1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_methods.h" 6 #include "btree_cache.h" 7 #include "btree_gc.h" 8 #include "btree_journal_iter.h" 9 #include "btree_update.h" 10 #include "btree_update_interior.h" 11 #include "btree_io.h" 12 #include "btree_iter.h" 13 #include "btree_locking.h" 14 #include "buckets.h" 15 #include "clock.h" 16 #include "error.h" 17 #include "extents.h" 18 #include "journal.h" 19 #include "journal_reclaim.h" 20 #include "keylist.h" 21 #include "replicas.h" 22 #include "super-io.h" 23 #include "trace.h" 24 25 #include <linux/random.h> 26 27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 28 struct btree_path *, struct btree *, 29 struct keylist *, unsigned); 30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 31 32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans, 33 enum btree_id btree_id, 34 unsigned level, 35 struct bpos pos) 36 { 37 struct btree_path *path; 38 39 path = bch2_path_get(trans, btree_id, pos, level + 1, level, 40 BTREE_ITER_NOPRESERVE| 41 BTREE_ITER_INTENT, _RET_IP_); 42 path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_); 43 bch2_btree_path_downgrade(trans, path); 44 __bch2_btree_path_unlock(trans, path); 45 return path; 46 } 47 48 /* Debug code: */ 49 50 /* 51 * Verify that child nodes correctly span parent node's range: 52 */ 53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) 54 { 55 #ifdef CONFIG_BCACHEFS_DEBUG 56 struct bpos next_node = b->data->min_key; 57 struct btree_node_iter iter; 58 struct bkey_s_c k; 59 struct bkey_s_c_btree_ptr_v2 bp; 60 struct bkey unpacked; 61 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 62 63 BUG_ON(!b->c.level); 64 65 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) 66 return; 67 68 bch2_btree_node_iter_init_from_start(&iter, b); 69 70 while (1) { 71 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); 72 if (k.k->type != KEY_TYPE_btree_ptr_v2) 73 break; 74 bp = bkey_s_c_to_btree_ptr_v2(k); 75 76 if (!bpos_eq(next_node, bp.v->min_key)) { 77 bch2_dump_btree_node(c, b); 78 bch2_bpos_to_text(&buf1, next_node); 79 bch2_bpos_to_text(&buf2, bp.v->min_key); 80 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); 81 } 82 83 bch2_btree_node_iter_advance(&iter, b); 84 85 if (bch2_btree_node_iter_end(&iter)) { 86 if (!bpos_eq(k.k->p, b->key.k.p)) { 87 bch2_dump_btree_node(c, b); 88 bch2_bpos_to_text(&buf1, b->key.k.p); 89 bch2_bpos_to_text(&buf2, k.k->p); 90 panic("expected end %s got %s\n", buf1.buf, buf2.buf); 91 } 92 break; 93 } 94 95 next_node = bpos_successor(k.k->p); 96 } 97 #endif 98 } 99 100 /* Calculate ideal packed bkey format for new btree nodes: */ 101 102 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 103 { 104 struct bkey_packed *k; 105 struct bset_tree *t; 106 struct bkey uk; 107 108 for_each_bset(b, t) 109 bset_tree_for_each_key(b, t, k) 110 if (!bkey_deleted(k)) { 111 uk = bkey_unpack_key(b, k); 112 bch2_bkey_format_add_key(s, &uk); 113 } 114 } 115 116 static struct bkey_format bch2_btree_calc_format(struct btree *b) 117 { 118 struct bkey_format_state s; 119 120 bch2_bkey_format_init(&s); 121 bch2_bkey_format_add_pos(&s, b->data->min_key); 122 bch2_bkey_format_add_pos(&s, b->data->max_key); 123 __bch2_btree_calc_format(&s, b); 124 125 return bch2_bkey_format_done(&s); 126 } 127 128 static size_t btree_node_u64s_with_format(struct btree *b, 129 struct bkey_format *new_f) 130 { 131 struct bkey_format *old_f = &b->format; 132 133 /* stupid integer promotion rules */ 134 ssize_t delta = 135 (((int) new_f->key_u64s - old_f->key_u64s) * 136 (int) b->nr.packed_keys) + 137 (((int) new_f->key_u64s - BKEY_U64s) * 138 (int) b->nr.unpacked_keys); 139 140 BUG_ON(delta + b->nr.live_u64s < 0); 141 142 return b->nr.live_u64s + delta; 143 } 144 145 /** 146 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 147 * 148 * @c: filesystem handle 149 * @b: btree node to rewrite 150 * @new_f: bkey format to translate keys to 151 * 152 * Returns: true if all re-packed keys will be able to fit in a new node. 153 * 154 * Assumes all keys will successfully pack with the new format. 155 */ 156 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 157 struct bkey_format *new_f) 158 { 159 size_t u64s = btree_node_u64s_with_format(b, new_f); 160 161 return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); 162 } 163 164 /* Btree node freeing/allocation: */ 165 166 static void __btree_node_free(struct bch_fs *c, struct btree *b) 167 { 168 trace_and_count(c, btree_node_free, c, b); 169 170 BUG_ON(btree_node_write_blocked(b)); 171 BUG_ON(btree_node_dirty(b)); 172 BUG_ON(btree_node_need_write(b)); 173 BUG_ON(b == btree_node_root(c, b)); 174 BUG_ON(b->ob.nr); 175 BUG_ON(!list_empty(&b->write_blocked)); 176 BUG_ON(b->will_make_reachable); 177 178 clear_btree_node_noevict(b); 179 180 mutex_lock(&c->btree_cache.lock); 181 list_move(&b->list, &c->btree_cache.freeable); 182 mutex_unlock(&c->btree_cache.lock); 183 } 184 185 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 186 struct btree_path *path, 187 struct btree *b) 188 { 189 struct bch_fs *c = trans->c; 190 unsigned level = b->c.level; 191 192 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 193 bch2_btree_node_hash_remove(&c->btree_cache, b); 194 __btree_node_free(c, b); 195 six_unlock_write(&b->c.lock); 196 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 197 198 trans_for_each_path(trans, path) 199 if (path->l[level].b == b) { 200 btree_node_unlock(trans, path, level); 201 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 202 } 203 } 204 205 static void bch2_btree_node_free_never_used(struct btree_update *as, 206 struct btree_trans *trans, 207 struct btree *b) 208 { 209 struct bch_fs *c = as->c; 210 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 211 struct btree_path *path; 212 unsigned level = b->c.level; 213 214 BUG_ON(!list_empty(&b->write_blocked)); 215 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 216 217 b->will_make_reachable = 0; 218 closure_put(&as->cl); 219 220 clear_btree_node_will_make_reachable(b); 221 clear_btree_node_accessed(b); 222 clear_btree_node_dirty_acct(c, b); 223 clear_btree_node_need_write(b); 224 225 mutex_lock(&c->btree_cache.lock); 226 list_del_init(&b->list); 227 bch2_btree_node_hash_remove(&c->btree_cache, b); 228 mutex_unlock(&c->btree_cache.lock); 229 230 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 231 p->b[p->nr++] = b; 232 233 six_unlock_intent(&b->c.lock); 234 235 trans_for_each_path(trans, path) 236 if (path->l[level].b == b) { 237 btree_node_unlock(trans, path, level); 238 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 239 } 240 } 241 242 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 243 struct disk_reservation *res, 244 struct closure *cl, 245 bool interior_node, 246 unsigned flags) 247 { 248 struct bch_fs *c = trans->c; 249 struct write_point *wp; 250 struct btree *b; 251 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 252 struct open_buckets obs = { .nr = 0 }; 253 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 254 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 255 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim 256 ? BTREE_NODE_RESERVE 257 : 0; 258 int ret; 259 260 mutex_lock(&c->btree_reserve_cache_lock); 261 if (c->btree_reserve_cache_nr > nr_reserve) { 262 struct btree_alloc *a = 263 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 264 265 obs = a->ob; 266 bkey_copy(&tmp.k, &a->k); 267 mutex_unlock(&c->btree_reserve_cache_lock); 268 goto mem_alloc; 269 } 270 mutex_unlock(&c->btree_reserve_cache_lock); 271 272 retry: 273 ret = bch2_alloc_sectors_start_trans(trans, 274 c->opts.metadata_target ?: 275 c->opts.foreground_target, 276 0, 277 writepoint_ptr(&c->btree_write_point), 278 &devs_have, 279 res->nr_replicas, 280 c->opts.metadata_replicas_required, 281 watermark, 0, cl, &wp); 282 if (unlikely(ret)) 283 return ERR_PTR(ret); 284 285 if (wp->sectors_free < btree_sectors(c)) { 286 struct open_bucket *ob; 287 unsigned i; 288 289 open_bucket_for_each(c, &wp->ptrs, ob, i) 290 if (ob->sectors_free < btree_sectors(c)) 291 ob->sectors_free = 0; 292 293 bch2_alloc_sectors_done(c, wp); 294 goto retry; 295 } 296 297 bkey_btree_ptr_v2_init(&tmp.k); 298 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 299 300 bch2_open_bucket_get(c, wp, &obs); 301 bch2_alloc_sectors_done(c, wp); 302 mem_alloc: 303 b = bch2_btree_node_mem_alloc(trans, interior_node); 304 six_unlock_write(&b->c.lock); 305 six_unlock_intent(&b->c.lock); 306 307 /* we hold cannibalize_lock: */ 308 BUG_ON(IS_ERR(b)); 309 BUG_ON(b->ob.nr); 310 311 bkey_copy(&b->key, &tmp.k); 312 b->ob = obs; 313 314 return b; 315 } 316 317 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 318 struct btree_trans *trans, 319 unsigned level) 320 { 321 struct bch_fs *c = as->c; 322 struct btree *b; 323 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 324 int ret; 325 326 BUG_ON(level >= BTREE_MAX_DEPTH); 327 BUG_ON(!p->nr); 328 329 b = p->b[--p->nr]; 330 331 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 332 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 333 334 set_btree_node_accessed(b); 335 set_btree_node_dirty_acct(c, b); 336 set_btree_node_need_write(b); 337 338 bch2_bset_init_first(b, &b->data->keys); 339 b->c.level = level; 340 b->c.btree_id = as->btree_id; 341 b->version_ondisk = c->sb.version; 342 343 memset(&b->nr, 0, sizeof(b->nr)); 344 b->data->magic = cpu_to_le64(bset_magic(c)); 345 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 346 b->data->flags = 0; 347 SET_BTREE_NODE_ID(b->data, as->btree_id); 348 SET_BTREE_NODE_LEVEL(b->data, level); 349 350 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 351 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 352 353 bp->v.mem_ptr = 0; 354 bp->v.seq = b->data->keys.seq; 355 bp->v.sectors_written = 0; 356 } 357 358 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 359 360 bch2_btree_build_aux_trees(b); 361 362 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 363 BUG_ON(ret); 364 365 trace_and_count(c, btree_node_alloc, c, b); 366 bch2_increment_clock(c, btree_sectors(c), WRITE); 367 return b; 368 } 369 370 static void btree_set_min(struct btree *b, struct bpos pos) 371 { 372 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 373 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 374 b->data->min_key = pos; 375 } 376 377 static void btree_set_max(struct btree *b, struct bpos pos) 378 { 379 b->key.k.p = pos; 380 b->data->max_key = pos; 381 } 382 383 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 384 struct btree_trans *trans, 385 struct btree *b) 386 { 387 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 388 struct bkey_format format = bch2_btree_calc_format(b); 389 390 /* 391 * The keys might expand with the new format - if they wouldn't fit in 392 * the btree node anymore, use the old format for now: 393 */ 394 if (!bch2_btree_node_format_fits(as->c, b, &format)) 395 format = b->format; 396 397 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 398 399 btree_set_min(n, b->data->min_key); 400 btree_set_max(n, b->data->max_key); 401 402 n->data->format = format; 403 btree_node_set_format(n, format); 404 405 bch2_btree_sort_into(as->c, n, b); 406 407 btree_node_reset_sib_u64s(n); 408 return n; 409 } 410 411 static struct btree *__btree_root_alloc(struct btree_update *as, 412 struct btree_trans *trans, unsigned level) 413 { 414 struct btree *b = bch2_btree_node_alloc(as, trans, level); 415 416 btree_set_min(b, POS_MIN); 417 btree_set_max(b, SPOS_MAX); 418 b->data->format = bch2_btree_calc_format(b); 419 420 btree_node_set_format(b, b->data->format); 421 bch2_btree_build_aux_trees(b); 422 423 return b; 424 } 425 426 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 427 { 428 struct bch_fs *c = as->c; 429 struct prealloc_nodes *p; 430 431 for (p = as->prealloc_nodes; 432 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 433 p++) { 434 while (p->nr) { 435 struct btree *b = p->b[--p->nr]; 436 437 mutex_lock(&c->btree_reserve_cache_lock); 438 439 if (c->btree_reserve_cache_nr < 440 ARRAY_SIZE(c->btree_reserve_cache)) { 441 struct btree_alloc *a = 442 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 443 444 a->ob = b->ob; 445 b->ob.nr = 0; 446 bkey_copy(&a->k, &b->key); 447 } else { 448 bch2_open_buckets_put(c, &b->ob); 449 } 450 451 mutex_unlock(&c->btree_reserve_cache_lock); 452 453 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 454 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 455 __btree_node_free(c, b); 456 six_unlock_write(&b->c.lock); 457 six_unlock_intent(&b->c.lock); 458 } 459 } 460 } 461 462 static int bch2_btree_reserve_get(struct btree_trans *trans, 463 struct btree_update *as, 464 unsigned nr_nodes[2], 465 unsigned flags, 466 struct closure *cl) 467 { 468 struct bch_fs *c = as->c; 469 struct btree *b; 470 unsigned interior; 471 int ret = 0; 472 473 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 474 475 /* 476 * Protects reaping from the btree node cache and using the btree node 477 * open bucket reserve: 478 * 479 * BTREE_INSERT_NOWAIT only applies to btree node allocation, not 480 * blocking on this lock: 481 */ 482 ret = bch2_btree_cache_cannibalize_lock(c, cl); 483 if (ret) 484 return ret; 485 486 for (interior = 0; interior < 2; interior++) { 487 struct prealloc_nodes *p = as->prealloc_nodes + interior; 488 489 while (p->nr < nr_nodes[interior]) { 490 b = __bch2_btree_node_alloc(trans, &as->disk_res, 491 flags & BTREE_INSERT_NOWAIT ? NULL : cl, 492 interior, flags); 493 if (IS_ERR(b)) { 494 ret = PTR_ERR(b); 495 goto err; 496 } 497 498 p->b[p->nr++] = b; 499 } 500 } 501 err: 502 bch2_btree_cache_cannibalize_unlock(c); 503 return ret; 504 } 505 506 /* Asynchronous interior node update machinery */ 507 508 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 509 { 510 struct bch_fs *c = as->c; 511 512 if (as->took_gc_lock) 513 up_read(&c->gc_lock); 514 as->took_gc_lock = false; 515 516 bch2_journal_preres_put(&c->journal, &as->journal_preres); 517 518 bch2_journal_pin_drop(&c->journal, &as->journal); 519 bch2_journal_pin_flush(&c->journal, &as->journal); 520 bch2_disk_reservation_put(c, &as->disk_res); 521 bch2_btree_reserve_put(as, trans); 522 523 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 524 as->start_time); 525 526 mutex_lock(&c->btree_interior_update_lock); 527 list_del(&as->unwritten_list); 528 list_del(&as->list); 529 530 closure_debug_destroy(&as->cl); 531 mempool_free(as, &c->btree_interior_update_pool); 532 533 /* 534 * Have to do the wakeup with btree_interior_update_lock still held, 535 * since being on btree_interior_update_list is our ref on @c: 536 */ 537 closure_wake_up(&c->btree_interior_update_wait); 538 539 mutex_unlock(&c->btree_interior_update_lock); 540 } 541 542 static void btree_update_add_key(struct btree_update *as, 543 struct keylist *keys, struct btree *b) 544 { 545 struct bkey_i *k = &b->key; 546 547 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 548 ARRAY_SIZE(as->_old_keys)); 549 550 bkey_copy(keys->top, k); 551 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 552 553 bch2_keylist_push(keys); 554 } 555 556 /* 557 * The transactional part of an interior btree node update, where we journal the 558 * update we did to the interior node and update alloc info: 559 */ 560 static int btree_update_nodes_written_trans(struct btree_trans *trans, 561 struct btree_update *as) 562 { 563 struct bkey_i *k; 564 int ret; 565 566 ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s); 567 if (ret) 568 return ret; 569 570 memcpy(&darray_top(trans->extra_journal_entries), 571 as->journal_entries, 572 as->journal_u64s * sizeof(u64)); 573 trans->extra_journal_entries.nr += as->journal_u64s; 574 575 trans->journal_pin = &as->journal; 576 577 for_each_keylist_key(&as->old_keys, k) { 578 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 579 580 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0); 581 if (ret) 582 return ret; 583 } 584 585 for_each_keylist_key(&as->new_keys, k) { 586 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 587 588 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0); 589 if (ret) 590 return ret; 591 } 592 593 return 0; 594 } 595 596 static void btree_update_nodes_written(struct btree_update *as) 597 { 598 struct bch_fs *c = as->c; 599 struct btree *b; 600 struct btree_trans *trans = bch2_trans_get(c); 601 u64 journal_seq = 0; 602 unsigned i; 603 int ret; 604 605 /* 606 * If we're already in an error state, it might be because a btree node 607 * was never written, and we might be trying to free that same btree 608 * node here, but it won't have been marked as allocated and we'll see 609 * spurious disk usage inconsistencies in the transactional part below 610 * if we don't skip it: 611 */ 612 ret = bch2_journal_error(&c->journal); 613 if (ret) 614 goto err; 615 616 /* 617 * Wait for any in flight writes to finish before we free the old nodes 618 * on disk: 619 */ 620 for (i = 0; i < as->nr_old_nodes; i++) { 621 __le64 seq; 622 623 b = as->old_nodes[i]; 624 625 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 626 seq = b->data ? b->data->keys.seq : 0; 627 six_unlock_read(&b->c.lock); 628 629 if (seq == as->old_nodes_seq[i]) 630 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 631 TASK_UNINTERRUPTIBLE); 632 } 633 634 /* 635 * We did an update to a parent node where the pointers we added pointed 636 * to child nodes that weren't written yet: now, the child nodes have 637 * been written so we can write out the update to the interior node. 638 */ 639 640 /* 641 * We can't call into journal reclaim here: we'd block on the journal 642 * reclaim lock, but we may need to release the open buckets we have 643 * pinned in order for other btree updates to make forward progress, and 644 * journal reclaim does btree updates when flushing bkey_cached entries, 645 * which may require allocations as well. 646 */ 647 ret = commit_do(trans, &as->disk_res, &journal_seq, 648 BCH_WATERMARK_reclaim| 649 BTREE_INSERT_NOFAIL| 650 BTREE_INSERT_NOCHECK_RW| 651 BTREE_INSERT_JOURNAL_RECLAIM, 652 btree_update_nodes_written_trans(trans, as)); 653 bch2_trans_unlock(trans); 654 655 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 656 "%s(): error %s", __func__, bch2_err_str(ret)); 657 err: 658 if (as->b) { 659 struct btree_path *path; 660 661 b = as->b; 662 path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p); 663 /* 664 * @b is the node we did the final insert into: 665 * 666 * On failure to get a journal reservation, we still have to 667 * unblock the write and allow most of the write path to happen 668 * so that shutdown works, but the i->journal_seq mechanism 669 * won't work to prevent the btree write from being visible (we 670 * didn't get a journal sequence number) - instead 671 * __bch2_btree_node_write() doesn't do the actual write if 672 * we're in journal error state: 673 */ 674 675 /* 676 * Ensure transaction is unlocked before using 677 * btree_node_lock_nopath() (the use of which is always suspect, 678 * we need to work on removing this in the future) 679 * 680 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 681 * calls bch2_path_upgrade(), before we call path_make_mut(), so 682 * we may rarely end up with a locked path besides the one we 683 * have here: 684 */ 685 bch2_trans_unlock(trans); 686 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 687 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 688 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 689 path->l[b->c.level].b = b; 690 691 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 692 693 mutex_lock(&c->btree_interior_update_lock); 694 695 list_del(&as->write_blocked_list); 696 if (list_empty(&b->write_blocked)) 697 clear_btree_node_write_blocked(b); 698 699 /* 700 * Node might have been freed, recheck under 701 * btree_interior_update_lock: 702 */ 703 if (as->b == b) { 704 BUG_ON(!b->c.level); 705 BUG_ON(!btree_node_dirty(b)); 706 707 if (!ret) { 708 struct bset *last = btree_bset_last(b); 709 710 last->journal_seq = cpu_to_le64( 711 max(journal_seq, 712 le64_to_cpu(last->journal_seq))); 713 714 bch2_btree_add_journal_pin(c, b, journal_seq); 715 } else { 716 /* 717 * If we didn't get a journal sequence number we 718 * can't write this btree node, because recovery 719 * won't know to ignore this write: 720 */ 721 set_btree_node_never_write(b); 722 } 723 } 724 725 mutex_unlock(&c->btree_interior_update_lock); 726 727 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 728 six_unlock_write(&b->c.lock); 729 730 btree_node_write_if_need(c, b, SIX_LOCK_intent); 731 btree_node_unlock(trans, path, b->c.level); 732 bch2_path_put(trans, path, true); 733 } 734 735 bch2_journal_pin_drop(&c->journal, &as->journal); 736 737 bch2_journal_preres_put(&c->journal, &as->journal_preres); 738 739 mutex_lock(&c->btree_interior_update_lock); 740 for (i = 0; i < as->nr_new_nodes; i++) { 741 b = as->new_nodes[i]; 742 743 BUG_ON(b->will_make_reachable != (unsigned long) as); 744 b->will_make_reachable = 0; 745 clear_btree_node_will_make_reachable(b); 746 } 747 mutex_unlock(&c->btree_interior_update_lock); 748 749 for (i = 0; i < as->nr_new_nodes; i++) { 750 b = as->new_nodes[i]; 751 752 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 753 btree_node_write_if_need(c, b, SIX_LOCK_read); 754 six_unlock_read(&b->c.lock); 755 } 756 757 for (i = 0; i < as->nr_open_buckets; i++) 758 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 759 760 bch2_btree_update_free(as, trans); 761 bch2_trans_put(trans); 762 } 763 764 static void btree_interior_update_work(struct work_struct *work) 765 { 766 struct bch_fs *c = 767 container_of(work, struct bch_fs, btree_interior_update_work); 768 struct btree_update *as; 769 770 while (1) { 771 mutex_lock(&c->btree_interior_update_lock); 772 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 773 struct btree_update, unwritten_list); 774 if (as && !as->nodes_written) 775 as = NULL; 776 mutex_unlock(&c->btree_interior_update_lock); 777 778 if (!as) 779 break; 780 781 btree_update_nodes_written(as); 782 } 783 } 784 785 static void btree_update_set_nodes_written(struct closure *cl) 786 { 787 struct btree_update *as = container_of(cl, struct btree_update, cl); 788 struct bch_fs *c = as->c; 789 790 mutex_lock(&c->btree_interior_update_lock); 791 as->nodes_written = true; 792 mutex_unlock(&c->btree_interior_update_lock); 793 794 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 795 } 796 797 /* 798 * We're updating @b with pointers to nodes that haven't finished writing yet: 799 * block @b from being written until @as completes 800 */ 801 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 802 { 803 struct bch_fs *c = as->c; 804 805 mutex_lock(&c->btree_interior_update_lock); 806 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 807 808 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 809 BUG_ON(!btree_node_dirty(b)); 810 BUG_ON(!b->c.level); 811 812 as->mode = BTREE_INTERIOR_UPDATING_NODE; 813 as->b = b; 814 815 set_btree_node_write_blocked(b); 816 list_add(&as->write_blocked_list, &b->write_blocked); 817 818 mutex_unlock(&c->btree_interior_update_lock); 819 } 820 821 static void btree_update_reparent(struct btree_update *as, 822 struct btree_update *child) 823 { 824 struct bch_fs *c = as->c; 825 826 lockdep_assert_held(&c->btree_interior_update_lock); 827 828 child->b = NULL; 829 child->mode = BTREE_INTERIOR_UPDATING_AS; 830 831 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL); 832 } 833 834 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 835 { 836 struct bkey_i *insert = &b->key; 837 struct bch_fs *c = as->c; 838 839 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 840 841 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 842 ARRAY_SIZE(as->journal_entries)); 843 844 as->journal_u64s += 845 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 846 BCH_JSET_ENTRY_btree_root, 847 b->c.btree_id, b->c.level, 848 insert, insert->k.u64s); 849 850 mutex_lock(&c->btree_interior_update_lock); 851 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 852 853 as->mode = BTREE_INTERIOR_UPDATING_ROOT; 854 mutex_unlock(&c->btree_interior_update_lock); 855 } 856 857 /* 858 * bch2_btree_update_add_new_node: 859 * 860 * This causes @as to wait on @b to be written, before it gets to 861 * bch2_btree_update_nodes_written 862 * 863 * Additionally, it sets b->will_make_reachable to prevent any additional writes 864 * to @b from happening besides the first until @b is reachable on disk 865 * 866 * And it adds @b to the list of @as's new nodes, so that we can update sector 867 * counts in bch2_btree_update_nodes_written: 868 */ 869 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 870 { 871 struct bch_fs *c = as->c; 872 873 closure_get(&as->cl); 874 875 mutex_lock(&c->btree_interior_update_lock); 876 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 877 BUG_ON(b->will_make_reachable); 878 879 as->new_nodes[as->nr_new_nodes++] = b; 880 b->will_make_reachable = 1UL|(unsigned long) as; 881 set_btree_node_will_make_reachable(b); 882 883 mutex_unlock(&c->btree_interior_update_lock); 884 885 btree_update_add_key(as, &as->new_keys, b); 886 887 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 888 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 889 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 890 891 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 892 cpu_to_le16(sectors); 893 } 894 } 895 896 /* 897 * returns true if @b was a new node 898 */ 899 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 900 { 901 struct btree_update *as; 902 unsigned long v; 903 unsigned i; 904 905 mutex_lock(&c->btree_interior_update_lock); 906 /* 907 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 908 * dropped when it gets written by bch2_btree_complete_write - the 909 * xchg() is for synchronization with bch2_btree_complete_write: 910 */ 911 v = xchg(&b->will_make_reachable, 0); 912 clear_btree_node_will_make_reachable(b); 913 as = (struct btree_update *) (v & ~1UL); 914 915 if (!as) { 916 mutex_unlock(&c->btree_interior_update_lock); 917 return; 918 } 919 920 for (i = 0; i < as->nr_new_nodes; i++) 921 if (as->new_nodes[i] == b) 922 goto found; 923 924 BUG(); 925 found: 926 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 927 mutex_unlock(&c->btree_interior_update_lock); 928 929 if (v & 1) 930 closure_put(&as->cl); 931 } 932 933 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 934 { 935 while (b->ob.nr) 936 as->open_buckets[as->nr_open_buckets++] = 937 b->ob.v[--b->ob.nr]; 938 } 939 940 /* 941 * @b is being split/rewritten: it may have pointers to not-yet-written btree 942 * nodes and thus outstanding btree_updates - redirect @b's 943 * btree_updates to point to this btree_update: 944 */ 945 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 946 struct btree *b) 947 { 948 struct bch_fs *c = as->c; 949 struct btree_update *p, *n; 950 struct btree_write *w; 951 952 set_btree_node_dying(b); 953 954 if (btree_node_fake(b)) 955 return; 956 957 mutex_lock(&c->btree_interior_update_lock); 958 959 /* 960 * Does this node have any btree_update operations preventing 961 * it from being written? 962 * 963 * If so, redirect them to point to this btree_update: we can 964 * write out our new nodes, but we won't make them visible until those 965 * operations complete 966 */ 967 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 968 list_del_init(&p->write_blocked_list); 969 btree_update_reparent(as, p); 970 971 /* 972 * for flush_held_btree_writes() waiting on updates to flush or 973 * nodes to be writeable: 974 */ 975 closure_wake_up(&c->btree_interior_update_wait); 976 } 977 978 clear_btree_node_dirty_acct(c, b); 979 clear_btree_node_need_write(b); 980 clear_btree_node_write_blocked(b); 981 982 /* 983 * Does this node have unwritten data that has a pin on the journal? 984 * 985 * If so, transfer that pin to the btree_update operation - 986 * note that if we're freeing multiple nodes, we only need to keep the 987 * oldest pin of any of the nodes we're freeing. We'll release the pin 988 * when the new nodes are persistent and reachable on disk: 989 */ 990 w = btree_current_write(b); 991 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 992 bch2_journal_pin_drop(&c->journal, &w->journal); 993 994 w = btree_prev_write(b); 995 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 996 bch2_journal_pin_drop(&c->journal, &w->journal); 997 998 mutex_unlock(&c->btree_interior_update_lock); 999 1000 /* 1001 * Is this a node that isn't reachable on disk yet? 1002 * 1003 * Nodes that aren't reachable yet have writes blocked until they're 1004 * reachable - now that we've cancelled any pending writes and moved 1005 * things waiting on that write to wait on this update, we can drop this 1006 * node from the list of nodes that the other update is making 1007 * reachable, prior to freeing it: 1008 */ 1009 btree_update_drop_new_node(c, b); 1010 1011 btree_update_add_key(as, &as->old_keys, b); 1012 1013 as->old_nodes[as->nr_old_nodes] = b; 1014 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1015 as->nr_old_nodes++; 1016 } 1017 1018 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1019 { 1020 struct bch_fs *c = as->c; 1021 u64 start_time = as->start_time; 1022 1023 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); 1024 1025 if (as->took_gc_lock) 1026 up_read(&as->c->gc_lock); 1027 as->took_gc_lock = false; 1028 1029 bch2_btree_reserve_put(as, trans); 1030 1031 continue_at(&as->cl, btree_update_set_nodes_written, 1032 as->c->btree_interior_update_worker); 1033 1034 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1035 start_time); 1036 } 1037 1038 static struct btree_update * 1039 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1040 unsigned level, bool split, unsigned flags) 1041 { 1042 struct bch_fs *c = trans->c; 1043 struct btree_update *as; 1044 u64 start_time = local_clock(); 1045 int disk_res_flags = (flags & BTREE_INSERT_NOFAIL) 1046 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1047 unsigned nr_nodes[2] = { 0, 0 }; 1048 unsigned update_level = level; 1049 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1050 unsigned journal_flags = 0; 1051 int ret = 0; 1052 u32 restart_count = trans->restart_count; 1053 1054 BUG_ON(!path->should_be_locked); 1055 1056 if (watermark == BCH_WATERMARK_copygc) 1057 watermark = BCH_WATERMARK_btree_copygc; 1058 if (watermark < BCH_WATERMARK_btree) 1059 watermark = BCH_WATERMARK_btree; 1060 1061 flags &= ~BCH_WATERMARK_MASK; 1062 flags |= watermark; 1063 1064 if (flags & BTREE_INSERT_JOURNAL_RECLAIM) 1065 journal_flags |= JOURNAL_RES_GET_NONBLOCK; 1066 journal_flags |= watermark; 1067 1068 while (1) { 1069 nr_nodes[!!update_level] += 1 + split; 1070 update_level++; 1071 1072 ret = bch2_btree_path_upgrade(trans, path, update_level + 1); 1073 if (ret) 1074 return ERR_PTR(ret); 1075 1076 if (!btree_path_node(path, update_level)) { 1077 /* Allocating new root? */ 1078 nr_nodes[1] += split; 1079 update_level = BTREE_MAX_DEPTH; 1080 break; 1081 } 1082 1083 if (bch2_btree_node_insert_fits(c, path->l[update_level].b, 1084 BKEY_BTREE_PTR_U64s_MAX * (1 + split))) 1085 break; 1086 1087 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1088 } 1089 1090 if (flags & BTREE_INSERT_GC_LOCK_HELD) 1091 lockdep_assert_held(&c->gc_lock); 1092 else if (!down_read_trylock(&c->gc_lock)) { 1093 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1094 if (ret) { 1095 up_read(&c->gc_lock); 1096 return ERR_PTR(ret); 1097 } 1098 } 1099 1100 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1101 memset(as, 0, sizeof(*as)); 1102 closure_init(&as->cl, NULL); 1103 as->c = c; 1104 as->start_time = start_time; 1105 as->mode = BTREE_INTERIOR_NO_UPDATE; 1106 as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD); 1107 as->btree_id = path->btree_id; 1108 as->update_level = update_level; 1109 INIT_LIST_HEAD(&as->list); 1110 INIT_LIST_HEAD(&as->unwritten_list); 1111 INIT_LIST_HEAD(&as->write_blocked_list); 1112 bch2_keylist_init(&as->old_keys, as->_old_keys); 1113 bch2_keylist_init(&as->new_keys, as->_new_keys); 1114 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1115 1116 mutex_lock(&c->btree_interior_update_lock); 1117 list_add_tail(&as->list, &c->btree_interior_update_list); 1118 mutex_unlock(&c->btree_interior_update_lock); 1119 1120 /* 1121 * We don't want to allocate if we're in an error state, that can cause 1122 * deadlock on emergency shutdown due to open buckets getting stuck in 1123 * the btree_reserve_cache after allocator shutdown has cleared it out. 1124 * This check needs to come after adding us to the btree_interior_update 1125 * list but before calling bch2_btree_reserve_get, to synchronize with 1126 * __bch2_fs_read_only(). 1127 */ 1128 ret = bch2_journal_error(&c->journal); 1129 if (ret) 1130 goto err; 1131 1132 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres, 1133 BTREE_UPDATE_JOURNAL_RES, 1134 journal_flags|JOURNAL_RES_GET_NONBLOCK); 1135 if (ret) { 1136 if (flags & BTREE_INSERT_JOURNAL_RECLAIM) { 1137 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1138 goto err; 1139 } 1140 1141 ret = drop_locks_do(trans, 1142 bch2_journal_preres_get(&c->journal, &as->journal_preres, 1143 BTREE_UPDATE_JOURNAL_RES, 1144 journal_flags)); 1145 if (ret == -BCH_ERR_journal_preres_get_blocked) { 1146 trace_and_count(c, trans_restart_journal_preres_get, trans, _RET_IP_, journal_flags); 1147 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_journal_preres_get); 1148 } 1149 if (ret) 1150 goto err; 1151 } 1152 1153 ret = bch2_disk_reservation_get(c, &as->disk_res, 1154 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1155 c->opts.metadata_replicas, 1156 disk_res_flags); 1157 if (ret) 1158 goto err; 1159 1160 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1161 if (bch2_err_matches(ret, ENOSPC) || 1162 bch2_err_matches(ret, ENOMEM)) { 1163 struct closure cl; 1164 1165 /* 1166 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1167 * flag 1168 */ 1169 if (bch2_err_matches(ret, ENOSPC) && 1170 (flags & BTREE_INSERT_JOURNAL_RECLAIM) && 1171 watermark != BCH_WATERMARK_reclaim) { 1172 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1173 goto err; 1174 } 1175 1176 closure_init_stack(&cl); 1177 1178 do { 1179 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1180 1181 bch2_trans_unlock(trans); 1182 closure_sync(&cl); 1183 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1184 } 1185 1186 if (ret) { 1187 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1188 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1189 goto err; 1190 } 1191 1192 ret = bch2_trans_relock(trans); 1193 if (ret) 1194 goto err; 1195 1196 bch2_trans_verify_not_restarted(trans, restart_count); 1197 return as; 1198 err: 1199 bch2_btree_update_free(as, trans); 1200 return ERR_PTR(ret); 1201 } 1202 1203 /* Btree root updates: */ 1204 1205 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1206 { 1207 /* Root nodes cannot be reaped */ 1208 mutex_lock(&c->btree_cache.lock); 1209 list_del_init(&b->list); 1210 mutex_unlock(&c->btree_cache.lock); 1211 1212 mutex_lock(&c->btree_root_lock); 1213 BUG_ON(btree_node_root(c, b) && 1214 (b->c.level < btree_node_root(c, b)->c.level || 1215 !btree_node_dying(btree_node_root(c, b)))); 1216 1217 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1218 mutex_unlock(&c->btree_root_lock); 1219 1220 bch2_recalc_btree_reserve(c); 1221 } 1222 1223 static void bch2_btree_set_root(struct btree_update *as, 1224 struct btree_trans *trans, 1225 struct btree_path *path, 1226 struct btree *b) 1227 { 1228 struct bch_fs *c = as->c; 1229 struct btree *old; 1230 1231 trace_and_count(c, btree_node_set_root, c, b); 1232 1233 old = btree_node_root(c, b); 1234 1235 /* 1236 * Ensure no one is using the old root while we switch to the 1237 * new root: 1238 */ 1239 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1240 1241 bch2_btree_set_root_inmem(c, b); 1242 1243 btree_update_updated_root(as, b); 1244 1245 /* 1246 * Unlock old root after new root is visible: 1247 * 1248 * The new root isn't persistent, but that's ok: we still have 1249 * an intent lock on the new root, and any updates that would 1250 * depend on the new root would have to update the new root. 1251 */ 1252 bch2_btree_node_unlock_write(trans, path, old); 1253 } 1254 1255 /* Interior node updates: */ 1256 1257 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1258 struct btree_trans *trans, 1259 struct btree_path *path, 1260 struct btree *b, 1261 struct btree_node_iter *node_iter, 1262 struct bkey_i *insert) 1263 { 1264 struct bch_fs *c = as->c; 1265 struct bkey_packed *k; 1266 struct printbuf buf = PRINTBUF; 1267 unsigned long old, new, v; 1268 1269 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1270 !btree_ptr_sectors_written(insert)); 1271 1272 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1273 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1274 1275 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1276 btree_node_type(b), WRITE, &buf) ?: 1277 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1278 printbuf_reset(&buf); 1279 prt_printf(&buf, "inserting invalid bkey\n "); 1280 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1281 prt_printf(&buf, "\n "); 1282 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1283 btree_node_type(b), WRITE, &buf); 1284 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1285 1286 bch2_fs_inconsistent(c, "%s", buf.buf); 1287 dump_stack(); 1288 } 1289 1290 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1291 ARRAY_SIZE(as->journal_entries)); 1292 1293 as->journal_u64s += 1294 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1295 BCH_JSET_ENTRY_btree_keys, 1296 b->c.btree_id, b->c.level, 1297 insert, insert->k.u64s); 1298 1299 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1300 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1301 bch2_btree_node_iter_advance(node_iter, b); 1302 1303 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1304 set_btree_node_dirty_acct(c, b); 1305 1306 v = READ_ONCE(b->flags); 1307 do { 1308 old = new = v; 1309 1310 new &= ~BTREE_WRITE_TYPE_MASK; 1311 new |= BTREE_WRITE_interior; 1312 new |= 1 << BTREE_NODE_need_write; 1313 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1314 1315 printbuf_exit(&buf); 1316 } 1317 1318 static void 1319 __bch2_btree_insert_keys_interior(struct btree_update *as, 1320 struct btree_trans *trans, 1321 struct btree_path *path, 1322 struct btree *b, 1323 struct btree_node_iter node_iter, 1324 struct keylist *keys) 1325 { 1326 struct bkey_i *insert = bch2_keylist_front(keys); 1327 struct bkey_packed *k; 1328 1329 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1330 1331 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1332 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1333 ; 1334 1335 while (!bch2_keylist_empty(keys)) { 1336 insert = bch2_keylist_front(keys); 1337 1338 if (bpos_gt(insert->k.p, b->key.k.p)) 1339 break; 1340 1341 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1342 bch2_keylist_pop_front(keys); 1343 } 1344 } 1345 1346 /* 1347 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1348 * node) 1349 */ 1350 static void __btree_split_node(struct btree_update *as, 1351 struct btree_trans *trans, 1352 struct btree *b, 1353 struct btree *n[2]) 1354 { 1355 struct bkey_packed *k; 1356 struct bpos n1_pos = POS_MIN; 1357 struct btree_node_iter iter; 1358 struct bset *bsets[2]; 1359 struct bkey_format_state format[2]; 1360 struct bkey_packed *out[2]; 1361 struct bkey uk; 1362 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1363 int i; 1364 1365 for (i = 0; i < 2; i++) { 1366 BUG_ON(n[i]->nsets != 1); 1367 1368 bsets[i] = btree_bset_first(n[i]); 1369 out[i] = bsets[i]->start; 1370 1371 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1372 bch2_bkey_format_init(&format[i]); 1373 } 1374 1375 u64s = 0; 1376 for_each_btree_node_key(b, k, &iter) { 1377 if (bkey_deleted(k)) 1378 continue; 1379 1380 i = u64s >= n1_u64s; 1381 u64s += k->u64s; 1382 uk = bkey_unpack_key(b, k); 1383 if (!i) 1384 n1_pos = uk.p; 1385 bch2_bkey_format_add_key(&format[i], &uk); 1386 } 1387 1388 btree_set_min(n[0], b->data->min_key); 1389 btree_set_max(n[0], n1_pos); 1390 btree_set_min(n[1], bpos_successor(n1_pos)); 1391 btree_set_max(n[1], b->data->max_key); 1392 1393 for (i = 0; i < 2; i++) { 1394 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1395 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1396 1397 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1398 btree_node_set_format(n[i], n[i]->data->format); 1399 } 1400 1401 u64s = 0; 1402 for_each_btree_node_key(b, k, &iter) { 1403 if (bkey_deleted(k)) 1404 continue; 1405 1406 i = u64s >= n1_u64s; 1407 u64s += k->u64s; 1408 1409 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1410 ? &b->format: &bch2_bkey_format_current, k)) 1411 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1412 else 1413 bch2_bkey_unpack(b, (void *) out[i], k); 1414 1415 out[i]->needs_whiteout = false; 1416 1417 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1418 out[i] = bkey_p_next(out[i]); 1419 } 1420 1421 for (i = 0; i < 2; i++) { 1422 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1423 1424 BUG_ON(!bsets[i]->u64s); 1425 1426 set_btree_bset_end(n[i], n[i]->set); 1427 1428 btree_node_reset_sib_u64s(n[i]); 1429 1430 bch2_verify_btree_nr_keys(n[i]); 1431 1432 if (b->c.level) 1433 btree_node_interior_verify(as->c, n[i]); 1434 } 1435 } 1436 1437 /* 1438 * For updates to interior nodes, we've got to do the insert before we split 1439 * because the stuff we're inserting has to be inserted atomically. Post split, 1440 * the keys might have to go in different nodes and the split would no longer be 1441 * atomic. 1442 * 1443 * Worse, if the insert is from btree node coalescing, if we do the insert after 1444 * we do the split (and pick the pivot) - the pivot we pick might be between 1445 * nodes that were coalesced, and thus in the middle of a child node post 1446 * coalescing: 1447 */ 1448 static void btree_split_insert_keys(struct btree_update *as, 1449 struct btree_trans *trans, 1450 struct btree_path *path, 1451 struct btree *b, 1452 struct keylist *keys) 1453 { 1454 if (!bch2_keylist_empty(keys) && 1455 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1456 struct btree_node_iter node_iter; 1457 1458 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1459 1460 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1461 1462 btree_node_interior_verify(as->c, b); 1463 } 1464 } 1465 1466 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1467 struct btree_path *path, struct btree *b, 1468 struct keylist *keys, unsigned flags) 1469 { 1470 struct bch_fs *c = as->c; 1471 struct btree *parent = btree_node_parent(path, b); 1472 struct btree *n1, *n2 = NULL, *n3 = NULL; 1473 struct btree_path *path1 = NULL, *path2 = NULL; 1474 u64 start_time = local_clock(); 1475 int ret = 0; 1476 1477 BUG_ON(!parent && (b != btree_node_root(c, b))); 1478 BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1)); 1479 1480 bch2_btree_interior_update_will_free_node(as, b); 1481 1482 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1483 struct btree *n[2]; 1484 1485 trace_and_count(c, btree_node_split, c, b); 1486 1487 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1488 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1489 1490 __btree_split_node(as, trans, b, n); 1491 1492 if (keys) { 1493 btree_split_insert_keys(as, trans, path, n1, keys); 1494 btree_split_insert_keys(as, trans, path, n2, keys); 1495 BUG_ON(!bch2_keylist_empty(keys)); 1496 } 1497 1498 bch2_btree_build_aux_trees(n2); 1499 bch2_btree_build_aux_trees(n1); 1500 1501 bch2_btree_update_add_new_node(as, n1); 1502 bch2_btree_update_add_new_node(as, n2); 1503 six_unlock_write(&n2->c.lock); 1504 six_unlock_write(&n1->c.lock); 1505 1506 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1507 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1508 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1509 bch2_btree_path_level_init(trans, path1, n1); 1510 1511 path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p); 1512 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1513 mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1514 bch2_btree_path_level_init(trans, path2, n2); 1515 1516 /* 1517 * Note that on recursive parent_keys == keys, so we 1518 * can't start adding new keys to parent_keys before emptying it 1519 * out (which we did with btree_split_insert_keys() above) 1520 */ 1521 bch2_keylist_add(&as->parent_keys, &n1->key); 1522 bch2_keylist_add(&as->parent_keys, &n2->key); 1523 1524 if (!parent) { 1525 /* Depth increases, make a new root */ 1526 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1527 1528 bch2_btree_update_add_new_node(as, n3); 1529 six_unlock_write(&n3->c.lock); 1530 1531 path2->locks_want++; 1532 BUG_ON(btree_node_locked(path2, n3->c.level)); 1533 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1534 mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1535 bch2_btree_path_level_init(trans, path2, n3); 1536 1537 n3->sib_u64s[0] = U16_MAX; 1538 n3->sib_u64s[1] = U16_MAX; 1539 1540 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1541 } 1542 } else { 1543 trace_and_count(c, btree_node_compact, c, b); 1544 1545 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1546 1547 if (keys) { 1548 btree_split_insert_keys(as, trans, path, n1, keys); 1549 BUG_ON(!bch2_keylist_empty(keys)); 1550 } 1551 1552 bch2_btree_build_aux_trees(n1); 1553 bch2_btree_update_add_new_node(as, n1); 1554 six_unlock_write(&n1->c.lock); 1555 1556 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1557 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1558 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1559 bch2_btree_path_level_init(trans, path1, n1); 1560 1561 if (parent) 1562 bch2_keylist_add(&as->parent_keys, &n1->key); 1563 } 1564 1565 /* New nodes all written, now make them visible: */ 1566 1567 if (parent) { 1568 /* Split a non root node */ 1569 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1570 if (ret) 1571 goto err; 1572 } else if (n3) { 1573 bch2_btree_set_root(as, trans, path, n3); 1574 } else { 1575 /* Root filled up but didn't need to be split */ 1576 bch2_btree_set_root(as, trans, path, n1); 1577 } 1578 1579 if (n3) { 1580 bch2_btree_update_get_open_buckets(as, n3); 1581 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1582 } 1583 if (n2) { 1584 bch2_btree_update_get_open_buckets(as, n2); 1585 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1586 } 1587 bch2_btree_update_get_open_buckets(as, n1); 1588 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1589 1590 /* 1591 * The old node must be freed (in memory) _before_ unlocking the new 1592 * nodes - else another thread could re-acquire a read lock on the old 1593 * node after another thread has locked and updated the new node, thus 1594 * seeing stale data: 1595 */ 1596 bch2_btree_node_free_inmem(trans, path, b); 1597 1598 if (n3) 1599 bch2_trans_node_add(trans, n3); 1600 if (n2) 1601 bch2_trans_node_add(trans, n2); 1602 bch2_trans_node_add(trans, n1); 1603 1604 if (n3) 1605 six_unlock_intent(&n3->c.lock); 1606 if (n2) 1607 six_unlock_intent(&n2->c.lock); 1608 six_unlock_intent(&n1->c.lock); 1609 out: 1610 if (path2) { 1611 __bch2_btree_path_unlock(trans, path2); 1612 bch2_path_put(trans, path2, true); 1613 } 1614 if (path1) { 1615 __bch2_btree_path_unlock(trans, path1); 1616 bch2_path_put(trans, path1, true); 1617 } 1618 1619 bch2_trans_verify_locks(trans); 1620 1621 bch2_time_stats_update(&c->times[n2 1622 ? BCH_TIME_btree_node_split 1623 : BCH_TIME_btree_node_compact], 1624 start_time); 1625 return ret; 1626 err: 1627 if (n3) 1628 bch2_btree_node_free_never_used(as, trans, n3); 1629 if (n2) 1630 bch2_btree_node_free_never_used(as, trans, n2); 1631 bch2_btree_node_free_never_used(as, trans, n1); 1632 goto out; 1633 } 1634 1635 static void 1636 bch2_btree_insert_keys_interior(struct btree_update *as, 1637 struct btree_trans *trans, 1638 struct btree_path *path, 1639 struct btree *b, 1640 struct keylist *keys) 1641 { 1642 struct btree_path *linked; 1643 1644 __bch2_btree_insert_keys_interior(as, trans, path, b, 1645 path->l[b->c.level].iter, keys); 1646 1647 btree_update_updated_node(as, b); 1648 1649 trans_for_each_path_with_node(trans, b, linked) 1650 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1651 1652 bch2_trans_verify_paths(trans); 1653 } 1654 1655 /** 1656 * bch2_btree_insert_node - insert bkeys into a given btree node 1657 * 1658 * @as: btree_update object 1659 * @trans: btree_trans object 1660 * @path: path that points to current node 1661 * @b: node to insert keys into 1662 * @keys: list of keys to insert 1663 * @flags: transaction commit flags 1664 * 1665 * Returns: 0 on success, typically transaction restart error on failure 1666 * 1667 * Inserts as many keys as it can into a given btree node, splitting it if full. 1668 * If a split occurred, this function will return early. This can only happen 1669 * for leaf nodes -- inserts into interior nodes have to be atomic. 1670 */ 1671 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1672 struct btree_path *path, struct btree *b, 1673 struct keylist *keys, unsigned flags) 1674 { 1675 struct bch_fs *c = as->c; 1676 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1677 int old_live_u64s = b->nr.live_u64s; 1678 int live_u64s_added, u64s_added; 1679 int ret; 1680 1681 lockdep_assert_held(&c->gc_lock); 1682 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1683 BUG_ON(!b->c.level); 1684 BUG_ON(!as || as->b); 1685 bch2_verify_keylist_sorted(keys); 1686 1687 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1688 if (ret) 1689 return ret; 1690 1691 bch2_btree_node_prep_for_write(trans, path, b); 1692 1693 if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) { 1694 bch2_btree_node_unlock_write(trans, path, b); 1695 goto split; 1696 } 1697 1698 btree_node_interior_verify(c, b); 1699 1700 bch2_btree_insert_keys_interior(as, trans, path, b, keys); 1701 1702 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1703 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1704 1705 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1706 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1707 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1708 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1709 1710 if (u64s_added > live_u64s_added && 1711 bch2_maybe_compact_whiteouts(c, b)) 1712 bch2_trans_node_reinit_iter(trans, b); 1713 1714 bch2_btree_node_unlock_write(trans, path, b); 1715 1716 btree_node_interior_verify(c, b); 1717 return 0; 1718 split: 1719 /* 1720 * We could attempt to avoid the transaction restart, by calling 1721 * bch2_btree_path_upgrade() and allocating more nodes: 1722 */ 1723 if (b->c.level >= as->update_level) { 1724 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1725 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1726 } 1727 1728 return btree_split(as, trans, path, b, keys, flags); 1729 } 1730 1731 int bch2_btree_split_leaf(struct btree_trans *trans, 1732 struct btree_path *path, 1733 unsigned flags) 1734 { 1735 struct btree *b = path_l(path)->b; 1736 struct btree_update *as; 1737 unsigned l; 1738 int ret = 0; 1739 1740 as = bch2_btree_update_start(trans, path, path->level, 1741 true, flags); 1742 if (IS_ERR(as)) 1743 return PTR_ERR(as); 1744 1745 ret = btree_split(as, trans, path, b, NULL, flags); 1746 if (ret) { 1747 bch2_btree_update_free(as, trans); 1748 return ret; 1749 } 1750 1751 bch2_btree_update_done(as, trans); 1752 1753 for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++) 1754 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1755 1756 return ret; 1757 } 1758 1759 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1760 struct btree_path *path, 1761 unsigned level, 1762 unsigned flags, 1763 enum btree_node_sibling sib) 1764 { 1765 struct bch_fs *c = trans->c; 1766 struct btree_path *sib_path = NULL, *new_path = NULL; 1767 struct btree_update *as; 1768 struct bkey_format_state new_s; 1769 struct bkey_format new_f; 1770 struct bkey_i delete; 1771 struct btree *b, *m, *n, *prev, *next, *parent; 1772 struct bpos sib_pos; 1773 size_t sib_u64s; 1774 u64 start_time = local_clock(); 1775 int ret = 0; 1776 1777 BUG_ON(!path->should_be_locked); 1778 BUG_ON(!btree_node_locked(path, level)); 1779 1780 b = path->l[level].b; 1781 1782 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1783 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1784 b->sib_u64s[sib] = U16_MAX; 1785 return 0; 1786 } 1787 1788 sib_pos = sib == btree_prev_sib 1789 ? bpos_predecessor(b->data->min_key) 1790 : bpos_successor(b->data->max_key); 1791 1792 sib_path = bch2_path_get(trans, path->btree_id, sib_pos, 1793 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1794 ret = bch2_btree_path_traverse(trans, sib_path, false); 1795 if (ret) 1796 goto err; 1797 1798 btree_path_set_should_be_locked(sib_path); 1799 1800 m = sib_path->l[level].b; 1801 1802 if (btree_node_parent(path, b) != 1803 btree_node_parent(sib_path, m)) { 1804 b->sib_u64s[sib] = U16_MAX; 1805 goto out; 1806 } 1807 1808 if (sib == btree_prev_sib) { 1809 prev = m; 1810 next = b; 1811 } else { 1812 prev = b; 1813 next = m; 1814 } 1815 1816 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 1817 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 1818 1819 bch2_bpos_to_text(&buf1, prev->data->max_key); 1820 bch2_bpos_to_text(&buf2, next->data->min_key); 1821 bch_err(c, 1822 "%s(): btree topology error:\n" 1823 " prev ends at %s\n" 1824 " next starts at %s", 1825 __func__, buf1.buf, buf2.buf); 1826 printbuf_exit(&buf1); 1827 printbuf_exit(&buf2); 1828 bch2_topology_error(c); 1829 ret = -EIO; 1830 goto err; 1831 } 1832 1833 bch2_bkey_format_init(&new_s); 1834 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 1835 __bch2_btree_calc_format(&new_s, prev); 1836 __bch2_btree_calc_format(&new_s, next); 1837 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 1838 new_f = bch2_bkey_format_done(&new_s); 1839 1840 sib_u64s = btree_node_u64s_with_format(b, &new_f) + 1841 btree_node_u64s_with_format(m, &new_f); 1842 1843 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 1844 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1845 sib_u64s /= 2; 1846 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1847 } 1848 1849 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 1850 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 1851 b->sib_u64s[sib] = sib_u64s; 1852 1853 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 1854 goto out; 1855 1856 parent = btree_node_parent(path, b); 1857 as = bch2_btree_update_start(trans, path, level, false, 1858 BTREE_INSERT_NOFAIL|flags); 1859 ret = PTR_ERR_OR_ZERO(as); 1860 if (ret) 1861 goto err; 1862 1863 trace_and_count(c, btree_node_merge, c, b); 1864 1865 bch2_btree_interior_update_will_free_node(as, b); 1866 bch2_btree_interior_update_will_free_node(as, m); 1867 1868 n = bch2_btree_node_alloc(as, trans, b->c.level); 1869 1870 SET_BTREE_NODE_SEQ(n->data, 1871 max(BTREE_NODE_SEQ(b->data), 1872 BTREE_NODE_SEQ(m->data)) + 1); 1873 1874 btree_set_min(n, prev->data->min_key); 1875 btree_set_max(n, next->data->max_key); 1876 1877 n->data->format = new_f; 1878 btree_node_set_format(n, new_f); 1879 1880 bch2_btree_sort_into(c, n, prev); 1881 bch2_btree_sort_into(c, n, next); 1882 1883 bch2_btree_build_aux_trees(n); 1884 bch2_btree_update_add_new_node(as, n); 1885 six_unlock_write(&n->c.lock); 1886 1887 new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p); 1888 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1889 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1890 bch2_btree_path_level_init(trans, new_path, n); 1891 1892 bkey_init(&delete.k); 1893 delete.k.p = prev->key.k.p; 1894 bch2_keylist_add(&as->parent_keys, &delete); 1895 bch2_keylist_add(&as->parent_keys, &n->key); 1896 1897 bch2_trans_verify_paths(trans); 1898 1899 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1900 if (ret) 1901 goto err_free_update; 1902 1903 bch2_trans_verify_paths(trans); 1904 1905 bch2_btree_update_get_open_buckets(as, n); 1906 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1907 1908 bch2_btree_node_free_inmem(trans, path, b); 1909 bch2_btree_node_free_inmem(trans, sib_path, m); 1910 1911 bch2_trans_node_add(trans, n); 1912 1913 bch2_trans_verify_paths(trans); 1914 1915 six_unlock_intent(&n->c.lock); 1916 1917 bch2_btree_update_done(as, trans); 1918 1919 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 1920 out: 1921 err: 1922 if (new_path) 1923 bch2_path_put(trans, new_path, true); 1924 bch2_path_put(trans, sib_path, true); 1925 bch2_trans_verify_locks(trans); 1926 return ret; 1927 err_free_update: 1928 bch2_btree_node_free_never_used(as, trans, n); 1929 bch2_btree_update_free(as, trans); 1930 goto out; 1931 } 1932 1933 int bch2_btree_node_rewrite(struct btree_trans *trans, 1934 struct btree_iter *iter, 1935 struct btree *b, 1936 unsigned flags) 1937 { 1938 struct bch_fs *c = trans->c; 1939 struct btree_path *new_path = NULL; 1940 struct btree *n, *parent; 1941 struct btree_update *as; 1942 int ret; 1943 1944 flags |= BTREE_INSERT_NOFAIL; 1945 1946 parent = btree_node_parent(iter->path, b); 1947 as = bch2_btree_update_start(trans, iter->path, b->c.level, 1948 false, flags); 1949 ret = PTR_ERR_OR_ZERO(as); 1950 if (ret) 1951 goto out; 1952 1953 bch2_btree_interior_update_will_free_node(as, b); 1954 1955 n = bch2_btree_node_alloc_replacement(as, trans, b); 1956 1957 bch2_btree_build_aux_trees(n); 1958 bch2_btree_update_add_new_node(as, n); 1959 six_unlock_write(&n->c.lock); 1960 1961 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 1962 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1963 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1964 bch2_btree_path_level_init(trans, new_path, n); 1965 1966 trace_and_count(c, btree_node_rewrite, c, b); 1967 1968 if (parent) { 1969 bch2_keylist_add(&as->parent_keys, &n->key); 1970 ret = bch2_btree_insert_node(as, trans, iter->path, parent, 1971 &as->parent_keys, flags); 1972 if (ret) 1973 goto err; 1974 } else { 1975 bch2_btree_set_root(as, trans, iter->path, n); 1976 } 1977 1978 bch2_btree_update_get_open_buckets(as, n); 1979 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1980 1981 bch2_btree_node_free_inmem(trans, iter->path, b); 1982 1983 bch2_trans_node_add(trans, n); 1984 six_unlock_intent(&n->c.lock); 1985 1986 bch2_btree_update_done(as, trans); 1987 out: 1988 if (new_path) 1989 bch2_path_put(trans, new_path, true); 1990 bch2_trans_downgrade(trans); 1991 return ret; 1992 err: 1993 bch2_btree_node_free_never_used(as, trans, n); 1994 bch2_btree_update_free(as, trans); 1995 goto out; 1996 } 1997 1998 struct async_btree_rewrite { 1999 struct bch_fs *c; 2000 struct work_struct work; 2001 struct list_head list; 2002 enum btree_id btree_id; 2003 unsigned level; 2004 struct bpos pos; 2005 __le64 seq; 2006 }; 2007 2008 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2009 struct async_btree_rewrite *a) 2010 { 2011 struct bch_fs *c = trans->c; 2012 struct btree_iter iter; 2013 struct btree *b; 2014 int ret; 2015 2016 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2017 BTREE_MAX_DEPTH, a->level, 0); 2018 b = bch2_btree_iter_peek_node(&iter); 2019 ret = PTR_ERR_OR_ZERO(b); 2020 if (ret) 2021 goto out; 2022 2023 if (!b || b->data->keys.seq != a->seq) { 2024 struct printbuf buf = PRINTBUF; 2025 2026 if (b) 2027 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2028 else 2029 prt_str(&buf, "(null"); 2030 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2031 __func__, a->seq, buf.buf); 2032 printbuf_exit(&buf); 2033 goto out; 2034 } 2035 2036 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2037 out: 2038 bch2_trans_iter_exit(trans, &iter); 2039 2040 return ret; 2041 } 2042 2043 static void async_btree_node_rewrite_work(struct work_struct *work) 2044 { 2045 struct async_btree_rewrite *a = 2046 container_of(work, struct async_btree_rewrite, work); 2047 struct bch_fs *c = a->c; 2048 int ret; 2049 2050 ret = bch2_trans_do(c, NULL, NULL, 0, 2051 async_btree_node_rewrite_trans(trans, a)); 2052 if (ret) 2053 bch_err_fn(c, ret); 2054 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2055 kfree(a); 2056 } 2057 2058 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2059 { 2060 struct async_btree_rewrite *a; 2061 int ret; 2062 2063 a = kmalloc(sizeof(*a), GFP_NOFS); 2064 if (!a) { 2065 bch_err(c, "%s: error allocating memory", __func__); 2066 return; 2067 } 2068 2069 a->c = c; 2070 a->btree_id = b->c.btree_id; 2071 a->level = b->c.level; 2072 a->pos = b->key.k.p; 2073 a->seq = b->data->keys.seq; 2074 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2075 2076 if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) { 2077 mutex_lock(&c->pending_node_rewrites_lock); 2078 list_add(&a->list, &c->pending_node_rewrites); 2079 mutex_unlock(&c->pending_node_rewrites_lock); 2080 return; 2081 } 2082 2083 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2084 if (test_bit(BCH_FS_STARTED, &c->flags)) { 2085 bch_err(c, "%s: error getting c->writes ref", __func__); 2086 kfree(a); 2087 return; 2088 } 2089 2090 ret = bch2_fs_read_write_early(c); 2091 if (ret) { 2092 bch_err_msg(c, ret, "going read-write"); 2093 kfree(a); 2094 return; 2095 } 2096 2097 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2098 } 2099 2100 queue_work(c->btree_interior_update_worker, &a->work); 2101 } 2102 2103 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2104 { 2105 struct async_btree_rewrite *a, *n; 2106 2107 mutex_lock(&c->pending_node_rewrites_lock); 2108 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2109 list_del(&a->list); 2110 2111 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2112 queue_work(c->btree_interior_update_worker, &a->work); 2113 } 2114 mutex_unlock(&c->pending_node_rewrites_lock); 2115 } 2116 2117 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2118 { 2119 struct async_btree_rewrite *a, *n; 2120 2121 mutex_lock(&c->pending_node_rewrites_lock); 2122 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2123 list_del(&a->list); 2124 2125 kfree(a); 2126 } 2127 mutex_unlock(&c->pending_node_rewrites_lock); 2128 } 2129 2130 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2131 struct btree_iter *iter, 2132 struct btree *b, struct btree *new_hash, 2133 struct bkey_i *new_key, 2134 unsigned commit_flags, 2135 bool skip_triggers) 2136 { 2137 struct bch_fs *c = trans->c; 2138 struct btree_iter iter2 = { NULL }; 2139 struct btree *parent; 2140 int ret; 2141 2142 if (!skip_triggers) { 2143 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1, 2144 bkey_i_to_s_c(&b->key), 0); 2145 if (ret) 2146 return ret; 2147 2148 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1, 2149 new_key, 0); 2150 if (ret) 2151 return ret; 2152 } 2153 2154 if (new_hash) { 2155 bkey_copy(&new_hash->key, new_key); 2156 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2157 new_hash, b->c.level, b->c.btree_id); 2158 BUG_ON(ret); 2159 } 2160 2161 parent = btree_node_parent(iter->path, b); 2162 if (parent) { 2163 bch2_trans_copy_iter(&iter2, iter); 2164 2165 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2166 iter2.flags & BTREE_ITER_INTENT, 2167 _THIS_IP_); 2168 2169 BUG_ON(iter2.path->level != b->c.level); 2170 BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p)); 2171 2172 btree_path_set_level_up(trans, iter2.path); 2173 2174 trans->paths_sorted = false; 2175 2176 ret = bch2_btree_iter_traverse(&iter2) ?: 2177 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2178 if (ret) 2179 goto err; 2180 } else { 2181 BUG_ON(btree_node_root(c, b) != b); 2182 2183 ret = darray_make_room(&trans->extra_journal_entries, 2184 jset_u64s(new_key->k.u64s)); 2185 if (ret) 2186 return ret; 2187 2188 journal_entry_set((void *) &darray_top(trans->extra_journal_entries), 2189 BCH_JSET_ENTRY_btree_root, 2190 b->c.btree_id, b->c.level, 2191 new_key, new_key->k.u64s); 2192 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s); 2193 } 2194 2195 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2196 if (ret) 2197 goto err; 2198 2199 bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c); 2200 2201 if (new_hash) { 2202 mutex_lock(&c->btree_cache.lock); 2203 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2204 bch2_btree_node_hash_remove(&c->btree_cache, b); 2205 2206 bkey_copy(&b->key, new_key); 2207 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2208 BUG_ON(ret); 2209 mutex_unlock(&c->btree_cache.lock); 2210 } else { 2211 bkey_copy(&b->key, new_key); 2212 } 2213 2214 bch2_btree_node_unlock_write(trans, iter->path, b); 2215 out: 2216 bch2_trans_iter_exit(trans, &iter2); 2217 return ret; 2218 err: 2219 if (new_hash) { 2220 mutex_lock(&c->btree_cache.lock); 2221 bch2_btree_node_hash_remove(&c->btree_cache, b); 2222 mutex_unlock(&c->btree_cache.lock); 2223 } 2224 goto out; 2225 } 2226 2227 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2228 struct btree *b, struct bkey_i *new_key, 2229 unsigned commit_flags, bool skip_triggers) 2230 { 2231 struct bch_fs *c = trans->c; 2232 struct btree *new_hash = NULL; 2233 struct btree_path *path = iter->path; 2234 struct closure cl; 2235 int ret = 0; 2236 2237 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2238 if (ret) 2239 return ret; 2240 2241 closure_init_stack(&cl); 2242 2243 /* 2244 * check btree_ptr_hash_val() after @b is locked by 2245 * btree_iter_traverse(): 2246 */ 2247 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2248 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2249 if (ret) { 2250 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2251 if (ret) 2252 return ret; 2253 } 2254 2255 new_hash = bch2_btree_node_mem_alloc(trans, false); 2256 } 2257 2258 path->intent_ref++; 2259 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2260 commit_flags, skip_triggers); 2261 --path->intent_ref; 2262 2263 if (new_hash) { 2264 mutex_lock(&c->btree_cache.lock); 2265 list_move(&new_hash->list, &c->btree_cache.freeable); 2266 mutex_unlock(&c->btree_cache.lock); 2267 2268 six_unlock_write(&new_hash->c.lock); 2269 six_unlock_intent(&new_hash->c.lock); 2270 } 2271 closure_sync(&cl); 2272 bch2_btree_cache_cannibalize_unlock(c); 2273 return ret; 2274 } 2275 2276 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2277 struct btree *b, struct bkey_i *new_key, 2278 unsigned commit_flags, bool skip_triggers) 2279 { 2280 struct btree_iter iter; 2281 int ret; 2282 2283 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2284 BTREE_MAX_DEPTH, b->c.level, 2285 BTREE_ITER_INTENT); 2286 ret = bch2_btree_iter_traverse(&iter); 2287 if (ret) 2288 goto out; 2289 2290 /* has node been freed? */ 2291 if (iter.path->l[b->c.level].b != b) { 2292 /* node has been freed: */ 2293 BUG_ON(!btree_node_dying(b)); 2294 goto out; 2295 } 2296 2297 BUG_ON(!btree_node_hashed(b)); 2298 2299 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2300 commit_flags, skip_triggers); 2301 out: 2302 bch2_trans_iter_exit(trans, &iter); 2303 return ret; 2304 } 2305 2306 /* Init code: */ 2307 2308 /* 2309 * Only for filesystem bringup, when first reading the btree roots or allocating 2310 * btree roots when initializing a new filesystem: 2311 */ 2312 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2313 { 2314 BUG_ON(btree_node_root(c, b)); 2315 2316 bch2_btree_set_root_inmem(c, b); 2317 } 2318 2319 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) 2320 { 2321 struct bch_fs *c = trans->c; 2322 struct closure cl; 2323 struct btree *b; 2324 int ret; 2325 2326 closure_init_stack(&cl); 2327 2328 do { 2329 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2330 closure_sync(&cl); 2331 } while (ret); 2332 2333 b = bch2_btree_node_mem_alloc(trans, false); 2334 bch2_btree_cache_cannibalize_unlock(c); 2335 2336 set_btree_node_fake(b); 2337 set_btree_node_need_rewrite(b); 2338 b->c.level = 0; 2339 b->c.btree_id = id; 2340 2341 bkey_btree_ptr_init(&b->key); 2342 b->key.k.p = SPOS_MAX; 2343 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2344 2345 bch2_bset_init_first(b, &b->data->keys); 2346 bch2_btree_build_aux_trees(b); 2347 2348 b->data->flags = 0; 2349 btree_set_min(b, POS_MIN); 2350 btree_set_max(b, SPOS_MAX); 2351 b->data->format = bch2_btree_calc_format(b); 2352 btree_node_set_format(b, b->data->format); 2353 2354 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2355 b->c.level, b->c.btree_id); 2356 BUG_ON(ret); 2357 2358 bch2_btree_set_root_inmem(c, b); 2359 2360 six_unlock_write(&b->c.lock); 2361 six_unlock_intent(&b->c.lock); 2362 return 0; 2363 } 2364 2365 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) 2366 { 2367 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); 2368 } 2369 2370 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2371 { 2372 struct btree_update *as; 2373 2374 mutex_lock(&c->btree_interior_update_lock); 2375 list_for_each_entry(as, &c->btree_interior_update_list, list) 2376 prt_printf(out, "%p m %u w %u r %u j %llu\n", 2377 as, 2378 as->mode, 2379 as->nodes_written, 2380 closure_nr_remaining(&as->cl), 2381 as->journal.seq); 2382 mutex_unlock(&c->btree_interior_update_lock); 2383 } 2384 2385 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2386 { 2387 bool ret; 2388 2389 mutex_lock(&c->btree_interior_update_lock); 2390 ret = !list_empty(&c->btree_interior_update_list); 2391 mutex_unlock(&c->btree_interior_update_lock); 2392 2393 return ret; 2394 } 2395 2396 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2397 { 2398 bool ret = bch2_btree_interior_updates_pending(c); 2399 2400 if (ret) 2401 closure_wait_event(&c->btree_interior_update_wait, 2402 !bch2_btree_interior_updates_pending(c)); 2403 return ret; 2404 } 2405 2406 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2407 { 2408 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2409 2410 mutex_lock(&c->btree_root_lock); 2411 2412 r->level = entry->level; 2413 r->alive = true; 2414 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2415 2416 mutex_unlock(&c->btree_root_lock); 2417 } 2418 2419 struct jset_entry * 2420 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2421 struct jset_entry *end, 2422 unsigned long skip) 2423 { 2424 unsigned i; 2425 2426 mutex_lock(&c->btree_root_lock); 2427 2428 for (i = 0; i < btree_id_nr_alive(c); i++) { 2429 struct btree_root *r = bch2_btree_id_root(c, i); 2430 2431 if (r->alive && !test_bit(i, &skip)) { 2432 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2433 i, r->level, &r->key, r->key.k.u64s); 2434 end = vstruct_next(end); 2435 } 2436 } 2437 2438 mutex_unlock(&c->btree_root_lock); 2439 2440 return end; 2441 } 2442 2443 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2444 { 2445 if (c->btree_interior_update_worker) 2446 destroy_workqueue(c->btree_interior_update_worker); 2447 mempool_exit(&c->btree_interior_update_pool); 2448 } 2449 2450 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2451 { 2452 mutex_init(&c->btree_reserve_cache_lock); 2453 INIT_LIST_HEAD(&c->btree_interior_update_list); 2454 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2455 mutex_init(&c->btree_interior_update_lock); 2456 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2457 2458 INIT_LIST_HEAD(&c->pending_node_rewrites); 2459 mutex_init(&c->pending_node_rewrites_lock); 2460 } 2461 2462 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2463 { 2464 c->btree_interior_update_worker = 2465 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 2466 if (!c->btree_interior_update_worker) 2467 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2468 2469 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2470 sizeof(struct btree_update))) 2471 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2472 2473 return 0; 2474 } 2475