1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_methods.h" 6 #include "btree_cache.h" 7 #include "btree_gc.h" 8 #include "btree_journal_iter.h" 9 #include "btree_update.h" 10 #include "btree_update_interior.h" 11 #include "btree_io.h" 12 #include "btree_iter.h" 13 #include "btree_locking.h" 14 #include "buckets.h" 15 #include "clock.h" 16 #include "error.h" 17 #include "extents.h" 18 #include "journal.h" 19 #include "journal_reclaim.h" 20 #include "keylist.h" 21 #include "replicas.h" 22 #include "super-io.h" 23 #include "trace.h" 24 25 #include <linux/random.h> 26 27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 28 btree_path_idx_t, struct btree *, 29 struct keylist *, unsigned); 30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 31 32 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans, 33 enum btree_id btree_id, 34 unsigned level, 35 struct bpos pos) 36 { 37 btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level, 38 BTREE_ITER_NOPRESERVE| 39 BTREE_ITER_INTENT, _RET_IP_); 40 path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_); 41 42 struct btree_path *path = trans->paths + path_idx; 43 bch2_btree_path_downgrade(trans, path); 44 __bch2_btree_path_unlock(trans, path); 45 return path_idx; 46 } 47 48 /* Debug code: */ 49 50 /* 51 * Verify that child nodes correctly span parent node's range: 52 */ 53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) 54 { 55 #ifdef CONFIG_BCACHEFS_DEBUG 56 struct bpos next_node = b->data->min_key; 57 struct btree_node_iter iter; 58 struct bkey_s_c k; 59 struct bkey_s_c_btree_ptr_v2 bp; 60 struct bkey unpacked; 61 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 62 63 BUG_ON(!b->c.level); 64 65 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) 66 return; 67 68 bch2_btree_node_iter_init_from_start(&iter, b); 69 70 while (1) { 71 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); 72 if (k.k->type != KEY_TYPE_btree_ptr_v2) 73 break; 74 bp = bkey_s_c_to_btree_ptr_v2(k); 75 76 if (!bpos_eq(next_node, bp.v->min_key)) { 77 bch2_dump_btree_node(c, b); 78 bch2_bpos_to_text(&buf1, next_node); 79 bch2_bpos_to_text(&buf2, bp.v->min_key); 80 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); 81 } 82 83 bch2_btree_node_iter_advance(&iter, b); 84 85 if (bch2_btree_node_iter_end(&iter)) { 86 if (!bpos_eq(k.k->p, b->key.k.p)) { 87 bch2_dump_btree_node(c, b); 88 bch2_bpos_to_text(&buf1, b->key.k.p); 89 bch2_bpos_to_text(&buf2, k.k->p); 90 panic("expected end %s got %s\n", buf1.buf, buf2.buf); 91 } 92 break; 93 } 94 95 next_node = bpos_successor(k.k->p); 96 } 97 #endif 98 } 99 100 /* Calculate ideal packed bkey format for new btree nodes: */ 101 102 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 103 { 104 struct bkey_packed *k; 105 struct bset_tree *t; 106 struct bkey uk; 107 108 for_each_bset(b, t) 109 bset_tree_for_each_key(b, t, k) 110 if (!bkey_deleted(k)) { 111 uk = bkey_unpack_key(b, k); 112 bch2_bkey_format_add_key(s, &uk); 113 } 114 } 115 116 static struct bkey_format bch2_btree_calc_format(struct btree *b) 117 { 118 struct bkey_format_state s; 119 120 bch2_bkey_format_init(&s); 121 bch2_bkey_format_add_pos(&s, b->data->min_key); 122 bch2_bkey_format_add_pos(&s, b->data->max_key); 123 __bch2_btree_calc_format(&s, b); 124 125 return bch2_bkey_format_done(&s); 126 } 127 128 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 129 struct bkey_format *old_f, 130 struct bkey_format *new_f) 131 { 132 /* stupid integer promotion rules */ 133 ssize_t delta = 134 (((int) new_f->key_u64s - old_f->key_u64s) * 135 (int) nr.packed_keys) + 136 (((int) new_f->key_u64s - BKEY_U64s) * 137 (int) nr.unpacked_keys); 138 139 BUG_ON(delta + nr.live_u64s < 0); 140 141 return nr.live_u64s + delta; 142 } 143 144 /** 145 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 146 * 147 * @c: filesystem handle 148 * @b: btree node to rewrite 149 * @nr: number of keys for new node (i.e. b->nr) 150 * @new_f: bkey format to translate keys to 151 * 152 * Returns: true if all re-packed keys will be able to fit in a new node. 153 * 154 * Assumes all keys will successfully pack with the new format. 155 */ 156 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 157 struct btree_nr_keys nr, 158 struct bkey_format *new_f) 159 { 160 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 161 162 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 163 } 164 165 /* Btree node freeing/allocation: */ 166 167 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 168 { 169 struct bch_fs *c = trans->c; 170 171 trace_and_count(c, btree_node_free, trans, b); 172 173 BUG_ON(btree_node_write_blocked(b)); 174 BUG_ON(btree_node_dirty(b)); 175 BUG_ON(btree_node_need_write(b)); 176 BUG_ON(b == btree_node_root(c, b)); 177 BUG_ON(b->ob.nr); 178 BUG_ON(!list_empty(&b->write_blocked)); 179 BUG_ON(b->will_make_reachable); 180 181 clear_btree_node_noevict(b); 182 183 mutex_lock(&c->btree_cache.lock); 184 list_move(&b->list, &c->btree_cache.freeable); 185 mutex_unlock(&c->btree_cache.lock); 186 } 187 188 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 189 struct btree_path *path, 190 struct btree *b) 191 { 192 struct bch_fs *c = trans->c; 193 unsigned i, level = b->c.level; 194 195 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 196 bch2_btree_node_hash_remove(&c->btree_cache, b); 197 __btree_node_free(trans, b); 198 six_unlock_write(&b->c.lock); 199 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 200 201 trans_for_each_path(trans, path, i) 202 if (path->l[level].b == b) { 203 btree_node_unlock(trans, path, level); 204 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 205 } 206 } 207 208 static void bch2_btree_node_free_never_used(struct btree_update *as, 209 struct btree_trans *trans, 210 struct btree *b) 211 { 212 struct bch_fs *c = as->c; 213 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 214 struct btree_path *path; 215 unsigned i, level = b->c.level; 216 217 BUG_ON(!list_empty(&b->write_blocked)); 218 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 219 220 b->will_make_reachable = 0; 221 closure_put(&as->cl); 222 223 clear_btree_node_will_make_reachable(b); 224 clear_btree_node_accessed(b); 225 clear_btree_node_dirty_acct(c, b); 226 clear_btree_node_need_write(b); 227 228 mutex_lock(&c->btree_cache.lock); 229 list_del_init(&b->list); 230 bch2_btree_node_hash_remove(&c->btree_cache, b); 231 mutex_unlock(&c->btree_cache.lock); 232 233 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 234 p->b[p->nr++] = b; 235 236 six_unlock_intent(&b->c.lock); 237 238 trans_for_each_path(trans, path, i) 239 if (path->l[level].b == b) { 240 btree_node_unlock(trans, path, level); 241 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 242 } 243 } 244 245 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 246 struct disk_reservation *res, 247 struct closure *cl, 248 bool interior_node, 249 unsigned flags) 250 { 251 struct bch_fs *c = trans->c; 252 struct write_point *wp; 253 struct btree *b; 254 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 255 struct open_buckets obs = { .nr = 0 }; 256 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 257 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 258 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim 259 ? BTREE_NODE_RESERVE 260 : 0; 261 int ret; 262 263 mutex_lock(&c->btree_reserve_cache_lock); 264 if (c->btree_reserve_cache_nr > nr_reserve) { 265 struct btree_alloc *a = 266 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 267 268 obs = a->ob; 269 bkey_copy(&tmp.k, &a->k); 270 mutex_unlock(&c->btree_reserve_cache_lock); 271 goto mem_alloc; 272 } 273 mutex_unlock(&c->btree_reserve_cache_lock); 274 275 retry: 276 ret = bch2_alloc_sectors_start_trans(trans, 277 c->opts.metadata_target ?: 278 c->opts.foreground_target, 279 0, 280 writepoint_ptr(&c->btree_write_point), 281 &devs_have, 282 res->nr_replicas, 283 min(res->nr_replicas, 284 c->opts.metadata_replicas_required), 285 watermark, 0, cl, &wp); 286 if (unlikely(ret)) 287 return ERR_PTR(ret); 288 289 if (wp->sectors_free < btree_sectors(c)) { 290 struct open_bucket *ob; 291 unsigned i; 292 293 open_bucket_for_each(c, &wp->ptrs, ob, i) 294 if (ob->sectors_free < btree_sectors(c)) 295 ob->sectors_free = 0; 296 297 bch2_alloc_sectors_done(c, wp); 298 goto retry; 299 } 300 301 bkey_btree_ptr_v2_init(&tmp.k); 302 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 303 304 bch2_open_bucket_get(c, wp, &obs); 305 bch2_alloc_sectors_done(c, wp); 306 mem_alloc: 307 b = bch2_btree_node_mem_alloc(trans, interior_node); 308 six_unlock_write(&b->c.lock); 309 six_unlock_intent(&b->c.lock); 310 311 /* we hold cannibalize_lock: */ 312 BUG_ON(IS_ERR(b)); 313 BUG_ON(b->ob.nr); 314 315 bkey_copy(&b->key, &tmp.k); 316 b->ob = obs; 317 318 return b; 319 } 320 321 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 322 struct btree_trans *trans, 323 unsigned level) 324 { 325 struct bch_fs *c = as->c; 326 struct btree *b; 327 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 328 int ret; 329 330 BUG_ON(level >= BTREE_MAX_DEPTH); 331 BUG_ON(!p->nr); 332 333 b = p->b[--p->nr]; 334 335 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 336 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 337 338 set_btree_node_accessed(b); 339 set_btree_node_dirty_acct(c, b); 340 set_btree_node_need_write(b); 341 342 bch2_bset_init_first(b, &b->data->keys); 343 b->c.level = level; 344 b->c.btree_id = as->btree_id; 345 b->version_ondisk = c->sb.version; 346 347 memset(&b->nr, 0, sizeof(b->nr)); 348 b->data->magic = cpu_to_le64(bset_magic(c)); 349 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 350 b->data->flags = 0; 351 SET_BTREE_NODE_ID(b->data, as->btree_id); 352 SET_BTREE_NODE_LEVEL(b->data, level); 353 354 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 355 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 356 357 bp->v.mem_ptr = 0; 358 bp->v.seq = b->data->keys.seq; 359 bp->v.sectors_written = 0; 360 } 361 362 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 363 364 bch2_btree_build_aux_trees(b); 365 366 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 367 BUG_ON(ret); 368 369 trace_and_count(c, btree_node_alloc, trans, b); 370 bch2_increment_clock(c, btree_sectors(c), WRITE); 371 return b; 372 } 373 374 static void btree_set_min(struct btree *b, struct bpos pos) 375 { 376 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 377 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 378 b->data->min_key = pos; 379 } 380 381 static void btree_set_max(struct btree *b, struct bpos pos) 382 { 383 b->key.k.p = pos; 384 b->data->max_key = pos; 385 } 386 387 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 388 struct btree_trans *trans, 389 struct btree *b) 390 { 391 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 392 struct bkey_format format = bch2_btree_calc_format(b); 393 394 /* 395 * The keys might expand with the new format - if they wouldn't fit in 396 * the btree node anymore, use the old format for now: 397 */ 398 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 399 format = b->format; 400 401 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 402 403 btree_set_min(n, b->data->min_key); 404 btree_set_max(n, b->data->max_key); 405 406 n->data->format = format; 407 btree_node_set_format(n, format); 408 409 bch2_btree_sort_into(as->c, n, b); 410 411 btree_node_reset_sib_u64s(n); 412 return n; 413 } 414 415 static struct btree *__btree_root_alloc(struct btree_update *as, 416 struct btree_trans *trans, unsigned level) 417 { 418 struct btree *b = bch2_btree_node_alloc(as, trans, level); 419 420 btree_set_min(b, POS_MIN); 421 btree_set_max(b, SPOS_MAX); 422 b->data->format = bch2_btree_calc_format(b); 423 424 btree_node_set_format(b, b->data->format); 425 bch2_btree_build_aux_trees(b); 426 427 return b; 428 } 429 430 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 431 { 432 struct bch_fs *c = as->c; 433 struct prealloc_nodes *p; 434 435 for (p = as->prealloc_nodes; 436 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 437 p++) { 438 while (p->nr) { 439 struct btree *b = p->b[--p->nr]; 440 441 mutex_lock(&c->btree_reserve_cache_lock); 442 443 if (c->btree_reserve_cache_nr < 444 ARRAY_SIZE(c->btree_reserve_cache)) { 445 struct btree_alloc *a = 446 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 447 448 a->ob = b->ob; 449 b->ob.nr = 0; 450 bkey_copy(&a->k, &b->key); 451 } else { 452 bch2_open_buckets_put(c, &b->ob); 453 } 454 455 mutex_unlock(&c->btree_reserve_cache_lock); 456 457 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 458 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 459 __btree_node_free(trans, b); 460 six_unlock_write(&b->c.lock); 461 six_unlock_intent(&b->c.lock); 462 } 463 } 464 } 465 466 static int bch2_btree_reserve_get(struct btree_trans *trans, 467 struct btree_update *as, 468 unsigned nr_nodes[2], 469 unsigned flags, 470 struct closure *cl) 471 { 472 struct btree *b; 473 unsigned interior; 474 int ret = 0; 475 476 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 477 478 /* 479 * Protects reaping from the btree node cache and using the btree node 480 * open bucket reserve: 481 */ 482 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 483 if (ret) 484 return ret; 485 486 for (interior = 0; interior < 2; interior++) { 487 struct prealloc_nodes *p = as->prealloc_nodes + interior; 488 489 while (p->nr < nr_nodes[interior]) { 490 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 491 interior, flags); 492 if (IS_ERR(b)) { 493 ret = PTR_ERR(b); 494 goto err; 495 } 496 497 p->b[p->nr++] = b; 498 } 499 } 500 err: 501 bch2_btree_cache_cannibalize_unlock(trans); 502 return ret; 503 } 504 505 /* Asynchronous interior node update machinery */ 506 507 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 508 { 509 struct bch_fs *c = as->c; 510 511 if (as->took_gc_lock) 512 up_read(&c->gc_lock); 513 as->took_gc_lock = false; 514 515 bch2_journal_pin_drop(&c->journal, &as->journal); 516 bch2_journal_pin_flush(&c->journal, &as->journal); 517 bch2_disk_reservation_put(c, &as->disk_res); 518 bch2_btree_reserve_put(as, trans); 519 520 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 521 as->start_time); 522 523 mutex_lock(&c->btree_interior_update_lock); 524 list_del(&as->unwritten_list); 525 list_del(&as->list); 526 527 closure_debug_destroy(&as->cl); 528 mempool_free(as, &c->btree_interior_update_pool); 529 530 /* 531 * Have to do the wakeup with btree_interior_update_lock still held, 532 * since being on btree_interior_update_list is our ref on @c: 533 */ 534 closure_wake_up(&c->btree_interior_update_wait); 535 536 mutex_unlock(&c->btree_interior_update_lock); 537 } 538 539 static void btree_update_add_key(struct btree_update *as, 540 struct keylist *keys, struct btree *b) 541 { 542 struct bkey_i *k = &b->key; 543 544 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 545 ARRAY_SIZE(as->_old_keys)); 546 547 bkey_copy(keys->top, k); 548 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 549 550 bch2_keylist_push(keys); 551 } 552 553 /* 554 * The transactional part of an interior btree node update, where we journal the 555 * update we did to the interior node and update alloc info: 556 */ 557 static int btree_update_nodes_written_trans(struct btree_trans *trans, 558 struct btree_update *as) 559 { 560 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 561 int ret = PTR_ERR_OR_ZERO(e); 562 if (ret) 563 return ret; 564 565 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 566 567 trans->journal_pin = &as->journal; 568 569 for_each_keylist_key(&as->old_keys, k) { 570 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 571 572 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 573 BTREE_TRIGGER_TRANSACTIONAL); 574 if (ret) 575 return ret; 576 } 577 578 for_each_keylist_key(&as->new_keys, k) { 579 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 580 581 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 582 BTREE_TRIGGER_TRANSACTIONAL); 583 if (ret) 584 return ret; 585 } 586 587 return 0; 588 } 589 590 static void btree_update_nodes_written(struct btree_update *as) 591 { 592 struct bch_fs *c = as->c; 593 struct btree *b; 594 struct btree_trans *trans = bch2_trans_get(c); 595 u64 journal_seq = 0; 596 unsigned i; 597 int ret; 598 599 /* 600 * If we're already in an error state, it might be because a btree node 601 * was never written, and we might be trying to free that same btree 602 * node here, but it won't have been marked as allocated and we'll see 603 * spurious disk usage inconsistencies in the transactional part below 604 * if we don't skip it: 605 */ 606 ret = bch2_journal_error(&c->journal); 607 if (ret) 608 goto err; 609 610 /* 611 * Wait for any in flight writes to finish before we free the old nodes 612 * on disk: 613 */ 614 for (i = 0; i < as->nr_old_nodes; i++) { 615 __le64 seq; 616 617 b = as->old_nodes[i]; 618 619 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 620 seq = b->data ? b->data->keys.seq : 0; 621 six_unlock_read(&b->c.lock); 622 623 if (seq == as->old_nodes_seq[i]) 624 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 625 TASK_UNINTERRUPTIBLE); 626 } 627 628 /* 629 * We did an update to a parent node where the pointers we added pointed 630 * to child nodes that weren't written yet: now, the child nodes have 631 * been written so we can write out the update to the interior node. 632 */ 633 634 /* 635 * We can't call into journal reclaim here: we'd block on the journal 636 * reclaim lock, but we may need to release the open buckets we have 637 * pinned in order for other btree updates to make forward progress, and 638 * journal reclaim does btree updates when flushing bkey_cached entries, 639 * which may require allocations as well. 640 */ 641 ret = commit_do(trans, &as->disk_res, &journal_seq, 642 BCH_WATERMARK_reclaim| 643 BCH_TRANS_COMMIT_no_enospc| 644 BCH_TRANS_COMMIT_no_check_rw| 645 BCH_TRANS_COMMIT_journal_reclaim, 646 btree_update_nodes_written_trans(trans, as)); 647 bch2_trans_unlock(trans); 648 649 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 650 "%s(): error %s", __func__, bch2_err_str(ret)); 651 err: 652 if (as->b) { 653 654 b = as->b; 655 btree_path_idx_t path_idx = get_unlocked_mut_path(trans, 656 as->btree_id, b->c.level, b->key.k.p); 657 struct btree_path *path = trans->paths + path_idx; 658 /* 659 * @b is the node we did the final insert into: 660 * 661 * On failure to get a journal reservation, we still have to 662 * unblock the write and allow most of the write path to happen 663 * so that shutdown works, but the i->journal_seq mechanism 664 * won't work to prevent the btree write from being visible (we 665 * didn't get a journal sequence number) - instead 666 * __bch2_btree_node_write() doesn't do the actual write if 667 * we're in journal error state: 668 */ 669 670 /* 671 * Ensure transaction is unlocked before using 672 * btree_node_lock_nopath() (the use of which is always suspect, 673 * we need to work on removing this in the future) 674 * 675 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 676 * calls bch2_path_upgrade(), before we call path_make_mut(), so 677 * we may rarely end up with a locked path besides the one we 678 * have here: 679 */ 680 bch2_trans_unlock(trans); 681 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 682 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 683 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 684 path->l[b->c.level].b = b; 685 686 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 687 688 mutex_lock(&c->btree_interior_update_lock); 689 690 list_del(&as->write_blocked_list); 691 if (list_empty(&b->write_blocked)) 692 clear_btree_node_write_blocked(b); 693 694 /* 695 * Node might have been freed, recheck under 696 * btree_interior_update_lock: 697 */ 698 if (as->b == b) { 699 BUG_ON(!b->c.level); 700 BUG_ON(!btree_node_dirty(b)); 701 702 if (!ret) { 703 struct bset *last = btree_bset_last(b); 704 705 last->journal_seq = cpu_to_le64( 706 max(journal_seq, 707 le64_to_cpu(last->journal_seq))); 708 709 bch2_btree_add_journal_pin(c, b, journal_seq); 710 } else { 711 /* 712 * If we didn't get a journal sequence number we 713 * can't write this btree node, because recovery 714 * won't know to ignore this write: 715 */ 716 set_btree_node_never_write(b); 717 } 718 } 719 720 mutex_unlock(&c->btree_interior_update_lock); 721 722 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 723 six_unlock_write(&b->c.lock); 724 725 btree_node_write_if_need(c, b, SIX_LOCK_intent); 726 btree_node_unlock(trans, path, b->c.level); 727 bch2_path_put(trans, path_idx, true); 728 } 729 730 bch2_journal_pin_drop(&c->journal, &as->journal); 731 732 mutex_lock(&c->btree_interior_update_lock); 733 for (i = 0; i < as->nr_new_nodes; i++) { 734 b = as->new_nodes[i]; 735 736 BUG_ON(b->will_make_reachable != (unsigned long) as); 737 b->will_make_reachable = 0; 738 clear_btree_node_will_make_reachable(b); 739 } 740 mutex_unlock(&c->btree_interior_update_lock); 741 742 for (i = 0; i < as->nr_new_nodes; i++) { 743 b = as->new_nodes[i]; 744 745 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 746 btree_node_write_if_need(c, b, SIX_LOCK_read); 747 six_unlock_read(&b->c.lock); 748 } 749 750 for (i = 0; i < as->nr_open_buckets; i++) 751 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 752 753 bch2_btree_update_free(as, trans); 754 bch2_trans_put(trans); 755 } 756 757 static void btree_interior_update_work(struct work_struct *work) 758 { 759 struct bch_fs *c = 760 container_of(work, struct bch_fs, btree_interior_update_work); 761 struct btree_update *as; 762 763 while (1) { 764 mutex_lock(&c->btree_interior_update_lock); 765 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 766 struct btree_update, unwritten_list); 767 if (as && !as->nodes_written) 768 as = NULL; 769 mutex_unlock(&c->btree_interior_update_lock); 770 771 if (!as) 772 break; 773 774 btree_update_nodes_written(as); 775 } 776 } 777 778 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 779 { 780 closure_type(as, struct btree_update, cl); 781 struct bch_fs *c = as->c; 782 783 mutex_lock(&c->btree_interior_update_lock); 784 as->nodes_written = true; 785 mutex_unlock(&c->btree_interior_update_lock); 786 787 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 788 } 789 790 /* 791 * We're updating @b with pointers to nodes that haven't finished writing yet: 792 * block @b from being written until @as completes 793 */ 794 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 795 { 796 struct bch_fs *c = as->c; 797 798 mutex_lock(&c->btree_interior_update_lock); 799 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 800 801 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 802 BUG_ON(!btree_node_dirty(b)); 803 BUG_ON(!b->c.level); 804 805 as->mode = BTREE_INTERIOR_UPDATING_NODE; 806 as->b = b; 807 808 set_btree_node_write_blocked(b); 809 list_add(&as->write_blocked_list, &b->write_blocked); 810 811 mutex_unlock(&c->btree_interior_update_lock); 812 } 813 814 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 815 struct journal_entry_pin *_pin, u64 seq) 816 { 817 return 0; 818 } 819 820 static void btree_update_reparent(struct btree_update *as, 821 struct btree_update *child) 822 { 823 struct bch_fs *c = as->c; 824 825 lockdep_assert_held(&c->btree_interior_update_lock); 826 827 child->b = NULL; 828 child->mode = BTREE_INTERIOR_UPDATING_AS; 829 830 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 831 bch2_update_reparent_journal_pin_flush); 832 } 833 834 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 835 { 836 struct bkey_i *insert = &b->key; 837 struct bch_fs *c = as->c; 838 839 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 840 841 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 842 ARRAY_SIZE(as->journal_entries)); 843 844 as->journal_u64s += 845 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 846 BCH_JSET_ENTRY_btree_root, 847 b->c.btree_id, b->c.level, 848 insert, insert->k.u64s); 849 850 mutex_lock(&c->btree_interior_update_lock); 851 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 852 853 as->mode = BTREE_INTERIOR_UPDATING_ROOT; 854 mutex_unlock(&c->btree_interior_update_lock); 855 } 856 857 /* 858 * bch2_btree_update_add_new_node: 859 * 860 * This causes @as to wait on @b to be written, before it gets to 861 * bch2_btree_update_nodes_written 862 * 863 * Additionally, it sets b->will_make_reachable to prevent any additional writes 864 * to @b from happening besides the first until @b is reachable on disk 865 * 866 * And it adds @b to the list of @as's new nodes, so that we can update sector 867 * counts in bch2_btree_update_nodes_written: 868 */ 869 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 870 { 871 struct bch_fs *c = as->c; 872 873 closure_get(&as->cl); 874 875 mutex_lock(&c->btree_interior_update_lock); 876 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 877 BUG_ON(b->will_make_reachable); 878 879 as->new_nodes[as->nr_new_nodes++] = b; 880 b->will_make_reachable = 1UL|(unsigned long) as; 881 set_btree_node_will_make_reachable(b); 882 883 mutex_unlock(&c->btree_interior_update_lock); 884 885 btree_update_add_key(as, &as->new_keys, b); 886 887 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 888 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 889 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 890 891 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 892 cpu_to_le16(sectors); 893 } 894 } 895 896 /* 897 * returns true if @b was a new node 898 */ 899 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 900 { 901 struct btree_update *as; 902 unsigned long v; 903 unsigned i; 904 905 mutex_lock(&c->btree_interior_update_lock); 906 /* 907 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 908 * dropped when it gets written by bch2_btree_complete_write - the 909 * xchg() is for synchronization with bch2_btree_complete_write: 910 */ 911 v = xchg(&b->will_make_reachable, 0); 912 clear_btree_node_will_make_reachable(b); 913 as = (struct btree_update *) (v & ~1UL); 914 915 if (!as) { 916 mutex_unlock(&c->btree_interior_update_lock); 917 return; 918 } 919 920 for (i = 0; i < as->nr_new_nodes; i++) 921 if (as->new_nodes[i] == b) 922 goto found; 923 924 BUG(); 925 found: 926 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 927 mutex_unlock(&c->btree_interior_update_lock); 928 929 if (v & 1) 930 closure_put(&as->cl); 931 } 932 933 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 934 { 935 while (b->ob.nr) 936 as->open_buckets[as->nr_open_buckets++] = 937 b->ob.v[--b->ob.nr]; 938 } 939 940 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 941 struct journal_entry_pin *_pin, u64 seq) 942 { 943 return 0; 944 } 945 946 /* 947 * @b is being split/rewritten: it may have pointers to not-yet-written btree 948 * nodes and thus outstanding btree_updates - redirect @b's 949 * btree_updates to point to this btree_update: 950 */ 951 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 952 struct btree *b) 953 { 954 struct bch_fs *c = as->c; 955 struct btree_update *p, *n; 956 struct btree_write *w; 957 958 set_btree_node_dying(b); 959 960 if (btree_node_fake(b)) 961 return; 962 963 mutex_lock(&c->btree_interior_update_lock); 964 965 /* 966 * Does this node have any btree_update operations preventing 967 * it from being written? 968 * 969 * If so, redirect them to point to this btree_update: we can 970 * write out our new nodes, but we won't make them visible until those 971 * operations complete 972 */ 973 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 974 list_del_init(&p->write_blocked_list); 975 btree_update_reparent(as, p); 976 977 /* 978 * for flush_held_btree_writes() waiting on updates to flush or 979 * nodes to be writeable: 980 */ 981 closure_wake_up(&c->btree_interior_update_wait); 982 } 983 984 clear_btree_node_dirty_acct(c, b); 985 clear_btree_node_need_write(b); 986 clear_btree_node_write_blocked(b); 987 988 /* 989 * Does this node have unwritten data that has a pin on the journal? 990 * 991 * If so, transfer that pin to the btree_update operation - 992 * note that if we're freeing multiple nodes, we only need to keep the 993 * oldest pin of any of the nodes we're freeing. We'll release the pin 994 * when the new nodes are persistent and reachable on disk: 995 */ 996 w = btree_current_write(b); 997 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 998 bch2_btree_update_will_free_node_journal_pin_flush); 999 bch2_journal_pin_drop(&c->journal, &w->journal); 1000 1001 w = btree_prev_write(b); 1002 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1003 bch2_btree_update_will_free_node_journal_pin_flush); 1004 bch2_journal_pin_drop(&c->journal, &w->journal); 1005 1006 mutex_unlock(&c->btree_interior_update_lock); 1007 1008 /* 1009 * Is this a node that isn't reachable on disk yet? 1010 * 1011 * Nodes that aren't reachable yet have writes blocked until they're 1012 * reachable - now that we've cancelled any pending writes and moved 1013 * things waiting on that write to wait on this update, we can drop this 1014 * node from the list of nodes that the other update is making 1015 * reachable, prior to freeing it: 1016 */ 1017 btree_update_drop_new_node(c, b); 1018 1019 btree_update_add_key(as, &as->old_keys, b); 1020 1021 as->old_nodes[as->nr_old_nodes] = b; 1022 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1023 as->nr_old_nodes++; 1024 } 1025 1026 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1027 { 1028 struct bch_fs *c = as->c; 1029 u64 start_time = as->start_time; 1030 1031 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); 1032 1033 if (as->took_gc_lock) 1034 up_read(&as->c->gc_lock); 1035 as->took_gc_lock = false; 1036 1037 bch2_btree_reserve_put(as, trans); 1038 1039 continue_at(&as->cl, btree_update_set_nodes_written, 1040 as->c->btree_interior_update_worker); 1041 1042 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1043 start_time); 1044 } 1045 1046 static struct btree_update * 1047 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1048 unsigned level, bool split, unsigned flags) 1049 { 1050 struct bch_fs *c = trans->c; 1051 struct btree_update *as; 1052 u64 start_time = local_clock(); 1053 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1054 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1055 unsigned nr_nodes[2] = { 0, 0 }; 1056 unsigned update_level = level; 1057 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1058 int ret = 0; 1059 u32 restart_count = trans->restart_count; 1060 1061 BUG_ON(!path->should_be_locked); 1062 1063 if (watermark == BCH_WATERMARK_copygc) 1064 watermark = BCH_WATERMARK_btree_copygc; 1065 if (watermark < BCH_WATERMARK_btree) 1066 watermark = BCH_WATERMARK_btree; 1067 1068 flags &= ~BCH_WATERMARK_MASK; 1069 flags |= watermark; 1070 1071 if (!(flags & BCH_TRANS_COMMIT_journal_reclaim) && 1072 watermark < c->journal.watermark) { 1073 struct journal_res res = { 0 }; 1074 1075 ret = drop_locks_do(trans, 1076 bch2_journal_res_get(&c->journal, &res, 1, 1077 watermark|JOURNAL_RES_GET_CHECK)); 1078 if (ret) 1079 return ERR_PTR(ret); 1080 } 1081 1082 while (1) { 1083 nr_nodes[!!update_level] += 1 + split; 1084 update_level++; 1085 1086 ret = bch2_btree_path_upgrade(trans, path, update_level + 1); 1087 if (ret) 1088 return ERR_PTR(ret); 1089 1090 if (!btree_path_node(path, update_level)) { 1091 /* Allocating new root? */ 1092 nr_nodes[1] += split; 1093 update_level = BTREE_MAX_DEPTH; 1094 break; 1095 } 1096 1097 /* 1098 * Always check for space for two keys, even if we won't have to 1099 * split at prior level - it might have been a merge instead: 1100 */ 1101 if (bch2_btree_node_insert_fits(path->l[update_level].b, 1102 BKEY_BTREE_PTR_U64s_MAX * 2)) 1103 break; 1104 1105 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1106 } 1107 1108 if (!down_read_trylock(&c->gc_lock)) { 1109 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1110 if (ret) { 1111 up_read(&c->gc_lock); 1112 return ERR_PTR(ret); 1113 } 1114 } 1115 1116 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1117 memset(as, 0, sizeof(*as)); 1118 closure_init(&as->cl, NULL); 1119 as->c = c; 1120 as->start_time = start_time; 1121 as->mode = BTREE_INTERIOR_NO_UPDATE; 1122 as->took_gc_lock = true; 1123 as->btree_id = path->btree_id; 1124 as->update_level = update_level; 1125 INIT_LIST_HEAD(&as->list); 1126 INIT_LIST_HEAD(&as->unwritten_list); 1127 INIT_LIST_HEAD(&as->write_blocked_list); 1128 bch2_keylist_init(&as->old_keys, as->_old_keys); 1129 bch2_keylist_init(&as->new_keys, as->_new_keys); 1130 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1131 1132 mutex_lock(&c->btree_interior_update_lock); 1133 list_add_tail(&as->list, &c->btree_interior_update_list); 1134 mutex_unlock(&c->btree_interior_update_lock); 1135 1136 /* 1137 * We don't want to allocate if we're in an error state, that can cause 1138 * deadlock on emergency shutdown due to open buckets getting stuck in 1139 * the btree_reserve_cache after allocator shutdown has cleared it out. 1140 * This check needs to come after adding us to the btree_interior_update 1141 * list but before calling bch2_btree_reserve_get, to synchronize with 1142 * __bch2_fs_read_only(). 1143 */ 1144 ret = bch2_journal_error(&c->journal); 1145 if (ret) 1146 goto err; 1147 1148 ret = bch2_disk_reservation_get(c, &as->disk_res, 1149 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1150 c->opts.metadata_replicas, 1151 disk_res_flags); 1152 if (ret) 1153 goto err; 1154 1155 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1156 if (bch2_err_matches(ret, ENOSPC) || 1157 bch2_err_matches(ret, ENOMEM)) { 1158 struct closure cl; 1159 1160 /* 1161 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1162 * flag 1163 */ 1164 if (bch2_err_matches(ret, ENOSPC) && 1165 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1166 watermark != BCH_WATERMARK_reclaim) { 1167 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1168 goto err; 1169 } 1170 1171 closure_init_stack(&cl); 1172 1173 do { 1174 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1175 1176 bch2_trans_unlock(trans); 1177 closure_sync(&cl); 1178 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1179 } 1180 1181 if (ret) { 1182 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1183 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1184 goto err; 1185 } 1186 1187 ret = bch2_trans_relock(trans); 1188 if (ret) 1189 goto err; 1190 1191 bch2_trans_verify_not_restarted(trans, restart_count); 1192 return as; 1193 err: 1194 bch2_btree_update_free(as, trans); 1195 if (!bch2_err_matches(ret, ENOSPC) && 1196 !bch2_err_matches(ret, EROFS)) 1197 bch_err_fn_ratelimited(c, ret); 1198 return ERR_PTR(ret); 1199 } 1200 1201 /* Btree root updates: */ 1202 1203 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1204 { 1205 /* Root nodes cannot be reaped */ 1206 mutex_lock(&c->btree_cache.lock); 1207 list_del_init(&b->list); 1208 mutex_unlock(&c->btree_cache.lock); 1209 1210 mutex_lock(&c->btree_root_lock); 1211 BUG_ON(btree_node_root(c, b) && 1212 (b->c.level < btree_node_root(c, b)->c.level || 1213 !btree_node_dying(btree_node_root(c, b)))); 1214 1215 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1216 mutex_unlock(&c->btree_root_lock); 1217 1218 bch2_recalc_btree_reserve(c); 1219 } 1220 1221 static void bch2_btree_set_root(struct btree_update *as, 1222 struct btree_trans *trans, 1223 struct btree_path *path, 1224 struct btree *b) 1225 { 1226 struct bch_fs *c = as->c; 1227 struct btree *old; 1228 1229 trace_and_count(c, btree_node_set_root, trans, b); 1230 1231 old = btree_node_root(c, b); 1232 1233 /* 1234 * Ensure no one is using the old root while we switch to the 1235 * new root: 1236 */ 1237 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1238 1239 bch2_btree_set_root_inmem(c, b); 1240 1241 btree_update_updated_root(as, b); 1242 1243 /* 1244 * Unlock old root after new root is visible: 1245 * 1246 * The new root isn't persistent, but that's ok: we still have 1247 * an intent lock on the new root, and any updates that would 1248 * depend on the new root would have to update the new root. 1249 */ 1250 bch2_btree_node_unlock_write(trans, path, old); 1251 } 1252 1253 /* Interior node updates: */ 1254 1255 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1256 struct btree_trans *trans, 1257 struct btree_path *path, 1258 struct btree *b, 1259 struct btree_node_iter *node_iter, 1260 struct bkey_i *insert) 1261 { 1262 struct bch_fs *c = as->c; 1263 struct bkey_packed *k; 1264 struct printbuf buf = PRINTBUF; 1265 unsigned long old, new, v; 1266 1267 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1268 !btree_ptr_sectors_written(insert)); 1269 1270 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1271 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1272 1273 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1274 btree_node_type(b), WRITE, &buf) ?: 1275 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1276 printbuf_reset(&buf); 1277 prt_printf(&buf, "inserting invalid bkey\n "); 1278 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1279 prt_printf(&buf, "\n "); 1280 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1281 btree_node_type(b), WRITE, &buf); 1282 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1283 1284 bch2_fs_inconsistent(c, "%s", buf.buf); 1285 dump_stack(); 1286 } 1287 1288 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1289 ARRAY_SIZE(as->journal_entries)); 1290 1291 as->journal_u64s += 1292 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1293 BCH_JSET_ENTRY_btree_keys, 1294 b->c.btree_id, b->c.level, 1295 insert, insert->k.u64s); 1296 1297 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1298 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1299 bch2_btree_node_iter_advance(node_iter, b); 1300 1301 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1302 set_btree_node_dirty_acct(c, b); 1303 1304 v = READ_ONCE(b->flags); 1305 do { 1306 old = new = v; 1307 1308 new &= ~BTREE_WRITE_TYPE_MASK; 1309 new |= BTREE_WRITE_interior; 1310 new |= 1 << BTREE_NODE_need_write; 1311 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1312 1313 printbuf_exit(&buf); 1314 } 1315 1316 static void 1317 __bch2_btree_insert_keys_interior(struct btree_update *as, 1318 struct btree_trans *trans, 1319 struct btree_path *path, 1320 struct btree *b, 1321 struct btree_node_iter node_iter, 1322 struct keylist *keys) 1323 { 1324 struct bkey_i *insert = bch2_keylist_front(keys); 1325 struct bkey_packed *k; 1326 1327 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1328 1329 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1330 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1331 ; 1332 1333 while (!bch2_keylist_empty(keys)) { 1334 insert = bch2_keylist_front(keys); 1335 1336 if (bpos_gt(insert->k.p, b->key.k.p)) 1337 break; 1338 1339 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1340 bch2_keylist_pop_front(keys); 1341 } 1342 } 1343 1344 /* 1345 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1346 * node) 1347 */ 1348 static void __btree_split_node(struct btree_update *as, 1349 struct btree_trans *trans, 1350 struct btree *b, 1351 struct btree *n[2]) 1352 { 1353 struct bkey_packed *k; 1354 struct bpos n1_pos = POS_MIN; 1355 struct btree_node_iter iter; 1356 struct bset *bsets[2]; 1357 struct bkey_format_state format[2]; 1358 struct bkey_packed *out[2]; 1359 struct bkey uk; 1360 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1361 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1362 int i; 1363 1364 memset(&nr_keys, 0, sizeof(nr_keys)); 1365 1366 for (i = 0; i < 2; i++) { 1367 BUG_ON(n[i]->nsets != 1); 1368 1369 bsets[i] = btree_bset_first(n[i]); 1370 out[i] = bsets[i]->start; 1371 1372 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1373 bch2_bkey_format_init(&format[i]); 1374 } 1375 1376 u64s = 0; 1377 for_each_btree_node_key(b, k, &iter) { 1378 if (bkey_deleted(k)) 1379 continue; 1380 1381 i = u64s >= n1_u64s; 1382 u64s += k->u64s; 1383 uk = bkey_unpack_key(b, k); 1384 if (!i) 1385 n1_pos = uk.p; 1386 bch2_bkey_format_add_key(&format[i], &uk); 1387 1388 nr_keys[i].nr_keys++; 1389 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1390 } 1391 1392 btree_set_min(n[0], b->data->min_key); 1393 btree_set_max(n[0], n1_pos); 1394 btree_set_min(n[1], bpos_successor(n1_pos)); 1395 btree_set_max(n[1], b->data->max_key); 1396 1397 for (i = 0; i < 2; i++) { 1398 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1399 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1400 1401 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1402 1403 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1404 nr_keys[i].val_u64s; 1405 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1406 n[i]->data->format = b->format; 1407 1408 btree_node_set_format(n[i], n[i]->data->format); 1409 } 1410 1411 u64s = 0; 1412 for_each_btree_node_key(b, k, &iter) { 1413 if (bkey_deleted(k)) 1414 continue; 1415 1416 i = u64s >= n1_u64s; 1417 u64s += k->u64s; 1418 1419 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1420 ? &b->format: &bch2_bkey_format_current, k)) 1421 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1422 else 1423 bch2_bkey_unpack(b, (void *) out[i], k); 1424 1425 out[i]->needs_whiteout = false; 1426 1427 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1428 out[i] = bkey_p_next(out[i]); 1429 } 1430 1431 for (i = 0; i < 2; i++) { 1432 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1433 1434 BUG_ON(!bsets[i]->u64s); 1435 1436 set_btree_bset_end(n[i], n[i]->set); 1437 1438 btree_node_reset_sib_u64s(n[i]); 1439 1440 bch2_verify_btree_nr_keys(n[i]); 1441 1442 if (b->c.level) 1443 btree_node_interior_verify(as->c, n[i]); 1444 } 1445 } 1446 1447 /* 1448 * For updates to interior nodes, we've got to do the insert before we split 1449 * because the stuff we're inserting has to be inserted atomically. Post split, 1450 * the keys might have to go in different nodes and the split would no longer be 1451 * atomic. 1452 * 1453 * Worse, if the insert is from btree node coalescing, if we do the insert after 1454 * we do the split (and pick the pivot) - the pivot we pick might be between 1455 * nodes that were coalesced, and thus in the middle of a child node post 1456 * coalescing: 1457 */ 1458 static void btree_split_insert_keys(struct btree_update *as, 1459 struct btree_trans *trans, 1460 btree_path_idx_t path_idx, 1461 struct btree *b, 1462 struct keylist *keys) 1463 { 1464 struct btree_path *path = trans->paths + path_idx; 1465 1466 if (!bch2_keylist_empty(keys) && 1467 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1468 struct btree_node_iter node_iter; 1469 1470 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1471 1472 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1473 1474 btree_node_interior_verify(as->c, b); 1475 } 1476 } 1477 1478 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1479 btree_path_idx_t path, struct btree *b, 1480 struct keylist *keys, unsigned flags) 1481 { 1482 struct bch_fs *c = as->c; 1483 struct btree *parent = btree_node_parent(trans->paths + path, b); 1484 struct btree *n1, *n2 = NULL, *n3 = NULL; 1485 btree_path_idx_t path1 = 0, path2 = 0; 1486 u64 start_time = local_clock(); 1487 int ret = 0; 1488 1489 BUG_ON(!parent && (b != btree_node_root(c, b))); 1490 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1491 1492 bch2_btree_interior_update_will_free_node(as, b); 1493 1494 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1495 struct btree *n[2]; 1496 1497 trace_and_count(c, btree_node_split, trans, b); 1498 1499 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1500 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1501 1502 __btree_split_node(as, trans, b, n); 1503 1504 if (keys) { 1505 btree_split_insert_keys(as, trans, path, n1, keys); 1506 btree_split_insert_keys(as, trans, path, n2, keys); 1507 BUG_ON(!bch2_keylist_empty(keys)); 1508 } 1509 1510 bch2_btree_build_aux_trees(n2); 1511 bch2_btree_build_aux_trees(n1); 1512 1513 bch2_btree_update_add_new_node(as, n1); 1514 bch2_btree_update_add_new_node(as, n2); 1515 six_unlock_write(&n2->c.lock); 1516 six_unlock_write(&n1->c.lock); 1517 1518 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1519 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1520 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1521 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1522 1523 path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p); 1524 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1525 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1526 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1527 1528 /* 1529 * Note that on recursive parent_keys == keys, so we 1530 * can't start adding new keys to parent_keys before emptying it 1531 * out (which we did with btree_split_insert_keys() above) 1532 */ 1533 bch2_keylist_add(&as->parent_keys, &n1->key); 1534 bch2_keylist_add(&as->parent_keys, &n2->key); 1535 1536 if (!parent) { 1537 /* Depth increases, make a new root */ 1538 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1539 1540 bch2_btree_update_add_new_node(as, n3); 1541 six_unlock_write(&n3->c.lock); 1542 1543 trans->paths[path2].locks_want++; 1544 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1545 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1546 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1547 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1548 1549 n3->sib_u64s[0] = U16_MAX; 1550 n3->sib_u64s[1] = U16_MAX; 1551 1552 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1553 } 1554 } else { 1555 trace_and_count(c, btree_node_compact, trans, b); 1556 1557 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1558 1559 if (keys) { 1560 btree_split_insert_keys(as, trans, path, n1, keys); 1561 BUG_ON(!bch2_keylist_empty(keys)); 1562 } 1563 1564 bch2_btree_build_aux_trees(n1); 1565 bch2_btree_update_add_new_node(as, n1); 1566 six_unlock_write(&n1->c.lock); 1567 1568 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1569 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1570 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1571 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1572 1573 if (parent) 1574 bch2_keylist_add(&as->parent_keys, &n1->key); 1575 } 1576 1577 /* New nodes all written, now make them visible: */ 1578 1579 if (parent) { 1580 /* Split a non root node */ 1581 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1582 if (ret) 1583 goto err; 1584 } else if (n3) { 1585 bch2_btree_set_root(as, trans, trans->paths + path, n3); 1586 } else { 1587 /* Root filled up but didn't need to be split */ 1588 bch2_btree_set_root(as, trans, trans->paths + path, n1); 1589 } 1590 1591 if (n3) { 1592 bch2_btree_update_get_open_buckets(as, n3); 1593 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1594 } 1595 if (n2) { 1596 bch2_btree_update_get_open_buckets(as, n2); 1597 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1598 } 1599 bch2_btree_update_get_open_buckets(as, n1); 1600 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1601 1602 /* 1603 * The old node must be freed (in memory) _before_ unlocking the new 1604 * nodes - else another thread could re-acquire a read lock on the old 1605 * node after another thread has locked and updated the new node, thus 1606 * seeing stale data: 1607 */ 1608 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1609 1610 if (n3) 1611 bch2_trans_node_add(trans, trans->paths + path, n3); 1612 if (n2) 1613 bch2_trans_node_add(trans, trans->paths + path2, n2); 1614 bch2_trans_node_add(trans, trans->paths + path1, n1); 1615 1616 if (n3) 1617 six_unlock_intent(&n3->c.lock); 1618 if (n2) 1619 six_unlock_intent(&n2->c.lock); 1620 six_unlock_intent(&n1->c.lock); 1621 out: 1622 if (path2) { 1623 __bch2_btree_path_unlock(trans, trans->paths + path2); 1624 bch2_path_put(trans, path2, true); 1625 } 1626 if (path1) { 1627 __bch2_btree_path_unlock(trans, trans->paths + path1); 1628 bch2_path_put(trans, path1, true); 1629 } 1630 1631 bch2_trans_verify_locks(trans); 1632 1633 bch2_time_stats_update(&c->times[n2 1634 ? BCH_TIME_btree_node_split 1635 : BCH_TIME_btree_node_compact], 1636 start_time); 1637 return ret; 1638 err: 1639 if (n3) 1640 bch2_btree_node_free_never_used(as, trans, n3); 1641 if (n2) 1642 bch2_btree_node_free_never_used(as, trans, n2); 1643 bch2_btree_node_free_never_used(as, trans, n1); 1644 goto out; 1645 } 1646 1647 static void 1648 bch2_btree_insert_keys_interior(struct btree_update *as, 1649 struct btree_trans *trans, 1650 struct btree_path *path, 1651 struct btree *b, 1652 struct keylist *keys) 1653 { 1654 struct btree_path *linked; 1655 unsigned i; 1656 1657 __bch2_btree_insert_keys_interior(as, trans, path, b, 1658 path->l[b->c.level].iter, keys); 1659 1660 btree_update_updated_node(as, b); 1661 1662 trans_for_each_path_with_node(trans, b, linked, i) 1663 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1664 1665 bch2_trans_verify_paths(trans); 1666 } 1667 1668 /** 1669 * bch2_btree_insert_node - insert bkeys into a given btree node 1670 * 1671 * @as: btree_update object 1672 * @trans: btree_trans object 1673 * @path_idx: path that points to current node 1674 * @b: node to insert keys into 1675 * @keys: list of keys to insert 1676 * @flags: transaction commit flags 1677 * 1678 * Returns: 0 on success, typically transaction restart error on failure 1679 * 1680 * Inserts as many keys as it can into a given btree node, splitting it if full. 1681 * If a split occurred, this function will return early. This can only happen 1682 * for leaf nodes -- inserts into interior nodes have to be atomic. 1683 */ 1684 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1685 btree_path_idx_t path_idx, struct btree *b, 1686 struct keylist *keys, unsigned flags) 1687 { 1688 struct bch_fs *c = as->c; 1689 struct btree_path *path = trans->paths + path_idx; 1690 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1691 int old_live_u64s = b->nr.live_u64s; 1692 int live_u64s_added, u64s_added; 1693 int ret; 1694 1695 lockdep_assert_held(&c->gc_lock); 1696 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1697 BUG_ON(!b->c.level); 1698 BUG_ON(!as || as->b); 1699 bch2_verify_keylist_sorted(keys); 1700 1701 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1702 if (ret) 1703 return ret; 1704 1705 bch2_btree_node_prep_for_write(trans, path, b); 1706 1707 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1708 bch2_btree_node_unlock_write(trans, path, b); 1709 goto split; 1710 } 1711 1712 btree_node_interior_verify(c, b); 1713 1714 bch2_btree_insert_keys_interior(as, trans, path, b, keys); 1715 1716 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1717 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1718 1719 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1720 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1721 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1722 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1723 1724 if (u64s_added > live_u64s_added && 1725 bch2_maybe_compact_whiteouts(c, b)) 1726 bch2_trans_node_reinit_iter(trans, b); 1727 1728 bch2_btree_node_unlock_write(trans, path, b); 1729 1730 btree_node_interior_verify(c, b); 1731 return 0; 1732 split: 1733 /* 1734 * We could attempt to avoid the transaction restart, by calling 1735 * bch2_btree_path_upgrade() and allocating more nodes: 1736 */ 1737 if (b->c.level >= as->update_level) { 1738 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1739 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1740 } 1741 1742 return btree_split(as, trans, path_idx, b, keys, flags); 1743 } 1744 1745 int bch2_btree_split_leaf(struct btree_trans *trans, 1746 btree_path_idx_t path, 1747 unsigned flags) 1748 { 1749 /* btree_split & merge may both cause paths array to be reallocated */ 1750 1751 struct btree *b = path_l(trans->paths + path)->b; 1752 struct btree_update *as; 1753 unsigned l; 1754 int ret = 0; 1755 1756 as = bch2_btree_update_start(trans, trans->paths + path, 1757 trans->paths[path].level, 1758 true, flags); 1759 if (IS_ERR(as)) 1760 return PTR_ERR(as); 1761 1762 ret = btree_split(as, trans, path, b, NULL, flags); 1763 if (ret) { 1764 bch2_btree_update_free(as, trans); 1765 return ret; 1766 } 1767 1768 bch2_btree_update_done(as, trans); 1769 1770 for (l = trans->paths[path].level + 1; 1771 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1772 l++) 1773 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1774 1775 return ret; 1776 } 1777 1778 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1779 btree_path_idx_t path, 1780 unsigned level, 1781 unsigned flags, 1782 enum btree_node_sibling sib) 1783 { 1784 struct bch_fs *c = trans->c; 1785 struct btree_update *as; 1786 struct bkey_format_state new_s; 1787 struct bkey_format new_f; 1788 struct bkey_i delete; 1789 struct btree *b, *m, *n, *prev, *next, *parent; 1790 struct bpos sib_pos; 1791 size_t sib_u64s; 1792 enum btree_id btree = trans->paths[path].btree_id; 1793 btree_path_idx_t sib_path = 0, new_path = 0; 1794 u64 start_time = local_clock(); 1795 int ret = 0; 1796 1797 BUG_ON(!trans->paths[path].should_be_locked); 1798 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1799 1800 b = trans->paths[path].l[level].b; 1801 1802 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1803 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1804 b->sib_u64s[sib] = U16_MAX; 1805 return 0; 1806 } 1807 1808 sib_pos = sib == btree_prev_sib 1809 ? bpos_predecessor(b->data->min_key) 1810 : bpos_successor(b->data->max_key); 1811 1812 sib_path = bch2_path_get(trans, btree, sib_pos, 1813 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1814 ret = bch2_btree_path_traverse(trans, sib_path, false); 1815 if (ret) 1816 goto err; 1817 1818 btree_path_set_should_be_locked(trans->paths + sib_path); 1819 1820 m = trans->paths[sib_path].l[level].b; 1821 1822 if (btree_node_parent(trans->paths + path, b) != 1823 btree_node_parent(trans->paths + sib_path, m)) { 1824 b->sib_u64s[sib] = U16_MAX; 1825 goto out; 1826 } 1827 1828 if (sib == btree_prev_sib) { 1829 prev = m; 1830 next = b; 1831 } else { 1832 prev = b; 1833 next = m; 1834 } 1835 1836 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 1837 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 1838 1839 bch2_bpos_to_text(&buf1, prev->data->max_key); 1840 bch2_bpos_to_text(&buf2, next->data->min_key); 1841 bch_err(c, 1842 "%s(): btree topology error:\n" 1843 " prev ends at %s\n" 1844 " next starts at %s", 1845 __func__, buf1.buf, buf2.buf); 1846 printbuf_exit(&buf1); 1847 printbuf_exit(&buf2); 1848 bch2_topology_error(c); 1849 ret = -EIO; 1850 goto err; 1851 } 1852 1853 bch2_bkey_format_init(&new_s); 1854 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 1855 __bch2_btree_calc_format(&new_s, prev); 1856 __bch2_btree_calc_format(&new_s, next); 1857 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 1858 new_f = bch2_bkey_format_done(&new_s); 1859 1860 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 1861 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 1862 1863 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 1864 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1865 sib_u64s /= 2; 1866 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1867 } 1868 1869 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 1870 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 1871 b->sib_u64s[sib] = sib_u64s; 1872 1873 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 1874 goto out; 1875 1876 parent = btree_node_parent(trans->paths + path, b); 1877 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 1878 BCH_TRANS_COMMIT_no_enospc|flags); 1879 ret = PTR_ERR_OR_ZERO(as); 1880 if (ret) 1881 goto err; 1882 1883 trace_and_count(c, btree_node_merge, trans, b); 1884 1885 bch2_btree_interior_update_will_free_node(as, b); 1886 bch2_btree_interior_update_will_free_node(as, m); 1887 1888 n = bch2_btree_node_alloc(as, trans, b->c.level); 1889 1890 SET_BTREE_NODE_SEQ(n->data, 1891 max(BTREE_NODE_SEQ(b->data), 1892 BTREE_NODE_SEQ(m->data)) + 1); 1893 1894 btree_set_min(n, prev->data->min_key); 1895 btree_set_max(n, next->data->max_key); 1896 1897 n->data->format = new_f; 1898 btree_node_set_format(n, new_f); 1899 1900 bch2_btree_sort_into(c, n, prev); 1901 bch2_btree_sort_into(c, n, next); 1902 1903 bch2_btree_build_aux_trees(n); 1904 bch2_btree_update_add_new_node(as, n); 1905 six_unlock_write(&n->c.lock); 1906 1907 new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p); 1908 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1909 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1910 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 1911 1912 bkey_init(&delete.k); 1913 delete.k.p = prev->key.k.p; 1914 bch2_keylist_add(&as->parent_keys, &delete); 1915 bch2_keylist_add(&as->parent_keys, &n->key); 1916 1917 bch2_trans_verify_paths(trans); 1918 1919 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1920 if (ret) 1921 goto err_free_update; 1922 1923 bch2_trans_verify_paths(trans); 1924 1925 bch2_btree_update_get_open_buckets(as, n); 1926 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1927 1928 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1929 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 1930 1931 bch2_trans_node_add(trans, trans->paths + path, n); 1932 1933 bch2_trans_verify_paths(trans); 1934 1935 six_unlock_intent(&n->c.lock); 1936 1937 bch2_btree_update_done(as, trans); 1938 1939 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 1940 out: 1941 err: 1942 if (new_path) 1943 bch2_path_put(trans, new_path, true); 1944 bch2_path_put(trans, sib_path, true); 1945 bch2_trans_verify_locks(trans); 1946 return ret; 1947 err_free_update: 1948 bch2_btree_node_free_never_used(as, trans, n); 1949 bch2_btree_update_free(as, trans); 1950 goto out; 1951 } 1952 1953 int bch2_btree_node_rewrite(struct btree_trans *trans, 1954 struct btree_iter *iter, 1955 struct btree *b, 1956 unsigned flags) 1957 { 1958 struct bch_fs *c = trans->c; 1959 struct btree *n, *parent; 1960 struct btree_update *as; 1961 btree_path_idx_t new_path = 0; 1962 int ret; 1963 1964 flags |= BCH_TRANS_COMMIT_no_enospc; 1965 1966 struct btree_path *path = btree_iter_path(trans, iter); 1967 parent = btree_node_parent(path, b); 1968 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 1969 ret = PTR_ERR_OR_ZERO(as); 1970 if (ret) 1971 goto out; 1972 1973 bch2_btree_interior_update_will_free_node(as, b); 1974 1975 n = bch2_btree_node_alloc_replacement(as, trans, b); 1976 1977 bch2_btree_build_aux_trees(n); 1978 bch2_btree_update_add_new_node(as, n); 1979 six_unlock_write(&n->c.lock); 1980 1981 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 1982 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1983 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1984 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 1985 1986 trace_and_count(c, btree_node_rewrite, trans, b); 1987 1988 if (parent) { 1989 bch2_keylist_add(&as->parent_keys, &n->key); 1990 ret = bch2_btree_insert_node(as, trans, iter->path, 1991 parent, &as->parent_keys, flags); 1992 if (ret) 1993 goto err; 1994 } else { 1995 bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n); 1996 } 1997 1998 bch2_btree_update_get_open_buckets(as, n); 1999 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2000 2001 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2002 2003 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2004 six_unlock_intent(&n->c.lock); 2005 2006 bch2_btree_update_done(as, trans); 2007 out: 2008 if (new_path) 2009 bch2_path_put(trans, new_path, true); 2010 bch2_trans_downgrade(trans); 2011 return ret; 2012 err: 2013 bch2_btree_node_free_never_used(as, trans, n); 2014 bch2_btree_update_free(as, trans); 2015 goto out; 2016 } 2017 2018 struct async_btree_rewrite { 2019 struct bch_fs *c; 2020 struct work_struct work; 2021 struct list_head list; 2022 enum btree_id btree_id; 2023 unsigned level; 2024 struct bpos pos; 2025 __le64 seq; 2026 }; 2027 2028 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2029 struct async_btree_rewrite *a) 2030 { 2031 struct bch_fs *c = trans->c; 2032 struct btree_iter iter; 2033 struct btree *b; 2034 int ret; 2035 2036 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2037 BTREE_MAX_DEPTH, a->level, 0); 2038 b = bch2_btree_iter_peek_node(&iter); 2039 ret = PTR_ERR_OR_ZERO(b); 2040 if (ret) 2041 goto out; 2042 2043 if (!b || b->data->keys.seq != a->seq) { 2044 struct printbuf buf = PRINTBUF; 2045 2046 if (b) 2047 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2048 else 2049 prt_str(&buf, "(null"); 2050 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2051 __func__, a->seq, buf.buf); 2052 printbuf_exit(&buf); 2053 goto out; 2054 } 2055 2056 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2057 out: 2058 bch2_trans_iter_exit(trans, &iter); 2059 2060 return ret; 2061 } 2062 2063 static void async_btree_node_rewrite_work(struct work_struct *work) 2064 { 2065 struct async_btree_rewrite *a = 2066 container_of(work, struct async_btree_rewrite, work); 2067 struct bch_fs *c = a->c; 2068 int ret; 2069 2070 ret = bch2_trans_do(c, NULL, NULL, 0, 2071 async_btree_node_rewrite_trans(trans, a)); 2072 bch_err_fn(c, ret); 2073 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2074 kfree(a); 2075 } 2076 2077 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2078 { 2079 struct async_btree_rewrite *a; 2080 int ret; 2081 2082 a = kmalloc(sizeof(*a), GFP_NOFS); 2083 if (!a) { 2084 bch_err(c, "%s: error allocating memory", __func__); 2085 return; 2086 } 2087 2088 a->c = c; 2089 a->btree_id = b->c.btree_id; 2090 a->level = b->c.level; 2091 a->pos = b->key.k.p; 2092 a->seq = b->data->keys.seq; 2093 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2094 2095 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { 2096 mutex_lock(&c->pending_node_rewrites_lock); 2097 list_add(&a->list, &c->pending_node_rewrites); 2098 mutex_unlock(&c->pending_node_rewrites_lock); 2099 return; 2100 } 2101 2102 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2103 if (test_bit(BCH_FS_started, &c->flags)) { 2104 bch_err(c, "%s: error getting c->writes ref", __func__); 2105 kfree(a); 2106 return; 2107 } 2108 2109 ret = bch2_fs_read_write_early(c); 2110 bch_err_msg(c, ret, "going read-write"); 2111 if (ret) { 2112 kfree(a); 2113 return; 2114 } 2115 2116 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2117 } 2118 2119 queue_work(c->btree_interior_update_worker, &a->work); 2120 } 2121 2122 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2123 { 2124 struct async_btree_rewrite *a, *n; 2125 2126 mutex_lock(&c->pending_node_rewrites_lock); 2127 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2128 list_del(&a->list); 2129 2130 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2131 queue_work(c->btree_interior_update_worker, &a->work); 2132 } 2133 mutex_unlock(&c->pending_node_rewrites_lock); 2134 } 2135 2136 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2137 { 2138 struct async_btree_rewrite *a, *n; 2139 2140 mutex_lock(&c->pending_node_rewrites_lock); 2141 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2142 list_del(&a->list); 2143 2144 kfree(a); 2145 } 2146 mutex_unlock(&c->pending_node_rewrites_lock); 2147 } 2148 2149 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2150 struct btree_iter *iter, 2151 struct btree *b, struct btree *new_hash, 2152 struct bkey_i *new_key, 2153 unsigned commit_flags, 2154 bool skip_triggers) 2155 { 2156 struct bch_fs *c = trans->c; 2157 struct btree_iter iter2 = { NULL }; 2158 struct btree *parent; 2159 int ret; 2160 2161 if (!skip_triggers) { 2162 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2163 bkey_i_to_s_c(&b->key), 2164 BTREE_TRIGGER_TRANSACTIONAL) ?: 2165 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2166 bkey_i_to_s(new_key), 2167 BTREE_TRIGGER_TRANSACTIONAL); 2168 if (ret) 2169 return ret; 2170 } 2171 2172 if (new_hash) { 2173 bkey_copy(&new_hash->key, new_key); 2174 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2175 new_hash, b->c.level, b->c.btree_id); 2176 BUG_ON(ret); 2177 } 2178 2179 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2180 if (parent) { 2181 bch2_trans_copy_iter(&iter2, iter); 2182 2183 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2184 iter2.flags & BTREE_ITER_INTENT, 2185 _THIS_IP_); 2186 2187 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2188 BUG_ON(path2->level != b->c.level); 2189 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2190 2191 btree_path_set_level_up(trans, path2); 2192 2193 trans->paths_sorted = false; 2194 2195 ret = bch2_btree_iter_traverse(&iter2) ?: 2196 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2197 if (ret) 2198 goto err; 2199 } else { 2200 BUG_ON(btree_node_root(c, b) != b); 2201 2202 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2203 jset_u64s(new_key->k.u64s)); 2204 ret = PTR_ERR_OR_ZERO(e); 2205 if (ret) 2206 return ret; 2207 2208 journal_entry_set(e, 2209 BCH_JSET_ENTRY_btree_root, 2210 b->c.btree_id, b->c.level, 2211 new_key, new_key->k.u64s); 2212 } 2213 2214 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2215 if (ret) 2216 goto err; 2217 2218 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2219 2220 if (new_hash) { 2221 mutex_lock(&c->btree_cache.lock); 2222 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2223 bch2_btree_node_hash_remove(&c->btree_cache, b); 2224 2225 bkey_copy(&b->key, new_key); 2226 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2227 BUG_ON(ret); 2228 mutex_unlock(&c->btree_cache.lock); 2229 } else { 2230 bkey_copy(&b->key, new_key); 2231 } 2232 2233 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2234 out: 2235 bch2_trans_iter_exit(trans, &iter2); 2236 return ret; 2237 err: 2238 if (new_hash) { 2239 mutex_lock(&c->btree_cache.lock); 2240 bch2_btree_node_hash_remove(&c->btree_cache, b); 2241 mutex_unlock(&c->btree_cache.lock); 2242 } 2243 goto out; 2244 } 2245 2246 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2247 struct btree *b, struct bkey_i *new_key, 2248 unsigned commit_flags, bool skip_triggers) 2249 { 2250 struct bch_fs *c = trans->c; 2251 struct btree *new_hash = NULL; 2252 struct btree_path *path = btree_iter_path(trans, iter); 2253 struct closure cl; 2254 int ret = 0; 2255 2256 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2257 if (ret) 2258 return ret; 2259 2260 closure_init_stack(&cl); 2261 2262 /* 2263 * check btree_ptr_hash_val() after @b is locked by 2264 * btree_iter_traverse(): 2265 */ 2266 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2267 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2268 if (ret) { 2269 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2270 if (ret) 2271 return ret; 2272 } 2273 2274 new_hash = bch2_btree_node_mem_alloc(trans, false); 2275 } 2276 2277 path->intent_ref++; 2278 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2279 commit_flags, skip_triggers); 2280 --path->intent_ref; 2281 2282 if (new_hash) { 2283 mutex_lock(&c->btree_cache.lock); 2284 list_move(&new_hash->list, &c->btree_cache.freeable); 2285 mutex_unlock(&c->btree_cache.lock); 2286 2287 six_unlock_write(&new_hash->c.lock); 2288 six_unlock_intent(&new_hash->c.lock); 2289 } 2290 closure_sync(&cl); 2291 bch2_btree_cache_cannibalize_unlock(trans); 2292 return ret; 2293 } 2294 2295 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2296 struct btree *b, struct bkey_i *new_key, 2297 unsigned commit_flags, bool skip_triggers) 2298 { 2299 struct btree_iter iter; 2300 int ret; 2301 2302 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2303 BTREE_MAX_DEPTH, b->c.level, 2304 BTREE_ITER_INTENT); 2305 ret = bch2_btree_iter_traverse(&iter); 2306 if (ret) 2307 goto out; 2308 2309 /* has node been freed? */ 2310 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2311 /* node has been freed: */ 2312 BUG_ON(!btree_node_dying(b)); 2313 goto out; 2314 } 2315 2316 BUG_ON(!btree_node_hashed(b)); 2317 2318 struct bch_extent_ptr *ptr; 2319 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2320 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2321 2322 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2323 commit_flags, skip_triggers); 2324 out: 2325 bch2_trans_iter_exit(trans, &iter); 2326 return ret; 2327 } 2328 2329 /* Init code: */ 2330 2331 /* 2332 * Only for filesystem bringup, when first reading the btree roots or allocating 2333 * btree roots when initializing a new filesystem: 2334 */ 2335 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2336 { 2337 BUG_ON(btree_node_root(c, b)); 2338 2339 bch2_btree_set_root_inmem(c, b); 2340 } 2341 2342 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) 2343 { 2344 struct bch_fs *c = trans->c; 2345 struct closure cl; 2346 struct btree *b; 2347 int ret; 2348 2349 closure_init_stack(&cl); 2350 2351 do { 2352 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2353 closure_sync(&cl); 2354 } while (ret); 2355 2356 b = bch2_btree_node_mem_alloc(trans, false); 2357 bch2_btree_cache_cannibalize_unlock(trans); 2358 2359 set_btree_node_fake(b); 2360 set_btree_node_need_rewrite(b); 2361 b->c.level = 0; 2362 b->c.btree_id = id; 2363 2364 bkey_btree_ptr_init(&b->key); 2365 b->key.k.p = SPOS_MAX; 2366 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2367 2368 bch2_bset_init_first(b, &b->data->keys); 2369 bch2_btree_build_aux_trees(b); 2370 2371 b->data->flags = 0; 2372 btree_set_min(b, POS_MIN); 2373 btree_set_max(b, SPOS_MAX); 2374 b->data->format = bch2_btree_calc_format(b); 2375 btree_node_set_format(b, b->data->format); 2376 2377 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2378 b->c.level, b->c.btree_id); 2379 BUG_ON(ret); 2380 2381 bch2_btree_set_root_inmem(c, b); 2382 2383 six_unlock_write(&b->c.lock); 2384 six_unlock_intent(&b->c.lock); 2385 return 0; 2386 } 2387 2388 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) 2389 { 2390 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); 2391 } 2392 2393 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2394 { 2395 struct btree_update *as; 2396 2397 mutex_lock(&c->btree_interior_update_lock); 2398 list_for_each_entry(as, &c->btree_interior_update_list, list) 2399 prt_printf(out, "%p m %u w %u r %u j %llu\n", 2400 as, 2401 as->mode, 2402 as->nodes_written, 2403 closure_nr_remaining(&as->cl), 2404 as->journal.seq); 2405 mutex_unlock(&c->btree_interior_update_lock); 2406 } 2407 2408 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2409 { 2410 bool ret; 2411 2412 mutex_lock(&c->btree_interior_update_lock); 2413 ret = !list_empty(&c->btree_interior_update_list); 2414 mutex_unlock(&c->btree_interior_update_lock); 2415 2416 return ret; 2417 } 2418 2419 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2420 { 2421 bool ret = bch2_btree_interior_updates_pending(c); 2422 2423 if (ret) 2424 closure_wait_event(&c->btree_interior_update_wait, 2425 !bch2_btree_interior_updates_pending(c)); 2426 return ret; 2427 } 2428 2429 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2430 { 2431 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2432 2433 mutex_lock(&c->btree_root_lock); 2434 2435 r->level = entry->level; 2436 r->alive = true; 2437 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2438 2439 mutex_unlock(&c->btree_root_lock); 2440 } 2441 2442 struct jset_entry * 2443 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2444 struct jset_entry *end, 2445 unsigned long skip) 2446 { 2447 unsigned i; 2448 2449 mutex_lock(&c->btree_root_lock); 2450 2451 for (i = 0; i < btree_id_nr_alive(c); i++) { 2452 struct btree_root *r = bch2_btree_id_root(c, i); 2453 2454 if (r->alive && !test_bit(i, &skip)) { 2455 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2456 i, r->level, &r->key, r->key.k.u64s); 2457 end = vstruct_next(end); 2458 } 2459 } 2460 2461 mutex_unlock(&c->btree_root_lock); 2462 2463 return end; 2464 } 2465 2466 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2467 { 2468 if (c->btree_interior_update_worker) 2469 destroy_workqueue(c->btree_interior_update_worker); 2470 mempool_exit(&c->btree_interior_update_pool); 2471 } 2472 2473 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2474 { 2475 mutex_init(&c->btree_reserve_cache_lock); 2476 INIT_LIST_HEAD(&c->btree_interior_update_list); 2477 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2478 mutex_init(&c->btree_interior_update_lock); 2479 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2480 2481 INIT_LIST_HEAD(&c->pending_node_rewrites); 2482 mutex_init(&c->pending_node_rewrites_lock); 2483 } 2484 2485 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2486 { 2487 c->btree_interior_update_worker = 2488 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 2489 if (!c->btree_interior_update_worker) 2490 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2491 2492 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2493 sizeof(struct btree_update))) 2494 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2495 2496 return 0; 2497 } 2498