrite *a)
1980 {
1981 	struct bch_fs *c = trans->c;
1982 	struct btree_iter iter;
1983 	struct btree *b;
1984 	int ret;
1985 
1986 	bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
1987 				  BTREE_MAX_DEPTH, a->level, 0);
1988 	b = bch2_btree_iter_peek_node(&iter);
1989 	ret = PTR_ERR_OR_ZERO(b);
1990 	if (ret)
1991 		goto out;
1992 
1993 	if (!b || b->data->keys.seq != a->seq) {
1994 		struct printbuf buf = PRINTBUF;
1995 
1996 		if (b)
1997 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
1998 		else
1999 			prt_str(&buf, "(null");
2000 		bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2001 			 __func__, a->seq, buf.buf);
2002 		printbuf_exit(&buf);
2003 		goto out;
2004 	}
2005 
2006 	ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2007 out:
2008 	bch2_trans_iter_exit(trans, &iter);
2009 
2010 	return ret;
2011 }
2012 
2013 static void async_btree_node_rewrite_work(struct work_struct *work)
2014 {
2015 	struct async_btree_rewrite *a =
2016 		container_of(work, struct async_btree_rewrite, work);
2017 	struct bch_fs *c = a->c;
2018 	int ret;
2019 
2020 	ret = bch2_trans_do(c, NULL, NULL, 0,
2021 		      async_btree_node_rewrite_trans(trans, a));
2022 	if (ret)
2023 		bch_err_fn(c, ret);
2024 	bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2025 	kfree(a);
2026 }
2027 
2028 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2029 {
2030 	struct async_btree_rewrite *a;
2031 	int ret;
2032 
2033 	a = kmalloc(sizeof(*a), GFP_NOFS);
2034 	if (!a) {
2035 		bch_err(c, "%s: error allocating memory", __func__);
2036 		return;
2037 	}
2038 
2039 	a->c		= c;
2040 	a->btree_id	= b->c.btree_id;
2041 	a->level	= b->c.level;
2042 	a->pos		= b->key.k.p;
2043 	a->seq		= b->data->keys.seq;
2044 	INIT_WORK(&a->work, async_btree_node_rewrite_work);
2045 
2046 	if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) {
2047 		mutex_lock(&c->pending_node_rewrites_lock);
2048 		list_add(&a->list, &c->pending_node_rewrites);
2049 		mutex_unlock(&c->pending_node_rewrites_lock);
2050 		return;
2051 	}
2052 
2053 	if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2054 		if (test_bit(BCH_FS_STARTED, &c->flags)) {
2055 			bch_err(c, "%s: error getting c->writes ref", __func__);
2056 			kfree(a);
2057 			return;
2058 		}
2059 
2060 		ret = bch2_fs_read_write_early(c);
2061 		if (ret) {
2062 			bch_err_msg(c, ret, "going read-write");
2063 			kfree(a);
2064 			return;
2065 		}
2066 
2067 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2068 	}
2069 
2070 	queue_work(c->btree_interior_update_worker, &a->work);
2071 }
2072 
2073 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2074 {
2075 	struct async_btree_rewrite *a, *n;
2076 
2077 	mutex_lock(&c->pending_node_rewrites_lock);
2078 	list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2079 		list_del(&a->list);
2080 
2081 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2082 		queue_work(c->btree_interior_update_worker, &a->work);
2083 	}
2084 	mutex_unlock(&c->pending_node_rewrites_lock);
2085 }
2086 
2087 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2088 {
2089 	struct async_btree_rewrite *a, *n;
2090 
2091 	mutex_lock(&c->pending_node_rewrites_lock);
2092 	list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2093 		list_del(&a->list);
2094 
2095 		kfree(a);
2096 	}
2097 	mutex_unlock(&c->pending_node_rewrites_lock);
2098 }
2099 
2100 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2101 					struct btree_iter *iter,
2102 					struct btree *b, struct btree *new_hash,
2103 					struct bkey_i *new_key,
2104 					unsigned commit_flags,
2105 					bool skip_triggers)
2106 {
2107 	struct bch_fs *c = trans->c;
2108 	struct btree_iter iter2 = { NULL };
2109 	struct btree *parent;
2110 	int ret;
2111 
2112 	if (!skip_triggers) {
2113 		ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1,
2114 					  bkey_i_to_s_c(&b->key), 0);
2115 		if (ret)
2116 			return ret;
2117 
2118 		ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1,
2119 					  new_key, 0);
2120 		if (ret)
2121 			return ret;
2122 	}
2123 
2124 	if (new_hash) {
2125 		bkey_copy(&new_hash->key, new_key);
2126 		ret = bch2_btree_node_hash_insert(&c->btree_cache,
2127 				new_hash, b->c.level, b->c.btree_id);
2128 		BUG_ON(ret);
2129 	}
2130 
2131 	parent = btree_node_parent(iter->path, b);
2132 	if (parent) {
2133 		bch2_trans_copy_iter(&iter2, iter);
2134 
2135 		iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2136 				iter2.flags & BTREE_ITER_INTENT,
2137 				_THIS_IP_);
2138 
2139 		BUG_ON(iter2.path->level != b->c.level);
2140 		BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p));
2141 
2142 		btree_path_set_level_up(trans, iter2.path);
2143 
2144 		trans->paths_sorted = false;
2145 
2146 		ret   = bch2_btree_iter_traverse(&iter2) ?:
2147 			bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2148 		if (ret)
2149 			goto err;
2150 	} else {
2151 		BUG_ON(btree_node_root(c, b) != b);
2152 
2153 		ret = darray_make_room(&trans->extra_journal_entries,
2154 				       jset_u64s(new_key->k.u64s));
2155 		if (ret)
2156 			return ret;
2157 
2158 		journal_entry_set((void *) &darray_top(trans->extra_journal_entries),
2159 				  BCH_JSET_ENTRY_btree_root,
2160 				  b->c.btree_id, b->c.level,
2161 				  new_key, new_key->k.u64s);
2162 		trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s);
2163 	}
2164 
2165 	ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2166 	if (ret)
2167 		goto err;
2168 
2169 	bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c);
2170 
2171 	if (new_hash) {
2172 		mutex_lock(&c->btree_cache.lock);
2173 		bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2174 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2175 
2176 		bkey_copy(&b->key, new_key);
2177 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2178 		BUG_ON(ret);
2179 		mutex_unlock(&c->btree_cache.lock);
2180 	} else {
2181 		bkey_copy(&b->key, new_key);
2182 	}
2183 
2184 	bch2_btree_node_unlock_write(trans, iter->path, b);
2185 out:
2186 	bch2_trans_iter_exit(trans, &iter2);
2187 	return ret;
2188 err:
2189 	if (new_hash) {
2190 		mutex_lock(&c->btree_cache.lock);
2191 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2192 		mutex_unlock(&c->btree_cache.lock);
2193 	}
2194 	goto out;
2195 }
2196 
2197 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2198 			       struct btree *b, struct bkey_i *new_key,
2199 			       unsigned commit_flags, bool skip_triggers)
2200 {
2201 	struct bch_fs *c = trans->c;
2202 	struct btree *new_hash = NULL;
2203 	struct btree_path *path = iter->path;
2204 	struct closure cl;
2205 	int ret = 0;
2206 
2207 	ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2208 	if (ret)
2209 		return ret;
2210 
2211 	closure_init_stack(&cl);
2212 
2213 	/*
2214 	 * check btree_ptr_hash_val() after @b is locked by
2215 	 * btree_iter_traverse():
2216 	 */
2217 	if (btree_ptr_hash_val(new_key) != b->hash_val) {
2218 		ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2219 		if (ret) {
2220 			ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2221 			if (ret)
2222 				return ret;
2223 		}
2224 
2225 		new_hash = bch2_btree_node_mem_alloc(trans, false);
2226 	}
2227 
2228 	path->intent_ref++;
2229 	ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2230 					   commit_flags, skip_triggers);
2231 	--path->intent_ref;
2232 
2233 	if (new_hash) {
2234 		mutex_lock(&c->btree_cache.lock);
2235 		list_move(&new_hash->list, &c->btree_cache.freeable);
2236 		mutex_unlock(&c->btree_cache.lock);
2237 
2238 		six_unlock_write(&new_hash->c.lock);
2239 		six_unlock_intent(&new_hash->c.lock);
2240 	}
2241 	closure_sync(&cl);
2242 	bch2_btree_cache_cannibalize_unlock(c);
2243 	return ret;
2244 }
2245 
2246 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2247 					struct btree *b, struct bkey_i *new_key,
2248 					unsigned commit_flags, bool skip_triggers)
2249 {
2250 	struct btree_iter iter;
2251 	int ret;
2252 
2253 	bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2254 				  BTREE_MAX_DEPTH, b->c.level,
2255 				  BTREE_ITER_INTENT);
2256 	ret = bch2_btree_iter_traverse(&iter);
2257 	if (ret)
2258 		goto out;
2259 
2260 	/* has node been freed? */
2261 	if (iter.path->l[b->c.level].b != b) {
2262 		/* node has been freed: */
2263 		BUG_ON(!btree_node_dying(b));
2264 		goto out;
2265 	}
2266 
2267 	BUG_ON(!btree_node_hashed(b));
2268 
2269 	ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2270 					 commit_flags, skip_triggers);
2271 out:
2272 	bch2_trans_iter_exit(trans, &iter);
2273 	return ret;
2274 }
2275 
2276 /* Init code: */
2277 
2278 /*
2279  * Only for filesystem bringup, when first reading the btree roots or allocating
2280  * btree roots when initializing a new filesystem:
2281  */
2282 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2283 {
2284 	BUG_ON(btree_node_root(c, b));
2285 
2286 	bch2_btree_set_root_inmem(c, b);
2287 }
2288 
2289 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id)
2290 {
2291 	struct bch_fs *c = trans->c;
2292 	struct closure cl;
2293 	struct btree *b;
2294 	int ret;
2295 
2296 	closure_init_stack(&cl);
2297 
2298 	do {
2299 		ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2300 		closure_sync(&cl);
2301 	} while (ret);
2302 
2303 	b = bch2_btree_node_mem_alloc(trans, false);
2304 	bch2_btree_cache_cannibalize_unlock(c);
2305 
2306 	set_btree_node_fake(b);
2307 	set_btree_node_need_rewrite(b);
2308 	b->c.level	= 0;
2309 	b->c.btree_id	= id;
2310 
2311 	bkey_btree_ptr_init(&b->key);
2312 	b->key.k.p = SPOS_MAX;
2313 	*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2314 
2315 	bch2_bset_init_first(b, &b->data->keys);
2316 	bch2_btree_build_aux_trees(b);
2317 
2318 	b->data->flags = 0;
2319 	btree_set_min(b, POS_MIN);
2320 	btree_set_max(b, SPOS_MAX);
2321 	b->data->format = bch2_btree_calc_format(b);
2322 	btree_node_set_format(b, b->data->format);
2323 
2324 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2325 					  b->c.level, b->c.btree_id);
2326 	BUG_ON(ret);
2327 
2328 	bch2_btree_set_root_inmem(c, b);
2329 
2330 	six_unlock_write(&b->c.lock);
2331 	six_unlock_intent(&b->c.lock);
2332 	return 0;
2333 }
2334 
2335 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2336 {
2337 	bch2_trans_run(c, __bch2_btree_root_alloc(trans, id));
2338 }
2339 
2340 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2341 {
2342 	struct btree_update *as;
2343 
2344 	mutex_lock(&c->btree_interior_update_lock);
2345 	list_for_each_entry(as, &c->btree_interior_update_list, list)
2346 		prt_printf(out, "%p m %u w %u r %u j %llu\n",
2347 		       as,
2348 		       as->mode,
2349 		       as->nodes_written,
2350 		       closure_nr_remaining(&as->cl),
2351 		       as->journal.seq);
2352 	mutex_unlock(&c->btree_interior_update_lock);
2353 }
2354 
2355 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2356 {
2357 	bool ret;
2358 
2359 	mutex_lock(&c->btree_interior_update_lock);
2360 	ret = !list_empty(&c->btree_interior_update_list);
2361 	mutex_unlock(&c->btree_interior_update_lock);
2362 
2363 	return ret;
2364 }
2365 
2366 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2367 {
2368 	bool ret = bch2_btree_interior_updates_pending(c);
2369 
2370 	if (ret)
2371 		closure_wait_event(&c->btree_interior_update_wait,
2372 				   !bch2_btree_interior_updates_pending(c));
2373 	return ret;
2374 }
2375 
2376 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2377 {
2378 	struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2379 
2380 	mutex_lock(&c->btree_root_lock);
2381 
2382 	r->level = entry->level;
2383 	r->alive = true;
2384 	bkey_copy(&r->key, (struct bkey_i *) entry->start);
2385 
2386 	mutex_unlock(&c->btree_root_lock);
2387 }
2388 
2389 struct jset_entry *
2390 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2391 				    struct jset_entry *end,
2392 				    unsigned long skip)
2393 {
2394 	unsigned i;
2395 
2396 	mutex_lock(&c->btree_root_lock);
2397 
2398 	for (i = 0; i < btree_id_nr_alive(c); i++) {
2399 		struct btree_root *r = bch2_btree_id_root(c, i);
2400 
2401 		if (r->alive && !test_bit(i, &skip)) {
2402 			journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2403 					  i, r->level, &r->key, r->key.k.u64s);
2404 			end = vstruct_next(end);
2405 		}
2406 	}
2407 
2408 	mutex_unlock(&c->btree_root_lock);
2409 
2410 	return end;
2411 }
2412 
2413 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2414 {
2415 	if (c->btree_interior_update_worker)
2416 		destroy_workqueue(c->btree_interior_update_worker);
2417 	mempool_exit(&c->btree_interior_update_pool);
2418 }
2419 
2420 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2421 {
2422 	mutex_init(&c->btree_reserve_cache_lock);
2423 	INIT_LIST_HEAD(&c->btree_interior_update_list);
2424 	INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2425 	mutex_init(&c->btree_interior_update_lock);
2426 	INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2427 
2428 	INIT_LIST_HEAD(&c->pending_node_rewrites);
2429 	mutex_init(&c->pending_node_rewrites_lock);
2430 }
2431 
2432 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2433 {
2434 	c->btree_interior_update_worker =
2435 		alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2436 	if (!c->btree_interior_update_worker)
2437 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2438 
2439 	if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2440 				      sizeof(struct btree_update)))
2441 		return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2442 
2443 	return 0;
2444 }
2445