1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_methods.h" 6 #include "btree_cache.h" 7 #include "btree_gc.h" 8 #include "btree_journal_iter.h" 9 #include "btree_update.h" 10 #include "btree_update_interior.h" 11 #include "btree_io.h" 12 #include "btree_iter.h" 13 #include "btree_locking.h" 14 #include "buckets.h" 15 #include "clock.h" 16 #include "error.h" 17 #include "extents.h" 18 #include "journal.h" 19 #include "journal_reclaim.h" 20 #include "keylist.h" 21 #include "replicas.h" 22 #include "super-io.h" 23 #include "trace.h" 24 25 #include <linux/random.h> 26 27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 28 struct btree_path *, struct btree *, 29 struct keylist *, unsigned); 30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 31 32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans, 33 enum btree_id btree_id, 34 unsigned level, 35 struct bpos pos) 36 { 37 struct btree_path *path; 38 39 path = bch2_path_get(trans, btree_id, pos, level + 1, level, 40 BTREE_ITER_NOPRESERVE| 41 BTREE_ITER_INTENT, _RET_IP_); 42 path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_); 43 bch2_btree_path_downgrade(trans, path); 44 __bch2_btree_path_unlock(trans, path); 45 return path; 46 } 47 48 /* Debug code: */ 49 50 /* 51 * Verify that child nodes correctly span parent node's range: 52 */ 53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) 54 { 55 #ifdef CONFIG_BCACHEFS_DEBUG 56 struct bpos next_node = b->data->min_key; 57 struct btree_node_iter iter; 58 struct bkey_s_c k; 59 struct bkey_s_c_btree_ptr_v2 bp; 60 struct bkey unpacked; 61 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 62 63 BUG_ON(!b->c.level); 64 65 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) 66 return; 67 68 bch2_btree_node_iter_init_from_start(&iter, b); 69 70 while (1) { 71 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); 72 if (k.k->type != KEY_TYPE_btree_ptr_v2) 73 break; 74 bp = bkey_s_c_to_btree_ptr_v2(k); 75 76 if (!bpos_eq(next_node, bp.v->min_key)) { 77 bch2_dump_btree_node(c, b); 78 bch2_bpos_to_text(&buf1, next_node); 79 bch2_bpos_to_text(&buf2, bp.v->min_key); 80 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); 81 } 82 83 bch2_btree_node_iter_advance(&iter, b); 84 85 if (bch2_btree_node_iter_end(&iter)) { 86 if (!bpos_eq(k.k->p, b->key.k.p)) { 87 bch2_dump_btree_node(c, b); 88 bch2_bpos_to_text(&buf1, b->key.k.p); 89 bch2_bpos_to_text(&buf2, k.k->p); 90 panic("expected end %s got %s\n", buf1.buf, buf2.buf); 91 } 92 break; 93 } 94 95 next_node = bpos_successor(k.k->p); 96 } 97 #endif 98 } 99 100 /* Calculate ideal packed bkey format for new btree nodes: */ 101 102 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 103 { 104 struct bkey_packed *k; 105 struct bset_tree *t; 106 struct bkey uk; 107 108 for_each_bset(b, t) 109 bset_tree_for_each_key(b, t, k) 110 if (!bkey_deleted(k)) { 111 uk = bkey_unpack_key(b, k); 112 bch2_bkey_format_add_key(s, &uk); 113 } 114 } 115 116 static struct bkey_format bch2_btree_calc_format(struct btree *b) 117 { 118 struct bkey_format_state s; 119 120 bch2_bkey_format_init(&s); 121 bch2_bkey_format_add_pos(&s, b->data->min_key); 122 bch2_bkey_format_add_pos(&s, b->data->max_key); 123 __bch2_btree_calc_format(&s, b); 124 125 return bch2_bkey_format_done(&s); 126 } 127 128 static size_t btree_node_u64s_with_format(struct btree *b, 129 struct bkey_format *new_f) 130 { 131 struct bkey_format *old_f = &b->format; 132 133 /* stupid integer promotion rules */ 134 ssize_t delta = 135 (((int) new_f->key_u64s - old_f->key_u64s) * 136 (int) b->nr.packed_keys) + 137 (((int) new_f->key_u64s - BKEY_U64s) * 138 (int) b->nr.unpacked_keys); 139 140 BUG_ON(delta + b->nr.live_u64s < 0); 141 142 return b->nr.live_u64s + delta; 143 } 144 145 /** 146 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 147 * 148 * @c: filesystem handle 149 * @b: btree node to rewrite 150 * @new_f: bkey format to translate keys to 151 * 152 * Returns: true if all re-packed keys will be able to fit in a new node. 153 * 154 * Assumes all keys will successfully pack with the new format. 155 */ 156 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 157 struct bkey_format *new_f) 158 { 159 size_t u64s = btree_node_u64s_with_format(b, new_f); 160 161 return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); 162 } 163 164 /* Btree node freeing/allocation: */ 165 166 static void __btree_node_free(struct bch_fs *c, struct btree *b) 167 { 168 trace_and_count(c, btree_node_free, c, b); 169 170 BUG_ON(btree_node_write_blocked(b)); 171 BUG_ON(btree_node_dirty(b)); 172 BUG_ON(btree_node_need_write(b)); 173 BUG_ON(b == btree_node_root(c, b)); 174 BUG_ON(b->ob.nr); 175 BUG_ON(!list_empty(&b->write_blocked)); 176 BUG_ON(b->will_make_reachable); 177 178 clear_btree_node_noevict(b); 179 180 mutex_lock(&c->btree_cache.lock); 181 list_move(&b->list, &c->btree_cache.freeable); 182 mutex_unlock(&c->btree_cache.lock); 183 } 184 185 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 186 struct btree_path *path, 187 struct btree *b) 188 { 189 struct bch_fs *c = trans->c; 190 unsigned level = b->c.level; 191 192 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 193 bch2_btree_node_hash_remove(&c->btree_cache, b); 194 __btree_node_free(c, b); 195 six_unlock_write(&b->c.lock); 196 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 197 198 trans_for_each_path(trans, path) 199 if (path->l[level].b == b) { 200 btree_node_unlock(trans, path, level); 201 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 202 } 203 } 204 205 static void bch2_btree_node_free_never_used(struct btree_update *as, 206 struct btree_trans *trans, 207 struct btree *b) 208 { 209 struct bch_fs *c = as->c; 210 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 211 struct btree_path *path; 212 unsigned level = b->c.level; 213 214 BUG_ON(!list_empty(&b->write_blocked)); 215 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 216 217 b->will_make_reachable = 0; 218 closure_put(&as->cl); 219 220 clear_btree_node_will_make_reachable(b); 221 clear_btree_node_accessed(b); 222 clear_btree_node_dirty_acct(c, b); 223 clear_btree_node_need_write(b); 224 225 mutex_lock(&c->btree_cache.lock); 226 list_del_init(&b->list); 227 bch2_btree_node_hash_remove(&c->btree_cache, b); 228 mutex_unlock(&c->btree_cache.lock); 229 230 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 231 p->b[p->nr++] = b; 232 233 six_unlock_intent(&b->c.lock); 234 235 trans_for_each_path(trans, path) 236 if (path->l[level].b == b) { 237 btree_node_unlock(trans, path, level); 238 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 239 } 240 } 241 242 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 243 struct disk_reservation *res, 244 struct closure *cl, 245 bool interior_node, 246 unsigned flags) 247 { 248 struct bch_fs *c = trans->c; 249 struct write_point *wp; 250 struct btree *b; 251 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 252 struct open_buckets obs = { .nr = 0 }; 253 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 254 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 255 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim 256 ? BTREE_NODE_RESERVE 257 : 0; 258 int ret; 259 260 mutex_lock(&c->btree_reserve_cache_lock); 261 if (c->btree_reserve_cache_nr > nr_reserve) { 262 struct btree_alloc *a = 263 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 264 265 obs = a->ob; 266 bkey_copy(&tmp.k, &a->k); 267 mutex_unlock(&c->btree_reserve_cache_lock); 268 goto mem_alloc; 269 } 270 mutex_unlock(&c->btree_reserve_cache_lock); 271 272 retry: 273 ret = bch2_alloc_sectors_start_trans(trans, 274 c->opts.metadata_target ?: 275 c->opts.foreground_target, 276 0, 277 writepoint_ptr(&c->btree_write_point), 278 &devs_have, 279 res->nr_replicas, 280 c->opts.metadata_replicas_required, 281 watermark, 0, cl, &wp); 282 if (unlikely(ret)) 283 return ERR_PTR(ret); 284 285 if (wp->sectors_free < btree_sectors(c)) { 286 struct open_bucket *ob; 287 unsigned i; 288 289 open_bucket_for_each(c, &wp->ptrs, ob, i) 290 if (ob->sectors_free < btree_sectors(c)) 291 ob->sectors_free = 0; 292 293 bch2_alloc_sectors_done(c, wp); 294 goto retry; 295 } 296 297 bkey_btree_ptr_v2_init(&tmp.k); 298 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 299 300 bch2_open_bucket_get(c, wp, &obs); 301 bch2_alloc_sectors_done(c, wp); 302 mem_alloc: 303 b = bch2_btree_node_mem_alloc(trans, interior_node); 304 six_unlock_write(&b->c.lock); 305 six_unlock_intent(&b->c.lock); 306 307 /* we hold cannibalize_lock: */ 308 BUG_ON(IS_ERR(b)); 309 BUG_ON(b->ob.nr); 310 311 bkey_copy(&b->key, &tmp.k); 312 b->ob = obs; 313 314 return b; 315 } 316 317 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 318 struct btree_trans *trans, 319 unsigned level) 320 { 321 struct bch_fs *c = as->c; 322 struct btree *b; 323 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 324 int ret; 325 326 BUG_ON(level >= BTREE_MAX_DEPTH); 327 BUG_ON(!p->nr); 328 329 b = p->b[--p->nr]; 330 331 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 332 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 333 334 set_btree_node_accessed(b); 335 set_btree_node_dirty_acct(c, b); 336 set_btree_node_need_write(b); 337 338 bch2_bset_init_first(b, &b->data->keys); 339 b->c.level = level; 340 b->c.btree_id = as->btree_id; 341 b->version_ondisk = c->sb.version; 342 343 memset(&b->nr, 0, sizeof(b->nr)); 344 b->data->magic = cpu_to_le64(bset_magic(c)); 345 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 346 b->data->flags = 0; 347 SET_BTREE_NODE_ID(b->data, as->btree_id); 348 SET_BTREE_NODE_LEVEL(b->data, level); 349 350 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 351 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 352 353 bp->v.mem_ptr = 0; 354 bp->v.seq = b->data->keys.seq; 355 bp->v.sectors_written = 0; 356 } 357 358 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 359 360 bch2_btree_build_aux_trees(b); 361 362 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 363 BUG_ON(ret); 364 365 trace_and_count(c, btree_node_alloc, c, b); 366 bch2_increment_clock(c, btree_sectors(c), WRITE); 367 return b; 368 } 369 370 static void btree_set_min(struct btree *b, struct bpos pos) 371 { 372 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 373 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 374 b->data->min_key = pos; 375 } 376 377 static void btree_set_max(struct btree *b, struct bpos pos) 378 { 379 b->key.k.p = pos; 380 b->data->max_key = pos; 381 } 382 383 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 384 struct btree_trans *trans, 385 struct btree *b) 386 { 387 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 388 struct bkey_format format = bch2_btree_calc_format(b); 389 390 /* 391 * The keys might expand with the new format - if they wouldn't fit in 392 * the btree node anymore, use the old format for now: 393 */ 394 if (!bch2_btree_node_format_fits(as->c, b, &format)) 395 format = b->format; 396 397 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 398 399 btree_set_min(n, b->data->min_key); 400 btree_set_max(n, b->data->max_key); 401 402 n->data->format = format; 403 btree_node_set_format(n, format); 404 405 bch2_btree_sort_into(as->c, n, b); 406 407 btree_node_reset_sib_u64s(n); 408 return n; 409 } 410 411 static struct btree *__btree_root_alloc(struct btree_update *as, 412 struct btree_trans *trans, unsigned level) 413 { 414 struct btree *b = bch2_btree_node_alloc(as, trans, level); 415 416 btree_set_min(b, POS_MIN); 417 btree_set_max(b, SPOS_MAX); 418 b->data->format = bch2_btree_calc_format(b); 419 420 btree_node_set_format(b, b->data->format); 421 bch2_btree_build_aux_trees(b); 422 423 return b; 424 } 425 426 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 427 { 428 struct bch_fs *c = as->c; 429 struct prealloc_nodes *p; 430 431 for (p = as->prealloc_nodes; 432 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 433 p++) { 434 while (p->nr) { 435 struct btree *b = p->b[--p->nr]; 436 437 mutex_lock(&c->btree_reserve_cache_lock); 438 439 if (c->btree_reserve_cache_nr < 440 ARRAY_SIZE(c->btree_reserve_cache)) { 441 struct btree_alloc *a = 442 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 443 444 a->ob = b->ob; 445 b->ob.nr = 0; 446 bkey_copy(&a->k, &b->key); 447 } else { 448 bch2_open_buckets_put(c, &b->ob); 449 } 450 451 mutex_unlock(&c->btree_reserve_cache_lock); 452 453 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 454 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 455 __btree_node_free(c, b); 456 six_unlock_write(&b->c.lock); 457 six_unlock_intent(&b->c.lock); 458 } 459 } 460 } 461 462 static int bch2_btree_reserve_get(struct btree_trans *trans, 463 struct btree_update *as, 464 unsigned nr_nodes[2], 465 unsigned flags, 466 struct closure *cl) 467 { 468 struct bch_fs *c = as->c; 469 struct btree *b; 470 unsigned interior; 471 int ret = 0; 472 473 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 474 475 /* 476 * Protects reaping from the btree node cache and using the btree node 477 * open bucket reserve: 478 * 479 * BTREE_INSERT_NOWAIT only applies to btree node allocation, not 480 * blocking on this lock: 481 */ 482 ret = bch2_btree_cache_cannibalize_lock(c, cl); 483 if (ret) 484 return ret; 485 486 for (interior = 0; interior < 2; interior++) { 487 struct prealloc_nodes *p = as->prealloc_nodes + interior; 488 489 while (p->nr < nr_nodes[interior]) { 490 b = __bch2_btree_node_alloc(trans, &as->disk_res, 491 flags & BTREE_INSERT_NOWAIT ? NULL : cl, 492 interior, flags); 493 if (IS_ERR(b)) { 494 ret = PTR_ERR(b); 495 goto err; 496 } 497 498 p->b[p->nr++] = b; 499 } 500 } 501 err: 502 bch2_btree_cache_cannibalize_unlock(c); 503 return ret; 504 } 505 506 /* Asynchronous interior node update machinery */ 507 508 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 509 { 510 struct bch_fs *c = as->c; 511 512 if (as->took_gc_lock) 513 up_read(&c->gc_lock); 514 as->took_gc_lock = false; 515 516 bch2_journal_pin_drop(&c->journal, &as->journal); 517 bch2_journal_pin_flush(&c->journal, &as->journal); 518 bch2_disk_reservation_put(c, &as->disk_res); 519 bch2_btree_reserve_put(as, trans); 520 521 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 522 as->start_time); 523 524 mutex_lock(&c->btree_interior_update_lock); 525 list_del(&as->unwritten_list); 526 list_del(&as->list); 527 528 closure_debug_destroy(&as->cl); 529 mempool_free(as, &c->btree_interior_update_pool); 530 531 /* 532 * Have to do the wakeup with btree_interior_update_lock still held, 533 * since being on btree_interior_update_list is our ref on @c: 534 */ 535 closure_wake_up(&c->btree_interior_update_wait); 536 537 mutex_unlock(&c->btree_interior_update_lock); 538 } 539 540 static void btree_update_add_key(struct btree_update *as, 541 struct keylist *keys, struct btree *b) 542 { 543 struct bkey_i *k = &b->key; 544 545 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 546 ARRAY_SIZE(as->_old_keys)); 547 548 bkey_copy(keys->top, k); 549 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 550 551 bch2_keylist_push(keys); 552 } 553 554 /* 555 * The transactional part of an interior btree node update, where we journal the 556 * update we did to the interior node and update alloc info: 557 */ 558 static int btree_update_nodes_written_trans(struct btree_trans *trans, 559 struct btree_update *as) 560 { 561 struct bkey_i *k; 562 int ret; 563 564 ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s); 565 if (ret) 566 return ret; 567 568 memcpy(&darray_top(trans->extra_journal_entries), 569 as->journal_entries, 570 as->journal_u64s * sizeof(u64)); 571 trans->extra_journal_entries.nr += as->journal_u64s; 572 573 trans->journal_pin = &as->journal; 574 575 for_each_keylist_key(&as->old_keys, k) { 576 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 577 578 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0); 579 if (ret) 580 return ret; 581 } 582 583 for_each_keylist_key(&as->new_keys, k) { 584 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 585 586 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0); 587 if (ret) 588 return ret; 589 } 590 591 return 0; 592 } 593 594 static void btree_update_nodes_written(struct btree_update *as) 595 { 596 struct bch_fs *c = as->c; 597 struct btree *b; 598 struct btree_trans *trans = bch2_trans_get(c); 599 u64 journal_seq = 0; 600 unsigned i; 601 int ret; 602 603 /* 604 * If we're already in an error state, it might be because a btree node 605 * was never written, and we might be trying to free that same btree 606 * node here, but it won't have been marked as allocated and we'll see 607 * spurious disk usage inconsistencies in the transactional part below 608 * if we don't skip it: 609 */ 610 ret = bch2_journal_error(&c->journal); 611 if (ret) 612 goto err; 613 614 /* 615 * Wait for any in flight writes to finish before we free the old nodes 616 * on disk: 617 */ 618 for (i = 0; i < as->nr_old_nodes; i++) { 619 __le64 seq; 620 621 b = as->old_nodes[i]; 622 623 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 624 seq = b->data ? b->data->keys.seq : 0; 625 six_unlock_read(&b->c.lock); 626 627 if (seq == as->old_nodes_seq[i]) 628 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 629 TASK_UNINTERRUPTIBLE); 630 } 631 632 /* 633 * We did an update to a parent node where the pointers we added pointed 634 * to child nodes that weren't written yet: now, the child nodes have 635 * been written so we can write out the update to the interior node. 636 */ 637 638 /* 639 * We can't call into journal reclaim here: we'd block on the journal 640 * reclaim lock, but we may need to release the open buckets we have 641 * pinned in order for other btree updates to make forward progress, and 642 * journal reclaim does btree updates when flushing bkey_cached entries, 643 * which may require allocations as well. 644 */ 645 ret = commit_do(trans, &as->disk_res, &journal_seq, 646 BCH_WATERMARK_reclaim| 647 BTREE_INSERT_NOFAIL| 648 BTREE_INSERT_NOCHECK_RW| 649 BTREE_INSERT_JOURNAL_RECLAIM, 650 btree_update_nodes_written_trans(trans, as)); 651 bch2_trans_unlock(trans); 652 653 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 654 "%s(): error %s", __func__, bch2_err_str(ret)); 655 err: 656 if (as->b) { 657 struct btree_path *path; 658 659 b = as->b; 660 path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p); 661 /* 662 * @b is the node we did the final insert into: 663 * 664 * On failure to get a journal reservation, we still have to 665 * unblock the write and allow most of the write path to happen 666 * so that shutdown works, but the i->journal_seq mechanism 667 * won't work to prevent the btree write from being visible (we 668 * didn't get a journal sequence number) - instead 669 * __bch2_btree_node_write() doesn't do the actual write if 670 * we're in journal error state: 671 */ 672 673 /* 674 * Ensure transaction is unlocked before using 675 * btree_node_lock_nopath() (the use of which is always suspect, 676 * we need to work on removing this in the future) 677 * 678 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 679 * calls bch2_path_upgrade(), before we call path_make_mut(), so 680 * we may rarely end up with a locked path besides the one we 681 * have here: 682 */ 683 bch2_trans_unlock(trans); 684 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 685 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 686 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 687 path->l[b->c.level].b = b; 688 689 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 690 691 mutex_lock(&c->btree_interior_update_lock); 692 693 list_del(&as->write_blocked_list); 694 if (list_empty(&b->write_blocked)) 695 clear_btree_node_write_blocked(b); 696 697 /* 698 * Node might have been freed, recheck under 699 * btree_interior_update_lock: 700 */ 701 if (as->b == b) { 702 BUG_ON(!b->c.level); 703 BUG_ON(!btree_node_dirty(b)); 704 705 if (!ret) { 706 struct bset *last = btree_bset_last(b); 707 708 last->journal_seq = cpu_to_le64( 709 max(journal_seq, 710 le64_to_cpu(last->journal_seq))); 711 712 bch2_btree_add_journal_pin(c, b, journal_seq); 713 } else { 714 /* 715 * If we didn't get a journal sequence number we 716 * can't write this btree node, because recovery 717 * won't know to ignore this write: 718 */ 719 set_btree_node_never_write(b); 720 } 721 } 722 723 mutex_unlock(&c->btree_interior_update_lock); 724 725 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 726 six_unlock_write(&b->c.lock); 727 728 btree_node_write_if_need(c, b, SIX_LOCK_intent); 729 btree_node_unlock(trans, path, b->c.level); 730 bch2_path_put(trans, path, true); 731 } 732 733 bch2_journal_pin_drop(&c->journal, &as->journal); 734 735 mutex_lock(&c->btree_interior_update_lock); 736 for (i = 0; i < as->nr_new_nodes; i++) { 737 b = as->new_nodes[i]; 738 739 BUG_ON(b->will_make_reachable != (unsigned long) as); 740 b->will_make_reachable = 0; 741 clear_btree_node_will_make_reachable(b); 742 } 743 mutex_unlock(&c->btree_interior_update_lock); 744 745 for (i = 0; i < as->nr_new_nodes; i++) { 746 b = as->new_nodes[i]; 747 748 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 749 btree_node_write_if_need(c, b, SIX_LOCK_read); 750 six_unlock_read(&b->c.lock); 751 } 752 753 for (i = 0; i < as->nr_open_buckets; i++) 754 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 755 756 bch2_btree_update_free(as, trans); 757 bch2_trans_put(trans); 758 } 759 760 static void btree_interior_update_work(struct work_struct *work) 761 { 762 struct bch_fs *c = 763 container_of(work, struct bch_fs, btree_interior_update_work); 764 struct btree_update *as; 765 766 while (1) { 767 mutex_lock(&c->btree_interior_update_lock); 768 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 769 struct btree_update, unwritten_list); 770 if (as && !as->nodes_written) 771 as = NULL; 772 mutex_unlock(&c->btree_interior_update_lock); 773 774 if (!as) 775 break; 776 777 btree_update_nodes_written(as); 778 } 779 } 780 781 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 782 { 783 closure_type(as, struct btree_update, cl); 784 struct bch_fs *c = as->c; 785 786 mutex_lock(&c->btree_interior_update_lock); 787 as->nodes_written = true; 788 mutex_unlock(&c->btree_interior_update_lock); 789 790 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 791 } 792 793 /* 794 * We're updating @b with pointers to nodes that haven't finished writing yet: 795 * block @b from being written until @as completes 796 */ 797 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 798 { 799 struct bch_fs *c = as->c; 800 801 mutex_lock(&c->btree_interior_update_lock); 802 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 803 804 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 805 BUG_ON(!btree_node_dirty(b)); 806 BUG_ON(!b->c.level); 807 808 as->mode = BTREE_INTERIOR_UPDATING_NODE; 809 as->b = b; 810 811 set_btree_node_write_blocked(b); 812 list_add(&as->write_blocked_list, &b->write_blocked); 813 814 mutex_unlock(&c->btree_interior_update_lock); 815 } 816 817 static void btree_update_reparent(struct btree_update *as, 818 struct btree_update *child) 819 { 820 struct bch_fs *c = as->c; 821 822 lockdep_assert_held(&c->btree_interior_update_lock); 823 824 child->b = NULL; 825 child->mode = BTREE_INTERIOR_UPDATING_AS; 826 827 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL); 828 } 829 830 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 831 { 832 struct bkey_i *insert = &b->key; 833 struct bch_fs *c = as->c; 834 835 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 836 837 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 838 ARRAY_SIZE(as->journal_entries)); 839 840 as->journal_u64s += 841 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 842 BCH_JSET_ENTRY_btree_root, 843 b->c.btree_id, b->c.level, 844 insert, insert->k.u64s); 845 846 mutex_lock(&c->btree_interior_update_lock); 847 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 848 849 as->mode = BTREE_INTERIOR_UPDATING_ROOT; 850 mutex_unlock(&c->btree_interior_update_lock); 851 } 852 853 /* 854 * bch2_btree_update_add_new_node: 855 * 856 * This causes @as to wait on @b to be written, before it gets to 857 * bch2_btree_update_nodes_written 858 * 859 * Additionally, it sets b->will_make_reachable to prevent any additional writes 860 * to @b from happening besides the first until @b is reachable on disk 861 * 862 * And it adds @b to the list of @as's new nodes, so that we can update sector 863 * counts in bch2_btree_update_nodes_written: 864 */ 865 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 866 { 867 struct bch_fs *c = as->c; 868 869 closure_get(&as->cl); 870 871 mutex_lock(&c->btree_interior_update_lock); 872 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 873 BUG_ON(b->will_make_reachable); 874 875 as->new_nodes[as->nr_new_nodes++] = b; 876 b->will_make_reachable = 1UL|(unsigned long) as; 877 set_btree_node_will_make_reachable(b); 878 879 mutex_unlock(&c->btree_interior_update_lock); 880 881 btree_update_add_key(as, &as->new_keys, b); 882 883 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 884 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 885 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 886 887 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 888 cpu_to_le16(sectors); 889 } 890 } 891 892 /* 893 * returns true if @b was a new node 894 */ 895 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 896 { 897 struct btree_update *as; 898 unsigned long v; 899 unsigned i; 900 901 mutex_lock(&c->btree_interior_update_lock); 902 /* 903 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 904 * dropped when it gets written by bch2_btree_complete_write - the 905 * xchg() is for synchronization with bch2_btree_complete_write: 906 */ 907 v = xchg(&b->will_make_reachable, 0); 908 clear_btree_node_will_make_reachable(b); 909 as = (struct btree_update *) (v & ~1UL); 910 911 if (!as) { 912 mutex_unlock(&c->btree_interior_update_lock); 913 return; 914 } 915 916 for (i = 0; i < as->nr_new_nodes; i++) 917 if (as->new_nodes[i] == b) 918 goto found; 919 920 BUG(); 921 found: 922 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 923 mutex_unlock(&c->btree_interior_update_lock); 924 925 if (v & 1) 926 closure_put(&as->cl); 927 } 928 929 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 930 { 931 while (b->ob.nr) 932 as->open_buckets[as->nr_open_buckets++] = 933 b->ob.v[--b->ob.nr]; 934 } 935 936 /* 937 * @b is being split/rewritten: it may have pointers to not-yet-written btree 938 * nodes and thus outstanding btree_updates - redirect @b's 939 * btree_updates to point to this btree_update: 940 */ 941 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 942 struct btree *b) 943 { 944 struct bch_fs *c = as->c; 945 struct btree_update *p, *n; 946 struct btree_write *w; 947 948 set_btree_node_dying(b); 949 950 if (btree_node_fake(b)) 951 return; 952 953 mutex_lock(&c->btree_interior_update_lock); 954 955 /* 956 * Does this node have any btree_update operations preventing 957 * it from being written? 958 * 959 * If so, redirect them to point to this btree_update: we can 960 * write out our new nodes, but we won't make them visible until those 961 * operations complete 962 */ 963 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 964 list_del_init(&p->write_blocked_list); 965 btree_update_reparent(as, p); 966 967 /* 968 * for flush_held_btree_writes() waiting on updates to flush or 969 * nodes to be writeable: 970 */ 971 closure_wake_up(&c->btree_interior_update_wait); 972 } 973 974 clear_btree_node_dirty_acct(c, b); 975 clear_btree_node_need_write(b); 976 clear_btree_node_write_blocked(b); 977 978 /* 979 * Does this node have unwritten data that has a pin on the journal? 980 * 981 * If so, transfer that pin to the btree_update operation - 982 * note that if we're freeing multiple nodes, we only need to keep the 983 * oldest pin of any of the nodes we're freeing. We'll release the pin 984 * when the new nodes are persistent and reachable on disk: 985 */ 986 w = btree_current_write(b); 987 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 988 bch2_journal_pin_drop(&c->journal, &w->journal); 989 990 w = btree_prev_write(b); 991 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 992 bch2_journal_pin_drop(&c->journal, &w->journal); 993 994 mutex_unlock(&c->btree_interior_update_lock); 995 996 /* 997 * Is this a node that isn't reachable on disk yet? 998 * 999 * Nodes that aren't reachable yet have writes blocked until they're 1000 * reachable - now that we've cancelled any pending writes and moved 1001 * things waiting on that write to wait on this update, we can drop this 1002 * node from the list of nodes that the other update is making 1003 * reachable, prior to freeing it: 1004 */ 1005 btree_update_drop_new_node(c, b); 1006 1007 btree_update_add_key(as, &as->old_keys, b); 1008 1009 as->old_nodes[as->nr_old_nodes] = b; 1010 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1011 as->nr_old_nodes++; 1012 } 1013 1014 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1015 { 1016 struct bch_fs *c = as->c; 1017 u64 start_time = as->start_time; 1018 1019 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); 1020 1021 if (as->took_gc_lock) 1022 up_read(&as->c->gc_lock); 1023 as->took_gc_lock = false; 1024 1025 bch2_btree_reserve_put(as, trans); 1026 1027 continue_at(&as->cl, btree_update_set_nodes_written, 1028 as->c->btree_interior_update_worker); 1029 1030 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1031 start_time); 1032 } 1033 1034 static struct btree_update * 1035 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1036 unsigned level, bool split, unsigned flags) 1037 { 1038 struct bch_fs *c = trans->c; 1039 struct btree_update *as; 1040 u64 start_time = local_clock(); 1041 int disk_res_flags = (flags & BTREE_INSERT_NOFAIL) 1042 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1043 unsigned nr_nodes[2] = { 0, 0 }; 1044 unsigned update_level = level; 1045 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1046 int ret = 0; 1047 u32 restart_count = trans->restart_count; 1048 1049 BUG_ON(!path->should_be_locked); 1050 1051 if (watermark == BCH_WATERMARK_copygc) 1052 watermark = BCH_WATERMARK_btree_copygc; 1053 if (watermark < BCH_WATERMARK_btree) 1054 watermark = BCH_WATERMARK_btree; 1055 1056 flags &= ~BCH_WATERMARK_MASK; 1057 flags |= watermark; 1058 1059 if (!(flags & BTREE_INSERT_JOURNAL_RECLAIM) && 1060 watermark < c->journal.watermark) { 1061 struct journal_res res = { 0 }; 1062 1063 ret = drop_locks_do(trans, 1064 bch2_journal_res_get(&c->journal, &res, 1, 1065 watermark|JOURNAL_RES_GET_CHECK)); 1066 if (ret) 1067 return ERR_PTR(ret); 1068 } 1069 1070 while (1) { 1071 nr_nodes[!!update_level] += 1 + split; 1072 update_level++; 1073 1074 ret = bch2_btree_path_upgrade(trans, path, update_level + 1); 1075 if (ret) 1076 return ERR_PTR(ret); 1077 1078 if (!btree_path_node(path, update_level)) { 1079 /* Allocating new root? */ 1080 nr_nodes[1] += split; 1081 update_level = BTREE_MAX_DEPTH; 1082 break; 1083 } 1084 1085 /* 1086 * Always check for space for two keys, even if we won't have to 1087 * split at prior level - it might have been a merge instead: 1088 */ 1089 if (bch2_btree_node_insert_fits(c, path->l[update_level].b, 1090 BKEY_BTREE_PTR_U64s_MAX * 2)) 1091 break; 1092 1093 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1094 } 1095 1096 if (flags & BTREE_INSERT_GC_LOCK_HELD) 1097 lockdep_assert_held(&c->gc_lock); 1098 else if (!down_read_trylock(&c->gc_lock)) { 1099 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1100 if (ret) { 1101 up_read(&c->gc_lock); 1102 return ERR_PTR(ret); 1103 } 1104 } 1105 1106 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1107 memset(as, 0, sizeof(*as)); 1108 closure_init(&as->cl, NULL); 1109 as->c = c; 1110 as->start_time = start_time; 1111 as->mode = BTREE_INTERIOR_NO_UPDATE; 1112 as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD); 1113 as->btree_id = path->btree_id; 1114 as->update_level = update_level; 1115 INIT_LIST_HEAD(&as->list); 1116 INIT_LIST_HEAD(&as->unwritten_list); 1117 INIT_LIST_HEAD(&as->write_blocked_list); 1118 bch2_keylist_init(&as->old_keys, as->_old_keys); 1119 bch2_keylist_init(&as->new_keys, as->_new_keys); 1120 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1121 1122 mutex_lock(&c->btree_interior_update_lock); 1123 list_add_tail(&as->list, &c->btree_interior_update_list); 1124 mutex_unlock(&c->btree_interior_update_lock); 1125 1126 /* 1127 * We don't want to allocate if we're in an error state, that can cause 1128 * deadlock on emergency shutdown due to open buckets getting stuck in 1129 * the btree_reserve_cache after allocator shutdown has cleared it out. 1130 * This check needs to come after adding us to the btree_interior_update 1131 * list but before calling bch2_btree_reserve_get, to synchronize with 1132 * __bch2_fs_read_only(). 1133 */ 1134 ret = bch2_journal_error(&c->journal); 1135 if (ret) 1136 goto err; 1137 1138 ret = bch2_disk_reservation_get(c, &as->disk_res, 1139 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1140 c->opts.metadata_replicas, 1141 disk_res_flags); 1142 if (ret) 1143 goto err; 1144 1145 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1146 if (bch2_err_matches(ret, ENOSPC) || 1147 bch2_err_matches(ret, ENOMEM)) { 1148 struct closure cl; 1149 1150 /* 1151 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1152 * flag 1153 */ 1154 if (bch2_err_matches(ret, ENOSPC) && 1155 (flags & BTREE_INSERT_JOURNAL_RECLAIM) && 1156 watermark != BCH_WATERMARK_reclaim) { 1157 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1158 goto err; 1159 } 1160 1161 closure_init_stack(&cl); 1162 1163 do { 1164 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1165 1166 bch2_trans_unlock(trans); 1167 closure_sync(&cl); 1168 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1169 } 1170 1171 if (ret) { 1172 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1173 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1174 goto err; 1175 } 1176 1177 ret = bch2_trans_relock(trans); 1178 if (ret) 1179 goto err; 1180 1181 bch2_trans_verify_not_restarted(trans, restart_count); 1182 return as; 1183 err: 1184 bch2_btree_update_free(as, trans); 1185 return ERR_PTR(ret); 1186 } 1187 1188 /* Btree root updates: */ 1189 1190 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1191 { 1192 /* Root nodes cannot be reaped */ 1193 mutex_lock(&c->btree_cache.lock); 1194 list_del_init(&b->list); 1195 mutex_unlock(&c->btree_cache.lock); 1196 1197 mutex_lock(&c->btree_root_lock); 1198 BUG_ON(btree_node_root(c, b) && 1199 (b->c.level < btree_node_root(c, b)->c.level || 1200 !btree_node_dying(btree_node_root(c, b)))); 1201 1202 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1203 mutex_unlock(&c->btree_root_lock); 1204 1205 bch2_recalc_btree_reserve(c); 1206 } 1207 1208 static void bch2_btree_set_root(struct btree_update *as, 1209 struct btree_trans *trans, 1210 struct btree_path *path, 1211 struct btree *b) 1212 { 1213 struct bch_fs *c = as->c; 1214 struct btree *old; 1215 1216 trace_and_count(c, btree_node_set_root, c, b); 1217 1218 old = btree_node_root(c, b); 1219 1220 /* 1221 * Ensure no one is using the old root while we switch to the 1222 * new root: 1223 */ 1224 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1225 1226 bch2_btree_set_root_inmem(c, b); 1227 1228 btree_update_updated_root(as, b); 1229 1230 /* 1231 * Unlock old root after new root is visible: 1232 * 1233 * The new root isn't persistent, but that's ok: we still have 1234 * an intent lock on the new root, and any updates that would 1235 * depend on the new root would have to update the new root. 1236 */ 1237 bch2_btree_node_unlock_write(trans, path, old); 1238 } 1239 1240 /* Interior node updates: */ 1241 1242 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1243 struct btree_trans *trans, 1244 struct btree_path *path, 1245 struct btree *b, 1246 struct btree_node_iter *node_iter, 1247 struct bkey_i *insert) 1248 { 1249 struct bch_fs *c = as->c; 1250 struct bkey_packed *k; 1251 struct printbuf buf = PRINTBUF; 1252 unsigned long old, new, v; 1253 1254 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1255 !btree_ptr_sectors_written(insert)); 1256 1257 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1258 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1259 1260 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1261 btree_node_type(b), WRITE, &buf) ?: 1262 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1263 printbuf_reset(&buf); 1264 prt_printf(&buf, "inserting invalid bkey\n "); 1265 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1266 prt_printf(&buf, "\n "); 1267 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1268 btree_node_type(b), WRITE, &buf); 1269 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1270 1271 bch2_fs_inconsistent(c, "%s", buf.buf); 1272 dump_stack(); 1273 } 1274 1275 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1276 ARRAY_SIZE(as->journal_entries)); 1277 1278 as->journal_u64s += 1279 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1280 BCH_JSET_ENTRY_btree_keys, 1281 b->c.btree_id, b->c.level, 1282 insert, insert->k.u64s); 1283 1284 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1285 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1286 bch2_btree_node_iter_advance(node_iter, b); 1287 1288 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1289 set_btree_node_dirty_acct(c, b); 1290 1291 v = READ_ONCE(b->flags); 1292 do { 1293 old = new = v; 1294 1295 new &= ~BTREE_WRITE_TYPE_MASK; 1296 new |= BTREE_WRITE_interior; 1297 new |= 1 << BTREE_NODE_need_write; 1298 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1299 1300 printbuf_exit(&buf); 1301 } 1302 1303 static void 1304 __bch2_btree_insert_keys_interior(struct btree_update *as, 1305 struct btree_trans *trans, 1306 struct btree_path *path, 1307 struct btree *b, 1308 struct btree_node_iter node_iter, 1309 struct keylist *keys) 1310 { 1311 struct bkey_i *insert = bch2_keylist_front(keys); 1312 struct bkey_packed *k; 1313 1314 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1315 1316 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1317 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1318 ; 1319 1320 while (!bch2_keylist_empty(keys)) { 1321 insert = bch2_keylist_front(keys); 1322 1323 if (bpos_gt(insert->k.p, b->key.k.p)) 1324 break; 1325 1326 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1327 bch2_keylist_pop_front(keys); 1328 } 1329 } 1330 1331 /* 1332 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1333 * node) 1334 */ 1335 static void __btree_split_node(struct btree_update *as, 1336 struct btree_trans *trans, 1337 struct btree *b, 1338 struct btree *n[2]) 1339 { 1340 struct bkey_packed *k; 1341 struct bpos n1_pos = POS_MIN; 1342 struct btree_node_iter iter; 1343 struct bset *bsets[2]; 1344 struct bkey_format_state format[2]; 1345 struct bkey_packed *out[2]; 1346 struct bkey uk; 1347 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1348 int i; 1349 1350 for (i = 0; i < 2; i++) { 1351 BUG_ON(n[i]->nsets != 1); 1352 1353 bsets[i] = btree_bset_first(n[i]); 1354 out[i] = bsets[i]->start; 1355 1356 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1357 bch2_bkey_format_init(&format[i]); 1358 } 1359 1360 u64s = 0; 1361 for_each_btree_node_key(b, k, &iter) { 1362 if (bkey_deleted(k)) 1363 continue; 1364 1365 i = u64s >= n1_u64s; 1366 u64s += k->u64s; 1367 uk = bkey_unpack_key(b, k); 1368 if (!i) 1369 n1_pos = uk.p; 1370 bch2_bkey_format_add_key(&format[i], &uk); 1371 } 1372 1373 btree_set_min(n[0], b->data->min_key); 1374 btree_set_max(n[0], n1_pos); 1375 btree_set_min(n[1], bpos_successor(n1_pos)); 1376 btree_set_max(n[1], b->data->max_key); 1377 1378 for (i = 0; i < 2; i++) { 1379 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1380 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1381 1382 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1383 btree_node_set_format(n[i], n[i]->data->format); 1384 } 1385 1386 u64s = 0; 1387 for_each_btree_node_key(b, k, &iter) { 1388 if (bkey_deleted(k)) 1389 continue; 1390 1391 i = u64s >= n1_u64s; 1392 u64s += k->u64s; 1393 1394 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1395 ? &b->format: &bch2_bkey_format_current, k)) 1396 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1397 else 1398 bch2_bkey_unpack(b, (void *) out[i], k); 1399 1400 out[i]->needs_whiteout = false; 1401 1402 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1403 out[i] = bkey_p_next(out[i]); 1404 } 1405 1406 for (i = 0; i < 2; i++) { 1407 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1408 1409 BUG_ON(!bsets[i]->u64s); 1410 1411 set_btree_bset_end(n[i], n[i]->set); 1412 1413 btree_node_reset_sib_u64s(n[i]); 1414 1415 bch2_verify_btree_nr_keys(n[i]); 1416 1417 if (b->c.level) 1418 btree_node_interior_verify(as->c, n[i]); 1419 } 1420 } 1421 1422 /* 1423 * For updates to interior nodes, we've got to do the insert before we split 1424 * because the stuff we're inserting has to be inserted atomically. Post split, 1425 * the keys might have to go in different nodes and the split would no longer be 1426 * atomic. 1427 * 1428 * Worse, if the insert is from btree node coalescing, if we do the insert after 1429 * we do the split (and pick the pivot) - the pivot we pick might be between 1430 * nodes that were coalesced, and thus in the middle of a child node post 1431 * coalescing: 1432 */ 1433 static void btree_split_insert_keys(struct btree_update *as, 1434 struct btree_trans *trans, 1435 struct btree_path *path, 1436 struct btree *b, 1437 struct keylist *keys) 1438 { 1439 if (!bch2_keylist_empty(keys) && 1440 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1441 struct btree_node_iter node_iter; 1442 1443 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1444 1445 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1446 1447 btree_node_interior_verify(as->c, b); 1448 } 1449 } 1450 1451 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1452 struct btree_path *path, struct btree *b, 1453 struct keylist *keys, unsigned flags) 1454 { 1455 struct bch_fs *c = as->c; 1456 struct btree *parent = btree_node_parent(path, b); 1457 struct btree *n1, *n2 = NULL, *n3 = NULL; 1458 struct btree_path *path1 = NULL, *path2 = NULL; 1459 u64 start_time = local_clock(); 1460 int ret = 0; 1461 1462 BUG_ON(!parent && (b != btree_node_root(c, b))); 1463 BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1)); 1464 1465 bch2_btree_interior_update_will_free_node(as, b); 1466 1467 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1468 struct btree *n[2]; 1469 1470 trace_and_count(c, btree_node_split, c, b); 1471 1472 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1473 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1474 1475 __btree_split_node(as, trans, b, n); 1476 1477 if (keys) { 1478 btree_split_insert_keys(as, trans, path, n1, keys); 1479 btree_split_insert_keys(as, trans, path, n2, keys); 1480 BUG_ON(!bch2_keylist_empty(keys)); 1481 } 1482 1483 bch2_btree_build_aux_trees(n2); 1484 bch2_btree_build_aux_trees(n1); 1485 1486 bch2_btree_update_add_new_node(as, n1); 1487 bch2_btree_update_add_new_node(as, n2); 1488 six_unlock_write(&n2->c.lock); 1489 six_unlock_write(&n1->c.lock); 1490 1491 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1492 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1493 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1494 bch2_btree_path_level_init(trans, path1, n1); 1495 1496 path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p); 1497 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1498 mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1499 bch2_btree_path_level_init(trans, path2, n2); 1500 1501 /* 1502 * Note that on recursive parent_keys == keys, so we 1503 * can't start adding new keys to parent_keys before emptying it 1504 * out (which we did with btree_split_insert_keys() above) 1505 */ 1506 bch2_keylist_add(&as->parent_keys, &n1->key); 1507 bch2_keylist_add(&as->parent_keys, &n2->key); 1508 1509 if (!parent) { 1510 /* Depth increases, make a new root */ 1511 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1512 1513 bch2_btree_update_add_new_node(as, n3); 1514 six_unlock_write(&n3->c.lock); 1515 1516 path2->locks_want++; 1517 BUG_ON(btree_node_locked(path2, n3->c.level)); 1518 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1519 mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1520 bch2_btree_path_level_init(trans, path2, n3); 1521 1522 n3->sib_u64s[0] = U16_MAX; 1523 n3->sib_u64s[1] = U16_MAX; 1524 1525 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1526 } 1527 } else { 1528 trace_and_count(c, btree_node_compact, c, b); 1529 1530 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1531 1532 if (keys) { 1533 btree_split_insert_keys(as, trans, path, n1, keys); 1534 BUG_ON(!bch2_keylist_empty(keys)); 1535 } 1536 1537 bch2_btree_build_aux_trees(n1); 1538 bch2_btree_update_add_new_node(as, n1); 1539 six_unlock_write(&n1->c.lock); 1540 1541 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1542 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1543 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1544 bch2_btree_path_level_init(trans, path1, n1); 1545 1546 if (parent) 1547 bch2_keylist_add(&as->parent_keys, &n1->key); 1548 } 1549 1550 /* New nodes all written, now make them visible: */ 1551 1552 if (parent) { 1553 /* Split a non root node */ 1554 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1555 if (ret) 1556 goto err; 1557 } else if (n3) { 1558 bch2_btree_set_root(as, trans, path, n3); 1559 } else { 1560 /* Root filled up but didn't need to be split */ 1561 bch2_btree_set_root(as, trans, path, n1); 1562 } 1563 1564 if (n3) { 1565 bch2_btree_update_get_open_buckets(as, n3); 1566 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1567 } 1568 if (n2) { 1569 bch2_btree_update_get_open_buckets(as, n2); 1570 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1571 } 1572 bch2_btree_update_get_open_buckets(as, n1); 1573 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1574 1575 /* 1576 * The old node must be freed (in memory) _before_ unlocking the new 1577 * nodes - else another thread could re-acquire a read lock on the old 1578 * node after another thread has locked and updated the new node, thus 1579 * seeing stale data: 1580 */ 1581 bch2_btree_node_free_inmem(trans, path, b); 1582 1583 if (n3) 1584 bch2_trans_node_add(trans, n3); 1585 if (n2) 1586 bch2_trans_node_add(trans, n2); 1587 bch2_trans_node_add(trans, n1); 1588 1589 if (n3) 1590 six_unlock_intent(&n3->c.lock); 1591 if (n2) 1592 six_unlock_intent(&n2->c.lock); 1593 six_unlock_intent(&n1->c.lock); 1594 out: 1595 if (path2) { 1596 __bch2_btree_path_unlock(trans, path2); 1597 bch2_path_put(trans, path2, true); 1598 } 1599 if (path1) { 1600 __bch2_btree_path_unlock(trans, path1); 1601 bch2_path_put(trans, path1, true); 1602 } 1603 1604 bch2_trans_verify_locks(trans); 1605 1606 bch2_time_stats_update(&c->times[n2 1607 ? BCH_TIME_btree_node_split 1608 : BCH_TIME_btree_node_compact], 1609 start_time); 1610 return ret; 1611 err: 1612 if (n3) 1613 bch2_btree_node_free_never_used(as, trans, n3); 1614 if (n2) 1615 bch2_btree_node_free_never_used(as, trans, n2); 1616 bch2_btree_node_free_never_used(as, trans, n1); 1617 goto out; 1618 } 1619 1620 static void 1621 bch2_btree_insert_keys_interior(struct btree_update *as, 1622 struct btree_trans *trans, 1623 struct btree_path *path, 1624 struct btree *b, 1625 struct keylist *keys) 1626 { 1627 struct btree_path *linked; 1628 1629 __bch2_btree_insert_keys_interior(as, trans, path, b, 1630 path->l[b->c.level].iter, keys); 1631 1632 btree_update_updated_node(as, b); 1633 1634 trans_for_each_path_with_node(trans, b, linked) 1635 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1636 1637 bch2_trans_verify_paths(trans); 1638 } 1639 1640 /** 1641 * bch2_btree_insert_node - insert bkeys into a given btree node 1642 * 1643 * @as: btree_update object 1644 * @trans: btree_trans object 1645 * @path: path that points to current node 1646 * @b: node to insert keys into 1647 * @keys: list of keys to insert 1648 * @flags: transaction commit flags 1649 * 1650 * Returns: 0 on success, typically transaction restart error on failure 1651 * 1652 * Inserts as many keys as it can into a given btree node, splitting it if full. 1653 * If a split occurred, this function will return early. This can only happen 1654 * for leaf nodes -- inserts into interior nodes have to be atomic. 1655 */ 1656 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1657 struct btree_path *path, struct btree *b, 1658 struct keylist *keys, unsigned flags) 1659 { 1660 struct bch_fs *c = as->c; 1661 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1662 int old_live_u64s = b->nr.live_u64s; 1663 int live_u64s_added, u64s_added; 1664 int ret; 1665 1666 lockdep_assert_held(&c->gc_lock); 1667 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1668 BUG_ON(!b->c.level); 1669 BUG_ON(!as || as->b); 1670 bch2_verify_keylist_sorted(keys); 1671 1672 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1673 if (ret) 1674 return ret; 1675 1676 bch2_btree_node_prep_for_write(trans, path, b); 1677 1678 if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) { 1679 bch2_btree_node_unlock_write(trans, path, b); 1680 goto split; 1681 } 1682 1683 btree_node_interior_verify(c, b); 1684 1685 bch2_btree_insert_keys_interior(as, trans, path, b, keys); 1686 1687 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1688 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1689 1690 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1691 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1692 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1693 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1694 1695 if (u64s_added > live_u64s_added && 1696 bch2_maybe_compact_whiteouts(c, b)) 1697 bch2_trans_node_reinit_iter(trans, b); 1698 1699 bch2_btree_node_unlock_write(trans, path, b); 1700 1701 btree_node_interior_verify(c, b); 1702 return 0; 1703 split: 1704 /* 1705 * We could attempt to avoid the transaction restart, by calling 1706 * bch2_btree_path_upgrade() and allocating more nodes: 1707 */ 1708 if (b->c.level >= as->update_level) { 1709 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1710 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1711 } 1712 1713 return btree_split(as, trans, path, b, keys, flags); 1714 } 1715 1716 int bch2_btree_split_leaf(struct btree_trans *trans, 1717 struct btree_path *path, 1718 unsigned flags) 1719 { 1720 struct btree *b = path_l(path)->b; 1721 struct btree_update *as; 1722 unsigned l; 1723 int ret = 0; 1724 1725 as = bch2_btree_update_start(trans, path, path->level, 1726 true, flags); 1727 if (IS_ERR(as)) 1728 return PTR_ERR(as); 1729 1730 ret = btree_split(as, trans, path, b, NULL, flags); 1731 if (ret) { 1732 bch2_btree_update_free(as, trans); 1733 return ret; 1734 } 1735 1736 bch2_btree_update_done(as, trans); 1737 1738 for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++) 1739 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1740 1741 return ret; 1742 } 1743 1744 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1745 struct btree_path *path, 1746 unsigned level, 1747 unsigned flags, 1748 enum btree_node_sibling sib) 1749 { 1750 struct bch_fs *c = trans->c; 1751 struct btree_path *sib_path = NULL, *new_path = NULL; 1752 struct btree_update *as; 1753 struct bkey_format_state new_s; 1754 struct bkey_format new_f; 1755 struct bkey_i delete; 1756 struct btree *b, *m, *n, *prev, *next, *parent; 1757 struct bpos sib_pos; 1758 size_t sib_u64s; 1759 u64 start_time = local_clock(); 1760 int ret = 0; 1761 1762 BUG_ON(!path->should_be_locked); 1763 BUG_ON(!btree_node_locked(path, level)); 1764 1765 b = path->l[level].b; 1766 1767 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1768 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1769 b->sib_u64s[sib] = U16_MAX; 1770 return 0; 1771 } 1772 1773 sib_pos = sib == btree_prev_sib 1774 ? bpos_predecessor(b->data->min_key) 1775 : bpos_successor(b->data->max_key); 1776 1777 sib_path = bch2_path_get(trans, path->btree_id, sib_pos, 1778 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1779 ret = bch2_btree_path_traverse(trans, sib_path, false); 1780 if (ret) 1781 goto err; 1782 1783 btree_path_set_should_be_locked(sib_path); 1784 1785 m = sib_path->l[level].b; 1786 1787 if (btree_node_parent(path, b) != 1788 btree_node_parent(sib_path, m)) { 1789 b->sib_u64s[sib] = U16_MAX; 1790 goto out; 1791 } 1792 1793 if (sib == btree_prev_sib) { 1794 prev = m; 1795 next = b; 1796 } else { 1797 prev = b; 1798 next = m; 1799 } 1800 1801 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 1802 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 1803 1804 bch2_bpos_to_text(&buf1, prev->data->max_key); 1805 bch2_bpos_to_text(&buf2, next->data->min_key); 1806 bch_err(c, 1807 "%s(): btree topology error:\n" 1808 " prev ends at %s\n" 1809 " next starts at %s", 1810 __func__, buf1.buf, buf2.buf); 1811 printbuf_exit(&buf1); 1812 printbuf_exit(&buf2); 1813 bch2_topology_error(c); 1814 ret = -EIO; 1815 goto err; 1816 } 1817 1818 bch2_bkey_format_init(&new_s); 1819 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 1820 __bch2_btree_calc_format(&new_s, prev); 1821 __bch2_btree_calc_format(&new_s, next); 1822 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 1823 new_f = bch2_bkey_format_done(&new_s); 1824 1825 sib_u64s = btree_node_u64s_with_format(b, &new_f) + 1826 btree_node_u64s_with_format(m, &new_f); 1827 1828 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 1829 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1830 sib_u64s /= 2; 1831 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1832 } 1833 1834 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 1835 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 1836 b->sib_u64s[sib] = sib_u64s; 1837 1838 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 1839 goto out; 1840 1841 parent = btree_node_parent(path, b); 1842 as = bch2_btree_update_start(trans, path, level, false, 1843 BTREE_INSERT_NOFAIL|flags); 1844 ret = PTR_ERR_OR_ZERO(as); 1845 if (ret) 1846 goto err; 1847 1848 trace_and_count(c, btree_node_merge, c, b); 1849 1850 bch2_btree_interior_update_will_free_node(as, b); 1851 bch2_btree_interior_update_will_free_node(as, m); 1852 1853 n = bch2_btree_node_alloc(as, trans, b->c.level); 1854 1855 SET_BTREE_NODE_SEQ(n->data, 1856 max(BTREE_NODE_SEQ(b->data), 1857 BTREE_NODE_SEQ(m->data)) + 1); 1858 1859 btree_set_min(n, prev->data->min_key); 1860 btree_set_max(n, next->data->max_key); 1861 1862 n->data->format = new_f; 1863 btree_node_set_format(n, new_f); 1864 1865 bch2_btree_sort_into(c, n, prev); 1866 bch2_btree_sort_into(c, n, next); 1867 1868 bch2_btree_build_aux_trees(n); 1869 bch2_btree_update_add_new_node(as, n); 1870 six_unlock_write(&n->c.lock); 1871 1872 new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p); 1873 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1874 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1875 bch2_btree_path_level_init(trans, new_path, n); 1876 1877 bkey_init(&delete.k); 1878 delete.k.p = prev->key.k.p; 1879 bch2_keylist_add(&as->parent_keys, &delete); 1880 bch2_keylist_add(&as->parent_keys, &n->key); 1881 1882 bch2_trans_verify_paths(trans); 1883 1884 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1885 if (ret) 1886 goto err_free_update; 1887 1888 bch2_trans_verify_paths(trans); 1889 1890 bch2_btree_update_get_open_buckets(as, n); 1891 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1892 1893 bch2_btree_node_free_inmem(trans, path, b); 1894 bch2_btree_node_free_inmem(trans, sib_path, m); 1895 1896 bch2_trans_node_add(trans, n); 1897 1898 bch2_trans_verify_paths(trans); 1899 1900 six_unlock_intent(&n->c.lock); 1901 1902 bch2_btree_update_done(as, trans); 1903 1904 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 1905 out: 1906 err: 1907 if (new_path) 1908 bch2_path_put(trans, new_path, true); 1909 bch2_path_put(trans, sib_path, true); 1910 bch2_trans_verify_locks(trans); 1911 return ret; 1912 err_free_update: 1913 bch2_btree_node_free_never_used(as, trans, n); 1914 bch2_btree_update_free(as, trans); 1915 goto out; 1916 } 1917 1918 int bch2_btree_node_rewrite(struct btree_trans *trans, 1919 struct btree_iter *iter, 1920 struct btree *b, 1921 unsigned flags) 1922 { 1923 struct bch_fs *c = trans->c; 1924 struct btree_path *new_path = NULL; 1925 struct btree *n, *parent; 1926 struct btree_update *as; 1927 int ret; 1928 1929 flags |= BTREE_INSERT_NOFAIL; 1930 1931 parent = btree_node_parent(iter->path, b); 1932 as = bch2_btree_update_start(trans, iter->path, b->c.level, 1933 false, flags); 1934 ret = PTR_ERR_OR_ZERO(as); 1935 if (ret) 1936 goto out; 1937 1938 bch2_btree_interior_update_will_free_node(as, b); 1939 1940 n = bch2_btree_node_alloc_replacement(as, trans, b); 1941 1942 bch2_btree_build_aux_trees(n); 1943 bch2_btree_update_add_new_node(as, n); 1944 six_unlock_write(&n->c.lock); 1945 1946 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 1947 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1948 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1949 bch2_btree_path_level_init(trans, new_path, n); 1950 1951 trace_and_count(c, btree_node_rewrite, c, b); 1952 1953 if (parent) { 1954 bch2_keylist_add(&as->parent_keys, &n->key); 1955 ret = bch2_btree_insert_node(as, trans, iter->path, parent, 1956 &as->parent_keys, flags); 1957 if (ret) 1958 goto err; 1959 } else { 1960 bch2_btree_set_root(as, trans, iter->path, n); 1961 } 1962 1963 bch2_btree_update_get_open_buckets(as, n); 1964 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1965 1966 bch2_btree_node_free_inmem(trans, iter->path, b); 1967 1968 bch2_trans_node_add(trans, n); 1969 six_unlock_intent(&n->c.lock); 1970 1971 bch2_btree_update_done(as, trans); 1972 out: 1973 if (new_path) 1974 bch2_path_put(trans, new_path, true); 1975 bch2_trans_downgrade(trans); 1976 return ret; 1977 err: 1978 bch2_btree_node_free_never_used(as, trans, n); 1979 bch2_btree_update_free(as, trans); 1980 goto out; 1981 } 1982 1983 struct async_btree_rewrite { 1984 struct bch_fs *c; 1985 struct work_struct work; 1986 struct list_head list; 1987 enum btree_id btree_id; 1988 unsigned level; 1989 struct bpos pos; 1990 __le64 seq; 1991 }; 1992 1993 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 1994 struct async_btree_rewrite *a) 1995 { 1996 struct bch_fs *c = trans->c; 1997 struct btree_iter iter; 1998 struct btree *b; 1999 int ret; 2000 2001 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2002 BTREE_MAX_DEPTH, a->level, 0); 2003 b = bch2_btree_iter_peek_node(&iter); 2004 ret = PTR_ERR_OR_ZERO(b); 2005 if (ret) 2006 goto out; 2007 2008 if (!b || b->data->keys.seq != a->seq) { 2009 struct printbuf buf = PRINTBUF; 2010 2011 if (b) 2012 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2013 else 2014 prt_str(&buf, "(null"); 2015 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2016 __func__, a->seq, buf.buf); 2017 printbuf_exit(&buf); 2018 goto out; 2019 } 2020 2021 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2022 out: 2023 bch2_trans_iter_exit(trans, &iter); 2024 2025 return ret; 2026 } 2027 2028 static void async_btree_node_rewrite_work(struct work_struct *work) 2029 { 2030 struct async_btree_rewrite *a = 2031 container_of(work, struct async_btree_rewrite, work); 2032 struct bch_fs *c = a->c; 2033 int ret; 2034 2035 ret = bch2_trans_do(c, NULL, NULL, 0, 2036 async_btree_node_rewrite_trans(trans, a)); 2037 if (ret) 2038 bch_err_fn(c, ret); 2039 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2040 kfree(a); 2041 } 2042 2043 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2044 { 2045 struct async_btree_rewrite *a; 2046 int ret; 2047 2048 a = kmalloc(sizeof(*a), GFP_NOFS); 2049 if (!a) { 2050 bch_err(c, "%s: error allocating memory", __func__); 2051 return; 2052 } 2053 2054 a->c = c; 2055 a->btree_id = b->c.btree_id; 2056 a->level = b->c.level; 2057 a->pos = b->key.k.p; 2058 a->seq = b->data->keys.seq; 2059 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2060 2061 if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) { 2062 mutex_lock(&c->pending_node_rewrites_lock); 2063 list_add(&a->list, &c->pending_node_rewrites); 2064 mutex_unlock(&c->pending_node_rewrites_lock); 2065 return; 2066 } 2067 2068 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2069 if (test_bit(BCH_FS_STARTED, &c->flags)) { 2070 bch_err(c, "%s: error getting c->writes ref", __func__); 2071 kfree(a); 2072 return; 2073 } 2074 2075 ret = bch2_fs_read_write_early(c); 2076 if (ret) { 2077 bch_err_msg(c, ret, "going read-write"); 2078 kfree(a); 2079 return; 2080 } 2081 2082 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2083 } 2084 2085 queue_work(c->btree_interior_update_worker, &a->work); 2086 } 2087 2088 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2089 { 2090 struct async_btree_rewrite *a, *n; 2091 2092 mutex_lock(&c->pending_node_rewrites_lock); 2093 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2094 list_del(&a->list); 2095 2096 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2097 queue_work(c->btree_interior_update_worker, &a->work); 2098 } 2099 mutex_unlock(&c->pending_node_rewrites_lock); 2100 } 2101 2102 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2103 { 2104 struct async_btree_rewrite *a, *n; 2105 2106 mutex_lock(&c->pending_node_rewrites_lock); 2107 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2108 list_del(&a->list); 2109 2110 kfree(a); 2111 } 2112 mutex_unlock(&c->pending_node_rewrites_lock); 2113 } 2114 2115 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2116 struct btree_iter *iter, 2117 struct btree *b, struct btree *new_hash, 2118 struct bkey_i *new_key, 2119 unsigned commit_flags, 2120 bool skip_triggers) 2121 { 2122 struct bch_fs *c = trans->c; 2123 struct btree_iter iter2 = { NULL }; 2124 struct btree *parent; 2125 int ret; 2126 2127 if (!skip_triggers) { 2128 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1, 2129 bkey_i_to_s_c(&b->key), 0); 2130 if (ret) 2131 return ret; 2132 2133 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1, 2134 new_key, 0); 2135 if (ret) 2136 return ret; 2137 } 2138 2139 if (new_hash) { 2140 bkey_copy(&new_hash->key, new_key); 2141 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2142 new_hash, b->c.level, b->c.btree_id); 2143 BUG_ON(ret); 2144 } 2145 2146 parent = btree_node_parent(iter->path, b); 2147 if (parent) { 2148 bch2_trans_copy_iter(&iter2, iter); 2149 2150 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2151 iter2.flags & BTREE_ITER_INTENT, 2152 _THIS_IP_); 2153 2154 BUG_ON(iter2.path->level != b->c.level); 2155 BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p)); 2156 2157 btree_path_set_level_up(trans, iter2.path); 2158 2159 trans->paths_sorted = false; 2160 2161 ret = bch2_btree_iter_traverse(&iter2) ?: 2162 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2163 if (ret) 2164 goto err; 2165 } else { 2166 BUG_ON(btree_node_root(c, b) != b); 2167 2168 ret = darray_make_room(&trans->extra_journal_entries, 2169 jset_u64s(new_key->k.u64s)); 2170 if (ret) 2171 return ret; 2172 2173 journal_entry_set((void *) &darray_top(trans->extra_journal_entries), 2174 BCH_JSET_ENTRY_btree_root, 2175 b->c.btree_id, b->c.level, 2176 new_key, new_key->k.u64s); 2177 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s); 2178 } 2179 2180 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2181 if (ret) 2182 goto err; 2183 2184 bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c); 2185 2186 if (new_hash) { 2187 mutex_lock(&c->btree_cache.lock); 2188 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2189 bch2_btree_node_hash_remove(&c->btree_cache, b); 2190 2191 bkey_copy(&b->key, new_key); 2192 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2193 BUG_ON(ret); 2194 mutex_unlock(&c->btree_cache.lock); 2195 } else { 2196 bkey_copy(&b->key, new_key); 2197 } 2198 2199 bch2_btree_node_unlock_write(trans, iter->path, b); 2200 out: 2201 bch2_trans_iter_exit(trans, &iter2); 2202 return ret; 2203 err: 2204 if (new_hash) { 2205 mutex_lock(&c->btree_cache.lock); 2206 bch2_btree_node_hash_remove(&c->btree_cache, b); 2207 mutex_unlock(&c->btree_cache.lock); 2208 } 2209 goto out; 2210 } 2211 2212 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2213 struct btree *b, struct bkey_i *new_key, 2214 unsigned commit_flags, bool skip_triggers) 2215 { 2216 struct bch_fs *c = trans->c; 2217 struct btree *new_hash = NULL; 2218 struct btree_path *path = iter->path; 2219 struct closure cl; 2220 int ret = 0; 2221 2222 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2223 if (ret) 2224 return ret; 2225 2226 closure_init_stack(&cl); 2227 2228 /* 2229 * check btree_ptr_hash_val() after @b is locked by 2230 * btree_iter_traverse(): 2231 */ 2232 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2233 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2234 if (ret) { 2235 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2236 if (ret) 2237 return ret; 2238 } 2239 2240 new_hash = bch2_btree_node_mem_alloc(trans, false); 2241 } 2242 2243 path->intent_ref++; 2244 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2245 commit_flags, skip_triggers); 2246 --path->intent_ref; 2247 2248 if (new_hash) { 2249 mutex_lock(&c->btree_cache.lock); 2250 list_move(&new_hash->list, &c->btree_cache.freeable); 2251 mutex_unlock(&c->btree_cache.lock); 2252 2253 six_unlock_write(&new_hash->c.lock); 2254 six_unlock_intent(&new_hash->c.lock); 2255 } 2256 closure_sync(&cl); 2257 bch2_btree_cache_cannibalize_unlock(c); 2258 return ret; 2259 } 2260 2261 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2262 struct btree *b, struct bkey_i *new_key, 2263 unsigned commit_flags, bool skip_triggers) 2264 { 2265 struct btree_iter iter; 2266 int ret; 2267 2268 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2269 BTREE_MAX_DEPTH, b->c.level, 2270 BTREE_ITER_INTENT); 2271 ret = bch2_btree_iter_traverse(&iter); 2272 if (ret) 2273 goto out; 2274 2275 /* has node been freed? */ 2276 if (iter.path->l[b->c.level].b != b) { 2277 /* node has been freed: */ 2278 BUG_ON(!btree_node_dying(b)); 2279 goto out; 2280 } 2281 2282 BUG_ON(!btree_node_hashed(b)); 2283 2284 struct bch_extent_ptr *ptr; 2285 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2286 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2287 2288 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2289 commit_flags, skip_triggers); 2290 out: 2291 bch2_trans_iter_exit(trans, &iter); 2292 return ret; 2293 } 2294 2295 /* Init code: */ 2296 2297 /* 2298 * Only for filesystem bringup, when first reading the btree roots or allocating 2299 * btree roots when initializing a new filesystem: 2300 */ 2301 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2302 { 2303 BUG_ON(btree_node_root(c, b)); 2304 2305 bch2_btree_set_root_inmem(c, b); 2306 } 2307 2308 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) 2309 { 2310 struct bch_fs *c = trans->c; 2311 struct closure cl; 2312 struct btree *b; 2313 int ret; 2314 2315 closure_init_stack(&cl); 2316 2317 do { 2318 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2319 closure_sync(&cl); 2320 } while (ret); 2321 2322 b = bch2_btree_node_mem_alloc(trans, false); 2323 bch2_btree_cache_cannibalize_unlock(c); 2324 2325 set_btree_node_fake(b); 2326 set_btree_node_need_rewrite(b); 2327 b->c.level = 0; 2328 b->c.btree_id = id; 2329 2330 bkey_btree_ptr_init(&b->key); 2331 b->key.k.p = SPOS_MAX; 2332 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2333 2334 bch2_bset_init_first(b, &b->data->keys); 2335 bch2_btree_build_aux_trees(b); 2336 2337 b->data->flags = 0; 2338 btree_set_min(b, POS_MIN); 2339 btree_set_max(b, SPOS_MAX); 2340 b->data->format = bch2_btree_calc_format(b); 2341 btree_node_set_format(b, b->data->format); 2342 2343 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2344 b->c.level, b->c.btree_id); 2345 BUG_ON(ret); 2346 2347 bch2_btree_set_root_inmem(c, b); 2348 2349 six_unlock_write(&b->c.lock); 2350 six_unlock_intent(&b->c.lock); 2351 return 0; 2352 } 2353 2354 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) 2355 { 2356 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); 2357 } 2358 2359 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2360 { 2361 struct btree_update *as; 2362 2363 mutex_lock(&c->btree_interior_update_lock); 2364 list_for_each_entry(as, &c->btree_interior_update_list, list) 2365 prt_printf(out, "%p m %u w %u r %u j %llu\n", 2366 as, 2367 as->mode, 2368 as->nodes_written, 2369 closure_nr_remaining(&as->cl), 2370 as->journal.seq); 2371 mutex_unlock(&c->btree_interior_update_lock); 2372 } 2373 2374 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2375 { 2376 bool ret; 2377 2378 mutex_lock(&c->btree_interior_update_lock); 2379 ret = !list_empty(&c->btree_interior_update_list); 2380 mutex_unlock(&c->btree_interior_update_lock); 2381 2382 return ret; 2383 } 2384 2385 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2386 { 2387 bool ret = bch2_btree_interior_updates_pending(c); 2388 2389 if (ret) 2390 closure_wait_event(&c->btree_interior_update_wait, 2391 !bch2_btree_interior_updates_pending(c)); 2392 return ret; 2393 } 2394 2395 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2396 { 2397 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2398 2399 mutex_lock(&c->btree_root_lock); 2400 2401 r->level = entry->level; 2402 r->alive = true; 2403 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2404 2405 mutex_unlock(&c->btree_root_lock); 2406 } 2407 2408 struct jset_entry * 2409 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2410 struct jset_entry *end, 2411 unsigned long skip) 2412 { 2413 unsigned i; 2414 2415 mutex_lock(&c->btree_root_lock); 2416 2417 for (i = 0; i < btree_id_nr_alive(c); i++) { 2418 struct btree_root *r = bch2_btree_id_root(c, i); 2419 2420 if (r->alive && !test_bit(i, &skip)) { 2421 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2422 i, r->level, &r->key, r->key.k.u64s); 2423 end = vstruct_next(end); 2424 } 2425 } 2426 2427 mutex_unlock(&c->btree_root_lock); 2428 2429 return end; 2430 } 2431 2432 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2433 { 2434 if (c->btree_interior_update_worker) 2435 destroy_workqueue(c->btree_interior_update_worker); 2436 mempool_exit(&c->btree_interior_update_pool); 2437 } 2438 2439 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2440 { 2441 mutex_init(&c->btree_reserve_cache_lock); 2442 INIT_LIST_HEAD(&c->btree_interior_update_list); 2443 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2444 mutex_init(&c->btree_interior_update_lock); 2445 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2446 2447 INIT_LIST_HEAD(&c->pending_node_rewrites); 2448 mutex_init(&c->pending_node_rewrites_lock); 2449 } 2450 2451 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2452 { 2453 c->btree_interior_update_worker = 2454 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 2455 if (!c->btree_interior_update_worker) 2456 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2457 2458 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2459 sizeof(struct btree_update))) 2460 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2461 2462 return 0; 2463 } 2464