1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_buf.h" 6 #include "bkey_methods.h" 7 #include "btree_cache.h" 8 #include "btree_gc.h" 9 #include "btree_journal_iter.h" 10 #include "btree_update.h" 11 #include "btree_update_interior.h" 12 #include "btree_io.h" 13 #include "btree_iter.h" 14 #include "btree_locking.h" 15 #include "buckets.h" 16 #include "clock.h" 17 #include "error.h" 18 #include "extents.h" 19 #include "journal.h" 20 #include "journal_reclaim.h" 21 #include "keylist.h" 22 #include "recovery_passes.h" 23 #include "replicas.h" 24 #include "sb-members.h" 25 #include "super-io.h" 26 #include "trace.h" 27 28 #include <linux/random.h> 29 30 static const char * const bch2_btree_update_modes[] = { 31 #define x(t) #t, 32 BTREE_UPDATE_MODES() 33 #undef x 34 NULL 35 }; 36 37 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 38 btree_path_idx_t, struct btree *, struct keylist *); 39 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 40 41 /* 42 * Verify that child nodes correctly span parent node's range: 43 */ 44 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b) 45 { 46 struct bch_fs *c = trans->c; 47 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2 48 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key 49 : b->data->min_key; 50 struct btree_and_journal_iter iter; 51 struct bkey_s_c k; 52 struct printbuf buf = PRINTBUF; 53 struct bkey_buf prev; 54 int ret = 0; 55 56 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && 57 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, 58 b->data->min_key)); 59 60 if (b == btree_node_root(c, b)) { 61 if (!bpos_eq(b->data->min_key, POS_MIN)) { 62 printbuf_reset(&buf); 63 bch2_bpos_to_text(&buf, b->data->min_key); 64 need_fsck_err(c, btree_root_bad_min_key, 65 "btree root with incorrect min_key: %s", buf.buf); 66 goto topology_repair; 67 } 68 69 if (!bpos_eq(b->data->max_key, SPOS_MAX)) { 70 printbuf_reset(&buf); 71 bch2_bpos_to_text(&buf, b->data->max_key); 72 need_fsck_err(c, btree_root_bad_max_key, 73 "btree root with incorrect max_key: %s", buf.buf); 74 goto topology_repair; 75 } 76 } 77 78 if (!b->c.level) 79 return 0; 80 81 bch2_bkey_buf_init(&prev); 82 bkey_init(&prev.k->k); 83 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); 84 85 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { 86 if (k.k->type != KEY_TYPE_btree_ptr_v2) 87 goto out; 88 89 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 90 91 struct bpos expected_min = bkey_deleted(&prev.k->k) 92 ? node_min 93 : bpos_successor(prev.k->k.p); 94 95 if (!bpos_eq(expected_min, bp.v->min_key)) { 96 bch2_topology_error(c); 97 98 printbuf_reset(&buf); 99 prt_str(&buf, "end of prev node doesn't match start of next node\n"), 100 prt_printf(&buf, " in btree %s level %u node ", 101 bch2_btree_id_str(b->c.btree_id), b->c.level); 102 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 103 prt_str(&buf, "\n prev "); 104 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 105 prt_str(&buf, "\n next "); 106 bch2_bkey_val_to_text(&buf, c, k); 107 108 need_fsck_err(c, btree_node_topology_bad_min_key, "%s", buf.buf); 109 goto topology_repair; 110 } 111 112 bch2_bkey_buf_reassemble(&prev, c, k); 113 bch2_btree_and_journal_iter_advance(&iter); 114 } 115 116 if (bkey_deleted(&prev.k->k)) { 117 bch2_topology_error(c); 118 119 printbuf_reset(&buf); 120 prt_str(&buf, "empty interior node\n"); 121 prt_printf(&buf, " in btree %s level %u node ", 122 bch2_btree_id_str(b->c.btree_id), b->c.level); 123 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 124 125 need_fsck_err(c, btree_node_topology_empty_interior_node, "%s", buf.buf); 126 goto topology_repair; 127 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) { 128 bch2_topology_error(c); 129 130 printbuf_reset(&buf); 131 prt_str(&buf, "last child node doesn't end at end of parent node\n"); 132 prt_printf(&buf, " in btree %s level %u node ", 133 bch2_btree_id_str(b->c.btree_id), b->c.level); 134 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 135 prt_str(&buf, "\n last key "); 136 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 137 138 need_fsck_err(c, btree_node_topology_bad_max_key, "%s", buf.buf); 139 goto topology_repair; 140 } 141 out: 142 fsck_err: 143 bch2_btree_and_journal_iter_exit(&iter); 144 bch2_bkey_buf_exit(&prev, c); 145 printbuf_exit(&buf); 146 return ret; 147 topology_repair: 148 if ((c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) && 149 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) { 150 bch2_inconsistent_error(c); 151 ret = -BCH_ERR_btree_need_topology_repair; 152 } else { 153 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); 154 } 155 goto out; 156 } 157 158 /* Calculate ideal packed bkey format for new btree nodes: */ 159 160 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 161 { 162 struct bkey_packed *k; 163 struct bkey uk; 164 165 for_each_bset(b, t) 166 bset_tree_for_each_key(b, t, k) 167 if (!bkey_deleted(k)) { 168 uk = bkey_unpack_key(b, k); 169 bch2_bkey_format_add_key(s, &uk); 170 } 171 } 172 173 static struct bkey_format bch2_btree_calc_format(struct btree *b) 174 { 175 struct bkey_format_state s; 176 177 bch2_bkey_format_init(&s); 178 bch2_bkey_format_add_pos(&s, b->data->min_key); 179 bch2_bkey_format_add_pos(&s, b->data->max_key); 180 __bch2_btree_calc_format(&s, b); 181 182 return bch2_bkey_format_done(&s); 183 } 184 185 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 186 struct bkey_format *old_f, 187 struct bkey_format *new_f) 188 { 189 /* stupid integer promotion rules */ 190 ssize_t delta = 191 (((int) new_f->key_u64s - old_f->key_u64s) * 192 (int) nr.packed_keys) + 193 (((int) new_f->key_u64s - BKEY_U64s) * 194 (int) nr.unpacked_keys); 195 196 BUG_ON(delta + nr.live_u64s < 0); 197 198 return nr.live_u64s + delta; 199 } 200 201 /** 202 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 203 * 204 * @c: filesystem handle 205 * @b: btree node to rewrite 206 * @nr: number of keys for new node (i.e. b->nr) 207 * @new_f: bkey format to translate keys to 208 * 209 * Returns: true if all re-packed keys will be able to fit in a new node. 210 * 211 * Assumes all keys will successfully pack with the new format. 212 */ 213 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 214 struct btree_nr_keys nr, 215 struct bkey_format *new_f) 216 { 217 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 218 219 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 220 } 221 222 /* Btree node freeing/allocation: */ 223 224 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 225 { 226 struct bch_fs *c = trans->c; 227 228 trace_and_count(c, btree_node_free, trans, b); 229 230 BUG_ON(btree_node_write_blocked(b)); 231 BUG_ON(btree_node_dirty(b)); 232 BUG_ON(btree_node_need_write(b)); 233 BUG_ON(b == btree_node_root(c, b)); 234 BUG_ON(b->ob.nr); 235 BUG_ON(!list_empty(&b->write_blocked)); 236 BUG_ON(b->will_make_reachable); 237 238 clear_btree_node_noevict(b); 239 240 mutex_lock(&c->btree_cache.lock); 241 list_move(&b->list, &c->btree_cache.freeable); 242 mutex_unlock(&c->btree_cache.lock); 243 } 244 245 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 246 struct btree_path *path, 247 struct btree *b) 248 { 249 struct bch_fs *c = trans->c; 250 unsigned i, level = b->c.level; 251 252 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 253 bch2_btree_node_hash_remove(&c->btree_cache, b); 254 __btree_node_free(trans, b); 255 six_unlock_write(&b->c.lock); 256 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 257 258 trans_for_each_path(trans, path, i) 259 if (path->l[level].b == b) { 260 btree_node_unlock(trans, path, level); 261 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 262 } 263 } 264 265 static void bch2_btree_node_free_never_used(struct btree_update *as, 266 struct btree_trans *trans, 267 struct btree *b) 268 { 269 struct bch_fs *c = as->c; 270 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 271 struct btree_path *path; 272 unsigned i, level = b->c.level; 273 274 BUG_ON(!list_empty(&b->write_blocked)); 275 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 276 277 b->will_make_reachable = 0; 278 closure_put(&as->cl); 279 280 clear_btree_node_will_make_reachable(b); 281 clear_btree_node_accessed(b); 282 clear_btree_node_dirty_acct(c, b); 283 clear_btree_node_need_write(b); 284 285 mutex_lock(&c->btree_cache.lock); 286 list_del_init(&b->list); 287 bch2_btree_node_hash_remove(&c->btree_cache, b); 288 mutex_unlock(&c->btree_cache.lock); 289 290 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 291 p->b[p->nr++] = b; 292 293 six_unlock_intent(&b->c.lock); 294 295 trans_for_each_path(trans, path, i) 296 if (path->l[level].b == b) { 297 btree_node_unlock(trans, path, level); 298 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 299 } 300 } 301 302 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 303 struct disk_reservation *res, 304 struct closure *cl, 305 bool interior_node, 306 unsigned flags) 307 { 308 struct bch_fs *c = trans->c; 309 struct write_point *wp; 310 struct btree *b; 311 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 312 struct open_buckets obs = { .nr = 0 }; 313 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 314 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 315 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim 316 ? BTREE_NODE_RESERVE 317 : 0; 318 int ret; 319 320 mutex_lock(&c->btree_reserve_cache_lock); 321 if (c->btree_reserve_cache_nr > nr_reserve) { 322 struct btree_alloc *a = 323 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 324 325 obs = a->ob; 326 bkey_copy(&tmp.k, &a->k); 327 mutex_unlock(&c->btree_reserve_cache_lock); 328 goto mem_alloc; 329 } 330 mutex_unlock(&c->btree_reserve_cache_lock); 331 332 retry: 333 ret = bch2_alloc_sectors_start_trans(trans, 334 c->opts.metadata_target ?: 335 c->opts.foreground_target, 336 0, 337 writepoint_ptr(&c->btree_write_point), 338 &devs_have, 339 res->nr_replicas, 340 min(res->nr_replicas, 341 c->opts.metadata_replicas_required), 342 watermark, 0, cl, &wp); 343 if (unlikely(ret)) 344 return ERR_PTR(ret); 345 346 if (wp->sectors_free < btree_sectors(c)) { 347 struct open_bucket *ob; 348 unsigned i; 349 350 open_bucket_for_each(c, &wp->ptrs, ob, i) 351 if (ob->sectors_free < btree_sectors(c)) 352 ob->sectors_free = 0; 353 354 bch2_alloc_sectors_done(c, wp); 355 goto retry; 356 } 357 358 bkey_btree_ptr_v2_init(&tmp.k); 359 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 360 361 bch2_open_bucket_get(c, wp, &obs); 362 bch2_alloc_sectors_done(c, wp); 363 mem_alloc: 364 b = bch2_btree_node_mem_alloc(trans, interior_node); 365 six_unlock_write(&b->c.lock); 366 six_unlock_intent(&b->c.lock); 367 368 /* we hold cannibalize_lock: */ 369 BUG_ON(IS_ERR(b)); 370 BUG_ON(b->ob.nr); 371 372 bkey_copy(&b->key, &tmp.k); 373 b->ob = obs; 374 375 return b; 376 } 377 378 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 379 struct btree_trans *trans, 380 unsigned level) 381 { 382 struct bch_fs *c = as->c; 383 struct btree *b; 384 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 385 int ret; 386 387 BUG_ON(level >= BTREE_MAX_DEPTH); 388 BUG_ON(!p->nr); 389 390 b = p->b[--p->nr]; 391 392 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 393 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 394 395 set_btree_node_accessed(b); 396 set_btree_node_dirty_acct(c, b); 397 set_btree_node_need_write(b); 398 399 bch2_bset_init_first(b, &b->data->keys); 400 b->c.level = level; 401 b->c.btree_id = as->btree_id; 402 b->version_ondisk = c->sb.version; 403 404 memset(&b->nr, 0, sizeof(b->nr)); 405 b->data->magic = cpu_to_le64(bset_magic(c)); 406 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 407 b->data->flags = 0; 408 SET_BTREE_NODE_ID(b->data, as->btree_id); 409 SET_BTREE_NODE_LEVEL(b->data, level); 410 411 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 412 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 413 414 bp->v.mem_ptr = 0; 415 bp->v.seq = b->data->keys.seq; 416 bp->v.sectors_written = 0; 417 } 418 419 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 420 421 bch2_btree_build_aux_trees(b); 422 423 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 424 BUG_ON(ret); 425 426 trace_and_count(c, btree_node_alloc, trans, b); 427 bch2_increment_clock(c, btree_sectors(c), WRITE); 428 return b; 429 } 430 431 static void btree_set_min(struct btree *b, struct bpos pos) 432 { 433 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 434 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 435 b->data->min_key = pos; 436 } 437 438 static void btree_set_max(struct btree *b, struct bpos pos) 439 { 440 b->key.k.p = pos; 441 b->data->max_key = pos; 442 } 443 444 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 445 struct btree_trans *trans, 446 struct btree *b) 447 { 448 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 449 struct bkey_format format = bch2_btree_calc_format(b); 450 451 /* 452 * The keys might expand with the new format - if they wouldn't fit in 453 * the btree node anymore, use the old format for now: 454 */ 455 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 456 format = b->format; 457 458 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 459 460 btree_set_min(n, b->data->min_key); 461 btree_set_max(n, b->data->max_key); 462 463 n->data->format = format; 464 btree_node_set_format(n, format); 465 466 bch2_btree_sort_into(as->c, n, b); 467 468 btree_node_reset_sib_u64s(n); 469 return n; 470 } 471 472 static struct btree *__btree_root_alloc(struct btree_update *as, 473 struct btree_trans *trans, unsigned level) 474 { 475 struct btree *b = bch2_btree_node_alloc(as, trans, level); 476 477 btree_set_min(b, POS_MIN); 478 btree_set_max(b, SPOS_MAX); 479 b->data->format = bch2_btree_calc_format(b); 480 481 btree_node_set_format(b, b->data->format); 482 bch2_btree_build_aux_trees(b); 483 484 return b; 485 } 486 487 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 488 { 489 struct bch_fs *c = as->c; 490 struct prealloc_nodes *p; 491 492 for (p = as->prealloc_nodes; 493 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 494 p++) { 495 while (p->nr) { 496 struct btree *b = p->b[--p->nr]; 497 498 mutex_lock(&c->btree_reserve_cache_lock); 499 500 if (c->btree_reserve_cache_nr < 501 ARRAY_SIZE(c->btree_reserve_cache)) { 502 struct btree_alloc *a = 503 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 504 505 a->ob = b->ob; 506 b->ob.nr = 0; 507 bkey_copy(&a->k, &b->key); 508 } else { 509 bch2_open_buckets_put(c, &b->ob); 510 } 511 512 mutex_unlock(&c->btree_reserve_cache_lock); 513 514 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 515 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 516 __btree_node_free(trans, b); 517 six_unlock_write(&b->c.lock); 518 six_unlock_intent(&b->c.lock); 519 } 520 } 521 } 522 523 static int bch2_btree_reserve_get(struct btree_trans *trans, 524 struct btree_update *as, 525 unsigned nr_nodes[2], 526 unsigned flags, 527 struct closure *cl) 528 { 529 struct btree *b; 530 unsigned interior; 531 int ret = 0; 532 533 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 534 535 /* 536 * Protects reaping from the btree node cache and using the btree node 537 * open bucket reserve: 538 */ 539 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 540 if (ret) 541 return ret; 542 543 for (interior = 0; interior < 2; interior++) { 544 struct prealloc_nodes *p = as->prealloc_nodes + interior; 545 546 while (p->nr < nr_nodes[interior]) { 547 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 548 interior, flags); 549 if (IS_ERR(b)) { 550 ret = PTR_ERR(b); 551 goto err; 552 } 553 554 p->b[p->nr++] = b; 555 } 556 } 557 err: 558 bch2_btree_cache_cannibalize_unlock(trans); 559 return ret; 560 } 561 562 /* Asynchronous interior node update machinery */ 563 564 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 565 { 566 struct bch_fs *c = as->c; 567 568 if (as->took_gc_lock) 569 up_read(&c->gc_lock); 570 as->took_gc_lock = false; 571 572 bch2_journal_pin_drop(&c->journal, &as->journal); 573 bch2_journal_pin_flush(&c->journal, &as->journal); 574 bch2_disk_reservation_put(c, &as->disk_res); 575 bch2_btree_reserve_put(as, trans); 576 577 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 578 as->start_time); 579 580 mutex_lock(&c->btree_interior_update_lock); 581 list_del(&as->unwritten_list); 582 list_del(&as->list); 583 584 closure_debug_destroy(&as->cl); 585 mempool_free(as, &c->btree_interior_update_pool); 586 587 /* 588 * Have to do the wakeup with btree_interior_update_lock still held, 589 * since being on btree_interior_update_list is our ref on @c: 590 */ 591 closure_wake_up(&c->btree_interior_update_wait); 592 593 mutex_unlock(&c->btree_interior_update_lock); 594 } 595 596 static void btree_update_add_key(struct btree_update *as, 597 struct keylist *keys, struct btree *b) 598 { 599 struct bkey_i *k = &b->key; 600 601 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 602 ARRAY_SIZE(as->_old_keys)); 603 604 bkey_copy(keys->top, k); 605 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 606 607 bch2_keylist_push(keys); 608 } 609 610 static bool btree_update_new_nodes_marked_sb(struct btree_update *as) 611 { 612 for_each_keylist_key(&as->new_keys, k) 613 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k))) 614 return false; 615 return true; 616 } 617 618 static void btree_update_new_nodes_mark_sb(struct btree_update *as) 619 { 620 struct bch_fs *c = as->c; 621 622 mutex_lock(&c->sb_lock); 623 for_each_keylist_key(&as->new_keys, k) 624 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k)); 625 626 bch2_write_super(c); 627 mutex_unlock(&c->sb_lock); 628 } 629 630 /* 631 * The transactional part of an interior btree node update, where we journal the 632 * update we did to the interior node and update alloc info: 633 */ 634 static int btree_update_nodes_written_trans(struct btree_trans *trans, 635 struct btree_update *as) 636 { 637 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 638 int ret = PTR_ERR_OR_ZERO(e); 639 if (ret) 640 return ret; 641 642 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 643 644 trans->journal_pin = &as->journal; 645 646 for_each_keylist_key(&as->old_keys, k) { 647 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 648 649 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 650 BTREE_TRIGGER_transactional); 651 if (ret) 652 return ret; 653 } 654 655 for_each_keylist_key(&as->new_keys, k) { 656 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 657 658 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 659 BTREE_TRIGGER_transactional); 660 if (ret) 661 return ret; 662 } 663 664 return 0; 665 } 666 667 static void btree_update_nodes_written(struct btree_update *as) 668 { 669 struct bch_fs *c = as->c; 670 struct btree *b; 671 struct btree_trans *trans = bch2_trans_get(c); 672 u64 journal_seq = 0; 673 unsigned i; 674 int ret; 675 676 /* 677 * If we're already in an error state, it might be because a btree node 678 * was never written, and we might be trying to free that same btree 679 * node here, but it won't have been marked as allocated and we'll see 680 * spurious disk usage inconsistencies in the transactional part below 681 * if we don't skip it: 682 */ 683 ret = bch2_journal_error(&c->journal); 684 if (ret) 685 goto err; 686 687 if (!btree_update_new_nodes_marked_sb(as)) 688 btree_update_new_nodes_mark_sb(as); 689 690 /* 691 * Wait for any in flight writes to finish before we free the old nodes 692 * on disk: 693 */ 694 for (i = 0; i < as->nr_old_nodes; i++) { 695 __le64 seq; 696 697 b = as->old_nodes[i]; 698 699 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 700 seq = b->data ? b->data->keys.seq : 0; 701 six_unlock_read(&b->c.lock); 702 703 if (seq == as->old_nodes_seq[i]) 704 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 705 TASK_UNINTERRUPTIBLE); 706 } 707 708 /* 709 * We did an update to a parent node where the pointers we added pointed 710 * to child nodes that weren't written yet: now, the child nodes have 711 * been written so we can write out the update to the interior node. 712 */ 713 714 /* 715 * We can't call into journal reclaim here: we'd block on the journal 716 * reclaim lock, but we may need to release the open buckets we have 717 * pinned in order for other btree updates to make forward progress, and 718 * journal reclaim does btree updates when flushing bkey_cached entries, 719 * which may require allocations as well. 720 */ 721 ret = commit_do(trans, &as->disk_res, &journal_seq, 722 BCH_WATERMARK_interior_updates| 723 BCH_TRANS_COMMIT_no_enospc| 724 BCH_TRANS_COMMIT_no_check_rw| 725 BCH_TRANS_COMMIT_journal_reclaim, 726 btree_update_nodes_written_trans(trans, as)); 727 bch2_trans_unlock(trans); 728 729 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 730 "%s", bch2_err_str(ret)); 731 err: 732 /* 733 * We have to be careful because another thread might be getting ready 734 * to free as->b and calling btree_update_reparent() on us - we'll 735 * recheck under btree_update_lock below: 736 */ 737 b = READ_ONCE(as->b); 738 if (b) { 739 /* 740 * @b is the node we did the final insert into: 741 * 742 * On failure to get a journal reservation, we still have to 743 * unblock the write and allow most of the write path to happen 744 * so that shutdown works, but the i->journal_seq mechanism 745 * won't work to prevent the btree write from being visible (we 746 * didn't get a journal sequence number) - instead 747 * __bch2_btree_node_write() doesn't do the actual write if 748 * we're in journal error state: 749 */ 750 751 /* 752 * Ensure transaction is unlocked before using 753 * btree_node_lock_nopath() (the use of which is always suspect, 754 * we need to work on removing this in the future) 755 * 756 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get() 757 * calls bch2_path_upgrade(), before we call path_make_mut(), so 758 * we may rarely end up with a locked path besides the one we 759 * have here: 760 */ 761 bch2_trans_unlock(trans); 762 bch2_trans_begin(trans); 763 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans, 764 as->btree_id, b->c.level, b->key.k.p); 765 struct btree_path *path = trans->paths + path_idx; 766 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 767 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 768 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 769 path->l[b->c.level].b = b; 770 771 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 772 773 mutex_lock(&c->btree_interior_update_lock); 774 775 list_del(&as->write_blocked_list); 776 if (list_empty(&b->write_blocked)) 777 clear_btree_node_write_blocked(b); 778 779 /* 780 * Node might have been freed, recheck under 781 * btree_interior_update_lock: 782 */ 783 if (as->b == b) { 784 BUG_ON(!b->c.level); 785 BUG_ON(!btree_node_dirty(b)); 786 787 if (!ret) { 788 struct bset *last = btree_bset_last(b); 789 790 last->journal_seq = cpu_to_le64( 791 max(journal_seq, 792 le64_to_cpu(last->journal_seq))); 793 794 bch2_btree_add_journal_pin(c, b, journal_seq); 795 } else { 796 /* 797 * If we didn't get a journal sequence number we 798 * can't write this btree node, because recovery 799 * won't know to ignore this write: 800 */ 801 set_btree_node_never_write(b); 802 } 803 } 804 805 mutex_unlock(&c->btree_interior_update_lock); 806 807 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 808 six_unlock_write(&b->c.lock); 809 810 btree_node_write_if_need(c, b, SIX_LOCK_intent); 811 btree_node_unlock(trans, path, b->c.level); 812 bch2_path_put(trans, path_idx, true); 813 } 814 815 bch2_journal_pin_drop(&c->journal, &as->journal); 816 817 mutex_lock(&c->btree_interior_update_lock); 818 for (i = 0; i < as->nr_new_nodes; i++) { 819 b = as->new_nodes[i]; 820 821 BUG_ON(b->will_make_reachable != (unsigned long) as); 822 b->will_make_reachable = 0; 823 clear_btree_node_will_make_reachable(b); 824 } 825 mutex_unlock(&c->btree_interior_update_lock); 826 827 for (i = 0; i < as->nr_new_nodes; i++) { 828 b = as->new_nodes[i]; 829 830 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 831 btree_node_write_if_need(c, b, SIX_LOCK_read); 832 six_unlock_read(&b->c.lock); 833 } 834 835 for (i = 0; i < as->nr_open_buckets; i++) 836 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 837 838 bch2_btree_update_free(as, trans); 839 bch2_trans_put(trans); 840 } 841 842 static void btree_interior_update_work(struct work_struct *work) 843 { 844 struct bch_fs *c = 845 container_of(work, struct bch_fs, btree_interior_update_work); 846 struct btree_update *as; 847 848 while (1) { 849 mutex_lock(&c->btree_interior_update_lock); 850 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 851 struct btree_update, unwritten_list); 852 if (as && !as->nodes_written) 853 as = NULL; 854 mutex_unlock(&c->btree_interior_update_lock); 855 856 if (!as) 857 break; 858 859 btree_update_nodes_written(as); 860 } 861 } 862 863 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 864 { 865 closure_type(as, struct btree_update, cl); 866 struct bch_fs *c = as->c; 867 868 mutex_lock(&c->btree_interior_update_lock); 869 as->nodes_written = true; 870 mutex_unlock(&c->btree_interior_update_lock); 871 872 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 873 } 874 875 /* 876 * We're updating @b with pointers to nodes that haven't finished writing yet: 877 * block @b from being written until @as completes 878 */ 879 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 880 { 881 struct bch_fs *c = as->c; 882 883 BUG_ON(as->mode != BTREE_UPDATE_none); 884 BUG_ON(as->update_level_end < b->c.level); 885 BUG_ON(!btree_node_dirty(b)); 886 BUG_ON(!b->c.level); 887 888 mutex_lock(&c->btree_interior_update_lock); 889 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 890 891 as->mode = BTREE_UPDATE_node; 892 as->b = b; 893 as->update_level_end = b->c.level; 894 895 set_btree_node_write_blocked(b); 896 list_add(&as->write_blocked_list, &b->write_blocked); 897 898 mutex_unlock(&c->btree_interior_update_lock); 899 } 900 901 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 902 struct journal_entry_pin *_pin, u64 seq) 903 { 904 return 0; 905 } 906 907 static void btree_update_reparent(struct btree_update *as, 908 struct btree_update *child) 909 { 910 struct bch_fs *c = as->c; 911 912 lockdep_assert_held(&c->btree_interior_update_lock); 913 914 child->b = NULL; 915 child->mode = BTREE_UPDATE_update; 916 917 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 918 bch2_update_reparent_journal_pin_flush); 919 } 920 921 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 922 { 923 struct bkey_i *insert = &b->key; 924 struct bch_fs *c = as->c; 925 926 BUG_ON(as->mode != BTREE_UPDATE_none); 927 928 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 929 ARRAY_SIZE(as->journal_entries)); 930 931 as->journal_u64s += 932 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 933 BCH_JSET_ENTRY_btree_root, 934 b->c.btree_id, b->c.level, 935 insert, insert->k.u64s); 936 937 mutex_lock(&c->btree_interior_update_lock); 938 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 939 940 as->mode = BTREE_UPDATE_root; 941 mutex_unlock(&c->btree_interior_update_lock); 942 } 943 944 /* 945 * bch2_btree_update_add_new_node: 946 * 947 * This causes @as to wait on @b to be written, before it gets to 948 * bch2_btree_update_nodes_written 949 * 950 * Additionally, it sets b->will_make_reachable to prevent any additional writes 951 * to @b from happening besides the first until @b is reachable on disk 952 * 953 * And it adds @b to the list of @as's new nodes, so that we can update sector 954 * counts in bch2_btree_update_nodes_written: 955 */ 956 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 957 { 958 struct bch_fs *c = as->c; 959 960 closure_get(&as->cl); 961 962 mutex_lock(&c->btree_interior_update_lock); 963 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 964 BUG_ON(b->will_make_reachable); 965 966 as->new_nodes[as->nr_new_nodes++] = b; 967 b->will_make_reachable = 1UL|(unsigned long) as; 968 set_btree_node_will_make_reachable(b); 969 970 mutex_unlock(&c->btree_interior_update_lock); 971 972 btree_update_add_key(as, &as->new_keys, b); 973 974 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 975 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 976 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 977 978 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 979 cpu_to_le16(sectors); 980 } 981 } 982 983 /* 984 * returns true if @b was a new node 985 */ 986 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 987 { 988 struct btree_update *as; 989 unsigned long v; 990 unsigned i; 991 992 mutex_lock(&c->btree_interior_update_lock); 993 /* 994 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 995 * dropped when it gets written by bch2_btree_complete_write - the 996 * xchg() is for synchronization with bch2_btree_complete_write: 997 */ 998 v = xchg(&b->will_make_reachable, 0); 999 clear_btree_node_will_make_reachable(b); 1000 as = (struct btree_update *) (v & ~1UL); 1001 1002 if (!as) { 1003 mutex_unlock(&c->btree_interior_update_lock); 1004 return; 1005 } 1006 1007 for (i = 0; i < as->nr_new_nodes; i++) 1008 if (as->new_nodes[i] == b) 1009 goto found; 1010 1011 BUG(); 1012 found: 1013 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 1014 mutex_unlock(&c->btree_interior_update_lock); 1015 1016 if (v & 1) 1017 closure_put(&as->cl); 1018 } 1019 1020 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 1021 { 1022 while (b->ob.nr) 1023 as->open_buckets[as->nr_open_buckets++] = 1024 b->ob.v[--b->ob.nr]; 1025 } 1026 1027 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 1028 struct journal_entry_pin *_pin, u64 seq) 1029 { 1030 return 0; 1031 } 1032 1033 /* 1034 * @b is being split/rewritten: it may have pointers to not-yet-written btree 1035 * nodes and thus outstanding btree_updates - redirect @b's 1036 * btree_updates to point to this btree_update: 1037 */ 1038 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 1039 struct btree *b) 1040 { 1041 struct bch_fs *c = as->c; 1042 struct btree_update *p, *n; 1043 struct btree_write *w; 1044 1045 set_btree_node_dying(b); 1046 1047 if (btree_node_fake(b)) 1048 return; 1049 1050 mutex_lock(&c->btree_interior_update_lock); 1051 1052 /* 1053 * Does this node have any btree_update operations preventing 1054 * it from being written? 1055 * 1056 * If so, redirect them to point to this btree_update: we can 1057 * write out our new nodes, but we won't make them visible until those 1058 * operations complete 1059 */ 1060 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 1061 list_del_init(&p->write_blocked_list); 1062 btree_update_reparent(as, p); 1063 1064 /* 1065 * for flush_held_btree_writes() waiting on updates to flush or 1066 * nodes to be writeable: 1067 */ 1068 closure_wake_up(&c->btree_interior_update_wait); 1069 } 1070 1071 clear_btree_node_dirty_acct(c, b); 1072 clear_btree_node_need_write(b); 1073 clear_btree_node_write_blocked(b); 1074 1075 /* 1076 * Does this node have unwritten data that has a pin on the journal? 1077 * 1078 * If so, transfer that pin to the btree_update operation - 1079 * note that if we're freeing multiple nodes, we only need to keep the 1080 * oldest pin of any of the nodes we're freeing. We'll release the pin 1081 * when the new nodes are persistent and reachable on disk: 1082 */ 1083 w = btree_current_write(b); 1084 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1085 bch2_btree_update_will_free_node_journal_pin_flush); 1086 bch2_journal_pin_drop(&c->journal, &w->journal); 1087 1088 w = btree_prev_write(b); 1089 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1090 bch2_btree_update_will_free_node_journal_pin_flush); 1091 bch2_journal_pin_drop(&c->journal, &w->journal); 1092 1093 mutex_unlock(&c->btree_interior_update_lock); 1094 1095 /* 1096 * Is this a node that isn't reachable on disk yet? 1097 * 1098 * Nodes that aren't reachable yet have writes blocked until they're 1099 * reachable - now that we've cancelled any pending writes and moved 1100 * things waiting on that write to wait on this update, we can drop this 1101 * node from the list of nodes that the other update is making 1102 * reachable, prior to freeing it: 1103 */ 1104 btree_update_drop_new_node(c, b); 1105 1106 btree_update_add_key(as, &as->old_keys, b); 1107 1108 as->old_nodes[as->nr_old_nodes] = b; 1109 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1110 as->nr_old_nodes++; 1111 } 1112 1113 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1114 { 1115 struct bch_fs *c = as->c; 1116 u64 start_time = as->start_time; 1117 1118 BUG_ON(as->mode == BTREE_UPDATE_none); 1119 1120 if (as->took_gc_lock) 1121 up_read(&as->c->gc_lock); 1122 as->took_gc_lock = false; 1123 1124 bch2_btree_reserve_put(as, trans); 1125 1126 continue_at(&as->cl, btree_update_set_nodes_written, 1127 as->c->btree_interior_update_worker); 1128 1129 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1130 start_time); 1131 } 1132 1133 static struct btree_update * 1134 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1135 unsigned level_start, bool split, unsigned flags) 1136 { 1137 struct bch_fs *c = trans->c; 1138 struct btree_update *as; 1139 u64 start_time = local_clock(); 1140 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1141 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1142 unsigned nr_nodes[2] = { 0, 0 }; 1143 unsigned level_end = level_start; 1144 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1145 int ret = 0; 1146 u32 restart_count = trans->restart_count; 1147 1148 BUG_ON(!path->should_be_locked); 1149 1150 if (watermark == BCH_WATERMARK_copygc) 1151 watermark = BCH_WATERMARK_btree_copygc; 1152 if (watermark < BCH_WATERMARK_btree) 1153 watermark = BCH_WATERMARK_btree; 1154 1155 flags &= ~BCH_WATERMARK_MASK; 1156 flags |= watermark; 1157 1158 if (watermark < BCH_WATERMARK_reclaim && 1159 test_bit(JOURNAL_space_low, &c->journal.flags)) { 1160 if (flags & BCH_TRANS_COMMIT_journal_reclaim) 1161 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock); 1162 1163 ret = drop_locks_do(trans, 1164 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; })); 1165 if (ret) 1166 return ERR_PTR(ret); 1167 } 1168 1169 while (1) { 1170 nr_nodes[!!level_end] += 1 + split; 1171 level_end++; 1172 1173 ret = bch2_btree_path_upgrade(trans, path, level_end + 1); 1174 if (ret) 1175 return ERR_PTR(ret); 1176 1177 if (!btree_path_node(path, level_end)) { 1178 /* Allocating new root? */ 1179 nr_nodes[1] += split; 1180 level_end = BTREE_MAX_DEPTH; 1181 break; 1182 } 1183 1184 /* 1185 * Always check for space for two keys, even if we won't have to 1186 * split at prior level - it might have been a merge instead: 1187 */ 1188 if (bch2_btree_node_insert_fits(path->l[level_end].b, 1189 BKEY_BTREE_PTR_U64s_MAX * 2)) 1190 break; 1191 1192 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1193 } 1194 1195 if (!down_read_trylock(&c->gc_lock)) { 1196 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1197 if (ret) { 1198 up_read(&c->gc_lock); 1199 return ERR_PTR(ret); 1200 } 1201 } 1202 1203 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1204 memset(as, 0, sizeof(*as)); 1205 closure_init(&as->cl, NULL); 1206 as->c = c; 1207 as->start_time = start_time; 1208 as->ip_started = _RET_IP_; 1209 as->mode = BTREE_UPDATE_none; 1210 as->flags = flags; 1211 as->took_gc_lock = true; 1212 as->btree_id = path->btree_id; 1213 as->update_level_start = level_start; 1214 as->update_level_end = level_end; 1215 INIT_LIST_HEAD(&as->list); 1216 INIT_LIST_HEAD(&as->unwritten_list); 1217 INIT_LIST_HEAD(&as->write_blocked_list); 1218 bch2_keylist_init(&as->old_keys, as->_old_keys); 1219 bch2_keylist_init(&as->new_keys, as->_new_keys); 1220 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1221 1222 mutex_lock(&c->btree_interior_update_lock); 1223 list_add_tail(&as->list, &c->btree_interior_update_list); 1224 mutex_unlock(&c->btree_interior_update_lock); 1225 1226 /* 1227 * We don't want to allocate if we're in an error state, that can cause 1228 * deadlock on emergency shutdown due to open buckets getting stuck in 1229 * the btree_reserve_cache after allocator shutdown has cleared it out. 1230 * This check needs to come after adding us to the btree_interior_update 1231 * list but before calling bch2_btree_reserve_get, to synchronize with 1232 * __bch2_fs_read_only(). 1233 */ 1234 ret = bch2_journal_error(&c->journal); 1235 if (ret) 1236 goto err; 1237 1238 ret = bch2_disk_reservation_get(c, &as->disk_res, 1239 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1240 c->opts.metadata_replicas, 1241 disk_res_flags); 1242 if (ret) 1243 goto err; 1244 1245 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1246 if (bch2_err_matches(ret, ENOSPC) || 1247 bch2_err_matches(ret, ENOMEM)) { 1248 struct closure cl; 1249 1250 /* 1251 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1252 * flag 1253 */ 1254 if (bch2_err_matches(ret, ENOSPC) && 1255 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1256 watermark < BCH_WATERMARK_reclaim) { 1257 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1258 goto err; 1259 } 1260 1261 closure_init_stack(&cl); 1262 1263 do { 1264 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1265 1266 bch2_trans_unlock(trans); 1267 closure_sync(&cl); 1268 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1269 } 1270 1271 if (ret) { 1272 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1273 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1274 goto err; 1275 } 1276 1277 ret = bch2_trans_relock(trans); 1278 if (ret) 1279 goto err; 1280 1281 bch2_trans_verify_not_restarted(trans, restart_count); 1282 return as; 1283 err: 1284 bch2_btree_update_free(as, trans); 1285 if (!bch2_err_matches(ret, ENOSPC) && 1286 !bch2_err_matches(ret, EROFS) && 1287 ret != -BCH_ERR_journal_reclaim_would_deadlock) 1288 bch_err_fn_ratelimited(c, ret); 1289 return ERR_PTR(ret); 1290 } 1291 1292 /* Btree root updates: */ 1293 1294 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1295 { 1296 /* Root nodes cannot be reaped */ 1297 mutex_lock(&c->btree_cache.lock); 1298 list_del_init(&b->list); 1299 mutex_unlock(&c->btree_cache.lock); 1300 1301 mutex_lock(&c->btree_root_lock); 1302 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1303 mutex_unlock(&c->btree_root_lock); 1304 1305 bch2_recalc_btree_reserve(c); 1306 } 1307 1308 static int bch2_btree_set_root(struct btree_update *as, 1309 struct btree_trans *trans, 1310 struct btree_path *path, 1311 struct btree *b, 1312 bool nofail) 1313 { 1314 struct bch_fs *c = as->c; 1315 1316 trace_and_count(c, btree_node_set_root, trans, b); 1317 1318 struct btree *old = btree_node_root(c, b); 1319 1320 /* 1321 * Ensure no one is using the old root while we switch to the 1322 * new root: 1323 */ 1324 if (nofail) { 1325 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1326 } else { 1327 int ret = bch2_btree_node_lock_write(trans, path, &old->c); 1328 if (ret) 1329 return ret; 1330 } 1331 1332 bch2_btree_set_root_inmem(c, b); 1333 1334 btree_update_updated_root(as, b); 1335 1336 /* 1337 * Unlock old root after new root is visible: 1338 * 1339 * The new root isn't persistent, but that's ok: we still have 1340 * an intent lock on the new root, and any updates that would 1341 * depend on the new root would have to update the new root. 1342 */ 1343 bch2_btree_node_unlock_write(trans, path, old); 1344 return 0; 1345 } 1346 1347 /* Interior node updates: */ 1348 1349 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1350 struct btree_trans *trans, 1351 struct btree_path *path, 1352 struct btree *b, 1353 struct btree_node_iter *node_iter, 1354 struct bkey_i *insert) 1355 { 1356 struct bch_fs *c = as->c; 1357 struct bkey_packed *k; 1358 struct printbuf buf = PRINTBUF; 1359 unsigned long old, new, v; 1360 1361 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1362 !btree_ptr_sectors_written(insert)); 1363 1364 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags))) 1365 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1366 1367 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1368 btree_node_type(b), WRITE, &buf) ?: 1369 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1370 printbuf_reset(&buf); 1371 prt_printf(&buf, "inserting invalid bkey\n "); 1372 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1373 prt_printf(&buf, "\n "); 1374 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1375 btree_node_type(b), WRITE, &buf); 1376 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1377 1378 bch2_fs_inconsistent(c, "%s", buf.buf); 1379 dump_stack(); 1380 } 1381 1382 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1383 ARRAY_SIZE(as->journal_entries)); 1384 1385 as->journal_u64s += 1386 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1387 BCH_JSET_ENTRY_btree_keys, 1388 b->c.btree_id, b->c.level, 1389 insert, insert->k.u64s); 1390 1391 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1392 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1393 bch2_btree_node_iter_advance(node_iter, b); 1394 1395 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1396 set_btree_node_dirty_acct(c, b); 1397 1398 v = READ_ONCE(b->flags); 1399 do { 1400 old = new = v; 1401 1402 new &= ~BTREE_WRITE_TYPE_MASK; 1403 new |= BTREE_WRITE_interior; 1404 new |= 1 << BTREE_NODE_need_write; 1405 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1406 1407 printbuf_exit(&buf); 1408 } 1409 1410 static void 1411 bch2_btree_insert_keys_interior(struct btree_update *as, 1412 struct btree_trans *trans, 1413 struct btree_path *path, 1414 struct btree *b, 1415 struct btree_node_iter node_iter, 1416 struct keylist *keys) 1417 { 1418 struct bkey_i *insert = bch2_keylist_front(keys); 1419 struct bkey_packed *k; 1420 1421 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1422 1423 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1424 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1425 ; 1426 1427 while (!bch2_keylist_empty(keys)) { 1428 insert = bch2_keylist_front(keys); 1429 1430 if (bpos_gt(insert->k.p, b->key.k.p)) 1431 break; 1432 1433 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1434 bch2_keylist_pop_front(keys); 1435 } 1436 } 1437 1438 /* 1439 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1440 * node) 1441 */ 1442 static void __btree_split_node(struct btree_update *as, 1443 struct btree_trans *trans, 1444 struct btree *b, 1445 struct btree *n[2]) 1446 { 1447 struct bkey_packed *k; 1448 struct bpos n1_pos = POS_MIN; 1449 struct btree_node_iter iter; 1450 struct bset *bsets[2]; 1451 struct bkey_format_state format[2]; 1452 struct bkey_packed *out[2]; 1453 struct bkey uk; 1454 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1455 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1456 int i; 1457 1458 memset(&nr_keys, 0, sizeof(nr_keys)); 1459 1460 for (i = 0; i < 2; i++) { 1461 BUG_ON(n[i]->nsets != 1); 1462 1463 bsets[i] = btree_bset_first(n[i]); 1464 out[i] = bsets[i]->start; 1465 1466 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1467 bch2_bkey_format_init(&format[i]); 1468 } 1469 1470 u64s = 0; 1471 for_each_btree_node_key(b, k, &iter) { 1472 if (bkey_deleted(k)) 1473 continue; 1474 1475 uk = bkey_unpack_key(b, k); 1476 1477 if (b->c.level && 1478 u64s < n1_u64s && 1479 u64s + k->u64s >= n1_u64s && 1480 bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p)) 1481 n1_u64s += k->u64s; 1482 1483 i = u64s >= n1_u64s; 1484 u64s += k->u64s; 1485 if (!i) 1486 n1_pos = uk.p; 1487 bch2_bkey_format_add_key(&format[i], &uk); 1488 1489 nr_keys[i].nr_keys++; 1490 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1491 } 1492 1493 btree_set_min(n[0], b->data->min_key); 1494 btree_set_max(n[0], n1_pos); 1495 btree_set_min(n[1], bpos_successor(n1_pos)); 1496 btree_set_max(n[1], b->data->max_key); 1497 1498 for (i = 0; i < 2; i++) { 1499 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1500 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1501 1502 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1503 1504 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1505 nr_keys[i].val_u64s; 1506 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1507 n[i]->data->format = b->format; 1508 1509 btree_node_set_format(n[i], n[i]->data->format); 1510 } 1511 1512 u64s = 0; 1513 for_each_btree_node_key(b, k, &iter) { 1514 if (bkey_deleted(k)) 1515 continue; 1516 1517 i = u64s >= n1_u64s; 1518 u64s += k->u64s; 1519 1520 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1521 ? &b->format: &bch2_bkey_format_current, k)) 1522 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1523 else 1524 bch2_bkey_unpack(b, (void *) out[i], k); 1525 1526 out[i]->needs_whiteout = false; 1527 1528 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1529 out[i] = bkey_p_next(out[i]); 1530 } 1531 1532 for (i = 0; i < 2; i++) { 1533 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1534 1535 BUG_ON(!bsets[i]->u64s); 1536 1537 set_btree_bset_end(n[i], n[i]->set); 1538 1539 btree_node_reset_sib_u64s(n[i]); 1540 1541 bch2_verify_btree_nr_keys(n[i]); 1542 1543 BUG_ON(bch2_btree_node_check_topology(trans, n[i])); 1544 } 1545 } 1546 1547 /* 1548 * For updates to interior nodes, we've got to do the insert before we split 1549 * because the stuff we're inserting has to be inserted atomically. Post split, 1550 * the keys might have to go in different nodes and the split would no longer be 1551 * atomic. 1552 * 1553 * Worse, if the insert is from btree node coalescing, if we do the insert after 1554 * we do the split (and pick the pivot) - the pivot we pick might be between 1555 * nodes that were coalesced, and thus in the middle of a child node post 1556 * coalescing: 1557 */ 1558 static void btree_split_insert_keys(struct btree_update *as, 1559 struct btree_trans *trans, 1560 btree_path_idx_t path_idx, 1561 struct btree *b, 1562 struct keylist *keys) 1563 { 1564 struct btree_path *path = trans->paths + path_idx; 1565 1566 if (!bch2_keylist_empty(keys) && 1567 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1568 struct btree_node_iter node_iter; 1569 1570 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1571 1572 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1573 1574 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1575 } 1576 } 1577 1578 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1579 btree_path_idx_t path, struct btree *b, 1580 struct keylist *keys) 1581 { 1582 struct bch_fs *c = as->c; 1583 struct btree *parent = btree_node_parent(trans->paths + path, b); 1584 struct btree *n1, *n2 = NULL, *n3 = NULL; 1585 btree_path_idx_t path1 = 0, path2 = 0; 1586 u64 start_time = local_clock(); 1587 int ret = 0; 1588 1589 bch2_verify_btree_nr_keys(b); 1590 BUG_ON(!parent && (b != btree_node_root(c, b))); 1591 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1592 1593 ret = bch2_btree_node_check_topology(trans, b); 1594 if (ret) 1595 return ret; 1596 1597 bch2_btree_interior_update_will_free_node(as, b); 1598 1599 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1600 struct btree *n[2]; 1601 1602 trace_and_count(c, btree_node_split, trans, b); 1603 1604 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1605 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1606 1607 __btree_split_node(as, trans, b, n); 1608 1609 if (keys) { 1610 btree_split_insert_keys(as, trans, path, n1, keys); 1611 btree_split_insert_keys(as, trans, path, n2, keys); 1612 BUG_ON(!bch2_keylist_empty(keys)); 1613 } 1614 1615 bch2_btree_build_aux_trees(n2); 1616 bch2_btree_build_aux_trees(n1); 1617 1618 bch2_btree_update_add_new_node(as, n1); 1619 bch2_btree_update_add_new_node(as, n2); 1620 six_unlock_write(&n2->c.lock); 1621 six_unlock_write(&n1->c.lock); 1622 1623 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1624 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1625 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1626 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1627 1628 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p); 1629 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1630 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1631 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1632 1633 /* 1634 * Note that on recursive parent_keys == keys, so we 1635 * can't start adding new keys to parent_keys before emptying it 1636 * out (which we did with btree_split_insert_keys() above) 1637 */ 1638 bch2_keylist_add(&as->parent_keys, &n1->key); 1639 bch2_keylist_add(&as->parent_keys, &n2->key); 1640 1641 if (!parent) { 1642 /* Depth increases, make a new root */ 1643 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1644 1645 bch2_btree_update_add_new_node(as, n3); 1646 six_unlock_write(&n3->c.lock); 1647 1648 trans->paths[path2].locks_want++; 1649 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1650 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1651 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1652 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1653 1654 n3->sib_u64s[0] = U16_MAX; 1655 n3->sib_u64s[1] = U16_MAX; 1656 1657 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1658 } 1659 } else { 1660 trace_and_count(c, btree_node_compact, trans, b); 1661 1662 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1663 1664 if (keys) { 1665 btree_split_insert_keys(as, trans, path, n1, keys); 1666 BUG_ON(!bch2_keylist_empty(keys)); 1667 } 1668 1669 bch2_btree_build_aux_trees(n1); 1670 bch2_btree_update_add_new_node(as, n1); 1671 six_unlock_write(&n1->c.lock); 1672 1673 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1674 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1675 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1676 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1677 1678 if (parent) 1679 bch2_keylist_add(&as->parent_keys, &n1->key); 1680 } 1681 1682 /* New nodes all written, now make them visible: */ 1683 1684 if (parent) { 1685 /* Split a non root node */ 1686 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1687 } else if (n3) { 1688 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false); 1689 } else { 1690 /* Root filled up but didn't need to be split */ 1691 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false); 1692 } 1693 1694 if (ret) 1695 goto err; 1696 1697 if (n3) { 1698 bch2_btree_update_get_open_buckets(as, n3); 1699 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1700 } 1701 if (n2) { 1702 bch2_btree_update_get_open_buckets(as, n2); 1703 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1704 } 1705 bch2_btree_update_get_open_buckets(as, n1); 1706 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1707 1708 /* 1709 * The old node must be freed (in memory) _before_ unlocking the new 1710 * nodes - else another thread could re-acquire a read lock on the old 1711 * node after another thread has locked and updated the new node, thus 1712 * seeing stale data: 1713 */ 1714 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1715 1716 if (n3) 1717 bch2_trans_node_add(trans, trans->paths + path, n3); 1718 if (n2) 1719 bch2_trans_node_add(trans, trans->paths + path2, n2); 1720 bch2_trans_node_add(trans, trans->paths + path1, n1); 1721 1722 if (n3) 1723 six_unlock_intent(&n3->c.lock); 1724 if (n2) 1725 six_unlock_intent(&n2->c.lock); 1726 six_unlock_intent(&n1->c.lock); 1727 out: 1728 if (path2) { 1729 __bch2_btree_path_unlock(trans, trans->paths + path2); 1730 bch2_path_put(trans, path2, true); 1731 } 1732 if (path1) { 1733 __bch2_btree_path_unlock(trans, trans->paths + path1); 1734 bch2_path_put(trans, path1, true); 1735 } 1736 1737 bch2_trans_verify_locks(trans); 1738 1739 bch2_time_stats_update(&c->times[n2 1740 ? BCH_TIME_btree_node_split 1741 : BCH_TIME_btree_node_compact], 1742 start_time); 1743 return ret; 1744 err: 1745 if (n3) 1746 bch2_btree_node_free_never_used(as, trans, n3); 1747 if (n2) 1748 bch2_btree_node_free_never_used(as, trans, n2); 1749 bch2_btree_node_free_never_used(as, trans, n1); 1750 goto out; 1751 } 1752 1753 /** 1754 * bch2_btree_insert_node - insert bkeys into a given btree node 1755 * 1756 * @as: btree_update object 1757 * @trans: btree_trans object 1758 * @path_idx: path that points to current node 1759 * @b: node to insert keys into 1760 * @keys: list of keys to insert 1761 * 1762 * Returns: 0 on success, typically transaction restart error on failure 1763 * 1764 * Inserts as many keys as it can into a given btree node, splitting it if full. 1765 * If a split occurred, this function will return early. This can only happen 1766 * for leaf nodes -- inserts into interior nodes have to be atomic. 1767 */ 1768 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1769 btree_path_idx_t path_idx, struct btree *b, 1770 struct keylist *keys) 1771 { 1772 struct bch_fs *c = as->c; 1773 struct btree_path *path = trans->paths + path_idx, *linked; 1774 unsigned i; 1775 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1776 int old_live_u64s = b->nr.live_u64s; 1777 int live_u64s_added, u64s_added; 1778 int ret; 1779 1780 lockdep_assert_held(&c->gc_lock); 1781 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1782 BUG_ON(!b->c.level); 1783 BUG_ON(!as || as->b); 1784 bch2_verify_keylist_sorted(keys); 1785 1786 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1787 if (ret) 1788 return ret; 1789 1790 bch2_btree_node_prep_for_write(trans, path, b); 1791 1792 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1793 bch2_btree_node_unlock_write(trans, path, b); 1794 goto split; 1795 } 1796 1797 ret = bch2_btree_node_check_topology(trans, b); 1798 if (ret) { 1799 bch2_btree_node_unlock_write(trans, path, b); 1800 return ret; 1801 } 1802 1803 bch2_btree_insert_keys_interior(as, trans, path, b, 1804 path->l[b->c.level].iter, keys); 1805 1806 trans_for_each_path_with_node(trans, b, linked, i) 1807 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1808 1809 bch2_trans_verify_paths(trans); 1810 1811 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1812 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1813 1814 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1815 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1816 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1817 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1818 1819 if (u64s_added > live_u64s_added && 1820 bch2_maybe_compact_whiteouts(c, b)) 1821 bch2_trans_node_reinit_iter(trans, b); 1822 1823 btree_update_updated_node(as, b); 1824 bch2_btree_node_unlock_write(trans, path, b); 1825 1826 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1827 return 0; 1828 split: 1829 /* 1830 * We could attempt to avoid the transaction restart, by calling 1831 * bch2_btree_path_upgrade() and allocating more nodes: 1832 */ 1833 if (b->c.level >= as->update_level_end) { 1834 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1835 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1836 } 1837 1838 return btree_split(as, trans, path_idx, b, keys); 1839 } 1840 1841 int bch2_btree_split_leaf(struct btree_trans *trans, 1842 btree_path_idx_t path, 1843 unsigned flags) 1844 { 1845 /* btree_split & merge may both cause paths array to be reallocated */ 1846 struct btree *b = path_l(trans->paths + path)->b; 1847 struct btree_update *as; 1848 unsigned l; 1849 int ret = 0; 1850 1851 as = bch2_btree_update_start(trans, trans->paths + path, 1852 trans->paths[path].level, 1853 true, flags); 1854 if (IS_ERR(as)) 1855 return PTR_ERR(as); 1856 1857 ret = btree_split(as, trans, path, b, NULL); 1858 if (ret) { 1859 bch2_btree_update_free(as, trans); 1860 return ret; 1861 } 1862 1863 bch2_btree_update_done(as, trans); 1864 1865 for (l = trans->paths[path].level + 1; 1866 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1867 l++) 1868 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1869 1870 return ret; 1871 } 1872 1873 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans, 1874 btree_path_idx_t path_idx) 1875 { 1876 struct bch_fs *c = as->c; 1877 struct btree_path *path = trans->paths + path_idx; 1878 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b; 1879 1880 BUG_ON(!btree_node_locked(path, b->c.level)); 1881 1882 n = __btree_root_alloc(as, trans, b->c.level + 1); 1883 1884 bch2_btree_update_add_new_node(as, n); 1885 six_unlock_write(&n->c.lock); 1886 1887 path->locks_want++; 1888 BUG_ON(btree_node_locked(path, n->c.level)); 1889 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1890 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1891 bch2_btree_path_level_init(trans, path, n); 1892 1893 n->sib_u64s[0] = U16_MAX; 1894 n->sib_u64s[1] = U16_MAX; 1895 1896 bch2_keylist_add(&as->parent_keys, &b->key); 1897 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys); 1898 1899 int ret = bch2_btree_set_root(as, trans, path, n, true); 1900 BUG_ON(ret); 1901 1902 bch2_btree_update_get_open_buckets(as, n); 1903 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1904 bch2_trans_node_add(trans, path, n); 1905 six_unlock_intent(&n->c.lock); 1906 1907 mutex_lock(&c->btree_cache.lock); 1908 list_add_tail(&b->list, &c->btree_cache.live); 1909 mutex_unlock(&c->btree_cache.lock); 1910 1911 bch2_trans_verify_locks(trans); 1912 } 1913 1914 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) 1915 { 1916 struct bch_fs *c = trans->c; 1917 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b; 1918 1919 if (btree_node_fake(b)) 1920 return bch2_btree_split_leaf(trans, path, flags); 1921 1922 struct btree_update *as = 1923 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags); 1924 if (IS_ERR(as)) 1925 return PTR_ERR(as); 1926 1927 __btree_increase_depth(as, trans, path); 1928 bch2_btree_update_done(as, trans); 1929 return 0; 1930 } 1931 1932 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1933 btree_path_idx_t path, 1934 unsigned level, 1935 unsigned flags, 1936 enum btree_node_sibling sib) 1937 { 1938 struct bch_fs *c = trans->c; 1939 struct btree_update *as; 1940 struct bkey_format_state new_s; 1941 struct bkey_format new_f; 1942 struct bkey_i delete; 1943 struct btree *b, *m, *n, *prev, *next, *parent; 1944 struct bpos sib_pos; 1945 size_t sib_u64s; 1946 enum btree_id btree = trans->paths[path].btree_id; 1947 btree_path_idx_t sib_path = 0, new_path = 0; 1948 u64 start_time = local_clock(); 1949 int ret = 0; 1950 1951 bch2_trans_verify_not_in_restart(trans); 1952 bch2_trans_verify_not_unlocked(trans); 1953 BUG_ON(!trans->paths[path].should_be_locked); 1954 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1955 1956 /* 1957 * Work around a deadlock caused by the btree write buffer not doing 1958 * merges and leaving tons of merges for us to do - we really don't need 1959 * to be doing merges at all from the interior update path, and if the 1960 * interior update path is generating too many new interior updates we 1961 * deadlock: 1962 */ 1963 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates) 1964 return 0; 1965 1966 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) { 1967 flags &= ~BCH_WATERMARK_MASK; 1968 flags |= BCH_WATERMARK_btree; 1969 flags |= BCH_TRANS_COMMIT_journal_reclaim; 1970 } 1971 1972 b = trans->paths[path].l[level].b; 1973 1974 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1975 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1976 b->sib_u64s[sib] = U16_MAX; 1977 return 0; 1978 } 1979 1980 sib_pos = sib == btree_prev_sib 1981 ? bpos_predecessor(b->data->min_key) 1982 : bpos_successor(b->data->max_key); 1983 1984 sib_path = bch2_path_get(trans, btree, sib_pos, 1985 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_); 1986 ret = bch2_btree_path_traverse(trans, sib_path, false); 1987 if (ret) 1988 goto err; 1989 1990 btree_path_set_should_be_locked(trans->paths + sib_path); 1991 1992 m = trans->paths[sib_path].l[level].b; 1993 1994 if (btree_node_parent(trans->paths + path, b) != 1995 btree_node_parent(trans->paths + sib_path, m)) { 1996 b->sib_u64s[sib] = U16_MAX; 1997 goto out; 1998 } 1999 2000 if (sib == btree_prev_sib) { 2001 prev = m; 2002 next = b; 2003 } else { 2004 prev = b; 2005 next = m; 2006 } 2007 2008 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 2009 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 2010 2011 bch2_bpos_to_text(&buf1, prev->data->max_key); 2012 bch2_bpos_to_text(&buf2, next->data->min_key); 2013 bch_err(c, 2014 "%s(): btree topology error:\n" 2015 " prev ends at %s\n" 2016 " next starts at %s", 2017 __func__, buf1.buf, buf2.buf); 2018 printbuf_exit(&buf1); 2019 printbuf_exit(&buf2); 2020 ret = bch2_topology_error(c); 2021 goto err; 2022 } 2023 2024 bch2_bkey_format_init(&new_s); 2025 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 2026 __bch2_btree_calc_format(&new_s, prev); 2027 __bch2_btree_calc_format(&new_s, next); 2028 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 2029 new_f = bch2_bkey_format_done(&new_s); 2030 2031 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 2032 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 2033 2034 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 2035 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2036 sib_u64s /= 2; 2037 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2038 } 2039 2040 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 2041 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 2042 b->sib_u64s[sib] = sib_u64s; 2043 2044 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 2045 goto out; 2046 2047 parent = btree_node_parent(trans->paths + path, b); 2048 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 2049 BCH_TRANS_COMMIT_no_enospc|flags); 2050 ret = PTR_ERR_OR_ZERO(as); 2051 if (ret) 2052 goto err; 2053 2054 trace_and_count(c, btree_node_merge, trans, b); 2055 2056 bch2_btree_interior_update_will_free_node(as, b); 2057 bch2_btree_interior_update_will_free_node(as, m); 2058 2059 n = bch2_btree_node_alloc(as, trans, b->c.level); 2060 2061 SET_BTREE_NODE_SEQ(n->data, 2062 max(BTREE_NODE_SEQ(b->data), 2063 BTREE_NODE_SEQ(m->data)) + 1); 2064 2065 btree_set_min(n, prev->data->min_key); 2066 btree_set_max(n, next->data->max_key); 2067 2068 n->data->format = new_f; 2069 btree_node_set_format(n, new_f); 2070 2071 bch2_btree_sort_into(c, n, prev); 2072 bch2_btree_sort_into(c, n, next); 2073 2074 bch2_btree_build_aux_trees(n); 2075 bch2_btree_update_add_new_node(as, n); 2076 six_unlock_write(&n->c.lock); 2077 2078 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p); 2079 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2080 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2081 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2082 2083 bkey_init(&delete.k); 2084 delete.k.p = prev->key.k.p; 2085 bch2_keylist_add(&as->parent_keys, &delete); 2086 bch2_keylist_add(&as->parent_keys, &n->key); 2087 2088 bch2_trans_verify_paths(trans); 2089 2090 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 2091 if (ret) 2092 goto err_free_update; 2093 2094 bch2_trans_verify_paths(trans); 2095 2096 bch2_btree_update_get_open_buckets(as, n); 2097 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2098 2099 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 2100 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 2101 2102 bch2_trans_node_add(trans, trans->paths + path, n); 2103 2104 bch2_trans_verify_paths(trans); 2105 2106 six_unlock_intent(&n->c.lock); 2107 2108 bch2_btree_update_done(as, trans); 2109 2110 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 2111 out: 2112 err: 2113 if (new_path) 2114 bch2_path_put(trans, new_path, true); 2115 bch2_path_put(trans, sib_path, true); 2116 bch2_trans_verify_locks(trans); 2117 if (ret == -BCH_ERR_journal_reclaim_would_deadlock) 2118 ret = 0; 2119 if (!ret) 2120 ret = bch2_trans_relock(trans); 2121 return ret; 2122 err_free_update: 2123 bch2_btree_node_free_never_used(as, trans, n); 2124 bch2_btree_update_free(as, trans); 2125 goto out; 2126 } 2127 2128 int bch2_btree_node_rewrite(struct btree_trans *trans, 2129 struct btree_iter *iter, 2130 struct btree *b, 2131 unsigned flags) 2132 { 2133 struct bch_fs *c = trans->c; 2134 struct btree *n, *parent; 2135 struct btree_update *as; 2136 btree_path_idx_t new_path = 0; 2137 int ret; 2138 2139 flags |= BCH_TRANS_COMMIT_no_enospc; 2140 2141 struct btree_path *path = btree_iter_path(trans, iter); 2142 parent = btree_node_parent(path, b); 2143 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 2144 ret = PTR_ERR_OR_ZERO(as); 2145 if (ret) 2146 goto out; 2147 2148 bch2_btree_interior_update_will_free_node(as, b); 2149 2150 n = bch2_btree_node_alloc_replacement(as, trans, b); 2151 2152 bch2_btree_build_aux_trees(n); 2153 bch2_btree_update_add_new_node(as, n); 2154 six_unlock_write(&n->c.lock); 2155 2156 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p); 2157 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2158 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2159 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2160 2161 trace_and_count(c, btree_node_rewrite, trans, b); 2162 2163 if (parent) { 2164 bch2_keylist_add(&as->parent_keys, &n->key); 2165 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys); 2166 } else { 2167 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false); 2168 } 2169 2170 if (ret) 2171 goto err; 2172 2173 bch2_btree_update_get_open_buckets(as, n); 2174 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2175 2176 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2177 2178 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2179 six_unlock_intent(&n->c.lock); 2180 2181 bch2_btree_update_done(as, trans); 2182 out: 2183 if (new_path) 2184 bch2_path_put(trans, new_path, true); 2185 bch2_trans_downgrade(trans); 2186 return ret; 2187 err: 2188 bch2_btree_node_free_never_used(as, trans, n); 2189 bch2_btree_update_free(as, trans); 2190 goto out; 2191 } 2192 2193 struct async_btree_rewrite { 2194 struct bch_fs *c; 2195 struct work_struct work; 2196 struct list_head list; 2197 enum btree_id btree_id; 2198 unsigned level; 2199 struct bpos pos; 2200 __le64 seq; 2201 }; 2202 2203 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2204 struct async_btree_rewrite *a) 2205 { 2206 struct bch_fs *c = trans->c; 2207 struct btree_iter iter; 2208 struct btree *b; 2209 int ret; 2210 2211 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2212 BTREE_MAX_DEPTH, a->level, 0); 2213 b = bch2_btree_iter_peek_node(&iter); 2214 ret = PTR_ERR_OR_ZERO(b); 2215 if (ret) 2216 goto out; 2217 2218 if (!b || b->data->keys.seq != a->seq) { 2219 struct printbuf buf = PRINTBUF; 2220 2221 if (b) 2222 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2223 else 2224 prt_str(&buf, "(null"); 2225 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2226 __func__, a->seq, buf.buf); 2227 printbuf_exit(&buf); 2228 goto out; 2229 } 2230 2231 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2232 out: 2233 bch2_trans_iter_exit(trans, &iter); 2234 2235 return ret; 2236 } 2237 2238 static void async_btree_node_rewrite_work(struct work_struct *work) 2239 { 2240 struct async_btree_rewrite *a = 2241 container_of(work, struct async_btree_rewrite, work); 2242 struct bch_fs *c = a->c; 2243 int ret; 2244 2245 ret = bch2_trans_do(c, NULL, NULL, 0, 2246 async_btree_node_rewrite_trans(trans, a)); 2247 bch_err_fn_ratelimited(c, ret); 2248 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2249 kfree(a); 2250 } 2251 2252 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2253 { 2254 struct async_btree_rewrite *a; 2255 int ret; 2256 2257 a = kmalloc(sizeof(*a), GFP_NOFS); 2258 if (!a) { 2259 bch_err(c, "%s: error allocating memory", __func__); 2260 return; 2261 } 2262 2263 a->c = c; 2264 a->btree_id = b->c.btree_id; 2265 a->level = b->c.level; 2266 a->pos = b->key.k.p; 2267 a->seq = b->data->keys.seq; 2268 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2269 2270 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { 2271 mutex_lock(&c->pending_node_rewrites_lock); 2272 list_add(&a->list, &c->pending_node_rewrites); 2273 mutex_unlock(&c->pending_node_rewrites_lock); 2274 return; 2275 } 2276 2277 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2278 if (test_bit(BCH_FS_started, &c->flags)) { 2279 bch_err(c, "%s: error getting c->writes ref", __func__); 2280 kfree(a); 2281 return; 2282 } 2283 2284 ret = bch2_fs_read_write_early(c); 2285 bch_err_msg(c, ret, "going read-write"); 2286 if (ret) { 2287 kfree(a); 2288 return; 2289 } 2290 2291 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2292 } 2293 2294 queue_work(c->btree_node_rewrite_worker, &a->work); 2295 } 2296 2297 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2298 { 2299 struct async_btree_rewrite *a, *n; 2300 2301 mutex_lock(&c->pending_node_rewrites_lock); 2302 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2303 list_del(&a->list); 2304 2305 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2306 queue_work(c->btree_node_rewrite_worker, &a->work); 2307 } 2308 mutex_unlock(&c->pending_node_rewrites_lock); 2309 } 2310 2311 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2312 { 2313 struct async_btree_rewrite *a, *n; 2314 2315 mutex_lock(&c->pending_node_rewrites_lock); 2316 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2317 list_del(&a->list); 2318 2319 kfree(a); 2320 } 2321 mutex_unlock(&c->pending_node_rewrites_lock); 2322 } 2323 2324 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2325 struct btree_iter *iter, 2326 struct btree *b, struct btree *new_hash, 2327 struct bkey_i *new_key, 2328 unsigned commit_flags, 2329 bool skip_triggers) 2330 { 2331 struct bch_fs *c = trans->c; 2332 struct btree_iter iter2 = { NULL }; 2333 struct btree *parent; 2334 int ret; 2335 2336 if (!skip_triggers) { 2337 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2338 bkey_i_to_s_c(&b->key), 2339 BTREE_TRIGGER_transactional) ?: 2340 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2341 bkey_i_to_s(new_key), 2342 BTREE_TRIGGER_transactional); 2343 if (ret) 2344 return ret; 2345 } 2346 2347 if (new_hash) { 2348 bkey_copy(&new_hash->key, new_key); 2349 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2350 new_hash, b->c.level, b->c.btree_id); 2351 BUG_ON(ret); 2352 } 2353 2354 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2355 if (parent) { 2356 bch2_trans_copy_iter(&iter2, iter); 2357 2358 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2359 iter2.flags & BTREE_ITER_intent, 2360 _THIS_IP_); 2361 2362 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2363 BUG_ON(path2->level != b->c.level); 2364 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2365 2366 btree_path_set_level_up(trans, path2); 2367 2368 trans->paths_sorted = false; 2369 2370 ret = bch2_btree_iter_traverse(&iter2) ?: 2371 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun); 2372 if (ret) 2373 goto err; 2374 } else { 2375 BUG_ON(btree_node_root(c, b) != b); 2376 2377 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2378 jset_u64s(new_key->k.u64s)); 2379 ret = PTR_ERR_OR_ZERO(e); 2380 if (ret) 2381 return ret; 2382 2383 journal_entry_set(e, 2384 BCH_JSET_ENTRY_btree_root, 2385 b->c.btree_id, b->c.level, 2386 new_key, new_key->k.u64s); 2387 } 2388 2389 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2390 if (ret) 2391 goto err; 2392 2393 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2394 2395 if (new_hash) { 2396 mutex_lock(&c->btree_cache.lock); 2397 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2398 bch2_btree_node_hash_remove(&c->btree_cache, b); 2399 2400 bkey_copy(&b->key, new_key); 2401 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2402 BUG_ON(ret); 2403 mutex_unlock(&c->btree_cache.lock); 2404 } else { 2405 bkey_copy(&b->key, new_key); 2406 } 2407 2408 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2409 out: 2410 bch2_trans_iter_exit(trans, &iter2); 2411 return ret; 2412 err: 2413 if (new_hash) { 2414 mutex_lock(&c->btree_cache.lock); 2415 bch2_btree_node_hash_remove(&c->btree_cache, b); 2416 mutex_unlock(&c->btree_cache.lock); 2417 } 2418 goto out; 2419 } 2420 2421 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2422 struct btree *b, struct bkey_i *new_key, 2423 unsigned commit_flags, bool skip_triggers) 2424 { 2425 struct bch_fs *c = trans->c; 2426 struct btree *new_hash = NULL; 2427 struct btree_path *path = btree_iter_path(trans, iter); 2428 struct closure cl; 2429 int ret = 0; 2430 2431 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2432 if (ret) 2433 return ret; 2434 2435 closure_init_stack(&cl); 2436 2437 /* 2438 * check btree_ptr_hash_val() after @b is locked by 2439 * btree_iter_traverse(): 2440 */ 2441 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2442 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2443 if (ret) { 2444 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2445 if (ret) 2446 return ret; 2447 } 2448 2449 new_hash = bch2_btree_node_mem_alloc(trans, false); 2450 } 2451 2452 path->intent_ref++; 2453 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2454 commit_flags, skip_triggers); 2455 --path->intent_ref; 2456 2457 if (new_hash) { 2458 mutex_lock(&c->btree_cache.lock); 2459 list_move(&new_hash->list, &c->btree_cache.freeable); 2460 mutex_unlock(&c->btree_cache.lock); 2461 2462 six_unlock_write(&new_hash->c.lock); 2463 six_unlock_intent(&new_hash->c.lock); 2464 } 2465 closure_sync(&cl); 2466 bch2_btree_cache_cannibalize_unlock(trans); 2467 return ret; 2468 } 2469 2470 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2471 struct btree *b, struct bkey_i *new_key, 2472 unsigned commit_flags, bool skip_triggers) 2473 { 2474 struct btree_iter iter; 2475 int ret; 2476 2477 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2478 BTREE_MAX_DEPTH, b->c.level, 2479 BTREE_ITER_intent); 2480 ret = bch2_btree_iter_traverse(&iter); 2481 if (ret) 2482 goto out; 2483 2484 /* has node been freed? */ 2485 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2486 /* node has been freed: */ 2487 BUG_ON(!btree_node_dying(b)); 2488 goto out; 2489 } 2490 2491 BUG_ON(!btree_node_hashed(b)); 2492 2493 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2494 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2495 2496 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2497 commit_flags, skip_triggers); 2498 out: 2499 bch2_trans_iter_exit(trans, &iter); 2500 return ret; 2501 } 2502 2503 /* Init code: */ 2504 2505 /* 2506 * Only for filesystem bringup, when first reading the btree roots or allocating 2507 * btree roots when initializing a new filesystem: 2508 */ 2509 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2510 { 2511 BUG_ON(btree_node_root(c, b)); 2512 2513 bch2_btree_set_root_inmem(c, b); 2514 } 2515 2516 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level) 2517 { 2518 struct bch_fs *c = trans->c; 2519 struct closure cl; 2520 struct btree *b; 2521 int ret; 2522 2523 closure_init_stack(&cl); 2524 2525 do { 2526 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2527 closure_sync(&cl); 2528 } while (ret); 2529 2530 b = bch2_btree_node_mem_alloc(trans, false); 2531 bch2_btree_cache_cannibalize_unlock(trans); 2532 2533 set_btree_node_fake(b); 2534 set_btree_node_need_rewrite(b); 2535 b->c.level = level; 2536 b->c.btree_id = id; 2537 2538 bkey_btree_ptr_init(&b->key); 2539 b->key.k.p = SPOS_MAX; 2540 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2541 2542 bch2_bset_init_first(b, &b->data->keys); 2543 bch2_btree_build_aux_trees(b); 2544 2545 b->data->flags = 0; 2546 btree_set_min(b, POS_MIN); 2547 btree_set_max(b, SPOS_MAX); 2548 b->data->format = bch2_btree_calc_format(b); 2549 btree_node_set_format(b, b->data->format); 2550 2551 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2552 b->c.level, b->c.btree_id); 2553 BUG_ON(ret); 2554 2555 bch2_btree_set_root_inmem(c, b); 2556 2557 six_unlock_write(&b->c.lock); 2558 six_unlock_intent(&b->c.lock); 2559 return 0; 2560 } 2561 2562 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level) 2563 { 2564 bch2_trans_run(c, bch2_btree_root_alloc_fake_trans(trans, id, level)); 2565 } 2566 2567 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as) 2568 { 2569 prt_printf(out, "%ps: ", (void *) as->ip_started); 2570 bch2_trans_commit_flags_to_text(out, as->flags); 2571 2572 prt_printf(out, " btree=%s l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n", 2573 bch2_btree_id_str(as->btree_id), 2574 as->update_level_start, 2575 as->update_level_end, 2576 bch2_btree_update_modes[as->mode], 2577 as->nodes_written, 2578 closure_nr_remaining(&as->cl), 2579 as->journal.seq); 2580 } 2581 2582 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2583 { 2584 struct btree_update *as; 2585 2586 mutex_lock(&c->btree_interior_update_lock); 2587 list_for_each_entry(as, &c->btree_interior_update_list, list) 2588 bch2_btree_update_to_text(out, as); 2589 mutex_unlock(&c->btree_interior_update_lock); 2590 } 2591 2592 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2593 { 2594 bool ret; 2595 2596 mutex_lock(&c->btree_interior_update_lock); 2597 ret = !list_empty(&c->btree_interior_update_list); 2598 mutex_unlock(&c->btree_interior_update_lock); 2599 2600 return ret; 2601 } 2602 2603 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2604 { 2605 bool ret = bch2_btree_interior_updates_pending(c); 2606 2607 if (ret) 2608 closure_wait_event(&c->btree_interior_update_wait, 2609 !bch2_btree_interior_updates_pending(c)); 2610 return ret; 2611 } 2612 2613 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2614 { 2615 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2616 2617 mutex_lock(&c->btree_root_lock); 2618 2619 r->level = entry->level; 2620 r->alive = true; 2621 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2622 2623 mutex_unlock(&c->btree_root_lock); 2624 } 2625 2626 struct jset_entry * 2627 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2628 struct jset_entry *end, 2629 unsigned long skip) 2630 { 2631 unsigned i; 2632 2633 mutex_lock(&c->btree_root_lock); 2634 2635 for (i = 0; i < btree_id_nr_alive(c); i++) { 2636 struct btree_root *r = bch2_btree_id_root(c, i); 2637 2638 if (r->alive && !test_bit(i, &skip)) { 2639 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2640 i, r->level, &r->key, r->key.k.u64s); 2641 end = vstruct_next(end); 2642 } 2643 } 2644 2645 mutex_unlock(&c->btree_root_lock); 2646 2647 return end; 2648 } 2649 2650 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2651 { 2652 if (c->btree_node_rewrite_worker) 2653 destroy_workqueue(c->btree_node_rewrite_worker); 2654 if (c->btree_interior_update_worker) 2655 destroy_workqueue(c->btree_interior_update_worker); 2656 mempool_exit(&c->btree_interior_update_pool); 2657 } 2658 2659 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2660 { 2661 mutex_init(&c->btree_reserve_cache_lock); 2662 INIT_LIST_HEAD(&c->btree_interior_update_list); 2663 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2664 mutex_init(&c->btree_interior_update_lock); 2665 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2666 2667 INIT_LIST_HEAD(&c->pending_node_rewrites); 2668 mutex_init(&c->pending_node_rewrites_lock); 2669 } 2670 2671 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2672 { 2673 c->btree_interior_update_worker = 2674 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8); 2675 if (!c->btree_interior_update_worker) 2676 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2677 2678 c->btree_node_rewrite_worker = 2679 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND); 2680 if (!c->btree_node_rewrite_worker) 2681 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2682 2683 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2684 sizeof(struct btree_update))) 2685 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2686 2687 return 0; 2688 } 2689