xref: /linux/fs/bcachefs/btree_update_interior.c (revision 1f20a5769446a1acae67ac9e63d07a594829a789)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_buf.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
8 #include "btree_gc.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "btree_io.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
15 #include "buckets.h"
16 #include "clock.h"
17 #include "error.h"
18 #include "extents.h"
19 #include "journal.h"
20 #include "journal_reclaim.h"
21 #include "keylist.h"
22 #include "recovery_passes.h"
23 #include "replicas.h"
24 #include "sb-members.h"
25 #include "super-io.h"
26 #include "trace.h"
27 
28 #include <linux/random.h>
29 
30 static const char * const bch2_btree_update_modes[] = {
31 #define x(t) #t,
32 	BTREE_UPDATE_MODES()
33 #undef x
34 	NULL
35 };
36 
37 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
38 				  btree_path_idx_t, struct btree *, struct keylist *);
39 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
40 
41 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans,
42 					      enum btree_id btree_id,
43 					      unsigned level,
44 					      struct bpos pos)
45 {
46 	btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level,
47 			     BTREE_ITER_NOPRESERVE|
48 			     BTREE_ITER_INTENT, _RET_IP_);
49 	path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_);
50 
51 	struct btree_path *path = trans->paths + path_idx;
52 	bch2_btree_path_downgrade(trans, path);
53 	__bch2_btree_path_unlock(trans, path);
54 	return path_idx;
55 }
56 
57 /*
58  * Verify that child nodes correctly span parent node's range:
59  */
60 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
61 {
62 	struct bch_fs *c = trans->c;
63 	struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
64 		? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
65 		: b->data->min_key;
66 	struct btree_and_journal_iter iter;
67 	struct bkey_s_c k;
68 	struct printbuf buf = PRINTBUF;
69 	struct bkey_buf prev;
70 	int ret = 0;
71 
72 	BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
73 	       !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
74 			b->data->min_key));
75 
76 	if (!b->c.level)
77 		return 0;
78 
79 	bch2_bkey_buf_init(&prev);
80 	bkey_init(&prev.k->k);
81 	bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
82 
83 	while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
84 		if (k.k->type != KEY_TYPE_btree_ptr_v2)
85 			goto out;
86 
87 		struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
88 
89 		struct bpos expected_min = bkey_deleted(&prev.k->k)
90 			? node_min
91 			: bpos_successor(prev.k->k.p);
92 
93 		if (!bpos_eq(expected_min, bp.v->min_key)) {
94 			bch2_topology_error(c);
95 
96 			printbuf_reset(&buf);
97 			prt_str(&buf, "end of prev node doesn't match start of next node\n"),
98 			prt_printf(&buf, "  in btree %s level %u node ",
99 				   bch2_btree_id_str(b->c.btree_id), b->c.level);
100 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
101 			prt_str(&buf, "\n  prev ");
102 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
103 			prt_str(&buf, "\n  next ");
104 			bch2_bkey_val_to_text(&buf, c, k);
105 
106 			need_fsck_err(c, btree_node_topology_bad_min_key, "%s", buf.buf);
107 			goto topology_repair;
108 		}
109 
110 		bch2_bkey_buf_reassemble(&prev, c, k);
111 		bch2_btree_and_journal_iter_advance(&iter);
112 	}
113 
114 	if (bkey_deleted(&prev.k->k)) {
115 		bch2_topology_error(c);
116 
117 		printbuf_reset(&buf);
118 		prt_str(&buf, "empty interior node\n");
119 		prt_printf(&buf, "  in btree %s level %u node ",
120 			   bch2_btree_id_str(b->c.btree_id), b->c.level);
121 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
122 
123 		need_fsck_err(c, btree_node_topology_empty_interior_node, "%s", buf.buf);
124 		goto topology_repair;
125 	} else if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
126 		bch2_topology_error(c);
127 
128 		printbuf_reset(&buf);
129 		prt_str(&buf, "last child node doesn't end at end of parent node\n");
130 		prt_printf(&buf, "  in btree %s level %u node ",
131 			   bch2_btree_id_str(b->c.btree_id), b->c.level);
132 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
133 		prt_str(&buf, "\n  last key ");
134 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
135 
136 		need_fsck_err(c, btree_node_topology_bad_max_key, "%s", buf.buf);
137 		goto topology_repair;
138 	}
139 out:
140 fsck_err:
141 	bch2_btree_and_journal_iter_exit(&iter);
142 	bch2_bkey_buf_exit(&prev, c);
143 	printbuf_exit(&buf);
144 	return ret;
145 topology_repair:
146 	if ((c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) &&
147 	    c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) {
148 		bch2_inconsistent_error(c);
149 		ret = -BCH_ERR_btree_need_topology_repair;
150 	} else {
151 		ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
152 	}
153 	goto out;
154 }
155 
156 /* Calculate ideal packed bkey format for new btree nodes: */
157 
158 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
159 {
160 	struct bkey_packed *k;
161 	struct bset_tree *t;
162 	struct bkey uk;
163 
164 	for_each_bset(b, t)
165 		bset_tree_for_each_key(b, t, k)
166 			if (!bkey_deleted(k)) {
167 				uk = bkey_unpack_key(b, k);
168 				bch2_bkey_format_add_key(s, &uk);
169 			}
170 }
171 
172 static struct bkey_format bch2_btree_calc_format(struct btree *b)
173 {
174 	struct bkey_format_state s;
175 
176 	bch2_bkey_format_init(&s);
177 	bch2_bkey_format_add_pos(&s, b->data->min_key);
178 	bch2_bkey_format_add_pos(&s, b->data->max_key);
179 	__bch2_btree_calc_format(&s, b);
180 
181 	return bch2_bkey_format_done(&s);
182 }
183 
184 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
185 					  struct bkey_format *old_f,
186 					  struct bkey_format *new_f)
187 {
188 	/* stupid integer promotion rules */
189 	ssize_t delta =
190 	    (((int) new_f->key_u64s - old_f->key_u64s) *
191 	     (int) nr.packed_keys) +
192 	    (((int) new_f->key_u64s - BKEY_U64s) *
193 	     (int) nr.unpacked_keys);
194 
195 	BUG_ON(delta + nr.live_u64s < 0);
196 
197 	return nr.live_u64s + delta;
198 }
199 
200 /**
201  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
202  *
203  * @c:		filesystem handle
204  * @b:		btree node to rewrite
205  * @nr:		number of keys for new node (i.e. b->nr)
206  * @new_f:	bkey format to translate keys to
207  *
208  * Returns: true if all re-packed keys will be able to fit in a new node.
209  *
210  * Assumes all keys will successfully pack with the new format.
211  */
212 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
213 				 struct btree_nr_keys nr,
214 				 struct bkey_format *new_f)
215 {
216 	size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
217 
218 	return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
219 }
220 
221 /* Btree node freeing/allocation: */
222 
223 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
224 {
225 	struct bch_fs *c = trans->c;
226 
227 	trace_and_count(c, btree_node_free, trans, b);
228 
229 	BUG_ON(btree_node_write_blocked(b));
230 	BUG_ON(btree_node_dirty(b));
231 	BUG_ON(btree_node_need_write(b));
232 	BUG_ON(b == btree_node_root(c, b));
233 	BUG_ON(b->ob.nr);
234 	BUG_ON(!list_empty(&b->write_blocked));
235 	BUG_ON(b->will_make_reachable);
236 
237 	clear_btree_node_noevict(b);
238 
239 	mutex_lock(&c->btree_cache.lock);
240 	list_move(&b->list, &c->btree_cache.freeable);
241 	mutex_unlock(&c->btree_cache.lock);
242 }
243 
244 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
245 				       struct btree_path *path,
246 				       struct btree *b)
247 {
248 	struct bch_fs *c = trans->c;
249 	unsigned i, level = b->c.level;
250 
251 	bch2_btree_node_lock_write_nofail(trans, path, &b->c);
252 	bch2_btree_node_hash_remove(&c->btree_cache, b);
253 	__btree_node_free(trans, b);
254 	six_unlock_write(&b->c.lock);
255 	mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
256 
257 	trans_for_each_path(trans, path, i)
258 		if (path->l[level].b == b) {
259 			btree_node_unlock(trans, path, level);
260 			path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
261 		}
262 }
263 
264 static void bch2_btree_node_free_never_used(struct btree_update *as,
265 					    struct btree_trans *trans,
266 					    struct btree *b)
267 {
268 	struct bch_fs *c = as->c;
269 	struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
270 	struct btree_path *path;
271 	unsigned i, level = b->c.level;
272 
273 	BUG_ON(!list_empty(&b->write_blocked));
274 	BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
275 
276 	b->will_make_reachable = 0;
277 	closure_put(&as->cl);
278 
279 	clear_btree_node_will_make_reachable(b);
280 	clear_btree_node_accessed(b);
281 	clear_btree_node_dirty_acct(c, b);
282 	clear_btree_node_need_write(b);
283 
284 	mutex_lock(&c->btree_cache.lock);
285 	list_del_init(&b->list);
286 	bch2_btree_node_hash_remove(&c->btree_cache, b);
287 	mutex_unlock(&c->btree_cache.lock);
288 
289 	BUG_ON(p->nr >= ARRAY_SIZE(p->b));
290 	p->b[p->nr++] = b;
291 
292 	six_unlock_intent(&b->c.lock);
293 
294 	trans_for_each_path(trans, path, i)
295 		if (path->l[level].b == b) {
296 			btree_node_unlock(trans, path, level);
297 			path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
298 		}
299 }
300 
301 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
302 					     struct disk_reservation *res,
303 					     struct closure *cl,
304 					     bool interior_node,
305 					     unsigned flags)
306 {
307 	struct bch_fs *c = trans->c;
308 	struct write_point *wp;
309 	struct btree *b;
310 	BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
311 	struct open_buckets obs = { .nr = 0 };
312 	struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
313 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
314 	unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
315 		? BTREE_NODE_RESERVE
316 		: 0;
317 	int ret;
318 
319 	mutex_lock(&c->btree_reserve_cache_lock);
320 	if (c->btree_reserve_cache_nr > nr_reserve) {
321 		struct btree_alloc *a =
322 			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
323 
324 		obs = a->ob;
325 		bkey_copy(&tmp.k, &a->k);
326 		mutex_unlock(&c->btree_reserve_cache_lock);
327 		goto mem_alloc;
328 	}
329 	mutex_unlock(&c->btree_reserve_cache_lock);
330 
331 retry:
332 	ret = bch2_alloc_sectors_start_trans(trans,
333 				      c->opts.metadata_target ?:
334 				      c->opts.foreground_target,
335 				      0,
336 				      writepoint_ptr(&c->btree_write_point),
337 				      &devs_have,
338 				      res->nr_replicas,
339 				      min(res->nr_replicas,
340 					  c->opts.metadata_replicas_required),
341 				      watermark, 0, cl, &wp);
342 	if (unlikely(ret))
343 		return ERR_PTR(ret);
344 
345 	if (wp->sectors_free < btree_sectors(c)) {
346 		struct open_bucket *ob;
347 		unsigned i;
348 
349 		open_bucket_for_each(c, &wp->ptrs, ob, i)
350 			if (ob->sectors_free < btree_sectors(c))
351 				ob->sectors_free = 0;
352 
353 		bch2_alloc_sectors_done(c, wp);
354 		goto retry;
355 	}
356 
357 	bkey_btree_ptr_v2_init(&tmp.k);
358 	bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
359 
360 	bch2_open_bucket_get(c, wp, &obs);
361 	bch2_alloc_sectors_done(c, wp);
362 mem_alloc:
363 	b = bch2_btree_node_mem_alloc(trans, interior_node);
364 	six_unlock_write(&b->c.lock);
365 	six_unlock_intent(&b->c.lock);
366 
367 	/* we hold cannibalize_lock: */
368 	BUG_ON(IS_ERR(b));
369 	BUG_ON(b->ob.nr);
370 
371 	bkey_copy(&b->key, &tmp.k);
372 	b->ob = obs;
373 
374 	return b;
375 }
376 
377 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
378 					   struct btree_trans *trans,
379 					   unsigned level)
380 {
381 	struct bch_fs *c = as->c;
382 	struct btree *b;
383 	struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
384 	int ret;
385 
386 	BUG_ON(level >= BTREE_MAX_DEPTH);
387 	BUG_ON(!p->nr);
388 
389 	b = p->b[--p->nr];
390 
391 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
392 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
393 
394 	set_btree_node_accessed(b);
395 	set_btree_node_dirty_acct(c, b);
396 	set_btree_node_need_write(b);
397 
398 	bch2_bset_init_first(b, &b->data->keys);
399 	b->c.level	= level;
400 	b->c.btree_id	= as->btree_id;
401 	b->version_ondisk = c->sb.version;
402 
403 	memset(&b->nr, 0, sizeof(b->nr));
404 	b->data->magic = cpu_to_le64(bset_magic(c));
405 	memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
406 	b->data->flags = 0;
407 	SET_BTREE_NODE_ID(b->data, as->btree_id);
408 	SET_BTREE_NODE_LEVEL(b->data, level);
409 
410 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
411 		struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
412 
413 		bp->v.mem_ptr		= 0;
414 		bp->v.seq		= b->data->keys.seq;
415 		bp->v.sectors_written	= 0;
416 	}
417 
418 	SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
419 
420 	bch2_btree_build_aux_trees(b);
421 
422 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
423 	BUG_ON(ret);
424 
425 	trace_and_count(c, btree_node_alloc, trans, b);
426 	bch2_increment_clock(c, btree_sectors(c), WRITE);
427 	return b;
428 }
429 
430 static void btree_set_min(struct btree *b, struct bpos pos)
431 {
432 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
433 		bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
434 	b->data->min_key = pos;
435 }
436 
437 static void btree_set_max(struct btree *b, struct bpos pos)
438 {
439 	b->key.k.p = pos;
440 	b->data->max_key = pos;
441 }
442 
443 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
444 						       struct btree_trans *trans,
445 						       struct btree *b)
446 {
447 	struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
448 	struct bkey_format format = bch2_btree_calc_format(b);
449 
450 	/*
451 	 * The keys might expand with the new format - if they wouldn't fit in
452 	 * the btree node anymore, use the old format for now:
453 	 */
454 	if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
455 		format = b->format;
456 
457 	SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
458 
459 	btree_set_min(n, b->data->min_key);
460 	btree_set_max(n, b->data->max_key);
461 
462 	n->data->format		= format;
463 	btree_node_set_format(n, format);
464 
465 	bch2_btree_sort_into(as->c, n, b);
466 
467 	btree_node_reset_sib_u64s(n);
468 	return n;
469 }
470 
471 static struct btree *__btree_root_alloc(struct btree_update *as,
472 				struct btree_trans *trans, unsigned level)
473 {
474 	struct btree *b = bch2_btree_node_alloc(as, trans, level);
475 
476 	btree_set_min(b, POS_MIN);
477 	btree_set_max(b, SPOS_MAX);
478 	b->data->format = bch2_btree_calc_format(b);
479 
480 	btree_node_set_format(b, b->data->format);
481 	bch2_btree_build_aux_trees(b);
482 
483 	return b;
484 }
485 
486 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
487 {
488 	struct bch_fs *c = as->c;
489 	struct prealloc_nodes *p;
490 
491 	for (p = as->prealloc_nodes;
492 	     p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
493 	     p++) {
494 		while (p->nr) {
495 			struct btree *b = p->b[--p->nr];
496 
497 			mutex_lock(&c->btree_reserve_cache_lock);
498 
499 			if (c->btree_reserve_cache_nr <
500 			    ARRAY_SIZE(c->btree_reserve_cache)) {
501 				struct btree_alloc *a =
502 					&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
503 
504 				a->ob = b->ob;
505 				b->ob.nr = 0;
506 				bkey_copy(&a->k, &b->key);
507 			} else {
508 				bch2_open_buckets_put(c, &b->ob);
509 			}
510 
511 			mutex_unlock(&c->btree_reserve_cache_lock);
512 
513 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
514 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
515 			__btree_node_free(trans, b);
516 			six_unlock_write(&b->c.lock);
517 			six_unlock_intent(&b->c.lock);
518 		}
519 	}
520 }
521 
522 static int bch2_btree_reserve_get(struct btree_trans *trans,
523 				  struct btree_update *as,
524 				  unsigned nr_nodes[2],
525 				  unsigned flags,
526 				  struct closure *cl)
527 {
528 	struct btree *b;
529 	unsigned interior;
530 	int ret = 0;
531 
532 	BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
533 
534 	/*
535 	 * Protects reaping from the btree node cache and using the btree node
536 	 * open bucket reserve:
537 	 */
538 	ret = bch2_btree_cache_cannibalize_lock(trans, cl);
539 	if (ret)
540 		return ret;
541 
542 	for (interior = 0; interior < 2; interior++) {
543 		struct prealloc_nodes *p = as->prealloc_nodes + interior;
544 
545 		while (p->nr < nr_nodes[interior]) {
546 			b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
547 						    interior, flags);
548 			if (IS_ERR(b)) {
549 				ret = PTR_ERR(b);
550 				goto err;
551 			}
552 
553 			p->b[p->nr++] = b;
554 		}
555 	}
556 err:
557 	bch2_btree_cache_cannibalize_unlock(trans);
558 	return ret;
559 }
560 
561 /* Asynchronous interior node update machinery */
562 
563 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
564 {
565 	struct bch_fs *c = as->c;
566 
567 	if (as->took_gc_lock)
568 		up_read(&c->gc_lock);
569 	as->took_gc_lock = false;
570 
571 	bch2_journal_pin_drop(&c->journal, &as->journal);
572 	bch2_journal_pin_flush(&c->journal, &as->journal);
573 	bch2_disk_reservation_put(c, &as->disk_res);
574 	bch2_btree_reserve_put(as, trans);
575 
576 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
577 			       as->start_time);
578 
579 	mutex_lock(&c->btree_interior_update_lock);
580 	list_del(&as->unwritten_list);
581 	list_del(&as->list);
582 
583 	closure_debug_destroy(&as->cl);
584 	mempool_free(as, &c->btree_interior_update_pool);
585 
586 	/*
587 	 * Have to do the wakeup with btree_interior_update_lock still held,
588 	 * since being on btree_interior_update_list is our ref on @c:
589 	 */
590 	closure_wake_up(&c->btree_interior_update_wait);
591 
592 	mutex_unlock(&c->btree_interior_update_lock);
593 }
594 
595 static void btree_update_add_key(struct btree_update *as,
596 				 struct keylist *keys, struct btree *b)
597 {
598 	struct bkey_i *k = &b->key;
599 
600 	BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
601 	       ARRAY_SIZE(as->_old_keys));
602 
603 	bkey_copy(keys->top, k);
604 	bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
605 
606 	bch2_keylist_push(keys);
607 }
608 
609 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
610 {
611 	for_each_keylist_key(&as->new_keys, k)
612 		if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
613 			return false;
614 	return true;
615 }
616 
617 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
618 {
619 	struct bch_fs *c = as->c;
620 
621 	mutex_lock(&c->sb_lock);
622 	for_each_keylist_key(&as->new_keys, k)
623 		bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
624 
625 	bch2_write_super(c);
626 	mutex_unlock(&c->sb_lock);
627 }
628 
629 /*
630  * The transactional part of an interior btree node update, where we journal the
631  * update we did to the interior node and update alloc info:
632  */
633 static int btree_update_nodes_written_trans(struct btree_trans *trans,
634 					    struct btree_update *as)
635 {
636 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
637 	int ret = PTR_ERR_OR_ZERO(e);
638 	if (ret)
639 		return ret;
640 
641 	memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
642 
643 	trans->journal_pin = &as->journal;
644 
645 	for_each_keylist_key(&as->old_keys, k) {
646 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
647 
648 		ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
649 					   BTREE_TRIGGER_TRANSACTIONAL);
650 		if (ret)
651 			return ret;
652 	}
653 
654 	for_each_keylist_key(&as->new_keys, k) {
655 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
656 
657 		ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
658 					   BTREE_TRIGGER_TRANSACTIONAL);
659 		if (ret)
660 			return ret;
661 	}
662 
663 	return 0;
664 }
665 
666 static void btree_update_nodes_written(struct btree_update *as)
667 {
668 	struct bch_fs *c = as->c;
669 	struct btree *b;
670 	struct btree_trans *trans = bch2_trans_get(c);
671 	u64 journal_seq = 0;
672 	unsigned i;
673 	int ret;
674 
675 	/*
676 	 * If we're already in an error state, it might be because a btree node
677 	 * was never written, and we might be trying to free that same btree
678 	 * node here, but it won't have been marked as allocated and we'll see
679 	 * spurious disk usage inconsistencies in the transactional part below
680 	 * if we don't skip it:
681 	 */
682 	ret = bch2_journal_error(&c->journal);
683 	if (ret)
684 		goto err;
685 
686 	if (!btree_update_new_nodes_marked_sb(as))
687 		btree_update_new_nodes_mark_sb(as);
688 
689 	/*
690 	 * Wait for any in flight writes to finish before we free the old nodes
691 	 * on disk:
692 	 */
693 	for (i = 0; i < as->nr_old_nodes; i++) {
694 		__le64 seq;
695 
696 		b = as->old_nodes[i];
697 
698 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
699 		seq = b->data ? b->data->keys.seq : 0;
700 		six_unlock_read(&b->c.lock);
701 
702 		if (seq == as->old_nodes_seq[i])
703 			wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
704 				       TASK_UNINTERRUPTIBLE);
705 	}
706 
707 	/*
708 	 * We did an update to a parent node where the pointers we added pointed
709 	 * to child nodes that weren't written yet: now, the child nodes have
710 	 * been written so we can write out the update to the interior node.
711 	 */
712 
713 	/*
714 	 * We can't call into journal reclaim here: we'd block on the journal
715 	 * reclaim lock, but we may need to release the open buckets we have
716 	 * pinned in order for other btree updates to make forward progress, and
717 	 * journal reclaim does btree updates when flushing bkey_cached entries,
718 	 * which may require allocations as well.
719 	 */
720 	ret = commit_do(trans, &as->disk_res, &journal_seq,
721 			BCH_WATERMARK_interior_updates|
722 			BCH_TRANS_COMMIT_no_enospc|
723 			BCH_TRANS_COMMIT_no_check_rw|
724 			BCH_TRANS_COMMIT_journal_reclaim,
725 			btree_update_nodes_written_trans(trans, as));
726 	bch2_trans_unlock(trans);
727 
728 	bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
729 			     "%s", bch2_err_str(ret));
730 err:
731 	/*
732 	 * We have to be careful because another thread might be getting ready
733 	 * to free as->b and calling btree_update_reparent() on us - we'll
734 	 * recheck under btree_update_lock below:
735 	 */
736 	b = READ_ONCE(as->b);
737 	if (b) {
738 		btree_path_idx_t path_idx = get_unlocked_mut_path(trans,
739 						as->btree_id, b->c.level, b->key.k.p);
740 		struct btree_path *path = trans->paths + path_idx;
741 		/*
742 		 * @b is the node we did the final insert into:
743 		 *
744 		 * On failure to get a journal reservation, we still have to
745 		 * unblock the write and allow most of the write path to happen
746 		 * so that shutdown works, but the i->journal_seq mechanism
747 		 * won't work to prevent the btree write from being visible (we
748 		 * didn't get a journal sequence number) - instead
749 		 * __bch2_btree_node_write() doesn't do the actual write if
750 		 * we're in journal error state:
751 		 */
752 
753 		/*
754 		 * Ensure transaction is unlocked before using
755 		 * btree_node_lock_nopath() (the use of which is always suspect,
756 		 * we need to work on removing this in the future)
757 		 *
758 		 * It should be, but get_unlocked_mut_path() -> bch2_path_get()
759 		 * calls bch2_path_upgrade(), before we call path_make_mut(), so
760 		 * we may rarely end up with a locked path besides the one we
761 		 * have here:
762 		 */
763 		bch2_trans_unlock(trans);
764 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
765 		mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
766 		path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
767 		path->l[b->c.level].b = b;
768 
769 		bch2_btree_node_lock_write_nofail(trans, path, &b->c);
770 
771 		mutex_lock(&c->btree_interior_update_lock);
772 
773 		list_del(&as->write_blocked_list);
774 		if (list_empty(&b->write_blocked))
775 			clear_btree_node_write_blocked(b);
776 
777 		/*
778 		 * Node might have been freed, recheck under
779 		 * btree_interior_update_lock:
780 		 */
781 		if (as->b == b) {
782 			BUG_ON(!b->c.level);
783 			BUG_ON(!btree_node_dirty(b));
784 
785 			if (!ret) {
786 				struct bset *last = btree_bset_last(b);
787 
788 				last->journal_seq = cpu_to_le64(
789 							     max(journal_seq,
790 								 le64_to_cpu(last->journal_seq)));
791 
792 				bch2_btree_add_journal_pin(c, b, journal_seq);
793 			} else {
794 				/*
795 				 * If we didn't get a journal sequence number we
796 				 * can't write this btree node, because recovery
797 				 * won't know to ignore this write:
798 				 */
799 				set_btree_node_never_write(b);
800 			}
801 		}
802 
803 		mutex_unlock(&c->btree_interior_update_lock);
804 
805 		mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
806 		six_unlock_write(&b->c.lock);
807 
808 		btree_node_write_if_need(c, b, SIX_LOCK_intent);
809 		btree_node_unlock(trans, path, b->c.level);
810 		bch2_path_put(trans, path_idx, true);
811 	}
812 
813 	bch2_journal_pin_drop(&c->journal, &as->journal);
814 
815 	mutex_lock(&c->btree_interior_update_lock);
816 	for (i = 0; i < as->nr_new_nodes; i++) {
817 		b = as->new_nodes[i];
818 
819 		BUG_ON(b->will_make_reachable != (unsigned long) as);
820 		b->will_make_reachable = 0;
821 		clear_btree_node_will_make_reachable(b);
822 	}
823 	mutex_unlock(&c->btree_interior_update_lock);
824 
825 	for (i = 0; i < as->nr_new_nodes; i++) {
826 		b = as->new_nodes[i];
827 
828 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
829 		btree_node_write_if_need(c, b, SIX_LOCK_read);
830 		six_unlock_read(&b->c.lock);
831 	}
832 
833 	for (i = 0; i < as->nr_open_buckets; i++)
834 		bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
835 
836 	bch2_btree_update_free(as, trans);
837 	bch2_trans_put(trans);
838 }
839 
840 static void btree_interior_update_work(struct work_struct *work)
841 {
842 	struct bch_fs *c =
843 		container_of(work, struct bch_fs, btree_interior_update_work);
844 	struct btree_update *as;
845 
846 	while (1) {
847 		mutex_lock(&c->btree_interior_update_lock);
848 		as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
849 					      struct btree_update, unwritten_list);
850 		if (as && !as->nodes_written)
851 			as = NULL;
852 		mutex_unlock(&c->btree_interior_update_lock);
853 
854 		if (!as)
855 			break;
856 
857 		btree_update_nodes_written(as);
858 	}
859 }
860 
861 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
862 {
863 	closure_type(as, struct btree_update, cl);
864 	struct bch_fs *c = as->c;
865 
866 	mutex_lock(&c->btree_interior_update_lock);
867 	as->nodes_written = true;
868 	mutex_unlock(&c->btree_interior_update_lock);
869 
870 	queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
871 }
872 
873 /*
874  * We're updating @b with pointers to nodes that haven't finished writing yet:
875  * block @b from being written until @as completes
876  */
877 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
878 {
879 	struct bch_fs *c = as->c;
880 
881 	BUG_ON(as->mode != BTREE_UPDATE_none);
882 	BUG_ON(as->update_level_end < b->c.level);
883 	BUG_ON(!btree_node_dirty(b));
884 	BUG_ON(!b->c.level);
885 
886 	mutex_lock(&c->btree_interior_update_lock);
887 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
888 
889 	as->mode	= BTREE_UPDATE_node;
890 	as->b		= b;
891 	as->update_level_end = b->c.level;
892 
893 	set_btree_node_write_blocked(b);
894 	list_add(&as->write_blocked_list, &b->write_blocked);
895 
896 	mutex_unlock(&c->btree_interior_update_lock);
897 }
898 
899 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
900 				struct journal_entry_pin *_pin, u64 seq)
901 {
902 	return 0;
903 }
904 
905 static void btree_update_reparent(struct btree_update *as,
906 				  struct btree_update *child)
907 {
908 	struct bch_fs *c = as->c;
909 
910 	lockdep_assert_held(&c->btree_interior_update_lock);
911 
912 	child->b = NULL;
913 	child->mode = BTREE_UPDATE_update;
914 
915 	bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
916 			      bch2_update_reparent_journal_pin_flush);
917 }
918 
919 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
920 {
921 	struct bkey_i *insert = &b->key;
922 	struct bch_fs *c = as->c;
923 
924 	BUG_ON(as->mode != BTREE_UPDATE_none);
925 
926 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
927 	       ARRAY_SIZE(as->journal_entries));
928 
929 	as->journal_u64s +=
930 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
931 				  BCH_JSET_ENTRY_btree_root,
932 				  b->c.btree_id, b->c.level,
933 				  insert, insert->k.u64s);
934 
935 	mutex_lock(&c->btree_interior_update_lock);
936 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
937 
938 	as->mode	= BTREE_UPDATE_root;
939 	mutex_unlock(&c->btree_interior_update_lock);
940 }
941 
942 /*
943  * bch2_btree_update_add_new_node:
944  *
945  * This causes @as to wait on @b to be written, before it gets to
946  * bch2_btree_update_nodes_written
947  *
948  * Additionally, it sets b->will_make_reachable to prevent any additional writes
949  * to @b from happening besides the first until @b is reachable on disk
950  *
951  * And it adds @b to the list of @as's new nodes, so that we can update sector
952  * counts in bch2_btree_update_nodes_written:
953  */
954 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
955 {
956 	struct bch_fs *c = as->c;
957 
958 	closure_get(&as->cl);
959 
960 	mutex_lock(&c->btree_interior_update_lock);
961 	BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
962 	BUG_ON(b->will_make_reachable);
963 
964 	as->new_nodes[as->nr_new_nodes++] = b;
965 	b->will_make_reachable = 1UL|(unsigned long) as;
966 	set_btree_node_will_make_reachable(b);
967 
968 	mutex_unlock(&c->btree_interior_update_lock);
969 
970 	btree_update_add_key(as, &as->new_keys, b);
971 
972 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
973 		unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
974 		unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
975 
976 		bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
977 			cpu_to_le16(sectors);
978 	}
979 }
980 
981 /*
982  * returns true if @b was a new node
983  */
984 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
985 {
986 	struct btree_update *as;
987 	unsigned long v;
988 	unsigned i;
989 
990 	mutex_lock(&c->btree_interior_update_lock);
991 	/*
992 	 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
993 	 * dropped when it gets written by bch2_btree_complete_write - the
994 	 * xchg() is for synchronization with bch2_btree_complete_write:
995 	 */
996 	v = xchg(&b->will_make_reachable, 0);
997 	clear_btree_node_will_make_reachable(b);
998 	as = (struct btree_update *) (v & ~1UL);
999 
1000 	if (!as) {
1001 		mutex_unlock(&c->btree_interior_update_lock);
1002 		return;
1003 	}
1004 
1005 	for (i = 0; i < as->nr_new_nodes; i++)
1006 		if (as->new_nodes[i] == b)
1007 			goto found;
1008 
1009 	BUG();
1010 found:
1011 	array_remove_item(as->new_nodes, as->nr_new_nodes, i);
1012 	mutex_unlock(&c->btree_interior_update_lock);
1013 
1014 	if (v & 1)
1015 		closure_put(&as->cl);
1016 }
1017 
1018 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1019 {
1020 	while (b->ob.nr)
1021 		as->open_buckets[as->nr_open_buckets++] =
1022 			b->ob.v[--b->ob.nr];
1023 }
1024 
1025 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1026 				struct journal_entry_pin *_pin, u64 seq)
1027 {
1028 	return 0;
1029 }
1030 
1031 /*
1032  * @b is being split/rewritten: it may have pointers to not-yet-written btree
1033  * nodes and thus outstanding btree_updates - redirect @b's
1034  * btree_updates to point to this btree_update:
1035  */
1036 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1037 						      struct btree *b)
1038 {
1039 	struct bch_fs *c = as->c;
1040 	struct btree_update *p, *n;
1041 	struct btree_write *w;
1042 
1043 	set_btree_node_dying(b);
1044 
1045 	if (btree_node_fake(b))
1046 		return;
1047 
1048 	mutex_lock(&c->btree_interior_update_lock);
1049 
1050 	/*
1051 	 * Does this node have any btree_update operations preventing
1052 	 * it from being written?
1053 	 *
1054 	 * If so, redirect them to point to this btree_update: we can
1055 	 * write out our new nodes, but we won't make them visible until those
1056 	 * operations complete
1057 	 */
1058 	list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1059 		list_del_init(&p->write_blocked_list);
1060 		btree_update_reparent(as, p);
1061 
1062 		/*
1063 		 * for flush_held_btree_writes() waiting on updates to flush or
1064 		 * nodes to be writeable:
1065 		 */
1066 		closure_wake_up(&c->btree_interior_update_wait);
1067 	}
1068 
1069 	clear_btree_node_dirty_acct(c, b);
1070 	clear_btree_node_need_write(b);
1071 	clear_btree_node_write_blocked(b);
1072 
1073 	/*
1074 	 * Does this node have unwritten data that has a pin on the journal?
1075 	 *
1076 	 * If so, transfer that pin to the btree_update operation -
1077 	 * note that if we're freeing multiple nodes, we only need to keep the
1078 	 * oldest pin of any of the nodes we're freeing. We'll release the pin
1079 	 * when the new nodes are persistent and reachable on disk:
1080 	 */
1081 	w = btree_current_write(b);
1082 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1083 			      bch2_btree_update_will_free_node_journal_pin_flush);
1084 	bch2_journal_pin_drop(&c->journal, &w->journal);
1085 
1086 	w = btree_prev_write(b);
1087 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1088 			      bch2_btree_update_will_free_node_journal_pin_flush);
1089 	bch2_journal_pin_drop(&c->journal, &w->journal);
1090 
1091 	mutex_unlock(&c->btree_interior_update_lock);
1092 
1093 	/*
1094 	 * Is this a node that isn't reachable on disk yet?
1095 	 *
1096 	 * Nodes that aren't reachable yet have writes blocked until they're
1097 	 * reachable - now that we've cancelled any pending writes and moved
1098 	 * things waiting on that write to wait on this update, we can drop this
1099 	 * node from the list of nodes that the other update is making
1100 	 * reachable, prior to freeing it:
1101 	 */
1102 	btree_update_drop_new_node(c, b);
1103 
1104 	btree_update_add_key(as, &as->old_keys, b);
1105 
1106 	as->old_nodes[as->nr_old_nodes] = b;
1107 	as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1108 	as->nr_old_nodes++;
1109 }
1110 
1111 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1112 {
1113 	struct bch_fs *c = as->c;
1114 	u64 start_time = as->start_time;
1115 
1116 	BUG_ON(as->mode == BTREE_UPDATE_none);
1117 
1118 	if (as->took_gc_lock)
1119 		up_read(&as->c->gc_lock);
1120 	as->took_gc_lock = false;
1121 
1122 	bch2_btree_reserve_put(as, trans);
1123 
1124 	continue_at(&as->cl, btree_update_set_nodes_written,
1125 		    as->c->btree_interior_update_worker);
1126 
1127 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1128 			       start_time);
1129 }
1130 
1131 static struct btree_update *
1132 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1133 			unsigned level_start, bool split, unsigned flags)
1134 {
1135 	struct bch_fs *c = trans->c;
1136 	struct btree_update *as;
1137 	u64 start_time = local_clock();
1138 	int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1139 		? BCH_DISK_RESERVATION_NOFAIL : 0;
1140 	unsigned nr_nodes[2] = { 0, 0 };
1141 	unsigned level_end = level_start;
1142 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1143 	int ret = 0;
1144 	u32 restart_count = trans->restart_count;
1145 
1146 	BUG_ON(!path->should_be_locked);
1147 
1148 	if (watermark == BCH_WATERMARK_copygc)
1149 		watermark = BCH_WATERMARK_btree_copygc;
1150 	if (watermark < BCH_WATERMARK_btree)
1151 		watermark = BCH_WATERMARK_btree;
1152 
1153 	flags &= ~BCH_WATERMARK_MASK;
1154 	flags |= watermark;
1155 
1156 	if (watermark < BCH_WATERMARK_reclaim &&
1157 	    test_bit(JOURNAL_SPACE_LOW, &c->journal.flags)) {
1158 		if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1159 			return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1160 
1161 		bch2_trans_unlock(trans);
1162 		wait_event(c->journal.wait, !test_bit(JOURNAL_SPACE_LOW, &c->journal.flags));
1163 		ret = bch2_trans_relock(trans);
1164 		if (ret)
1165 			return ERR_PTR(ret);
1166 	}
1167 
1168 	while (1) {
1169 		nr_nodes[!!level_end] += 1 + split;
1170 		level_end++;
1171 
1172 		ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1173 		if (ret)
1174 			return ERR_PTR(ret);
1175 
1176 		if (!btree_path_node(path, level_end)) {
1177 			/* Allocating new root? */
1178 			nr_nodes[1] += split;
1179 			level_end = BTREE_MAX_DEPTH;
1180 			break;
1181 		}
1182 
1183 		/*
1184 		 * Always check for space for two keys, even if we won't have to
1185 		 * split at prior level - it might have been a merge instead:
1186 		 */
1187 		if (bch2_btree_node_insert_fits(path->l[level_end].b,
1188 						BKEY_BTREE_PTR_U64s_MAX * 2))
1189 			break;
1190 
1191 		split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1192 	}
1193 
1194 	if (!down_read_trylock(&c->gc_lock)) {
1195 		ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1196 		if (ret) {
1197 			up_read(&c->gc_lock);
1198 			return ERR_PTR(ret);
1199 		}
1200 	}
1201 
1202 	as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1203 	memset(as, 0, sizeof(*as));
1204 	closure_init(&as->cl, NULL);
1205 	as->c			= c;
1206 	as->start_time		= start_time;
1207 	as->ip_started		= _RET_IP_;
1208 	as->mode		= BTREE_UPDATE_none;
1209 	as->watermark		= watermark;
1210 	as->took_gc_lock	= true;
1211 	as->btree_id		= path->btree_id;
1212 	as->update_level_start	= level_start;
1213 	as->update_level_end	= level_end;
1214 	INIT_LIST_HEAD(&as->list);
1215 	INIT_LIST_HEAD(&as->unwritten_list);
1216 	INIT_LIST_HEAD(&as->write_blocked_list);
1217 	bch2_keylist_init(&as->old_keys, as->_old_keys);
1218 	bch2_keylist_init(&as->new_keys, as->_new_keys);
1219 	bch2_keylist_init(&as->parent_keys, as->inline_keys);
1220 
1221 	mutex_lock(&c->btree_interior_update_lock);
1222 	list_add_tail(&as->list, &c->btree_interior_update_list);
1223 	mutex_unlock(&c->btree_interior_update_lock);
1224 
1225 	/*
1226 	 * We don't want to allocate if we're in an error state, that can cause
1227 	 * deadlock on emergency shutdown due to open buckets getting stuck in
1228 	 * the btree_reserve_cache after allocator shutdown has cleared it out.
1229 	 * This check needs to come after adding us to the btree_interior_update
1230 	 * list but before calling bch2_btree_reserve_get, to synchronize with
1231 	 * __bch2_fs_read_only().
1232 	 */
1233 	ret = bch2_journal_error(&c->journal);
1234 	if (ret)
1235 		goto err;
1236 
1237 	ret = bch2_disk_reservation_get(c, &as->disk_res,
1238 			(nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1239 			c->opts.metadata_replicas,
1240 			disk_res_flags);
1241 	if (ret)
1242 		goto err;
1243 
1244 	ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1245 	if (bch2_err_matches(ret, ENOSPC) ||
1246 	    bch2_err_matches(ret, ENOMEM)) {
1247 		struct closure cl;
1248 
1249 		/*
1250 		 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1251 		 * flag
1252 		 */
1253 		if (bch2_err_matches(ret, ENOSPC) &&
1254 		    (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1255 		    watermark < BCH_WATERMARK_reclaim) {
1256 			ret = -BCH_ERR_journal_reclaim_would_deadlock;
1257 			goto err;
1258 		}
1259 
1260 		closure_init_stack(&cl);
1261 
1262 		do {
1263 			ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1264 
1265 			bch2_trans_unlock(trans);
1266 			closure_sync(&cl);
1267 		} while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1268 	}
1269 
1270 	if (ret) {
1271 		trace_and_count(c, btree_reserve_get_fail, trans->fn,
1272 				_RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1273 		goto err;
1274 	}
1275 
1276 	ret = bch2_trans_relock(trans);
1277 	if (ret)
1278 		goto err;
1279 
1280 	bch2_trans_verify_not_restarted(trans, restart_count);
1281 	return as;
1282 err:
1283 	bch2_btree_update_free(as, trans);
1284 	if (!bch2_err_matches(ret, ENOSPC) &&
1285 	    !bch2_err_matches(ret, EROFS) &&
1286 	    ret != -BCH_ERR_journal_reclaim_would_deadlock)
1287 		bch_err_fn_ratelimited(c, ret);
1288 	return ERR_PTR(ret);
1289 }
1290 
1291 /* Btree root updates: */
1292 
1293 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1294 {
1295 	/* Root nodes cannot be reaped */
1296 	mutex_lock(&c->btree_cache.lock);
1297 	list_del_init(&b->list);
1298 	mutex_unlock(&c->btree_cache.lock);
1299 
1300 	mutex_lock(&c->btree_root_lock);
1301 	bch2_btree_id_root(c, b->c.btree_id)->b = b;
1302 	mutex_unlock(&c->btree_root_lock);
1303 
1304 	bch2_recalc_btree_reserve(c);
1305 }
1306 
1307 static int bch2_btree_set_root(struct btree_update *as,
1308 			       struct btree_trans *trans,
1309 			       struct btree_path *path,
1310 			       struct btree *b,
1311 			       bool nofail)
1312 {
1313 	struct bch_fs *c = as->c;
1314 
1315 	trace_and_count(c, btree_node_set_root, trans, b);
1316 
1317 	struct btree *old = btree_node_root(c, b);
1318 
1319 	/*
1320 	 * Ensure no one is using the old root while we switch to the
1321 	 * new root:
1322 	 */
1323 	if (nofail) {
1324 		bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1325 	} else {
1326 		int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1327 		if (ret)
1328 			return ret;
1329 	}
1330 
1331 	bch2_btree_set_root_inmem(c, b);
1332 
1333 	btree_update_updated_root(as, b);
1334 
1335 	/*
1336 	 * Unlock old root after new root is visible:
1337 	 *
1338 	 * The new root isn't persistent, but that's ok: we still have
1339 	 * an intent lock on the new root, and any updates that would
1340 	 * depend on the new root would have to update the new root.
1341 	 */
1342 	bch2_btree_node_unlock_write(trans, path, old);
1343 	return 0;
1344 }
1345 
1346 /* Interior node updates: */
1347 
1348 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1349 					struct btree_trans *trans,
1350 					struct btree_path *path,
1351 					struct btree *b,
1352 					struct btree_node_iter *node_iter,
1353 					struct bkey_i *insert)
1354 {
1355 	struct bch_fs *c = as->c;
1356 	struct bkey_packed *k;
1357 	struct printbuf buf = PRINTBUF;
1358 	unsigned long old, new, v;
1359 
1360 	BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1361 	       !btree_ptr_sectors_written(insert));
1362 
1363 	if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1364 		bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1365 
1366 	if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1367 			      btree_node_type(b), WRITE, &buf) ?:
1368 	    bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) {
1369 		printbuf_reset(&buf);
1370 		prt_printf(&buf, "inserting invalid bkey\n  ");
1371 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1372 		prt_printf(&buf, "\n  ");
1373 		bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1374 				  btree_node_type(b), WRITE, &buf);
1375 		bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf);
1376 
1377 		bch2_fs_inconsistent(c, "%s", buf.buf);
1378 		dump_stack();
1379 	}
1380 
1381 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1382 	       ARRAY_SIZE(as->journal_entries));
1383 
1384 	as->journal_u64s +=
1385 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1386 				  BCH_JSET_ENTRY_btree_keys,
1387 				  b->c.btree_id, b->c.level,
1388 				  insert, insert->k.u64s);
1389 
1390 	while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1391 	       bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1392 		bch2_btree_node_iter_advance(node_iter, b);
1393 
1394 	bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1395 	set_btree_node_dirty_acct(c, b);
1396 
1397 	v = READ_ONCE(b->flags);
1398 	do {
1399 		old = new = v;
1400 
1401 		new &= ~BTREE_WRITE_TYPE_MASK;
1402 		new |= BTREE_WRITE_interior;
1403 		new |= 1 << BTREE_NODE_need_write;
1404 	} while ((v = cmpxchg(&b->flags, old, new)) != old);
1405 
1406 	printbuf_exit(&buf);
1407 }
1408 
1409 static void
1410 bch2_btree_insert_keys_interior(struct btree_update *as,
1411 				struct btree_trans *trans,
1412 				struct btree_path *path,
1413 				struct btree *b,
1414 				struct btree_node_iter node_iter,
1415 				struct keylist *keys)
1416 {
1417 	struct bkey_i *insert = bch2_keylist_front(keys);
1418 	struct bkey_packed *k;
1419 
1420 	BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1421 
1422 	while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1423 	       (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1424 		;
1425 
1426 	while (!bch2_keylist_empty(keys)) {
1427 		insert = bch2_keylist_front(keys);
1428 
1429 		if (bpos_gt(insert->k.p, b->key.k.p))
1430 			break;
1431 
1432 		bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1433 		bch2_keylist_pop_front(keys);
1434 	}
1435 }
1436 
1437 /*
1438  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1439  * node)
1440  */
1441 static void __btree_split_node(struct btree_update *as,
1442 			       struct btree_trans *trans,
1443 			       struct btree *b,
1444 			       struct btree *n[2])
1445 {
1446 	struct bkey_packed *k;
1447 	struct bpos n1_pos = POS_MIN;
1448 	struct btree_node_iter iter;
1449 	struct bset *bsets[2];
1450 	struct bkey_format_state format[2];
1451 	struct bkey_packed *out[2];
1452 	struct bkey uk;
1453 	unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1454 	struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1455 	int i;
1456 
1457 	memset(&nr_keys, 0, sizeof(nr_keys));
1458 
1459 	for (i = 0; i < 2; i++) {
1460 		BUG_ON(n[i]->nsets != 1);
1461 
1462 		bsets[i] = btree_bset_first(n[i]);
1463 		out[i] = bsets[i]->start;
1464 
1465 		SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1466 		bch2_bkey_format_init(&format[i]);
1467 	}
1468 
1469 	u64s = 0;
1470 	for_each_btree_node_key(b, k, &iter) {
1471 		if (bkey_deleted(k))
1472 			continue;
1473 
1474 		uk = bkey_unpack_key(b, k);
1475 
1476 		if (b->c.level &&
1477 		    u64s < n1_u64s &&
1478 		    u64s + k->u64s >= n1_u64s &&
1479 		    bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p))
1480 			n1_u64s += k->u64s;
1481 
1482 		i = u64s >= n1_u64s;
1483 		u64s += k->u64s;
1484 		if (!i)
1485 			n1_pos = uk.p;
1486 		bch2_bkey_format_add_key(&format[i], &uk);
1487 
1488 		nr_keys[i].nr_keys++;
1489 		nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1490 	}
1491 
1492 	btree_set_min(n[0], b->data->min_key);
1493 	btree_set_max(n[0], n1_pos);
1494 	btree_set_min(n[1], bpos_successor(n1_pos));
1495 	btree_set_max(n[1], b->data->max_key);
1496 
1497 	for (i = 0; i < 2; i++) {
1498 		bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1499 		bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1500 
1501 		n[i]->data->format = bch2_bkey_format_done(&format[i]);
1502 
1503 		unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1504 			nr_keys[i].val_u64s;
1505 		if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1506 			n[i]->data->format = b->format;
1507 
1508 		btree_node_set_format(n[i], n[i]->data->format);
1509 	}
1510 
1511 	u64s = 0;
1512 	for_each_btree_node_key(b, k, &iter) {
1513 		if (bkey_deleted(k))
1514 			continue;
1515 
1516 		i = u64s >= n1_u64s;
1517 		u64s += k->u64s;
1518 
1519 		if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1520 					? &b->format: &bch2_bkey_format_current, k))
1521 			out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1522 		else
1523 			bch2_bkey_unpack(b, (void *) out[i], k);
1524 
1525 		out[i]->needs_whiteout = false;
1526 
1527 		btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1528 		out[i] = bkey_p_next(out[i]);
1529 	}
1530 
1531 	for (i = 0; i < 2; i++) {
1532 		bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1533 
1534 		BUG_ON(!bsets[i]->u64s);
1535 
1536 		set_btree_bset_end(n[i], n[i]->set);
1537 
1538 		btree_node_reset_sib_u64s(n[i]);
1539 
1540 		bch2_verify_btree_nr_keys(n[i]);
1541 
1542 		BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1543 	}
1544 }
1545 
1546 /*
1547  * For updates to interior nodes, we've got to do the insert before we split
1548  * because the stuff we're inserting has to be inserted atomically. Post split,
1549  * the keys might have to go in different nodes and the split would no longer be
1550  * atomic.
1551  *
1552  * Worse, if the insert is from btree node coalescing, if we do the insert after
1553  * we do the split (and pick the pivot) - the pivot we pick might be between
1554  * nodes that were coalesced, and thus in the middle of a child node post
1555  * coalescing:
1556  */
1557 static void btree_split_insert_keys(struct btree_update *as,
1558 				    struct btree_trans *trans,
1559 				    btree_path_idx_t path_idx,
1560 				    struct btree *b,
1561 				    struct keylist *keys)
1562 {
1563 	struct btree_path *path = trans->paths + path_idx;
1564 
1565 	if (!bch2_keylist_empty(keys) &&
1566 	    bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1567 		struct btree_node_iter node_iter;
1568 
1569 		bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1570 
1571 		bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1572 
1573 		BUG_ON(bch2_btree_node_check_topology(trans, b));
1574 	}
1575 }
1576 
1577 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1578 		       btree_path_idx_t path, struct btree *b,
1579 		       struct keylist *keys)
1580 {
1581 	struct bch_fs *c = as->c;
1582 	struct btree *parent = btree_node_parent(trans->paths + path, b);
1583 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1584 	btree_path_idx_t path1 = 0, path2 = 0;
1585 	u64 start_time = local_clock();
1586 	int ret = 0;
1587 
1588 	bch2_verify_btree_nr_keys(b);
1589 	BUG_ON(!parent && (b != btree_node_root(c, b)));
1590 	BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1591 
1592 	ret = bch2_btree_node_check_topology(trans, b);
1593 	if (ret)
1594 		return ret;
1595 
1596 	bch2_btree_interior_update_will_free_node(as, b);
1597 
1598 	if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1599 		struct btree *n[2];
1600 
1601 		trace_and_count(c, btree_node_split, trans, b);
1602 
1603 		n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1604 		n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1605 
1606 		__btree_split_node(as, trans, b, n);
1607 
1608 		if (keys) {
1609 			btree_split_insert_keys(as, trans, path, n1, keys);
1610 			btree_split_insert_keys(as, trans, path, n2, keys);
1611 			BUG_ON(!bch2_keylist_empty(keys));
1612 		}
1613 
1614 		bch2_btree_build_aux_trees(n2);
1615 		bch2_btree_build_aux_trees(n1);
1616 
1617 		bch2_btree_update_add_new_node(as, n1);
1618 		bch2_btree_update_add_new_node(as, n2);
1619 		six_unlock_write(&n2->c.lock);
1620 		six_unlock_write(&n1->c.lock);
1621 
1622 		path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1623 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1624 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1625 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1626 
1627 		path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p);
1628 		six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1629 		mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1630 		bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1631 
1632 		/*
1633 		 * Note that on recursive parent_keys == keys, so we
1634 		 * can't start adding new keys to parent_keys before emptying it
1635 		 * out (which we did with btree_split_insert_keys() above)
1636 		 */
1637 		bch2_keylist_add(&as->parent_keys, &n1->key);
1638 		bch2_keylist_add(&as->parent_keys, &n2->key);
1639 
1640 		if (!parent) {
1641 			/* Depth increases, make a new root */
1642 			n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1643 
1644 			bch2_btree_update_add_new_node(as, n3);
1645 			six_unlock_write(&n3->c.lock);
1646 
1647 			trans->paths[path2].locks_want++;
1648 			BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1649 			six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1650 			mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1651 			bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1652 
1653 			n3->sib_u64s[0] = U16_MAX;
1654 			n3->sib_u64s[1] = U16_MAX;
1655 
1656 			btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1657 		}
1658 	} else {
1659 		trace_and_count(c, btree_node_compact, trans, b);
1660 
1661 		n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1662 
1663 		if (keys) {
1664 			btree_split_insert_keys(as, trans, path, n1, keys);
1665 			BUG_ON(!bch2_keylist_empty(keys));
1666 		}
1667 
1668 		bch2_btree_build_aux_trees(n1);
1669 		bch2_btree_update_add_new_node(as, n1);
1670 		six_unlock_write(&n1->c.lock);
1671 
1672 		path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1673 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1674 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1675 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1676 
1677 		if (parent)
1678 			bch2_keylist_add(&as->parent_keys, &n1->key);
1679 	}
1680 
1681 	/* New nodes all written, now make them visible: */
1682 
1683 	if (parent) {
1684 		/* Split a non root node */
1685 		ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1686 	} else if (n3) {
1687 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1688 	} else {
1689 		/* Root filled up but didn't need to be split */
1690 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1691 	}
1692 
1693 	if (ret)
1694 		goto err;
1695 
1696 	if (n3) {
1697 		bch2_btree_update_get_open_buckets(as, n3);
1698 		bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1699 	}
1700 	if (n2) {
1701 		bch2_btree_update_get_open_buckets(as, n2);
1702 		bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1703 	}
1704 	bch2_btree_update_get_open_buckets(as, n1);
1705 	bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1706 
1707 	/*
1708 	 * The old node must be freed (in memory) _before_ unlocking the new
1709 	 * nodes - else another thread could re-acquire a read lock on the old
1710 	 * node after another thread has locked and updated the new node, thus
1711 	 * seeing stale data:
1712 	 */
1713 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1714 
1715 	if (n3)
1716 		bch2_trans_node_add(trans, trans->paths + path, n3);
1717 	if (n2)
1718 		bch2_trans_node_add(trans, trans->paths + path2, n2);
1719 	bch2_trans_node_add(trans, trans->paths + path1, n1);
1720 
1721 	if (n3)
1722 		six_unlock_intent(&n3->c.lock);
1723 	if (n2)
1724 		six_unlock_intent(&n2->c.lock);
1725 	six_unlock_intent(&n1->c.lock);
1726 out:
1727 	if (path2) {
1728 		__bch2_btree_path_unlock(trans, trans->paths + path2);
1729 		bch2_path_put(trans, path2, true);
1730 	}
1731 	if (path1) {
1732 		__bch2_btree_path_unlock(trans, trans->paths + path1);
1733 		bch2_path_put(trans, path1, true);
1734 	}
1735 
1736 	bch2_trans_verify_locks(trans);
1737 
1738 	bch2_time_stats_update(&c->times[n2
1739 			       ? BCH_TIME_btree_node_split
1740 			       : BCH_TIME_btree_node_compact],
1741 			       start_time);
1742 	return ret;
1743 err:
1744 	if (n3)
1745 		bch2_btree_node_free_never_used(as, trans, n3);
1746 	if (n2)
1747 		bch2_btree_node_free_never_used(as, trans, n2);
1748 	bch2_btree_node_free_never_used(as, trans, n1);
1749 	goto out;
1750 }
1751 
1752 /**
1753  * bch2_btree_insert_node - insert bkeys into a given btree node
1754  *
1755  * @as:			btree_update object
1756  * @trans:		btree_trans object
1757  * @path_idx:		path that points to current node
1758  * @b:			node to insert keys into
1759  * @keys:		list of keys to insert
1760  *
1761  * Returns: 0 on success, typically transaction restart error on failure
1762  *
1763  * Inserts as many keys as it can into a given btree node, splitting it if full.
1764  * If a split occurred, this function will return early. This can only happen
1765  * for leaf nodes -- inserts into interior nodes have to be atomic.
1766  */
1767 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1768 				  btree_path_idx_t path_idx, struct btree *b,
1769 				  struct keylist *keys)
1770 {
1771 	struct bch_fs *c = as->c;
1772 	struct btree_path *path = trans->paths + path_idx, *linked;
1773 	unsigned i;
1774 	int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1775 	int old_live_u64s = b->nr.live_u64s;
1776 	int live_u64s_added, u64s_added;
1777 	int ret;
1778 
1779 	lockdep_assert_held(&c->gc_lock);
1780 	BUG_ON(!btree_node_intent_locked(path, b->c.level));
1781 	BUG_ON(!b->c.level);
1782 	BUG_ON(!as || as->b);
1783 	bch2_verify_keylist_sorted(keys);
1784 
1785 	ret = bch2_btree_node_lock_write(trans, path, &b->c);
1786 	if (ret)
1787 		return ret;
1788 
1789 	bch2_btree_node_prep_for_write(trans, path, b);
1790 
1791 	if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1792 		bch2_btree_node_unlock_write(trans, path, b);
1793 		goto split;
1794 	}
1795 
1796 	ret = bch2_btree_node_check_topology(trans, b);
1797 	if (ret) {
1798 		bch2_btree_node_unlock_write(trans, path, b);
1799 		return ret;
1800 	}
1801 
1802 	bch2_btree_insert_keys_interior(as, trans, path, b,
1803 					path->l[b->c.level].iter, keys);
1804 
1805 	trans_for_each_path_with_node(trans, b, linked, i)
1806 		bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1807 
1808 	bch2_trans_verify_paths(trans);
1809 
1810 	live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1811 	u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1812 
1813 	if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1814 		b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1815 	if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1816 		b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1817 
1818 	if (u64s_added > live_u64s_added &&
1819 	    bch2_maybe_compact_whiteouts(c, b))
1820 		bch2_trans_node_reinit_iter(trans, b);
1821 
1822 	btree_update_updated_node(as, b);
1823 	bch2_btree_node_unlock_write(trans, path, b);
1824 
1825 	BUG_ON(bch2_btree_node_check_topology(trans, b));
1826 	return 0;
1827 split:
1828 	/*
1829 	 * We could attempt to avoid the transaction restart, by calling
1830 	 * bch2_btree_path_upgrade() and allocating more nodes:
1831 	 */
1832 	if (b->c.level >= as->update_level_end) {
1833 		trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1834 		return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1835 	}
1836 
1837 	return btree_split(as, trans, path_idx, b, keys);
1838 }
1839 
1840 int bch2_btree_split_leaf(struct btree_trans *trans,
1841 			  btree_path_idx_t path,
1842 			  unsigned flags)
1843 {
1844 	/* btree_split & merge may both cause paths array to be reallocated */
1845 	struct btree *b = path_l(trans->paths + path)->b;
1846 	struct btree_update *as;
1847 	unsigned l;
1848 	int ret = 0;
1849 
1850 	as = bch2_btree_update_start(trans, trans->paths + path,
1851 				     trans->paths[path].level,
1852 				     true, flags);
1853 	if (IS_ERR(as))
1854 		return PTR_ERR(as);
1855 
1856 	ret = btree_split(as, trans, path, b, NULL);
1857 	if (ret) {
1858 		bch2_btree_update_free(as, trans);
1859 		return ret;
1860 	}
1861 
1862 	bch2_btree_update_done(as, trans);
1863 
1864 	for (l = trans->paths[path].level + 1;
1865 	     btree_node_intent_locked(&trans->paths[path], l) && !ret;
1866 	     l++)
1867 		ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1868 
1869 	return ret;
1870 }
1871 
1872 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1873 				   btree_path_idx_t path_idx)
1874 {
1875 	struct bch_fs *c = as->c;
1876 	struct btree_path *path = trans->paths + path_idx;
1877 	struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1878 
1879 	BUG_ON(!btree_node_locked(path, b->c.level));
1880 
1881 	n = __btree_root_alloc(as, trans, b->c.level + 1);
1882 
1883 	bch2_btree_update_add_new_node(as, n);
1884 	six_unlock_write(&n->c.lock);
1885 
1886 	path->locks_want++;
1887 	BUG_ON(btree_node_locked(path, n->c.level));
1888 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1889 	mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1890 	bch2_btree_path_level_init(trans, path, n);
1891 
1892 	n->sib_u64s[0] = U16_MAX;
1893 	n->sib_u64s[1] = U16_MAX;
1894 
1895 	bch2_keylist_add(&as->parent_keys, &b->key);
1896 	btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1897 
1898 	int ret = bch2_btree_set_root(as, trans, path, n, true);
1899 	BUG_ON(ret);
1900 
1901 	bch2_btree_update_get_open_buckets(as, n);
1902 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1903 	bch2_trans_node_add(trans, path, n);
1904 	six_unlock_intent(&n->c.lock);
1905 
1906 	mutex_lock(&c->btree_cache.lock);
1907 	list_add_tail(&b->list, &c->btree_cache.live);
1908 	mutex_unlock(&c->btree_cache.lock);
1909 
1910 	bch2_trans_verify_locks(trans);
1911 }
1912 
1913 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1914 {
1915 	struct bch_fs *c = trans->c;
1916 	struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1917 
1918 	if (btree_node_fake(b))
1919 		return bch2_btree_split_leaf(trans, path, flags);
1920 
1921 	struct btree_update *as =
1922 		bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags);
1923 	if (IS_ERR(as))
1924 		return PTR_ERR(as);
1925 
1926 	__btree_increase_depth(as, trans, path);
1927 	bch2_btree_update_done(as, trans);
1928 	return 0;
1929 }
1930 
1931 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1932 				  btree_path_idx_t path,
1933 				  unsigned level,
1934 				  unsigned flags,
1935 				  enum btree_node_sibling sib)
1936 {
1937 	struct bch_fs *c = trans->c;
1938 	struct btree_update *as;
1939 	struct bkey_format_state new_s;
1940 	struct bkey_format new_f;
1941 	struct bkey_i delete;
1942 	struct btree *b, *m, *n, *prev, *next, *parent;
1943 	struct bpos sib_pos;
1944 	size_t sib_u64s;
1945 	enum btree_id btree = trans->paths[path].btree_id;
1946 	btree_path_idx_t sib_path = 0, new_path = 0;
1947 	u64 start_time = local_clock();
1948 	int ret = 0;
1949 
1950 	BUG_ON(!trans->paths[path].should_be_locked);
1951 	BUG_ON(!btree_node_locked(&trans->paths[path], level));
1952 
1953 	/*
1954 	 * Work around a deadlock caused by the btree write buffer not doing
1955 	 * merges and leaving tons of merges for us to do - we really don't need
1956 	 * to be doing merges at all from the interior update path, and if the
1957 	 * interior update path is generating too many new interior updates we
1958 	 * deadlock:
1959 	 */
1960 	if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
1961 		return 0;
1962 
1963 	if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
1964 		flags &= ~BCH_WATERMARK_MASK;
1965 		flags |= BCH_WATERMARK_btree;
1966 		flags |= BCH_TRANS_COMMIT_journal_reclaim;
1967 	}
1968 
1969 	b = trans->paths[path].l[level].b;
1970 
1971 	if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1972 	    (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1973 		b->sib_u64s[sib] = U16_MAX;
1974 		return 0;
1975 	}
1976 
1977 	sib_pos = sib == btree_prev_sib
1978 		? bpos_predecessor(b->data->min_key)
1979 		: bpos_successor(b->data->max_key);
1980 
1981 	sib_path = bch2_path_get(trans, btree, sib_pos,
1982 				 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1983 	ret = bch2_btree_path_traverse(trans, sib_path, false);
1984 	if (ret)
1985 		goto err;
1986 
1987 	btree_path_set_should_be_locked(trans->paths + sib_path);
1988 
1989 	m = trans->paths[sib_path].l[level].b;
1990 
1991 	if (btree_node_parent(trans->paths + path, b) !=
1992 	    btree_node_parent(trans->paths + sib_path, m)) {
1993 		b->sib_u64s[sib] = U16_MAX;
1994 		goto out;
1995 	}
1996 
1997 	if (sib == btree_prev_sib) {
1998 		prev = m;
1999 		next = b;
2000 	} else {
2001 		prev = b;
2002 		next = m;
2003 	}
2004 
2005 	if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2006 		struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
2007 
2008 		bch2_bpos_to_text(&buf1, prev->data->max_key);
2009 		bch2_bpos_to_text(&buf2, next->data->min_key);
2010 		bch_err(c,
2011 			"%s(): btree topology error:\n"
2012 			"  prev ends at   %s\n"
2013 			"  next starts at %s",
2014 			__func__, buf1.buf, buf2.buf);
2015 		printbuf_exit(&buf1);
2016 		printbuf_exit(&buf2);
2017 		ret = bch2_topology_error(c);
2018 		goto err;
2019 	}
2020 
2021 	bch2_bkey_format_init(&new_s);
2022 	bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2023 	__bch2_btree_calc_format(&new_s, prev);
2024 	__bch2_btree_calc_format(&new_s, next);
2025 	bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2026 	new_f = bch2_bkey_format_done(&new_s);
2027 
2028 	sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2029 		btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2030 
2031 	if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2032 		sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2033 		sib_u64s /= 2;
2034 		sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2035 	}
2036 
2037 	sib_u64s = min(sib_u64s, btree_max_u64s(c));
2038 	sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2039 	b->sib_u64s[sib] = sib_u64s;
2040 
2041 	if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2042 		goto out;
2043 
2044 	parent = btree_node_parent(trans->paths + path, b);
2045 	as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2046 				     BCH_TRANS_COMMIT_no_enospc|flags);
2047 	ret = PTR_ERR_OR_ZERO(as);
2048 	if (ret)
2049 		goto err;
2050 
2051 	trace_and_count(c, btree_node_merge, trans, b);
2052 
2053 	bch2_btree_interior_update_will_free_node(as, b);
2054 	bch2_btree_interior_update_will_free_node(as, m);
2055 
2056 	n = bch2_btree_node_alloc(as, trans, b->c.level);
2057 
2058 	SET_BTREE_NODE_SEQ(n->data,
2059 			   max(BTREE_NODE_SEQ(b->data),
2060 			       BTREE_NODE_SEQ(m->data)) + 1);
2061 
2062 	btree_set_min(n, prev->data->min_key);
2063 	btree_set_max(n, next->data->max_key);
2064 
2065 	n->data->format	 = new_f;
2066 	btree_node_set_format(n, new_f);
2067 
2068 	bch2_btree_sort_into(c, n, prev);
2069 	bch2_btree_sort_into(c, n, next);
2070 
2071 	bch2_btree_build_aux_trees(n);
2072 	bch2_btree_update_add_new_node(as, n);
2073 	six_unlock_write(&n->c.lock);
2074 
2075 	new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p);
2076 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2077 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2078 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2079 
2080 	bkey_init(&delete.k);
2081 	delete.k.p = prev->key.k.p;
2082 	bch2_keylist_add(&as->parent_keys, &delete);
2083 	bch2_keylist_add(&as->parent_keys, &n->key);
2084 
2085 	bch2_trans_verify_paths(trans);
2086 
2087 	ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2088 	if (ret)
2089 		goto err_free_update;
2090 
2091 	bch2_trans_verify_paths(trans);
2092 
2093 	bch2_btree_update_get_open_buckets(as, n);
2094 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2095 
2096 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2097 	bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2098 
2099 	bch2_trans_node_add(trans, trans->paths + path, n);
2100 
2101 	bch2_trans_verify_paths(trans);
2102 
2103 	six_unlock_intent(&n->c.lock);
2104 
2105 	bch2_btree_update_done(as, trans);
2106 
2107 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2108 out:
2109 err:
2110 	if (new_path)
2111 		bch2_path_put(trans, new_path, true);
2112 	bch2_path_put(trans, sib_path, true);
2113 	bch2_trans_verify_locks(trans);
2114 	if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2115 		ret = 0;
2116 	if (!ret)
2117 		ret = bch2_trans_relock(trans);
2118 	return ret;
2119 err_free_update:
2120 	bch2_btree_node_free_never_used(as, trans, n);
2121 	bch2_btree_update_free(as, trans);
2122 	goto out;
2123 }
2124 
2125 int bch2_btree_node_rewrite(struct btree_trans *trans,
2126 			    struct btree_iter *iter,
2127 			    struct btree *b,
2128 			    unsigned flags)
2129 {
2130 	struct bch_fs *c = trans->c;
2131 	struct btree *n, *parent;
2132 	struct btree_update *as;
2133 	btree_path_idx_t new_path = 0;
2134 	int ret;
2135 
2136 	flags |= BCH_TRANS_COMMIT_no_enospc;
2137 
2138 	struct btree_path *path = btree_iter_path(trans, iter);
2139 	parent = btree_node_parent(path, b);
2140 	as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2141 	ret = PTR_ERR_OR_ZERO(as);
2142 	if (ret)
2143 		goto out;
2144 
2145 	bch2_btree_interior_update_will_free_node(as, b);
2146 
2147 	n = bch2_btree_node_alloc_replacement(as, trans, b);
2148 
2149 	bch2_btree_build_aux_trees(n);
2150 	bch2_btree_update_add_new_node(as, n);
2151 	six_unlock_write(&n->c.lock);
2152 
2153 	new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
2154 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2155 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2156 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2157 
2158 	trace_and_count(c, btree_node_rewrite, trans, b);
2159 
2160 	if (parent) {
2161 		bch2_keylist_add(&as->parent_keys, &n->key);
2162 		ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2163 	} else {
2164 		ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2165 	}
2166 
2167 	if (ret)
2168 		goto err;
2169 
2170 	bch2_btree_update_get_open_buckets(as, n);
2171 	bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2172 
2173 	bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2174 
2175 	bch2_trans_node_add(trans, trans->paths + iter->path, n);
2176 	six_unlock_intent(&n->c.lock);
2177 
2178 	bch2_btree_update_done(as, trans);
2179 out:
2180 	if (new_path)
2181 		bch2_path_put(trans, new_path, true);
2182 	bch2_trans_downgrade(trans);
2183 	return ret;
2184 err:
2185 	bch2_btree_node_free_never_used(as, trans, n);
2186 	bch2_btree_update_free(as, trans);
2187 	goto out;
2188 }
2189 
2190 struct async_btree_rewrite {
2191 	struct bch_fs		*c;
2192 	struct work_struct	work;
2193 	struct list_head	list;
2194 	enum btree_id		btree_id;
2195 	unsigned		level;
2196 	struct bpos		pos;
2197 	__le64			seq;
2198 };
2199 
2200 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2201 					  struct async_btree_rewrite *a)
2202 {
2203 	struct bch_fs *c = trans->c;
2204 	struct btree_iter iter;
2205 	struct btree *b;
2206 	int ret;
2207 
2208 	bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2209 				  BTREE_MAX_DEPTH, a->level, 0);
2210 	b = bch2_btree_iter_peek_node(&iter);
2211 	ret = PTR_ERR_OR_ZERO(b);
2212 	if (ret)
2213 		goto out;
2214 
2215 	if (!b || b->data->keys.seq != a->seq) {
2216 		struct printbuf buf = PRINTBUF;
2217 
2218 		if (b)
2219 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2220 		else
2221 			prt_str(&buf, "(null");
2222 		bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2223 			 __func__, a->seq, buf.buf);
2224 		printbuf_exit(&buf);
2225 		goto out;
2226 	}
2227 
2228 	ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2229 out:
2230 	bch2_trans_iter_exit(trans, &iter);
2231 
2232 	return ret;
2233 }
2234 
2235 static void async_btree_node_rewrite_work(struct work_struct *work)
2236 {
2237 	struct async_btree_rewrite *a =
2238 		container_of(work, struct async_btree_rewrite, work);
2239 	struct bch_fs *c = a->c;
2240 	int ret;
2241 
2242 	ret = bch2_trans_do(c, NULL, NULL, 0,
2243 		      async_btree_node_rewrite_trans(trans, a));
2244 	bch_err_fn_ratelimited(c, ret);
2245 	bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2246 	kfree(a);
2247 }
2248 
2249 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2250 {
2251 	struct async_btree_rewrite *a;
2252 	int ret;
2253 
2254 	a = kmalloc(sizeof(*a), GFP_NOFS);
2255 	if (!a) {
2256 		bch_err(c, "%s: error allocating memory", __func__);
2257 		return;
2258 	}
2259 
2260 	a->c		= c;
2261 	a->btree_id	= b->c.btree_id;
2262 	a->level	= b->c.level;
2263 	a->pos		= b->key.k.p;
2264 	a->seq		= b->data->keys.seq;
2265 	INIT_WORK(&a->work, async_btree_node_rewrite_work);
2266 
2267 	if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2268 		mutex_lock(&c->pending_node_rewrites_lock);
2269 		list_add(&a->list, &c->pending_node_rewrites);
2270 		mutex_unlock(&c->pending_node_rewrites_lock);
2271 		return;
2272 	}
2273 
2274 	if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2275 		if (test_bit(BCH_FS_started, &c->flags)) {
2276 			bch_err(c, "%s: error getting c->writes ref", __func__);
2277 			kfree(a);
2278 			return;
2279 		}
2280 
2281 		ret = bch2_fs_read_write_early(c);
2282 		bch_err_msg(c, ret, "going read-write");
2283 		if (ret) {
2284 			kfree(a);
2285 			return;
2286 		}
2287 
2288 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2289 	}
2290 
2291 	queue_work(c->btree_node_rewrite_worker, &a->work);
2292 }
2293 
2294 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2295 {
2296 	struct async_btree_rewrite *a, *n;
2297 
2298 	mutex_lock(&c->pending_node_rewrites_lock);
2299 	list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2300 		list_del(&a->list);
2301 
2302 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2303 		queue_work(c->btree_node_rewrite_worker, &a->work);
2304 	}
2305 	mutex_unlock(&c->pending_node_rewrites_lock);
2306 }
2307 
2308 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2309 {
2310 	struct async_btree_rewrite *a, *n;
2311 
2312 	mutex_lock(&c->pending_node_rewrites_lock);
2313 	list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2314 		list_del(&a->list);
2315 
2316 		kfree(a);
2317 	}
2318 	mutex_unlock(&c->pending_node_rewrites_lock);
2319 }
2320 
2321 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2322 					struct btree_iter *iter,
2323 					struct btree *b, struct btree *new_hash,
2324 					struct bkey_i *new_key,
2325 					unsigned commit_flags,
2326 					bool skip_triggers)
2327 {
2328 	struct bch_fs *c = trans->c;
2329 	struct btree_iter iter2 = { NULL };
2330 	struct btree *parent;
2331 	int ret;
2332 
2333 	if (!skip_triggers) {
2334 		ret   = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2335 					     bkey_i_to_s_c(&b->key),
2336 					     BTREE_TRIGGER_TRANSACTIONAL) ?:
2337 			bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2338 					     bkey_i_to_s(new_key),
2339 					     BTREE_TRIGGER_TRANSACTIONAL);
2340 		if (ret)
2341 			return ret;
2342 	}
2343 
2344 	if (new_hash) {
2345 		bkey_copy(&new_hash->key, new_key);
2346 		ret = bch2_btree_node_hash_insert(&c->btree_cache,
2347 				new_hash, b->c.level, b->c.btree_id);
2348 		BUG_ON(ret);
2349 	}
2350 
2351 	parent = btree_node_parent(btree_iter_path(trans, iter), b);
2352 	if (parent) {
2353 		bch2_trans_copy_iter(&iter2, iter);
2354 
2355 		iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2356 				iter2.flags & BTREE_ITER_INTENT,
2357 				_THIS_IP_);
2358 
2359 		struct btree_path *path2 = btree_iter_path(trans, &iter2);
2360 		BUG_ON(path2->level != b->c.level);
2361 		BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2362 
2363 		btree_path_set_level_up(trans, path2);
2364 
2365 		trans->paths_sorted = false;
2366 
2367 		ret   = bch2_btree_iter_traverse(&iter2) ?:
2368 			bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2369 		if (ret)
2370 			goto err;
2371 	} else {
2372 		BUG_ON(btree_node_root(c, b) != b);
2373 
2374 		struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2375 				       jset_u64s(new_key->k.u64s));
2376 		ret = PTR_ERR_OR_ZERO(e);
2377 		if (ret)
2378 			return ret;
2379 
2380 		journal_entry_set(e,
2381 				  BCH_JSET_ENTRY_btree_root,
2382 				  b->c.btree_id, b->c.level,
2383 				  new_key, new_key->k.u64s);
2384 	}
2385 
2386 	ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2387 	if (ret)
2388 		goto err;
2389 
2390 	bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2391 
2392 	if (new_hash) {
2393 		mutex_lock(&c->btree_cache.lock);
2394 		bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2395 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2396 
2397 		bkey_copy(&b->key, new_key);
2398 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2399 		BUG_ON(ret);
2400 		mutex_unlock(&c->btree_cache.lock);
2401 	} else {
2402 		bkey_copy(&b->key, new_key);
2403 	}
2404 
2405 	bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2406 out:
2407 	bch2_trans_iter_exit(trans, &iter2);
2408 	return ret;
2409 err:
2410 	if (new_hash) {
2411 		mutex_lock(&c->btree_cache.lock);
2412 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2413 		mutex_unlock(&c->btree_cache.lock);
2414 	}
2415 	goto out;
2416 }
2417 
2418 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2419 			       struct btree *b, struct bkey_i *new_key,
2420 			       unsigned commit_flags, bool skip_triggers)
2421 {
2422 	struct bch_fs *c = trans->c;
2423 	struct btree *new_hash = NULL;
2424 	struct btree_path *path = btree_iter_path(trans, iter);
2425 	struct closure cl;
2426 	int ret = 0;
2427 
2428 	ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2429 	if (ret)
2430 		return ret;
2431 
2432 	closure_init_stack(&cl);
2433 
2434 	/*
2435 	 * check btree_ptr_hash_val() after @b is locked by
2436 	 * btree_iter_traverse():
2437 	 */
2438 	if (btree_ptr_hash_val(new_key) != b->hash_val) {
2439 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2440 		if (ret) {
2441 			ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2442 			if (ret)
2443 				return ret;
2444 		}
2445 
2446 		new_hash = bch2_btree_node_mem_alloc(trans, false);
2447 	}
2448 
2449 	path->intent_ref++;
2450 	ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2451 					   commit_flags, skip_triggers);
2452 	--path->intent_ref;
2453 
2454 	if (new_hash) {
2455 		mutex_lock(&c->btree_cache.lock);
2456 		list_move(&new_hash->list, &c->btree_cache.freeable);
2457 		mutex_unlock(&c->btree_cache.lock);
2458 
2459 		six_unlock_write(&new_hash->c.lock);
2460 		six_unlock_intent(&new_hash->c.lock);
2461 	}
2462 	closure_sync(&cl);
2463 	bch2_btree_cache_cannibalize_unlock(trans);
2464 	return ret;
2465 }
2466 
2467 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2468 					struct btree *b, struct bkey_i *new_key,
2469 					unsigned commit_flags, bool skip_triggers)
2470 {
2471 	struct btree_iter iter;
2472 	int ret;
2473 
2474 	bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2475 				  BTREE_MAX_DEPTH, b->c.level,
2476 				  BTREE_ITER_INTENT);
2477 	ret = bch2_btree_iter_traverse(&iter);
2478 	if (ret)
2479 		goto out;
2480 
2481 	/* has node been freed? */
2482 	if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2483 		/* node has been freed: */
2484 		BUG_ON(!btree_node_dying(b));
2485 		goto out;
2486 	}
2487 
2488 	BUG_ON(!btree_node_hashed(b));
2489 
2490 	struct bch_extent_ptr *ptr;
2491 	bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2492 			    !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2493 
2494 	ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2495 					 commit_flags, skip_triggers);
2496 out:
2497 	bch2_trans_iter_exit(trans, &iter);
2498 	return ret;
2499 }
2500 
2501 /* Init code: */
2502 
2503 /*
2504  * Only for filesystem bringup, when first reading the btree roots or allocating
2505  * btree roots when initializing a new filesystem:
2506  */
2507 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2508 {
2509 	BUG_ON(btree_node_root(c, b));
2510 
2511 	bch2_btree_set_root_inmem(c, b);
2512 }
2513 
2514 static int __bch2_btree_root_alloc_fake(struct btree_trans *trans, enum btree_id id, unsigned level)
2515 {
2516 	struct bch_fs *c = trans->c;
2517 	struct closure cl;
2518 	struct btree *b;
2519 	int ret;
2520 
2521 	closure_init_stack(&cl);
2522 
2523 	do {
2524 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2525 		closure_sync(&cl);
2526 	} while (ret);
2527 
2528 	b = bch2_btree_node_mem_alloc(trans, false);
2529 	bch2_btree_cache_cannibalize_unlock(trans);
2530 
2531 	set_btree_node_fake(b);
2532 	set_btree_node_need_rewrite(b);
2533 	b->c.level	= level;
2534 	b->c.btree_id	= id;
2535 
2536 	bkey_btree_ptr_init(&b->key);
2537 	b->key.k.p = SPOS_MAX;
2538 	*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2539 
2540 	bch2_bset_init_first(b, &b->data->keys);
2541 	bch2_btree_build_aux_trees(b);
2542 
2543 	b->data->flags = 0;
2544 	btree_set_min(b, POS_MIN);
2545 	btree_set_max(b, SPOS_MAX);
2546 	b->data->format = bch2_btree_calc_format(b);
2547 	btree_node_set_format(b, b->data->format);
2548 
2549 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2550 					  b->c.level, b->c.btree_id);
2551 	BUG_ON(ret);
2552 
2553 	bch2_btree_set_root_inmem(c, b);
2554 
2555 	six_unlock_write(&b->c.lock);
2556 	six_unlock_intent(&b->c.lock);
2557 	return 0;
2558 }
2559 
2560 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2561 {
2562 	bch2_trans_run(c, __bch2_btree_root_alloc_fake(trans, id, level));
2563 }
2564 
2565 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2566 {
2567 	prt_printf(out, "%ps: btree=%s l=%u-%u watermark=%s mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2568 		   (void *) as->ip_started,
2569 		   bch2_btree_id_str(as->btree_id),
2570 		   as->update_level_start,
2571 		   as->update_level_end,
2572 		   bch2_watermarks[as->watermark],
2573 		   bch2_btree_update_modes[as->mode],
2574 		   as->nodes_written,
2575 		   closure_nr_remaining(&as->cl),
2576 		   as->journal.seq);
2577 }
2578 
2579 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2580 {
2581 	struct btree_update *as;
2582 
2583 	mutex_lock(&c->btree_interior_update_lock);
2584 	list_for_each_entry(as, &c->btree_interior_update_list, list)
2585 		bch2_btree_update_to_text(out, as);
2586 	mutex_unlock(&c->btree_interior_update_lock);
2587 }
2588 
2589 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2590 {
2591 	bool ret;
2592 
2593 	mutex_lock(&c->btree_interior_update_lock);
2594 	ret = !list_empty(&c->btree_interior_update_list);
2595 	mutex_unlock(&c->btree_interior_update_lock);
2596 
2597 	return ret;
2598 }
2599 
2600 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2601 {
2602 	bool ret = bch2_btree_interior_updates_pending(c);
2603 
2604 	if (ret)
2605 		closure_wait_event(&c->btree_interior_update_wait,
2606 				   !bch2_btree_interior_updates_pending(c));
2607 	return ret;
2608 }
2609 
2610 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2611 {
2612 	struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2613 
2614 	mutex_lock(&c->btree_root_lock);
2615 
2616 	r->level = entry->level;
2617 	r->alive = true;
2618 	bkey_copy(&r->key, (struct bkey_i *) entry->start);
2619 
2620 	mutex_unlock(&c->btree_root_lock);
2621 }
2622 
2623 struct jset_entry *
2624 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2625 				    struct jset_entry *end,
2626 				    unsigned long skip)
2627 {
2628 	unsigned i;
2629 
2630 	mutex_lock(&c->btree_root_lock);
2631 
2632 	for (i = 0; i < btree_id_nr_alive(c); i++) {
2633 		struct btree_root *r = bch2_btree_id_root(c, i);
2634 
2635 		if (r->alive && !test_bit(i, &skip)) {
2636 			journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2637 					  i, r->level, &r->key, r->key.k.u64s);
2638 			end = vstruct_next(end);
2639 		}
2640 	}
2641 
2642 	mutex_unlock(&c->btree_root_lock);
2643 
2644 	return end;
2645 }
2646 
2647 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2648 {
2649 	if (c->btree_node_rewrite_worker)
2650 		destroy_workqueue(c->btree_node_rewrite_worker);
2651 	if (c->btree_interior_update_worker)
2652 		destroy_workqueue(c->btree_interior_update_worker);
2653 	mempool_exit(&c->btree_interior_update_pool);
2654 }
2655 
2656 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2657 {
2658 	mutex_init(&c->btree_reserve_cache_lock);
2659 	INIT_LIST_HEAD(&c->btree_interior_update_list);
2660 	INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2661 	mutex_init(&c->btree_interior_update_lock);
2662 	INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2663 
2664 	INIT_LIST_HEAD(&c->pending_node_rewrites);
2665 	mutex_init(&c->pending_node_rewrites_lock);
2666 }
2667 
2668 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2669 {
2670 	c->btree_interior_update_worker =
2671 		alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2672 	if (!c->btree_interior_update_worker)
2673 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2674 
2675 	c->btree_node_rewrite_worker =
2676 		alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2677 	if (!c->btree_node_rewrite_worker)
2678 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2679 
2680 	if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2681 				      sizeof(struct btree_update)))
2682 		return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2683 
2684 	return 0;
2685 }
2686