1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_buf.h" 6 #include "bkey_methods.h" 7 #include "btree_cache.h" 8 #include "btree_gc.h" 9 #include "btree_journal_iter.h" 10 #include "btree_update.h" 11 #include "btree_update_interior.h" 12 #include "btree_io.h" 13 #include "btree_iter.h" 14 #include "btree_locking.h" 15 #include "buckets.h" 16 #include "clock.h" 17 #include "error.h" 18 #include "extents.h" 19 #include "io_write.h" 20 #include "journal.h" 21 #include "journal_reclaim.h" 22 #include "keylist.h" 23 #include "recovery_passes.h" 24 #include "replicas.h" 25 #include "sb-members.h" 26 #include "super-io.h" 27 #include "trace.h" 28 29 #include <linux/random.h> 30 31 static const char * const bch2_btree_update_modes[] = { 32 #define x(t) #t, 33 BTREE_UPDATE_MODES() 34 #undef x 35 NULL 36 }; 37 38 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 39 btree_path_idx_t, struct btree *, struct keylist *); 40 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 41 42 /* 43 * Verify that child nodes correctly span parent node's range: 44 */ 45 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b) 46 { 47 struct bch_fs *c = trans->c; 48 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2 49 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key 50 : b->data->min_key; 51 struct btree_and_journal_iter iter; 52 struct bkey_s_c k; 53 struct printbuf buf = PRINTBUF; 54 struct bkey_buf prev; 55 int ret = 0; 56 57 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && 58 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, 59 b->data->min_key)); 60 61 if (b == btree_node_root(c, b)) { 62 if (!bpos_eq(b->data->min_key, POS_MIN)) { 63 printbuf_reset(&buf); 64 bch2_bpos_to_text(&buf, b->data->min_key); 65 need_fsck_err(trans, btree_root_bad_min_key, 66 "btree root with incorrect min_key: %s", buf.buf); 67 goto topology_repair; 68 } 69 70 if (!bpos_eq(b->data->max_key, SPOS_MAX)) { 71 printbuf_reset(&buf); 72 bch2_bpos_to_text(&buf, b->data->max_key); 73 need_fsck_err(trans, btree_root_bad_max_key, 74 "btree root with incorrect max_key: %s", buf.buf); 75 goto topology_repair; 76 } 77 } 78 79 if (!b->c.level) 80 return 0; 81 82 bch2_bkey_buf_init(&prev); 83 bkey_init(&prev.k->k); 84 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); 85 86 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { 87 if (k.k->type != KEY_TYPE_btree_ptr_v2) 88 goto out; 89 90 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 91 92 struct bpos expected_min = bkey_deleted(&prev.k->k) 93 ? node_min 94 : bpos_successor(prev.k->k.p); 95 96 if (!bpos_eq(expected_min, bp.v->min_key)) { 97 bch2_topology_error(c); 98 99 printbuf_reset(&buf); 100 prt_str(&buf, "end of prev node doesn't match start of next node\n"), 101 prt_printf(&buf, " in btree %s level %u node ", 102 bch2_btree_id_str(b->c.btree_id), b->c.level); 103 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 104 prt_str(&buf, "\n prev "); 105 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 106 prt_str(&buf, "\n next "); 107 bch2_bkey_val_to_text(&buf, c, k); 108 109 need_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf); 110 goto topology_repair; 111 } 112 113 bch2_bkey_buf_reassemble(&prev, c, k); 114 bch2_btree_and_journal_iter_advance(&iter); 115 } 116 117 if (bkey_deleted(&prev.k->k)) { 118 bch2_topology_error(c); 119 120 printbuf_reset(&buf); 121 prt_str(&buf, "empty interior node\n"); 122 prt_printf(&buf, " in btree %s level %u node ", 123 bch2_btree_id_str(b->c.btree_id), b->c.level); 124 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 125 126 need_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf); 127 goto topology_repair; 128 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) { 129 bch2_topology_error(c); 130 131 printbuf_reset(&buf); 132 prt_str(&buf, "last child node doesn't end at end of parent node\n"); 133 prt_printf(&buf, " in btree %s level %u node ", 134 bch2_btree_id_str(b->c.btree_id), b->c.level); 135 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 136 prt_str(&buf, "\n last key "); 137 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 138 139 need_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf); 140 goto topology_repair; 141 } 142 out: 143 fsck_err: 144 bch2_btree_and_journal_iter_exit(&iter); 145 bch2_bkey_buf_exit(&prev, c); 146 printbuf_exit(&buf); 147 return ret; 148 topology_repair: 149 if ((c->opts.recovery_passes & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) && 150 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) { 151 bch2_inconsistent_error(c); 152 ret = -BCH_ERR_btree_need_topology_repair; 153 } else { 154 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); 155 } 156 goto out; 157 } 158 159 /* Calculate ideal packed bkey format for new btree nodes: */ 160 161 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 162 { 163 struct bkey_packed *k; 164 struct bkey uk; 165 166 for_each_bset(b, t) 167 bset_tree_for_each_key(b, t, k) 168 if (!bkey_deleted(k)) { 169 uk = bkey_unpack_key(b, k); 170 bch2_bkey_format_add_key(s, &uk); 171 } 172 } 173 174 static struct bkey_format bch2_btree_calc_format(struct btree *b) 175 { 176 struct bkey_format_state s; 177 178 bch2_bkey_format_init(&s); 179 bch2_bkey_format_add_pos(&s, b->data->min_key); 180 bch2_bkey_format_add_pos(&s, b->data->max_key); 181 __bch2_btree_calc_format(&s, b); 182 183 return bch2_bkey_format_done(&s); 184 } 185 186 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 187 struct bkey_format *old_f, 188 struct bkey_format *new_f) 189 { 190 /* stupid integer promotion rules */ 191 ssize_t delta = 192 (((int) new_f->key_u64s - old_f->key_u64s) * 193 (int) nr.packed_keys) + 194 (((int) new_f->key_u64s - BKEY_U64s) * 195 (int) nr.unpacked_keys); 196 197 BUG_ON(delta + nr.live_u64s < 0); 198 199 return nr.live_u64s + delta; 200 } 201 202 /** 203 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 204 * 205 * @c: filesystem handle 206 * @b: btree node to rewrite 207 * @nr: number of keys for new node (i.e. b->nr) 208 * @new_f: bkey format to translate keys to 209 * 210 * Returns: true if all re-packed keys will be able to fit in a new node. 211 * 212 * Assumes all keys will successfully pack with the new format. 213 */ 214 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 215 struct btree_nr_keys nr, 216 struct bkey_format *new_f) 217 { 218 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 219 220 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 221 } 222 223 /* Btree node freeing/allocation: */ 224 225 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 226 { 227 struct bch_fs *c = trans->c; 228 229 trace_and_count(c, btree_node_free, trans, b); 230 231 BUG_ON(btree_node_write_blocked(b)); 232 BUG_ON(btree_node_dirty(b)); 233 BUG_ON(btree_node_need_write(b)); 234 BUG_ON(b == btree_node_root(c, b)); 235 BUG_ON(b->ob.nr); 236 BUG_ON(!list_empty(&b->write_blocked)); 237 BUG_ON(b->will_make_reachable); 238 239 clear_btree_node_noevict(b); 240 241 mutex_lock(&c->btree_cache.lock); 242 list_move(&b->list, &c->btree_cache.freeable); 243 mutex_unlock(&c->btree_cache.lock); 244 } 245 246 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 247 struct btree_path *path, 248 struct btree *b) 249 { 250 struct bch_fs *c = trans->c; 251 unsigned i, level = b->c.level; 252 253 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 254 255 mutex_lock(&c->btree_cache.lock); 256 bch2_btree_node_hash_remove(&c->btree_cache, b); 257 mutex_unlock(&c->btree_cache.lock); 258 259 __btree_node_free(trans, b); 260 261 six_unlock_write(&b->c.lock); 262 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 263 264 trans_for_each_path(trans, path, i) 265 if (path->l[level].b == b) { 266 btree_node_unlock(trans, path, level); 267 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 268 } 269 } 270 271 static void bch2_btree_node_free_never_used(struct btree_update *as, 272 struct btree_trans *trans, 273 struct btree *b) 274 { 275 struct bch_fs *c = as->c; 276 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 277 struct btree_path *path; 278 unsigned i, level = b->c.level; 279 280 BUG_ON(!list_empty(&b->write_blocked)); 281 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 282 283 b->will_make_reachable = 0; 284 closure_put(&as->cl); 285 286 clear_btree_node_will_make_reachable(b); 287 clear_btree_node_accessed(b); 288 clear_btree_node_dirty_acct(c, b); 289 clear_btree_node_need_write(b); 290 291 mutex_lock(&c->btree_cache.lock); 292 bch2_btree_node_hash_remove(&c->btree_cache, b); 293 mutex_unlock(&c->btree_cache.lock); 294 295 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 296 p->b[p->nr++] = b; 297 298 six_unlock_intent(&b->c.lock); 299 300 trans_for_each_path(trans, path, i) 301 if (path->l[level].b == b) { 302 btree_node_unlock(trans, path, level); 303 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 304 } 305 } 306 307 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 308 struct disk_reservation *res, 309 struct closure *cl, 310 bool interior_node, 311 unsigned flags) 312 { 313 struct bch_fs *c = trans->c; 314 struct write_point *wp; 315 struct btree *b; 316 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 317 struct open_buckets obs = { .nr = 0 }; 318 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 319 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 320 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim 321 ? BTREE_NODE_RESERVE 322 : 0; 323 int ret; 324 325 b = bch2_btree_node_mem_alloc(trans, interior_node); 326 if (IS_ERR(b)) 327 return b; 328 329 BUG_ON(b->ob.nr); 330 331 mutex_lock(&c->btree_reserve_cache_lock); 332 if (c->btree_reserve_cache_nr > nr_reserve) { 333 struct btree_alloc *a = 334 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 335 336 obs = a->ob; 337 bkey_copy(&tmp.k, &a->k); 338 mutex_unlock(&c->btree_reserve_cache_lock); 339 goto out; 340 } 341 mutex_unlock(&c->btree_reserve_cache_lock); 342 retry: 343 ret = bch2_alloc_sectors_start_trans(trans, 344 c->opts.metadata_target ?: 345 c->opts.foreground_target, 346 0, 347 writepoint_ptr(&c->btree_write_point), 348 &devs_have, 349 res->nr_replicas, 350 min(res->nr_replicas, 351 c->opts.metadata_replicas_required), 352 watermark, 0, cl, &wp); 353 if (unlikely(ret)) 354 goto err; 355 356 if (wp->sectors_free < btree_sectors(c)) { 357 struct open_bucket *ob; 358 unsigned i; 359 360 open_bucket_for_each(c, &wp->ptrs, ob, i) 361 if (ob->sectors_free < btree_sectors(c)) 362 ob->sectors_free = 0; 363 364 bch2_alloc_sectors_done(c, wp); 365 goto retry; 366 } 367 368 bkey_btree_ptr_v2_init(&tmp.k); 369 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 370 371 bch2_open_bucket_get(c, wp, &obs); 372 bch2_alloc_sectors_done(c, wp); 373 out: 374 bkey_copy(&b->key, &tmp.k); 375 b->ob = obs; 376 six_unlock_write(&b->c.lock); 377 six_unlock_intent(&b->c.lock); 378 379 return b; 380 err: 381 bch2_btree_node_to_freelist(c, b); 382 return ERR_PTR(ret); 383 } 384 385 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 386 struct btree_trans *trans, 387 unsigned level) 388 { 389 struct bch_fs *c = as->c; 390 struct btree *b; 391 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 392 int ret; 393 394 BUG_ON(level >= BTREE_MAX_DEPTH); 395 BUG_ON(!p->nr); 396 397 b = p->b[--p->nr]; 398 399 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 400 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 401 402 set_btree_node_accessed(b); 403 set_btree_node_dirty_acct(c, b); 404 set_btree_node_need_write(b); 405 406 bch2_bset_init_first(b, &b->data->keys); 407 b->c.level = level; 408 b->c.btree_id = as->btree_id; 409 b->version_ondisk = c->sb.version; 410 411 memset(&b->nr, 0, sizeof(b->nr)); 412 b->data->magic = cpu_to_le64(bset_magic(c)); 413 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 414 b->data->flags = 0; 415 SET_BTREE_NODE_ID(b->data, as->btree_id); 416 SET_BTREE_NODE_LEVEL(b->data, level); 417 418 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 419 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 420 421 bp->v.mem_ptr = 0; 422 bp->v.seq = b->data->keys.seq; 423 bp->v.sectors_written = 0; 424 } 425 426 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 427 428 bch2_btree_build_aux_trees(b); 429 430 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 431 BUG_ON(ret); 432 433 trace_and_count(c, btree_node_alloc, trans, b); 434 bch2_increment_clock(c, btree_sectors(c), WRITE); 435 return b; 436 } 437 438 static void btree_set_min(struct btree *b, struct bpos pos) 439 { 440 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 441 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 442 b->data->min_key = pos; 443 } 444 445 static void btree_set_max(struct btree *b, struct bpos pos) 446 { 447 b->key.k.p = pos; 448 b->data->max_key = pos; 449 } 450 451 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 452 struct btree_trans *trans, 453 struct btree *b) 454 { 455 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 456 struct bkey_format format = bch2_btree_calc_format(b); 457 458 /* 459 * The keys might expand with the new format - if they wouldn't fit in 460 * the btree node anymore, use the old format for now: 461 */ 462 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 463 format = b->format; 464 465 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 466 467 btree_set_min(n, b->data->min_key); 468 btree_set_max(n, b->data->max_key); 469 470 n->data->format = format; 471 btree_node_set_format(n, format); 472 473 bch2_btree_sort_into(as->c, n, b); 474 475 btree_node_reset_sib_u64s(n); 476 return n; 477 } 478 479 static struct btree *__btree_root_alloc(struct btree_update *as, 480 struct btree_trans *trans, unsigned level) 481 { 482 struct btree *b = bch2_btree_node_alloc(as, trans, level); 483 484 btree_set_min(b, POS_MIN); 485 btree_set_max(b, SPOS_MAX); 486 b->data->format = bch2_btree_calc_format(b); 487 488 btree_node_set_format(b, b->data->format); 489 bch2_btree_build_aux_trees(b); 490 491 return b; 492 } 493 494 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 495 { 496 struct bch_fs *c = as->c; 497 struct prealloc_nodes *p; 498 499 for (p = as->prealloc_nodes; 500 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 501 p++) { 502 while (p->nr) { 503 struct btree *b = p->b[--p->nr]; 504 505 mutex_lock(&c->btree_reserve_cache_lock); 506 507 if (c->btree_reserve_cache_nr < 508 ARRAY_SIZE(c->btree_reserve_cache)) { 509 struct btree_alloc *a = 510 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 511 512 a->ob = b->ob; 513 b->ob.nr = 0; 514 bkey_copy(&a->k, &b->key); 515 } else { 516 bch2_open_buckets_put(c, &b->ob); 517 } 518 519 mutex_unlock(&c->btree_reserve_cache_lock); 520 521 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 522 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 523 __btree_node_free(trans, b); 524 six_unlock_write(&b->c.lock); 525 six_unlock_intent(&b->c.lock); 526 } 527 } 528 } 529 530 static int bch2_btree_reserve_get(struct btree_trans *trans, 531 struct btree_update *as, 532 unsigned nr_nodes[2], 533 unsigned flags, 534 struct closure *cl) 535 { 536 struct btree *b; 537 unsigned interior; 538 int ret = 0; 539 540 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 541 542 /* 543 * Protects reaping from the btree node cache and using the btree node 544 * open bucket reserve: 545 */ 546 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 547 if (ret) 548 return ret; 549 550 for (interior = 0; interior < 2; interior++) { 551 struct prealloc_nodes *p = as->prealloc_nodes + interior; 552 553 while (p->nr < nr_nodes[interior]) { 554 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 555 interior, flags); 556 if (IS_ERR(b)) { 557 ret = PTR_ERR(b); 558 goto err; 559 } 560 561 p->b[p->nr++] = b; 562 } 563 } 564 err: 565 bch2_btree_cache_cannibalize_unlock(trans); 566 return ret; 567 } 568 569 /* Asynchronous interior node update machinery */ 570 571 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 572 { 573 struct bch_fs *c = as->c; 574 575 if (as->took_gc_lock) 576 up_read(&c->gc_lock); 577 as->took_gc_lock = false; 578 579 bch2_journal_pin_drop(&c->journal, &as->journal); 580 bch2_journal_pin_flush(&c->journal, &as->journal); 581 bch2_disk_reservation_put(c, &as->disk_res); 582 bch2_btree_reserve_put(as, trans); 583 584 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 585 as->start_time); 586 587 mutex_lock(&c->btree_interior_update_lock); 588 list_del(&as->unwritten_list); 589 list_del(&as->list); 590 591 closure_debug_destroy(&as->cl); 592 mempool_free(as, &c->btree_interior_update_pool); 593 594 /* 595 * Have to do the wakeup with btree_interior_update_lock still held, 596 * since being on btree_interior_update_list is our ref on @c: 597 */ 598 closure_wake_up(&c->btree_interior_update_wait); 599 600 mutex_unlock(&c->btree_interior_update_lock); 601 } 602 603 static void btree_update_add_key(struct btree_update *as, 604 struct keylist *keys, struct btree *b) 605 { 606 struct bkey_i *k = &b->key; 607 608 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 609 ARRAY_SIZE(as->_old_keys)); 610 611 bkey_copy(keys->top, k); 612 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 613 614 bch2_keylist_push(keys); 615 } 616 617 static bool btree_update_new_nodes_marked_sb(struct btree_update *as) 618 { 619 for_each_keylist_key(&as->new_keys, k) 620 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k))) 621 return false; 622 return true; 623 } 624 625 static void btree_update_new_nodes_mark_sb(struct btree_update *as) 626 { 627 struct bch_fs *c = as->c; 628 629 mutex_lock(&c->sb_lock); 630 for_each_keylist_key(&as->new_keys, k) 631 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k)); 632 633 bch2_write_super(c); 634 mutex_unlock(&c->sb_lock); 635 } 636 637 /* 638 * The transactional part of an interior btree node update, where we journal the 639 * update we did to the interior node and update alloc info: 640 */ 641 static int btree_update_nodes_written_trans(struct btree_trans *trans, 642 struct btree_update *as) 643 { 644 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 645 int ret = PTR_ERR_OR_ZERO(e); 646 if (ret) 647 return ret; 648 649 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 650 651 trans->journal_pin = &as->journal; 652 653 for_each_keylist_key(&as->old_keys, k) { 654 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 655 656 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 657 BTREE_TRIGGER_transactional); 658 if (ret) 659 return ret; 660 } 661 662 for_each_keylist_key(&as->new_keys, k) { 663 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 664 665 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 666 BTREE_TRIGGER_transactional); 667 if (ret) 668 return ret; 669 } 670 671 return 0; 672 } 673 674 static void btree_update_nodes_written(struct btree_update *as) 675 { 676 struct bch_fs *c = as->c; 677 struct btree *b; 678 struct btree_trans *trans = bch2_trans_get(c); 679 u64 journal_seq = 0; 680 unsigned i; 681 int ret; 682 683 /* 684 * If we're already in an error state, it might be because a btree node 685 * was never written, and we might be trying to free that same btree 686 * node here, but it won't have been marked as allocated and we'll see 687 * spurious disk usage inconsistencies in the transactional part below 688 * if we don't skip it: 689 */ 690 ret = bch2_journal_error(&c->journal); 691 if (ret) 692 goto err; 693 694 if (!btree_update_new_nodes_marked_sb(as)) 695 btree_update_new_nodes_mark_sb(as); 696 697 /* 698 * Wait for any in flight writes to finish before we free the old nodes 699 * on disk: 700 */ 701 for (i = 0; i < as->nr_old_nodes; i++) { 702 __le64 seq; 703 704 b = as->old_nodes[i]; 705 706 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 707 seq = b->data ? b->data->keys.seq : 0; 708 six_unlock_read(&b->c.lock); 709 710 if (seq == as->old_nodes_seq[i]) 711 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 712 TASK_UNINTERRUPTIBLE); 713 } 714 715 /* 716 * We did an update to a parent node where the pointers we added pointed 717 * to child nodes that weren't written yet: now, the child nodes have 718 * been written so we can write out the update to the interior node. 719 */ 720 721 /* 722 * We can't call into journal reclaim here: we'd block on the journal 723 * reclaim lock, but we may need to release the open buckets we have 724 * pinned in order for other btree updates to make forward progress, and 725 * journal reclaim does btree updates when flushing bkey_cached entries, 726 * which may require allocations as well. 727 */ 728 ret = commit_do(trans, &as->disk_res, &journal_seq, 729 BCH_WATERMARK_interior_updates| 730 BCH_TRANS_COMMIT_no_enospc| 731 BCH_TRANS_COMMIT_no_check_rw| 732 BCH_TRANS_COMMIT_journal_reclaim, 733 btree_update_nodes_written_trans(trans, as)); 734 bch2_trans_unlock(trans); 735 736 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 737 "%s", bch2_err_str(ret)); 738 err: 739 /* 740 * Ensure transaction is unlocked before using btree_node_lock_nopath() 741 * (the use of which is always suspect, we need to work on removing this 742 * in the future) 743 * 744 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get() 745 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may 746 * rarely end up with a locked path besides the one we have here: 747 */ 748 bch2_trans_unlock(trans); 749 bch2_trans_begin(trans); 750 751 /* 752 * We have to be careful because another thread might be getting ready 753 * to free as->b and calling btree_update_reparent() on us - we'll 754 * recheck under btree_update_lock below: 755 */ 756 b = READ_ONCE(as->b); 757 if (b) { 758 /* 759 * @b is the node we did the final insert into: 760 * 761 * On failure to get a journal reservation, we still have to 762 * unblock the write and allow most of the write path to happen 763 * so that shutdown works, but the i->journal_seq mechanism 764 * won't work to prevent the btree write from being visible (we 765 * didn't get a journal sequence number) - instead 766 * __bch2_btree_node_write() doesn't do the actual write if 767 * we're in journal error state: 768 */ 769 770 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans, 771 as->btree_id, b->c.level, b->key.k.p); 772 struct btree_path *path = trans->paths + path_idx; 773 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 774 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 775 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 776 path->l[b->c.level].b = b; 777 778 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 779 780 mutex_lock(&c->btree_interior_update_lock); 781 782 list_del(&as->write_blocked_list); 783 if (list_empty(&b->write_blocked)) 784 clear_btree_node_write_blocked(b); 785 786 /* 787 * Node might have been freed, recheck under 788 * btree_interior_update_lock: 789 */ 790 if (as->b == b) { 791 BUG_ON(!b->c.level); 792 BUG_ON(!btree_node_dirty(b)); 793 794 if (!ret) { 795 struct bset *last = btree_bset_last(b); 796 797 last->journal_seq = cpu_to_le64( 798 max(journal_seq, 799 le64_to_cpu(last->journal_seq))); 800 801 bch2_btree_add_journal_pin(c, b, journal_seq); 802 } else { 803 /* 804 * If we didn't get a journal sequence number we 805 * can't write this btree node, because recovery 806 * won't know to ignore this write: 807 */ 808 set_btree_node_never_write(b); 809 } 810 } 811 812 mutex_unlock(&c->btree_interior_update_lock); 813 814 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 815 six_unlock_write(&b->c.lock); 816 817 btree_node_write_if_need(c, b, SIX_LOCK_intent); 818 btree_node_unlock(trans, path, b->c.level); 819 bch2_path_put(trans, path_idx, true); 820 } 821 822 bch2_journal_pin_drop(&c->journal, &as->journal); 823 824 mutex_lock(&c->btree_interior_update_lock); 825 for (i = 0; i < as->nr_new_nodes; i++) { 826 b = as->new_nodes[i]; 827 828 BUG_ON(b->will_make_reachable != (unsigned long) as); 829 b->will_make_reachable = 0; 830 clear_btree_node_will_make_reachable(b); 831 } 832 mutex_unlock(&c->btree_interior_update_lock); 833 834 for (i = 0; i < as->nr_new_nodes; i++) { 835 b = as->new_nodes[i]; 836 837 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 838 btree_node_write_if_need(c, b, SIX_LOCK_read); 839 six_unlock_read(&b->c.lock); 840 } 841 842 for (i = 0; i < as->nr_open_buckets; i++) 843 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 844 845 bch2_btree_update_free(as, trans); 846 bch2_trans_put(trans); 847 } 848 849 static void btree_interior_update_work(struct work_struct *work) 850 { 851 struct bch_fs *c = 852 container_of(work, struct bch_fs, btree_interior_update_work); 853 struct btree_update *as; 854 855 while (1) { 856 mutex_lock(&c->btree_interior_update_lock); 857 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 858 struct btree_update, unwritten_list); 859 if (as && !as->nodes_written) 860 as = NULL; 861 mutex_unlock(&c->btree_interior_update_lock); 862 863 if (!as) 864 break; 865 866 btree_update_nodes_written(as); 867 } 868 } 869 870 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 871 { 872 closure_type(as, struct btree_update, cl); 873 struct bch_fs *c = as->c; 874 875 mutex_lock(&c->btree_interior_update_lock); 876 as->nodes_written = true; 877 mutex_unlock(&c->btree_interior_update_lock); 878 879 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 880 } 881 882 /* 883 * We're updating @b with pointers to nodes that haven't finished writing yet: 884 * block @b from being written until @as completes 885 */ 886 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 887 { 888 struct bch_fs *c = as->c; 889 890 BUG_ON(as->mode != BTREE_UPDATE_none); 891 BUG_ON(as->update_level_end < b->c.level); 892 BUG_ON(!btree_node_dirty(b)); 893 BUG_ON(!b->c.level); 894 895 mutex_lock(&c->btree_interior_update_lock); 896 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 897 898 as->mode = BTREE_UPDATE_node; 899 as->b = b; 900 as->update_level_end = b->c.level; 901 902 set_btree_node_write_blocked(b); 903 list_add(&as->write_blocked_list, &b->write_blocked); 904 905 mutex_unlock(&c->btree_interior_update_lock); 906 } 907 908 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 909 struct journal_entry_pin *_pin, u64 seq) 910 { 911 return 0; 912 } 913 914 static void btree_update_reparent(struct btree_update *as, 915 struct btree_update *child) 916 { 917 struct bch_fs *c = as->c; 918 919 lockdep_assert_held(&c->btree_interior_update_lock); 920 921 child->b = NULL; 922 child->mode = BTREE_UPDATE_update; 923 924 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 925 bch2_update_reparent_journal_pin_flush); 926 } 927 928 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 929 { 930 struct bkey_i *insert = &b->key; 931 struct bch_fs *c = as->c; 932 933 BUG_ON(as->mode != BTREE_UPDATE_none); 934 935 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 936 ARRAY_SIZE(as->journal_entries)); 937 938 as->journal_u64s += 939 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 940 BCH_JSET_ENTRY_btree_root, 941 b->c.btree_id, b->c.level, 942 insert, insert->k.u64s); 943 944 mutex_lock(&c->btree_interior_update_lock); 945 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 946 947 as->mode = BTREE_UPDATE_root; 948 mutex_unlock(&c->btree_interior_update_lock); 949 } 950 951 /* 952 * bch2_btree_update_add_new_node: 953 * 954 * This causes @as to wait on @b to be written, before it gets to 955 * bch2_btree_update_nodes_written 956 * 957 * Additionally, it sets b->will_make_reachable to prevent any additional writes 958 * to @b from happening besides the first until @b is reachable on disk 959 * 960 * And it adds @b to the list of @as's new nodes, so that we can update sector 961 * counts in bch2_btree_update_nodes_written: 962 */ 963 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 964 { 965 struct bch_fs *c = as->c; 966 967 closure_get(&as->cl); 968 969 mutex_lock(&c->btree_interior_update_lock); 970 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 971 BUG_ON(b->will_make_reachable); 972 973 as->new_nodes[as->nr_new_nodes++] = b; 974 b->will_make_reachable = 1UL|(unsigned long) as; 975 set_btree_node_will_make_reachable(b); 976 977 mutex_unlock(&c->btree_interior_update_lock); 978 979 btree_update_add_key(as, &as->new_keys, b); 980 981 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 982 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 983 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 984 985 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 986 cpu_to_le16(sectors); 987 } 988 } 989 990 /* 991 * returns true if @b was a new node 992 */ 993 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 994 { 995 struct btree_update *as; 996 unsigned long v; 997 unsigned i; 998 999 mutex_lock(&c->btree_interior_update_lock); 1000 /* 1001 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 1002 * dropped when it gets written by bch2_btree_complete_write - the 1003 * xchg() is for synchronization with bch2_btree_complete_write: 1004 */ 1005 v = xchg(&b->will_make_reachable, 0); 1006 clear_btree_node_will_make_reachable(b); 1007 as = (struct btree_update *) (v & ~1UL); 1008 1009 if (!as) { 1010 mutex_unlock(&c->btree_interior_update_lock); 1011 return; 1012 } 1013 1014 for (i = 0; i < as->nr_new_nodes; i++) 1015 if (as->new_nodes[i] == b) 1016 goto found; 1017 1018 BUG(); 1019 found: 1020 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 1021 mutex_unlock(&c->btree_interior_update_lock); 1022 1023 if (v & 1) 1024 closure_put(&as->cl); 1025 } 1026 1027 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 1028 { 1029 while (b->ob.nr) 1030 as->open_buckets[as->nr_open_buckets++] = 1031 b->ob.v[--b->ob.nr]; 1032 } 1033 1034 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 1035 struct journal_entry_pin *_pin, u64 seq) 1036 { 1037 return 0; 1038 } 1039 1040 /* 1041 * @b is being split/rewritten: it may have pointers to not-yet-written btree 1042 * nodes and thus outstanding btree_updates - redirect @b's 1043 * btree_updates to point to this btree_update: 1044 */ 1045 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 1046 struct btree *b) 1047 { 1048 struct bch_fs *c = as->c; 1049 struct btree_update *p, *n; 1050 struct btree_write *w; 1051 1052 set_btree_node_dying(b); 1053 1054 if (btree_node_fake(b)) 1055 return; 1056 1057 mutex_lock(&c->btree_interior_update_lock); 1058 1059 /* 1060 * Does this node have any btree_update operations preventing 1061 * it from being written? 1062 * 1063 * If so, redirect them to point to this btree_update: we can 1064 * write out our new nodes, but we won't make them visible until those 1065 * operations complete 1066 */ 1067 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 1068 list_del_init(&p->write_blocked_list); 1069 btree_update_reparent(as, p); 1070 1071 /* 1072 * for flush_held_btree_writes() waiting on updates to flush or 1073 * nodes to be writeable: 1074 */ 1075 closure_wake_up(&c->btree_interior_update_wait); 1076 } 1077 1078 clear_btree_node_dirty_acct(c, b); 1079 clear_btree_node_need_write(b); 1080 clear_btree_node_write_blocked(b); 1081 1082 /* 1083 * Does this node have unwritten data that has a pin on the journal? 1084 * 1085 * If so, transfer that pin to the btree_update operation - 1086 * note that if we're freeing multiple nodes, we only need to keep the 1087 * oldest pin of any of the nodes we're freeing. We'll release the pin 1088 * when the new nodes are persistent and reachable on disk: 1089 */ 1090 w = btree_current_write(b); 1091 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1092 bch2_btree_update_will_free_node_journal_pin_flush); 1093 bch2_journal_pin_drop(&c->journal, &w->journal); 1094 1095 w = btree_prev_write(b); 1096 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1097 bch2_btree_update_will_free_node_journal_pin_flush); 1098 bch2_journal_pin_drop(&c->journal, &w->journal); 1099 1100 mutex_unlock(&c->btree_interior_update_lock); 1101 1102 /* 1103 * Is this a node that isn't reachable on disk yet? 1104 * 1105 * Nodes that aren't reachable yet have writes blocked until they're 1106 * reachable - now that we've cancelled any pending writes and moved 1107 * things waiting on that write to wait on this update, we can drop this 1108 * node from the list of nodes that the other update is making 1109 * reachable, prior to freeing it: 1110 */ 1111 btree_update_drop_new_node(c, b); 1112 1113 btree_update_add_key(as, &as->old_keys, b); 1114 1115 as->old_nodes[as->nr_old_nodes] = b; 1116 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1117 as->nr_old_nodes++; 1118 } 1119 1120 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1121 { 1122 struct bch_fs *c = as->c; 1123 u64 start_time = as->start_time; 1124 1125 BUG_ON(as->mode == BTREE_UPDATE_none); 1126 1127 if (as->took_gc_lock) 1128 up_read(&as->c->gc_lock); 1129 as->took_gc_lock = false; 1130 1131 bch2_btree_reserve_put(as, trans); 1132 1133 continue_at(&as->cl, btree_update_set_nodes_written, 1134 as->c->btree_interior_update_worker); 1135 1136 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1137 start_time); 1138 } 1139 1140 static struct btree_update * 1141 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1142 unsigned level_start, bool split, unsigned flags) 1143 { 1144 struct bch_fs *c = trans->c; 1145 struct btree_update *as; 1146 u64 start_time = local_clock(); 1147 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1148 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1149 unsigned nr_nodes[2] = { 0, 0 }; 1150 unsigned level_end = level_start; 1151 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1152 int ret = 0; 1153 u32 restart_count = trans->restart_count; 1154 1155 BUG_ON(!path->should_be_locked); 1156 1157 if (watermark == BCH_WATERMARK_copygc) 1158 watermark = BCH_WATERMARK_btree_copygc; 1159 if (watermark < BCH_WATERMARK_btree) 1160 watermark = BCH_WATERMARK_btree; 1161 1162 flags &= ~BCH_WATERMARK_MASK; 1163 flags |= watermark; 1164 1165 if (watermark < BCH_WATERMARK_reclaim && 1166 test_bit(JOURNAL_space_low, &c->journal.flags)) { 1167 if (flags & BCH_TRANS_COMMIT_journal_reclaim) 1168 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock); 1169 1170 ret = drop_locks_do(trans, 1171 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; })); 1172 if (ret) 1173 return ERR_PTR(ret); 1174 } 1175 1176 while (1) { 1177 nr_nodes[!!level_end] += 1 + split; 1178 level_end++; 1179 1180 ret = bch2_btree_path_upgrade(trans, path, level_end + 1); 1181 if (ret) 1182 return ERR_PTR(ret); 1183 1184 if (!btree_path_node(path, level_end)) { 1185 /* Allocating new root? */ 1186 nr_nodes[1] += split; 1187 level_end = BTREE_MAX_DEPTH; 1188 break; 1189 } 1190 1191 /* 1192 * Always check for space for two keys, even if we won't have to 1193 * split at prior level - it might have been a merge instead: 1194 */ 1195 if (bch2_btree_node_insert_fits(path->l[level_end].b, 1196 BKEY_BTREE_PTR_U64s_MAX * 2)) 1197 break; 1198 1199 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1200 } 1201 1202 if (!down_read_trylock(&c->gc_lock)) { 1203 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1204 if (ret) { 1205 up_read(&c->gc_lock); 1206 return ERR_PTR(ret); 1207 } 1208 } 1209 1210 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1211 memset(as, 0, sizeof(*as)); 1212 closure_init(&as->cl, NULL); 1213 as->c = c; 1214 as->start_time = start_time; 1215 as->ip_started = _RET_IP_; 1216 as->mode = BTREE_UPDATE_none; 1217 as->flags = flags; 1218 as->took_gc_lock = true; 1219 as->btree_id = path->btree_id; 1220 as->update_level_start = level_start; 1221 as->update_level_end = level_end; 1222 INIT_LIST_HEAD(&as->list); 1223 INIT_LIST_HEAD(&as->unwritten_list); 1224 INIT_LIST_HEAD(&as->write_blocked_list); 1225 bch2_keylist_init(&as->old_keys, as->_old_keys); 1226 bch2_keylist_init(&as->new_keys, as->_new_keys); 1227 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1228 1229 mutex_lock(&c->btree_interior_update_lock); 1230 list_add_tail(&as->list, &c->btree_interior_update_list); 1231 mutex_unlock(&c->btree_interior_update_lock); 1232 1233 /* 1234 * We don't want to allocate if we're in an error state, that can cause 1235 * deadlock on emergency shutdown due to open buckets getting stuck in 1236 * the btree_reserve_cache after allocator shutdown has cleared it out. 1237 * This check needs to come after adding us to the btree_interior_update 1238 * list but before calling bch2_btree_reserve_get, to synchronize with 1239 * __bch2_fs_read_only(). 1240 */ 1241 ret = bch2_journal_error(&c->journal); 1242 if (ret) 1243 goto err; 1244 1245 ret = bch2_disk_reservation_get(c, &as->disk_res, 1246 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1247 c->opts.metadata_replicas, 1248 disk_res_flags); 1249 if (ret) 1250 goto err; 1251 1252 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1253 if (bch2_err_matches(ret, ENOSPC) || 1254 bch2_err_matches(ret, ENOMEM)) { 1255 struct closure cl; 1256 1257 /* 1258 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1259 * flag 1260 */ 1261 if (bch2_err_matches(ret, ENOSPC) && 1262 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1263 watermark < BCH_WATERMARK_reclaim) { 1264 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1265 goto err; 1266 } 1267 1268 closure_init_stack(&cl); 1269 1270 do { 1271 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1272 1273 bch2_trans_unlock(trans); 1274 bch2_wait_on_allocator(c, &cl); 1275 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1276 } 1277 1278 if (ret) { 1279 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1280 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1281 goto err; 1282 } 1283 1284 ret = bch2_trans_relock(trans); 1285 if (ret) 1286 goto err; 1287 1288 bch2_trans_verify_not_restarted(trans, restart_count); 1289 return as; 1290 err: 1291 bch2_btree_update_free(as, trans); 1292 if (!bch2_err_matches(ret, ENOSPC) && 1293 !bch2_err_matches(ret, EROFS) && 1294 ret != -BCH_ERR_journal_reclaim_would_deadlock) 1295 bch_err_fn_ratelimited(c, ret); 1296 return ERR_PTR(ret); 1297 } 1298 1299 /* Btree root updates: */ 1300 1301 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1302 { 1303 /* Root nodes cannot be reaped */ 1304 mutex_lock(&c->btree_cache.lock); 1305 list_del_init(&b->list); 1306 mutex_unlock(&c->btree_cache.lock); 1307 1308 mutex_lock(&c->btree_root_lock); 1309 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1310 mutex_unlock(&c->btree_root_lock); 1311 1312 bch2_recalc_btree_reserve(c); 1313 } 1314 1315 static int bch2_btree_set_root(struct btree_update *as, 1316 struct btree_trans *trans, 1317 struct btree_path *path, 1318 struct btree *b, 1319 bool nofail) 1320 { 1321 struct bch_fs *c = as->c; 1322 1323 trace_and_count(c, btree_node_set_root, trans, b); 1324 1325 struct btree *old = btree_node_root(c, b); 1326 1327 /* 1328 * Ensure no one is using the old root while we switch to the 1329 * new root: 1330 */ 1331 if (nofail) { 1332 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1333 } else { 1334 int ret = bch2_btree_node_lock_write(trans, path, &old->c); 1335 if (ret) 1336 return ret; 1337 } 1338 1339 bch2_btree_set_root_inmem(c, b); 1340 1341 btree_update_updated_root(as, b); 1342 1343 /* 1344 * Unlock old root after new root is visible: 1345 * 1346 * The new root isn't persistent, but that's ok: we still have 1347 * an intent lock on the new root, and any updates that would 1348 * depend on the new root would have to update the new root. 1349 */ 1350 bch2_btree_node_unlock_write(trans, path, old); 1351 return 0; 1352 } 1353 1354 /* Interior node updates: */ 1355 1356 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1357 struct btree_trans *trans, 1358 struct btree_path *path, 1359 struct btree *b, 1360 struct btree_node_iter *node_iter, 1361 struct bkey_i *insert) 1362 { 1363 struct bch_fs *c = as->c; 1364 struct bkey_packed *k; 1365 struct printbuf buf = PRINTBUF; 1366 unsigned long old, new; 1367 1368 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1369 !btree_ptr_sectors_written(bkey_i_to_s_c(insert))); 1370 1371 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags))) 1372 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1373 1374 if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), 1375 btree_node_type(b), BCH_VALIDATE_write) ?: 1376 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), BCH_VALIDATE_write)) { 1377 bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__); 1378 dump_stack(); 1379 } 1380 1381 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1382 ARRAY_SIZE(as->journal_entries)); 1383 1384 as->journal_u64s += 1385 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1386 BCH_JSET_ENTRY_btree_keys, 1387 b->c.btree_id, b->c.level, 1388 insert, insert->k.u64s); 1389 1390 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1391 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1392 bch2_btree_node_iter_advance(node_iter, b); 1393 1394 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1395 set_btree_node_dirty_acct(c, b); 1396 1397 old = READ_ONCE(b->flags); 1398 do { 1399 new = old; 1400 1401 new &= ~BTREE_WRITE_TYPE_MASK; 1402 new |= BTREE_WRITE_interior; 1403 new |= 1 << BTREE_NODE_need_write; 1404 } while (!try_cmpxchg(&b->flags, &old, new)); 1405 1406 printbuf_exit(&buf); 1407 } 1408 1409 static void 1410 bch2_btree_insert_keys_interior(struct btree_update *as, 1411 struct btree_trans *trans, 1412 struct btree_path *path, 1413 struct btree *b, 1414 struct btree_node_iter node_iter, 1415 struct keylist *keys) 1416 { 1417 struct bkey_i *insert = bch2_keylist_front(keys); 1418 struct bkey_packed *k; 1419 1420 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1421 1422 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1423 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1424 ; 1425 1426 while (!bch2_keylist_empty(keys)) { 1427 insert = bch2_keylist_front(keys); 1428 1429 if (bpos_gt(insert->k.p, b->key.k.p)) 1430 break; 1431 1432 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1433 bch2_keylist_pop_front(keys); 1434 } 1435 } 1436 1437 /* 1438 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1439 * node) 1440 */ 1441 static void __btree_split_node(struct btree_update *as, 1442 struct btree_trans *trans, 1443 struct btree *b, 1444 struct btree *n[2]) 1445 { 1446 struct bkey_packed *k; 1447 struct bpos n1_pos = POS_MIN; 1448 struct btree_node_iter iter; 1449 struct bset *bsets[2]; 1450 struct bkey_format_state format[2]; 1451 struct bkey_packed *out[2]; 1452 struct bkey uk; 1453 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1454 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1455 int i; 1456 1457 memset(&nr_keys, 0, sizeof(nr_keys)); 1458 1459 for (i = 0; i < 2; i++) { 1460 BUG_ON(n[i]->nsets != 1); 1461 1462 bsets[i] = btree_bset_first(n[i]); 1463 out[i] = bsets[i]->start; 1464 1465 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1466 bch2_bkey_format_init(&format[i]); 1467 } 1468 1469 u64s = 0; 1470 for_each_btree_node_key(b, k, &iter) { 1471 if (bkey_deleted(k)) 1472 continue; 1473 1474 uk = bkey_unpack_key(b, k); 1475 1476 if (b->c.level && 1477 u64s < n1_u64s && 1478 u64s + k->u64s >= n1_u64s && 1479 bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p)) 1480 n1_u64s += k->u64s; 1481 1482 i = u64s >= n1_u64s; 1483 u64s += k->u64s; 1484 if (!i) 1485 n1_pos = uk.p; 1486 bch2_bkey_format_add_key(&format[i], &uk); 1487 1488 nr_keys[i].nr_keys++; 1489 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1490 } 1491 1492 btree_set_min(n[0], b->data->min_key); 1493 btree_set_max(n[0], n1_pos); 1494 btree_set_min(n[1], bpos_successor(n1_pos)); 1495 btree_set_max(n[1], b->data->max_key); 1496 1497 for (i = 0; i < 2; i++) { 1498 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1499 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1500 1501 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1502 1503 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1504 nr_keys[i].val_u64s; 1505 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1506 n[i]->data->format = b->format; 1507 1508 btree_node_set_format(n[i], n[i]->data->format); 1509 } 1510 1511 u64s = 0; 1512 for_each_btree_node_key(b, k, &iter) { 1513 if (bkey_deleted(k)) 1514 continue; 1515 1516 i = u64s >= n1_u64s; 1517 u64s += k->u64s; 1518 1519 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1520 ? &b->format: &bch2_bkey_format_current, k)) 1521 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1522 else 1523 bch2_bkey_unpack(b, (void *) out[i], k); 1524 1525 out[i]->needs_whiteout = false; 1526 1527 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1528 out[i] = bkey_p_next(out[i]); 1529 } 1530 1531 for (i = 0; i < 2; i++) { 1532 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1533 1534 BUG_ON(!bsets[i]->u64s); 1535 1536 set_btree_bset_end(n[i], n[i]->set); 1537 1538 btree_node_reset_sib_u64s(n[i]); 1539 1540 bch2_verify_btree_nr_keys(n[i]); 1541 1542 BUG_ON(bch2_btree_node_check_topology(trans, n[i])); 1543 } 1544 } 1545 1546 /* 1547 * For updates to interior nodes, we've got to do the insert before we split 1548 * because the stuff we're inserting has to be inserted atomically. Post split, 1549 * the keys might have to go in different nodes and the split would no longer be 1550 * atomic. 1551 * 1552 * Worse, if the insert is from btree node coalescing, if we do the insert after 1553 * we do the split (and pick the pivot) - the pivot we pick might be between 1554 * nodes that were coalesced, and thus in the middle of a child node post 1555 * coalescing: 1556 */ 1557 static void btree_split_insert_keys(struct btree_update *as, 1558 struct btree_trans *trans, 1559 btree_path_idx_t path_idx, 1560 struct btree *b, 1561 struct keylist *keys) 1562 { 1563 struct btree_path *path = trans->paths + path_idx; 1564 1565 if (!bch2_keylist_empty(keys) && 1566 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1567 struct btree_node_iter node_iter; 1568 1569 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1570 1571 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1572 1573 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1574 } 1575 } 1576 1577 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1578 btree_path_idx_t path, struct btree *b, 1579 struct keylist *keys) 1580 { 1581 struct bch_fs *c = as->c; 1582 struct btree *parent = btree_node_parent(trans->paths + path, b); 1583 struct btree *n1, *n2 = NULL, *n3 = NULL; 1584 btree_path_idx_t path1 = 0, path2 = 0; 1585 u64 start_time = local_clock(); 1586 int ret = 0; 1587 1588 bch2_verify_btree_nr_keys(b); 1589 BUG_ON(!parent && (b != btree_node_root(c, b))); 1590 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1591 1592 ret = bch2_btree_node_check_topology(trans, b); 1593 if (ret) 1594 return ret; 1595 1596 bch2_btree_interior_update_will_free_node(as, b); 1597 1598 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1599 struct btree *n[2]; 1600 1601 trace_and_count(c, btree_node_split, trans, b); 1602 1603 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1604 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1605 1606 __btree_split_node(as, trans, b, n); 1607 1608 if (keys) { 1609 btree_split_insert_keys(as, trans, path, n1, keys); 1610 btree_split_insert_keys(as, trans, path, n2, keys); 1611 BUG_ON(!bch2_keylist_empty(keys)); 1612 } 1613 1614 bch2_btree_build_aux_trees(n2); 1615 bch2_btree_build_aux_trees(n1); 1616 1617 bch2_btree_update_add_new_node(as, n1); 1618 bch2_btree_update_add_new_node(as, n2); 1619 six_unlock_write(&n2->c.lock); 1620 six_unlock_write(&n1->c.lock); 1621 1622 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1623 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1624 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1625 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1626 1627 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p); 1628 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1629 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1630 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1631 1632 /* 1633 * Note that on recursive parent_keys == keys, so we 1634 * can't start adding new keys to parent_keys before emptying it 1635 * out (which we did with btree_split_insert_keys() above) 1636 */ 1637 bch2_keylist_add(&as->parent_keys, &n1->key); 1638 bch2_keylist_add(&as->parent_keys, &n2->key); 1639 1640 if (!parent) { 1641 /* Depth increases, make a new root */ 1642 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1643 1644 bch2_btree_update_add_new_node(as, n3); 1645 six_unlock_write(&n3->c.lock); 1646 1647 trans->paths[path2].locks_want++; 1648 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1649 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1650 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1651 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1652 1653 n3->sib_u64s[0] = U16_MAX; 1654 n3->sib_u64s[1] = U16_MAX; 1655 1656 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1657 } 1658 } else { 1659 trace_and_count(c, btree_node_compact, trans, b); 1660 1661 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1662 1663 if (keys) { 1664 btree_split_insert_keys(as, trans, path, n1, keys); 1665 BUG_ON(!bch2_keylist_empty(keys)); 1666 } 1667 1668 bch2_btree_build_aux_trees(n1); 1669 bch2_btree_update_add_new_node(as, n1); 1670 six_unlock_write(&n1->c.lock); 1671 1672 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1673 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1674 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1675 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1676 1677 if (parent) 1678 bch2_keylist_add(&as->parent_keys, &n1->key); 1679 } 1680 1681 /* New nodes all written, now make them visible: */ 1682 1683 if (parent) { 1684 /* Split a non root node */ 1685 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1686 } else if (n3) { 1687 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false); 1688 } else { 1689 /* Root filled up but didn't need to be split */ 1690 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false); 1691 } 1692 1693 if (ret) 1694 goto err; 1695 1696 if (n3) { 1697 bch2_btree_update_get_open_buckets(as, n3); 1698 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1699 } 1700 if (n2) { 1701 bch2_btree_update_get_open_buckets(as, n2); 1702 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1703 } 1704 bch2_btree_update_get_open_buckets(as, n1); 1705 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1706 1707 /* 1708 * The old node must be freed (in memory) _before_ unlocking the new 1709 * nodes - else another thread could re-acquire a read lock on the old 1710 * node after another thread has locked and updated the new node, thus 1711 * seeing stale data: 1712 */ 1713 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1714 1715 if (n3) 1716 bch2_trans_node_add(trans, trans->paths + path, n3); 1717 if (n2) 1718 bch2_trans_node_add(trans, trans->paths + path2, n2); 1719 bch2_trans_node_add(trans, trans->paths + path1, n1); 1720 1721 if (n3) 1722 six_unlock_intent(&n3->c.lock); 1723 if (n2) 1724 six_unlock_intent(&n2->c.lock); 1725 six_unlock_intent(&n1->c.lock); 1726 out: 1727 if (path2) { 1728 __bch2_btree_path_unlock(trans, trans->paths + path2); 1729 bch2_path_put(trans, path2, true); 1730 } 1731 if (path1) { 1732 __bch2_btree_path_unlock(trans, trans->paths + path1); 1733 bch2_path_put(trans, path1, true); 1734 } 1735 1736 bch2_trans_verify_locks(trans); 1737 1738 bch2_time_stats_update(&c->times[n2 1739 ? BCH_TIME_btree_node_split 1740 : BCH_TIME_btree_node_compact], 1741 start_time); 1742 return ret; 1743 err: 1744 if (n3) 1745 bch2_btree_node_free_never_used(as, trans, n3); 1746 if (n2) 1747 bch2_btree_node_free_never_used(as, trans, n2); 1748 bch2_btree_node_free_never_used(as, trans, n1); 1749 goto out; 1750 } 1751 1752 /** 1753 * bch2_btree_insert_node - insert bkeys into a given btree node 1754 * 1755 * @as: btree_update object 1756 * @trans: btree_trans object 1757 * @path_idx: path that points to current node 1758 * @b: node to insert keys into 1759 * @keys: list of keys to insert 1760 * 1761 * Returns: 0 on success, typically transaction restart error on failure 1762 * 1763 * Inserts as many keys as it can into a given btree node, splitting it if full. 1764 * If a split occurred, this function will return early. This can only happen 1765 * for leaf nodes -- inserts into interior nodes have to be atomic. 1766 */ 1767 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1768 btree_path_idx_t path_idx, struct btree *b, 1769 struct keylist *keys) 1770 { 1771 struct bch_fs *c = as->c; 1772 struct btree_path *path = trans->paths + path_idx, *linked; 1773 unsigned i; 1774 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1775 int old_live_u64s = b->nr.live_u64s; 1776 int live_u64s_added, u64s_added; 1777 int ret; 1778 1779 lockdep_assert_held(&c->gc_lock); 1780 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1781 BUG_ON(!b->c.level); 1782 BUG_ON(!as || as->b); 1783 bch2_verify_keylist_sorted(keys); 1784 1785 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1786 if (ret) 1787 return ret; 1788 1789 bch2_btree_node_prep_for_write(trans, path, b); 1790 1791 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1792 bch2_btree_node_unlock_write(trans, path, b); 1793 goto split; 1794 } 1795 1796 ret = bch2_btree_node_check_topology(trans, b); 1797 if (ret) { 1798 bch2_btree_node_unlock_write(trans, path, b); 1799 return ret; 1800 } 1801 1802 bch2_btree_insert_keys_interior(as, trans, path, b, 1803 path->l[b->c.level].iter, keys); 1804 1805 trans_for_each_path_with_node(trans, b, linked, i) 1806 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1807 1808 bch2_trans_verify_paths(trans); 1809 1810 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1811 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1812 1813 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1814 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1815 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1816 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1817 1818 if (u64s_added > live_u64s_added && 1819 bch2_maybe_compact_whiteouts(c, b)) 1820 bch2_trans_node_reinit_iter(trans, b); 1821 1822 btree_update_updated_node(as, b); 1823 bch2_btree_node_unlock_write(trans, path, b); 1824 1825 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1826 return 0; 1827 split: 1828 /* 1829 * We could attempt to avoid the transaction restart, by calling 1830 * bch2_btree_path_upgrade() and allocating more nodes: 1831 */ 1832 if (b->c.level >= as->update_level_end) { 1833 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1834 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1835 } 1836 1837 return btree_split(as, trans, path_idx, b, keys); 1838 } 1839 1840 int bch2_btree_split_leaf(struct btree_trans *trans, 1841 btree_path_idx_t path, 1842 unsigned flags) 1843 { 1844 /* btree_split & merge may both cause paths array to be reallocated */ 1845 struct btree *b = path_l(trans->paths + path)->b; 1846 struct btree_update *as; 1847 unsigned l; 1848 int ret = 0; 1849 1850 as = bch2_btree_update_start(trans, trans->paths + path, 1851 trans->paths[path].level, 1852 true, flags); 1853 if (IS_ERR(as)) 1854 return PTR_ERR(as); 1855 1856 ret = btree_split(as, trans, path, b, NULL); 1857 if (ret) { 1858 bch2_btree_update_free(as, trans); 1859 return ret; 1860 } 1861 1862 bch2_btree_update_done(as, trans); 1863 1864 for (l = trans->paths[path].level + 1; 1865 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1866 l++) 1867 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1868 1869 return ret; 1870 } 1871 1872 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans, 1873 btree_path_idx_t path_idx) 1874 { 1875 struct bch_fs *c = as->c; 1876 struct btree_path *path = trans->paths + path_idx; 1877 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b; 1878 1879 BUG_ON(!btree_node_locked(path, b->c.level)); 1880 1881 n = __btree_root_alloc(as, trans, b->c.level + 1); 1882 1883 bch2_btree_update_add_new_node(as, n); 1884 six_unlock_write(&n->c.lock); 1885 1886 path->locks_want++; 1887 BUG_ON(btree_node_locked(path, n->c.level)); 1888 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1889 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1890 bch2_btree_path_level_init(trans, path, n); 1891 1892 n->sib_u64s[0] = U16_MAX; 1893 n->sib_u64s[1] = U16_MAX; 1894 1895 bch2_keylist_add(&as->parent_keys, &b->key); 1896 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys); 1897 1898 int ret = bch2_btree_set_root(as, trans, path, n, true); 1899 BUG_ON(ret); 1900 1901 bch2_btree_update_get_open_buckets(as, n); 1902 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1903 bch2_trans_node_add(trans, path, n); 1904 six_unlock_intent(&n->c.lock); 1905 1906 mutex_lock(&c->btree_cache.lock); 1907 list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list); 1908 mutex_unlock(&c->btree_cache.lock); 1909 1910 bch2_trans_verify_locks(trans); 1911 } 1912 1913 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) 1914 { 1915 struct bch_fs *c = trans->c; 1916 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b; 1917 1918 if (btree_node_fake(b)) 1919 return bch2_btree_split_leaf(trans, path, flags); 1920 1921 struct btree_update *as = 1922 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags); 1923 if (IS_ERR(as)) 1924 return PTR_ERR(as); 1925 1926 __btree_increase_depth(as, trans, path); 1927 bch2_btree_update_done(as, trans); 1928 return 0; 1929 } 1930 1931 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1932 btree_path_idx_t path, 1933 unsigned level, 1934 unsigned flags, 1935 enum btree_node_sibling sib) 1936 { 1937 struct bch_fs *c = trans->c; 1938 struct btree_update *as; 1939 struct bkey_format_state new_s; 1940 struct bkey_format new_f; 1941 struct bkey_i delete; 1942 struct btree *b, *m, *n, *prev, *next, *parent; 1943 struct bpos sib_pos; 1944 size_t sib_u64s; 1945 enum btree_id btree = trans->paths[path].btree_id; 1946 btree_path_idx_t sib_path = 0, new_path = 0; 1947 u64 start_time = local_clock(); 1948 int ret = 0; 1949 1950 bch2_trans_verify_not_in_restart(trans); 1951 bch2_trans_verify_not_unlocked(trans); 1952 BUG_ON(!trans->paths[path].should_be_locked); 1953 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1954 1955 /* 1956 * Work around a deadlock caused by the btree write buffer not doing 1957 * merges and leaving tons of merges for us to do - we really don't need 1958 * to be doing merges at all from the interior update path, and if the 1959 * interior update path is generating too many new interior updates we 1960 * deadlock: 1961 */ 1962 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates) 1963 return 0; 1964 1965 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) { 1966 flags &= ~BCH_WATERMARK_MASK; 1967 flags |= BCH_WATERMARK_btree; 1968 flags |= BCH_TRANS_COMMIT_journal_reclaim; 1969 } 1970 1971 b = trans->paths[path].l[level].b; 1972 1973 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1974 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1975 b->sib_u64s[sib] = U16_MAX; 1976 return 0; 1977 } 1978 1979 sib_pos = sib == btree_prev_sib 1980 ? bpos_predecessor(b->data->min_key) 1981 : bpos_successor(b->data->max_key); 1982 1983 sib_path = bch2_path_get(trans, btree, sib_pos, 1984 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_); 1985 ret = bch2_btree_path_traverse(trans, sib_path, false); 1986 if (ret) 1987 goto err; 1988 1989 btree_path_set_should_be_locked(trans, trans->paths + sib_path); 1990 1991 m = trans->paths[sib_path].l[level].b; 1992 1993 if (btree_node_parent(trans->paths + path, b) != 1994 btree_node_parent(trans->paths + sib_path, m)) { 1995 b->sib_u64s[sib] = U16_MAX; 1996 goto out; 1997 } 1998 1999 if (sib == btree_prev_sib) { 2000 prev = m; 2001 next = b; 2002 } else { 2003 prev = b; 2004 next = m; 2005 } 2006 2007 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 2008 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 2009 2010 bch2_bpos_to_text(&buf1, prev->data->max_key); 2011 bch2_bpos_to_text(&buf2, next->data->min_key); 2012 bch_err(c, 2013 "%s(): btree topology error:\n" 2014 " prev ends at %s\n" 2015 " next starts at %s", 2016 __func__, buf1.buf, buf2.buf); 2017 printbuf_exit(&buf1); 2018 printbuf_exit(&buf2); 2019 ret = bch2_topology_error(c); 2020 goto err; 2021 } 2022 2023 bch2_bkey_format_init(&new_s); 2024 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 2025 __bch2_btree_calc_format(&new_s, prev); 2026 __bch2_btree_calc_format(&new_s, next); 2027 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 2028 new_f = bch2_bkey_format_done(&new_s); 2029 2030 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 2031 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 2032 2033 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 2034 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2035 sib_u64s /= 2; 2036 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2037 } 2038 2039 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 2040 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 2041 b->sib_u64s[sib] = sib_u64s; 2042 2043 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 2044 goto out; 2045 2046 parent = btree_node_parent(trans->paths + path, b); 2047 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 2048 BCH_TRANS_COMMIT_no_enospc|flags); 2049 ret = PTR_ERR_OR_ZERO(as); 2050 if (ret) 2051 goto err; 2052 2053 trace_and_count(c, btree_node_merge, trans, b); 2054 2055 bch2_btree_interior_update_will_free_node(as, b); 2056 bch2_btree_interior_update_will_free_node(as, m); 2057 2058 n = bch2_btree_node_alloc(as, trans, b->c.level); 2059 2060 SET_BTREE_NODE_SEQ(n->data, 2061 max(BTREE_NODE_SEQ(b->data), 2062 BTREE_NODE_SEQ(m->data)) + 1); 2063 2064 btree_set_min(n, prev->data->min_key); 2065 btree_set_max(n, next->data->max_key); 2066 2067 n->data->format = new_f; 2068 btree_node_set_format(n, new_f); 2069 2070 bch2_btree_sort_into(c, n, prev); 2071 bch2_btree_sort_into(c, n, next); 2072 2073 bch2_btree_build_aux_trees(n); 2074 bch2_btree_update_add_new_node(as, n); 2075 six_unlock_write(&n->c.lock); 2076 2077 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p); 2078 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2079 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2080 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2081 2082 bkey_init(&delete.k); 2083 delete.k.p = prev->key.k.p; 2084 bch2_keylist_add(&as->parent_keys, &delete); 2085 bch2_keylist_add(&as->parent_keys, &n->key); 2086 2087 bch2_trans_verify_paths(trans); 2088 2089 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 2090 if (ret) 2091 goto err_free_update; 2092 2093 bch2_trans_verify_paths(trans); 2094 2095 bch2_btree_update_get_open_buckets(as, n); 2096 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2097 2098 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 2099 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 2100 2101 bch2_trans_node_add(trans, trans->paths + path, n); 2102 2103 bch2_trans_verify_paths(trans); 2104 2105 six_unlock_intent(&n->c.lock); 2106 2107 bch2_btree_update_done(as, trans); 2108 2109 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 2110 out: 2111 err: 2112 if (new_path) 2113 bch2_path_put(trans, new_path, true); 2114 bch2_path_put(trans, sib_path, true); 2115 bch2_trans_verify_locks(trans); 2116 if (ret == -BCH_ERR_journal_reclaim_would_deadlock) 2117 ret = 0; 2118 if (!ret) 2119 ret = bch2_trans_relock(trans); 2120 return ret; 2121 err_free_update: 2122 bch2_btree_node_free_never_used(as, trans, n); 2123 bch2_btree_update_free(as, trans); 2124 goto out; 2125 } 2126 2127 int bch2_btree_node_rewrite(struct btree_trans *trans, 2128 struct btree_iter *iter, 2129 struct btree *b, 2130 unsigned flags) 2131 { 2132 struct bch_fs *c = trans->c; 2133 struct btree *n, *parent; 2134 struct btree_update *as; 2135 btree_path_idx_t new_path = 0; 2136 int ret; 2137 2138 flags |= BCH_TRANS_COMMIT_no_enospc; 2139 2140 struct btree_path *path = btree_iter_path(trans, iter); 2141 parent = btree_node_parent(path, b); 2142 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 2143 ret = PTR_ERR_OR_ZERO(as); 2144 if (ret) 2145 goto out; 2146 2147 bch2_btree_interior_update_will_free_node(as, b); 2148 2149 n = bch2_btree_node_alloc_replacement(as, trans, b); 2150 2151 bch2_btree_build_aux_trees(n); 2152 bch2_btree_update_add_new_node(as, n); 2153 six_unlock_write(&n->c.lock); 2154 2155 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p); 2156 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2157 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2158 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2159 2160 trace_and_count(c, btree_node_rewrite, trans, b); 2161 2162 if (parent) { 2163 bch2_keylist_add(&as->parent_keys, &n->key); 2164 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys); 2165 } else { 2166 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false); 2167 } 2168 2169 if (ret) 2170 goto err; 2171 2172 bch2_btree_update_get_open_buckets(as, n); 2173 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2174 2175 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2176 2177 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2178 six_unlock_intent(&n->c.lock); 2179 2180 bch2_btree_update_done(as, trans); 2181 out: 2182 if (new_path) 2183 bch2_path_put(trans, new_path, true); 2184 bch2_trans_downgrade(trans); 2185 return ret; 2186 err: 2187 bch2_btree_node_free_never_used(as, trans, n); 2188 bch2_btree_update_free(as, trans); 2189 goto out; 2190 } 2191 2192 struct async_btree_rewrite { 2193 struct bch_fs *c; 2194 struct work_struct work; 2195 struct list_head list; 2196 enum btree_id btree_id; 2197 unsigned level; 2198 struct bpos pos; 2199 __le64 seq; 2200 }; 2201 2202 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2203 struct async_btree_rewrite *a) 2204 { 2205 struct bch_fs *c = trans->c; 2206 struct btree_iter iter; 2207 struct btree *b; 2208 int ret; 2209 2210 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2211 BTREE_MAX_DEPTH, a->level, 0); 2212 b = bch2_btree_iter_peek_node(&iter); 2213 ret = PTR_ERR_OR_ZERO(b); 2214 if (ret) 2215 goto out; 2216 2217 if (!b || b->data->keys.seq != a->seq) { 2218 struct printbuf buf = PRINTBUF; 2219 2220 if (b) 2221 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2222 else 2223 prt_str(&buf, "(null"); 2224 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2225 __func__, a->seq, buf.buf); 2226 printbuf_exit(&buf); 2227 goto out; 2228 } 2229 2230 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2231 out: 2232 bch2_trans_iter_exit(trans, &iter); 2233 2234 return ret; 2235 } 2236 2237 static void async_btree_node_rewrite_work(struct work_struct *work) 2238 { 2239 struct async_btree_rewrite *a = 2240 container_of(work, struct async_btree_rewrite, work); 2241 struct bch_fs *c = a->c; 2242 int ret; 2243 2244 ret = bch2_trans_do(c, NULL, NULL, 0, 2245 async_btree_node_rewrite_trans(trans, a)); 2246 bch_err_fn_ratelimited(c, ret); 2247 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2248 kfree(a); 2249 } 2250 2251 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2252 { 2253 struct async_btree_rewrite *a; 2254 int ret; 2255 2256 a = kmalloc(sizeof(*a), GFP_NOFS); 2257 if (!a) { 2258 bch_err(c, "%s: error allocating memory", __func__); 2259 return; 2260 } 2261 2262 a->c = c; 2263 a->btree_id = b->c.btree_id; 2264 a->level = b->c.level; 2265 a->pos = b->key.k.p; 2266 a->seq = b->data->keys.seq; 2267 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2268 2269 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { 2270 mutex_lock(&c->pending_node_rewrites_lock); 2271 list_add(&a->list, &c->pending_node_rewrites); 2272 mutex_unlock(&c->pending_node_rewrites_lock); 2273 return; 2274 } 2275 2276 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2277 if (test_bit(BCH_FS_started, &c->flags)) { 2278 bch_err(c, "%s: error getting c->writes ref", __func__); 2279 kfree(a); 2280 return; 2281 } 2282 2283 ret = bch2_fs_read_write_early(c); 2284 bch_err_msg(c, ret, "going read-write"); 2285 if (ret) { 2286 kfree(a); 2287 return; 2288 } 2289 2290 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2291 } 2292 2293 queue_work(c->btree_node_rewrite_worker, &a->work); 2294 } 2295 2296 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2297 { 2298 struct async_btree_rewrite *a, *n; 2299 2300 mutex_lock(&c->pending_node_rewrites_lock); 2301 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2302 list_del(&a->list); 2303 2304 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2305 queue_work(c->btree_node_rewrite_worker, &a->work); 2306 } 2307 mutex_unlock(&c->pending_node_rewrites_lock); 2308 } 2309 2310 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2311 { 2312 struct async_btree_rewrite *a, *n; 2313 2314 mutex_lock(&c->pending_node_rewrites_lock); 2315 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2316 list_del(&a->list); 2317 2318 kfree(a); 2319 } 2320 mutex_unlock(&c->pending_node_rewrites_lock); 2321 } 2322 2323 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2324 struct btree_iter *iter, 2325 struct btree *b, struct btree *new_hash, 2326 struct bkey_i *new_key, 2327 unsigned commit_flags, 2328 bool skip_triggers) 2329 { 2330 struct bch_fs *c = trans->c; 2331 struct btree_iter iter2 = { NULL }; 2332 struct btree *parent; 2333 int ret; 2334 2335 if (!skip_triggers) { 2336 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2337 bkey_i_to_s_c(&b->key), 2338 BTREE_TRIGGER_transactional) ?: 2339 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2340 bkey_i_to_s(new_key), 2341 BTREE_TRIGGER_transactional); 2342 if (ret) 2343 return ret; 2344 } 2345 2346 if (new_hash) { 2347 bkey_copy(&new_hash->key, new_key); 2348 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2349 new_hash, b->c.level, b->c.btree_id); 2350 BUG_ON(ret); 2351 } 2352 2353 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2354 if (parent) { 2355 bch2_trans_copy_iter(&iter2, iter); 2356 2357 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2358 iter2.flags & BTREE_ITER_intent, 2359 _THIS_IP_); 2360 2361 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2362 BUG_ON(path2->level != b->c.level); 2363 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2364 2365 btree_path_set_level_up(trans, path2); 2366 2367 trans->paths_sorted = false; 2368 2369 ret = bch2_btree_iter_traverse(&iter2) ?: 2370 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun); 2371 if (ret) 2372 goto err; 2373 } else { 2374 BUG_ON(btree_node_root(c, b) != b); 2375 2376 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2377 jset_u64s(new_key->k.u64s)); 2378 ret = PTR_ERR_OR_ZERO(e); 2379 if (ret) 2380 return ret; 2381 2382 journal_entry_set(e, 2383 BCH_JSET_ENTRY_btree_root, 2384 b->c.btree_id, b->c.level, 2385 new_key, new_key->k.u64s); 2386 } 2387 2388 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2389 if (ret) 2390 goto err; 2391 2392 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2393 2394 if (new_hash) { 2395 mutex_lock(&c->btree_cache.lock); 2396 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2397 bch2_btree_node_hash_remove(&c->btree_cache, b); 2398 2399 bkey_copy(&b->key, new_key); 2400 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2401 BUG_ON(ret); 2402 mutex_unlock(&c->btree_cache.lock); 2403 } else { 2404 bkey_copy(&b->key, new_key); 2405 } 2406 2407 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2408 out: 2409 bch2_trans_iter_exit(trans, &iter2); 2410 return ret; 2411 err: 2412 if (new_hash) { 2413 mutex_lock(&c->btree_cache.lock); 2414 bch2_btree_node_hash_remove(&c->btree_cache, b); 2415 mutex_unlock(&c->btree_cache.lock); 2416 } 2417 goto out; 2418 } 2419 2420 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2421 struct btree *b, struct bkey_i *new_key, 2422 unsigned commit_flags, bool skip_triggers) 2423 { 2424 struct bch_fs *c = trans->c; 2425 struct btree *new_hash = NULL; 2426 struct btree_path *path = btree_iter_path(trans, iter); 2427 struct closure cl; 2428 int ret = 0; 2429 2430 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2431 if (ret) 2432 return ret; 2433 2434 closure_init_stack(&cl); 2435 2436 /* 2437 * check btree_ptr_hash_val() after @b is locked by 2438 * btree_iter_traverse(): 2439 */ 2440 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2441 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2442 if (ret) { 2443 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2444 if (ret) 2445 return ret; 2446 } 2447 2448 new_hash = bch2_btree_node_mem_alloc(trans, false); 2449 ret = PTR_ERR_OR_ZERO(new_hash); 2450 if (ret) 2451 goto err; 2452 } 2453 2454 path->intent_ref++; 2455 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2456 commit_flags, skip_triggers); 2457 --path->intent_ref; 2458 2459 if (new_hash) 2460 bch2_btree_node_to_freelist(c, new_hash); 2461 err: 2462 closure_sync(&cl); 2463 bch2_btree_cache_cannibalize_unlock(trans); 2464 return ret; 2465 } 2466 2467 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2468 struct btree *b, struct bkey_i *new_key, 2469 unsigned commit_flags, bool skip_triggers) 2470 { 2471 struct btree_iter iter; 2472 int ret; 2473 2474 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2475 BTREE_MAX_DEPTH, b->c.level, 2476 BTREE_ITER_intent); 2477 ret = bch2_btree_iter_traverse(&iter); 2478 if (ret) 2479 goto out; 2480 2481 /* has node been freed? */ 2482 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2483 /* node has been freed: */ 2484 BUG_ON(!btree_node_dying(b)); 2485 goto out; 2486 } 2487 2488 BUG_ON(!btree_node_hashed(b)); 2489 2490 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2491 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2492 2493 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2494 commit_flags, skip_triggers); 2495 out: 2496 bch2_trans_iter_exit(trans, &iter); 2497 return ret; 2498 } 2499 2500 /* Init code: */ 2501 2502 /* 2503 * Only for filesystem bringup, when first reading the btree roots or allocating 2504 * btree roots when initializing a new filesystem: 2505 */ 2506 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2507 { 2508 BUG_ON(btree_node_root(c, b)); 2509 2510 bch2_btree_set_root_inmem(c, b); 2511 } 2512 2513 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level) 2514 { 2515 struct bch_fs *c = trans->c; 2516 struct closure cl; 2517 struct btree *b; 2518 int ret; 2519 2520 closure_init_stack(&cl); 2521 2522 do { 2523 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2524 closure_sync(&cl); 2525 } while (ret); 2526 2527 b = bch2_btree_node_mem_alloc(trans, false); 2528 bch2_btree_cache_cannibalize_unlock(trans); 2529 2530 ret = PTR_ERR_OR_ZERO(b); 2531 if (ret) 2532 return ret; 2533 2534 set_btree_node_fake(b); 2535 set_btree_node_need_rewrite(b); 2536 b->c.level = level; 2537 b->c.btree_id = id; 2538 2539 bkey_btree_ptr_init(&b->key); 2540 b->key.k.p = SPOS_MAX; 2541 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2542 2543 bch2_bset_init_first(b, &b->data->keys); 2544 bch2_btree_build_aux_trees(b); 2545 2546 b->data->flags = 0; 2547 btree_set_min(b, POS_MIN); 2548 btree_set_max(b, SPOS_MAX); 2549 b->data->format = bch2_btree_calc_format(b); 2550 btree_node_set_format(b, b->data->format); 2551 2552 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2553 b->c.level, b->c.btree_id); 2554 BUG_ON(ret); 2555 2556 bch2_btree_set_root_inmem(c, b); 2557 2558 six_unlock_write(&b->c.lock); 2559 six_unlock_intent(&b->c.lock); 2560 return 0; 2561 } 2562 2563 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level) 2564 { 2565 bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level))); 2566 } 2567 2568 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as) 2569 { 2570 prt_printf(out, "%ps: ", (void *) as->ip_started); 2571 bch2_trans_commit_flags_to_text(out, as->flags); 2572 2573 prt_printf(out, " btree=%s l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n", 2574 bch2_btree_id_str(as->btree_id), 2575 as->update_level_start, 2576 as->update_level_end, 2577 bch2_btree_update_modes[as->mode], 2578 as->nodes_written, 2579 closure_nr_remaining(&as->cl), 2580 as->journal.seq); 2581 } 2582 2583 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2584 { 2585 struct btree_update *as; 2586 2587 mutex_lock(&c->btree_interior_update_lock); 2588 list_for_each_entry(as, &c->btree_interior_update_list, list) 2589 bch2_btree_update_to_text(out, as); 2590 mutex_unlock(&c->btree_interior_update_lock); 2591 } 2592 2593 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2594 { 2595 bool ret; 2596 2597 mutex_lock(&c->btree_interior_update_lock); 2598 ret = !list_empty(&c->btree_interior_update_list); 2599 mutex_unlock(&c->btree_interior_update_lock); 2600 2601 return ret; 2602 } 2603 2604 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2605 { 2606 bool ret = bch2_btree_interior_updates_pending(c); 2607 2608 if (ret) 2609 closure_wait_event(&c->btree_interior_update_wait, 2610 !bch2_btree_interior_updates_pending(c)); 2611 return ret; 2612 } 2613 2614 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2615 { 2616 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2617 2618 mutex_lock(&c->btree_root_lock); 2619 2620 r->level = entry->level; 2621 r->alive = true; 2622 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2623 2624 mutex_unlock(&c->btree_root_lock); 2625 } 2626 2627 struct jset_entry * 2628 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2629 struct jset_entry *end, 2630 unsigned long skip) 2631 { 2632 unsigned i; 2633 2634 mutex_lock(&c->btree_root_lock); 2635 2636 for (i = 0; i < btree_id_nr_alive(c); i++) { 2637 struct btree_root *r = bch2_btree_id_root(c, i); 2638 2639 if (r->alive && !test_bit(i, &skip)) { 2640 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2641 i, r->level, &r->key, r->key.k.u64s); 2642 end = vstruct_next(end); 2643 } 2644 } 2645 2646 mutex_unlock(&c->btree_root_lock); 2647 2648 return end; 2649 } 2650 2651 static void bch2_btree_alloc_to_text(struct printbuf *out, 2652 struct bch_fs *c, 2653 struct btree_alloc *a) 2654 { 2655 printbuf_indent_add(out, 2); 2656 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k)); 2657 prt_newline(out); 2658 2659 struct open_bucket *ob; 2660 unsigned i; 2661 open_bucket_for_each(c, &a->ob, ob, i) 2662 bch2_open_bucket_to_text(out, c, ob); 2663 2664 printbuf_indent_sub(out, 2); 2665 } 2666 2667 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c) 2668 { 2669 for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++) 2670 bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]); 2671 } 2672 2673 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2674 { 2675 if (c->btree_node_rewrite_worker) 2676 destroy_workqueue(c->btree_node_rewrite_worker); 2677 if (c->btree_interior_update_worker) 2678 destroy_workqueue(c->btree_interior_update_worker); 2679 mempool_exit(&c->btree_interior_update_pool); 2680 } 2681 2682 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2683 { 2684 mutex_init(&c->btree_reserve_cache_lock); 2685 INIT_LIST_HEAD(&c->btree_interior_update_list); 2686 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2687 mutex_init(&c->btree_interior_update_lock); 2688 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2689 2690 INIT_LIST_HEAD(&c->pending_node_rewrites); 2691 mutex_init(&c->pending_node_rewrites_lock); 2692 } 2693 2694 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2695 { 2696 c->btree_interior_update_worker = 2697 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8); 2698 if (!c->btree_interior_update_worker) 2699 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2700 2701 c->btree_node_rewrite_worker = 2702 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND); 2703 if (!c->btree_node_rewrite_worker) 2704 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2705 2706 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2707 sizeof(struct btree_update))) 2708 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2709 2710 return 0; 2711 } 2712