1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_methods.h" 6 #include "btree_cache.h" 7 #include "btree_gc.h" 8 #include "btree_journal_iter.h" 9 #include "btree_update.h" 10 #include "btree_update_interior.h" 11 #include "btree_io.h" 12 #include "btree_iter.h" 13 #include "btree_locking.h" 14 #include "buckets.h" 15 #include "clock.h" 16 #include "error.h" 17 #include "extents.h" 18 #include "journal.h" 19 #include "journal_reclaim.h" 20 #include "keylist.h" 21 #include "replicas.h" 22 #include "super-io.h" 23 #include "trace.h" 24 25 #include <linux/random.h> 26 27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 28 struct btree_path *, struct btree *, 29 struct keylist *, unsigned); 30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 31 32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans, 33 enum btree_id btree_id, 34 unsigned level, 35 struct bpos pos) 36 { 37 struct btree_path *path; 38 39 path = bch2_path_get(trans, btree_id, pos, level + 1, level, 40 BTREE_ITER_NOPRESERVE| 41 BTREE_ITER_INTENT, _RET_IP_); 42 path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_); 43 bch2_btree_path_downgrade(trans, path); 44 __bch2_btree_path_unlock(trans, path); 45 return path; 46 } 47 48 /* Debug code: */ 49 50 /* 51 * Verify that child nodes correctly span parent node's range: 52 */ 53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) 54 { 55 #ifdef CONFIG_BCACHEFS_DEBUG 56 struct bpos next_node = b->data->min_key; 57 struct btree_node_iter iter; 58 struct bkey_s_c k; 59 struct bkey_s_c_btree_ptr_v2 bp; 60 struct bkey unpacked; 61 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 62 63 BUG_ON(!b->c.level); 64 65 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) 66 return; 67 68 bch2_btree_node_iter_init_from_start(&iter, b); 69 70 while (1) { 71 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); 72 if (k.k->type != KEY_TYPE_btree_ptr_v2) 73 break; 74 bp = bkey_s_c_to_btree_ptr_v2(k); 75 76 if (!bpos_eq(next_node, bp.v->min_key)) { 77 bch2_dump_btree_node(c, b); 78 bch2_bpos_to_text(&buf1, next_node); 79 bch2_bpos_to_text(&buf2, bp.v->min_key); 80 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); 81 } 82 83 bch2_btree_node_iter_advance(&iter, b); 84 85 if (bch2_btree_node_iter_end(&iter)) { 86 if (!bpos_eq(k.k->p, b->key.k.p)) { 87 bch2_dump_btree_node(c, b); 88 bch2_bpos_to_text(&buf1, b->key.k.p); 89 bch2_bpos_to_text(&buf2, k.k->p); 90 panic("expected end %s got %s\n", buf1.buf, buf2.buf); 91 } 92 break; 93 } 94 95 next_node = bpos_successor(k.k->p); 96 } 97 #endif 98 } 99 100 /* Calculate ideal packed bkey format for new btree nodes: */ 101 102 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 103 { 104 struct bkey_packed *k; 105 struct bset_tree *t; 106 struct bkey uk; 107 108 for_each_bset(b, t) 109 bset_tree_for_each_key(b, t, k) 110 if (!bkey_deleted(k)) { 111 uk = bkey_unpack_key(b, k); 112 bch2_bkey_format_add_key(s, &uk); 113 } 114 } 115 116 static struct bkey_format bch2_btree_calc_format(struct btree *b) 117 { 118 struct bkey_format_state s; 119 120 bch2_bkey_format_init(&s); 121 bch2_bkey_format_add_pos(&s, b->data->min_key); 122 bch2_bkey_format_add_pos(&s, b->data->max_key); 123 __bch2_btree_calc_format(&s, b); 124 125 return bch2_bkey_format_done(&s); 126 } 127 128 static size_t btree_node_u64s_with_format(struct btree *b, 129 struct bkey_format *new_f) 130 { 131 struct bkey_format *old_f = &b->format; 132 133 /* stupid integer promotion rules */ 134 ssize_t delta = 135 (((int) new_f->key_u64s - old_f->key_u64s) * 136 (int) b->nr.packed_keys) + 137 (((int) new_f->key_u64s - BKEY_U64s) * 138 (int) b->nr.unpacked_keys); 139 140 BUG_ON(delta + b->nr.live_u64s < 0); 141 142 return b->nr.live_u64s + delta; 143 } 144 145 /** 146 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 147 * 148 * @c: filesystem handle 149 * @b: btree node to rewrite 150 * @new_f: bkey format to translate keys to 151 * 152 * Returns: true if all re-packed keys will be able to fit in a new node. 153 * 154 * Assumes all keys will successfully pack with the new format. 155 */ 156 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 157 struct bkey_format *new_f) 158 { 159 size_t u64s = btree_node_u64s_with_format(b, new_f); 160 161 return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); 162 } 163 164 /* Btree node freeing/allocation: */ 165 166 static void __btree_node_free(struct bch_fs *c, struct btree *b) 167 { 168 trace_and_count(c, btree_node_free, c, b); 169 170 BUG_ON(btree_node_write_blocked(b)); 171 BUG_ON(btree_node_dirty(b)); 172 BUG_ON(btree_node_need_write(b)); 173 BUG_ON(b == btree_node_root(c, b)); 174 BUG_ON(b->ob.nr); 175 BUG_ON(!list_empty(&b->write_blocked)); 176 BUG_ON(b->will_make_reachable); 177 178 clear_btree_node_noevict(b); 179 180 mutex_lock(&c->btree_cache.lock); 181 list_move(&b->list, &c->btree_cache.freeable); 182 mutex_unlock(&c->btree_cache.lock); 183 } 184 185 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 186 struct btree_path *path, 187 struct btree *b) 188 { 189 struct bch_fs *c = trans->c; 190 unsigned level = b->c.level; 191 192 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 193 bch2_btree_node_hash_remove(&c->btree_cache, b); 194 __btree_node_free(c, b); 195 six_unlock_write(&b->c.lock); 196 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 197 198 trans_for_each_path(trans, path) 199 if (path->l[level].b == b) { 200 btree_node_unlock(trans, path, level); 201 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 202 } 203 } 204 205 static void bch2_btree_node_free_never_used(struct btree_update *as, 206 struct btree_trans *trans, 207 struct btree *b) 208 { 209 struct bch_fs *c = as->c; 210 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 211 struct btree_path *path; 212 unsigned level = b->c.level; 213 214 BUG_ON(!list_empty(&b->write_blocked)); 215 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 216 217 b->will_make_reachable = 0; 218 closure_put(&as->cl); 219 220 clear_btree_node_will_make_reachable(b); 221 clear_btree_node_accessed(b); 222 clear_btree_node_dirty_acct(c, b); 223 clear_btree_node_need_write(b); 224 225 mutex_lock(&c->btree_cache.lock); 226 list_del_init(&b->list); 227 bch2_btree_node_hash_remove(&c->btree_cache, b); 228 mutex_unlock(&c->btree_cache.lock); 229 230 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 231 p->b[p->nr++] = b; 232 233 six_unlock_intent(&b->c.lock); 234 235 trans_for_each_path(trans, path) 236 if (path->l[level].b == b) { 237 btree_node_unlock(trans, path, level); 238 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 239 } 240 } 241 242 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 243 struct disk_reservation *res, 244 struct closure *cl, 245 bool interior_node, 246 unsigned flags) 247 { 248 struct bch_fs *c = trans->c; 249 struct write_point *wp; 250 struct btree *b; 251 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 252 struct open_buckets obs = { .nr = 0 }; 253 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 254 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 255 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim 256 ? BTREE_NODE_RESERVE 257 : 0; 258 int ret; 259 260 mutex_lock(&c->btree_reserve_cache_lock); 261 if (c->btree_reserve_cache_nr > nr_reserve) { 262 struct btree_alloc *a = 263 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 264 265 obs = a->ob; 266 bkey_copy(&tmp.k, &a->k); 267 mutex_unlock(&c->btree_reserve_cache_lock); 268 goto mem_alloc; 269 } 270 mutex_unlock(&c->btree_reserve_cache_lock); 271 272 retry: 273 ret = bch2_alloc_sectors_start_trans(trans, 274 c->opts.metadata_target ?: 275 c->opts.foreground_target, 276 0, 277 writepoint_ptr(&c->btree_write_point), 278 &devs_have, 279 res->nr_replicas, 280 c->opts.metadata_replicas_required, 281 watermark, 0, cl, &wp); 282 if (unlikely(ret)) 283 return ERR_PTR(ret); 284 285 if (wp->sectors_free < btree_sectors(c)) { 286 struct open_bucket *ob; 287 unsigned i; 288 289 open_bucket_for_each(c, &wp->ptrs, ob, i) 290 if (ob->sectors_free < btree_sectors(c)) 291 ob->sectors_free = 0; 292 293 bch2_alloc_sectors_done(c, wp); 294 goto retry; 295 } 296 297 bkey_btree_ptr_v2_init(&tmp.k); 298 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 299 300 bch2_open_bucket_get(c, wp, &obs); 301 bch2_alloc_sectors_done(c, wp); 302 mem_alloc: 303 b = bch2_btree_node_mem_alloc(trans, interior_node); 304 six_unlock_write(&b->c.lock); 305 six_unlock_intent(&b->c.lock); 306 307 /* we hold cannibalize_lock: */ 308 BUG_ON(IS_ERR(b)); 309 BUG_ON(b->ob.nr); 310 311 bkey_copy(&b->key, &tmp.k); 312 b->ob = obs; 313 314 return b; 315 } 316 317 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 318 struct btree_trans *trans, 319 unsigned level) 320 { 321 struct bch_fs *c = as->c; 322 struct btree *b; 323 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 324 int ret; 325 326 BUG_ON(level >= BTREE_MAX_DEPTH); 327 BUG_ON(!p->nr); 328 329 b = p->b[--p->nr]; 330 331 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 332 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 333 334 set_btree_node_accessed(b); 335 set_btree_node_dirty_acct(c, b); 336 set_btree_node_need_write(b); 337 338 bch2_bset_init_first(b, &b->data->keys); 339 b->c.level = level; 340 b->c.btree_id = as->btree_id; 341 b->version_ondisk = c->sb.version; 342 343 memset(&b->nr, 0, sizeof(b->nr)); 344 b->data->magic = cpu_to_le64(bset_magic(c)); 345 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 346 b->data->flags = 0; 347 SET_BTREE_NODE_ID(b->data, as->btree_id); 348 SET_BTREE_NODE_LEVEL(b->data, level); 349 350 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 351 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 352 353 bp->v.mem_ptr = 0; 354 bp->v.seq = b->data->keys.seq; 355 bp->v.sectors_written = 0; 356 } 357 358 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 359 360 bch2_btree_build_aux_trees(b); 361 362 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 363 BUG_ON(ret); 364 365 trace_and_count(c, btree_node_alloc, c, b); 366 bch2_increment_clock(c, btree_sectors(c), WRITE); 367 return b; 368 } 369 370 static void btree_set_min(struct btree *b, struct bpos pos) 371 { 372 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 373 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 374 b->data->min_key = pos; 375 } 376 377 static void btree_set_max(struct btree *b, struct bpos pos) 378 { 379 b->key.k.p = pos; 380 b->data->max_key = pos; 381 } 382 383 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 384 struct btree_trans *trans, 385 struct btree *b) 386 { 387 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 388 struct bkey_format format = bch2_btree_calc_format(b); 389 390 /* 391 * The keys might expand with the new format - if they wouldn't fit in 392 * the btree node anymore, use the old format for now: 393 */ 394 if (!bch2_btree_node_format_fits(as->c, b, &format)) 395 format = b->format; 396 397 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 398 399 btree_set_min(n, b->data->min_key); 400 btree_set_max(n, b->data->max_key); 401 402 n->data->format = format; 403 btree_node_set_format(n, format); 404 405 bch2_btree_sort_into(as->c, n, b); 406 407 btree_node_reset_sib_u64s(n); 408 return n; 409 } 410 411 static struct btree *__btree_root_alloc(struct btree_update *as, 412 struct btree_trans *trans, unsigned level) 413 { 414 struct btree *b = bch2_btree_node_alloc(as, trans, level); 415 416 btree_set_min(b, POS_MIN); 417 btree_set_max(b, SPOS_MAX); 418 b->data->format = bch2_btree_calc_format(b); 419 420 btree_node_set_format(b, b->data->format); 421 bch2_btree_build_aux_trees(b); 422 423 return b; 424 } 425 426 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 427 { 428 struct bch_fs *c = as->c; 429 struct prealloc_nodes *p; 430 431 for (p = as->prealloc_nodes; 432 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 433 p++) { 434 while (p->nr) { 435 struct btree *b = p->b[--p->nr]; 436 437 mutex_lock(&c->btree_reserve_cache_lock); 438 439 if (c->btree_reserve_cache_nr < 440 ARRAY_SIZE(c->btree_reserve_cache)) { 441 struct btree_alloc *a = 442 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 443 444 a->ob = b->ob; 445 b->ob.nr = 0; 446 bkey_copy(&a->k, &b->key); 447 } else { 448 bch2_open_buckets_put(c, &b->ob); 449 } 450 451 mutex_unlock(&c->btree_reserve_cache_lock); 452 453 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 454 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 455 __btree_node_free(c, b); 456 six_unlock_write(&b->c.lock); 457 six_unlock_intent(&b->c.lock); 458 } 459 } 460 } 461 462 static int bch2_btree_reserve_get(struct btree_trans *trans, 463 struct btree_update *as, 464 unsigned nr_nodes[2], 465 unsigned flags, 466 struct closure *cl) 467 { 468 struct bch_fs *c = as->c; 469 struct btree *b; 470 unsigned interior; 471 int ret = 0; 472 473 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 474 475 /* 476 * Protects reaping from the btree node cache and using the btree node 477 * open bucket reserve: 478 * 479 * BTREE_INSERT_NOWAIT only applies to btree node allocation, not 480 * blocking on this lock: 481 */ 482 ret = bch2_btree_cache_cannibalize_lock(c, cl); 483 if (ret) 484 return ret; 485 486 for (interior = 0; interior < 2; interior++) { 487 struct prealloc_nodes *p = as->prealloc_nodes + interior; 488 489 while (p->nr < nr_nodes[interior]) { 490 b = __bch2_btree_node_alloc(trans, &as->disk_res, 491 flags & BTREE_INSERT_NOWAIT ? NULL : cl, 492 interior, flags); 493 if (IS_ERR(b)) { 494 ret = PTR_ERR(b); 495 goto err; 496 } 497 498 p->b[p->nr++] = b; 499 } 500 } 501 err: 502 bch2_btree_cache_cannibalize_unlock(c); 503 return ret; 504 } 505 506 /* Asynchronous interior node update machinery */ 507 508 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 509 { 510 struct bch_fs *c = as->c; 511 512 if (as->took_gc_lock) 513 up_read(&c->gc_lock); 514 as->took_gc_lock = false; 515 516 bch2_journal_pin_drop(&c->journal, &as->journal); 517 bch2_journal_pin_flush(&c->journal, &as->journal); 518 bch2_disk_reservation_put(c, &as->disk_res); 519 bch2_btree_reserve_put(as, trans); 520 521 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 522 as->start_time); 523 524 mutex_lock(&c->btree_interior_update_lock); 525 list_del(&as->unwritten_list); 526 list_del(&as->list); 527 528 closure_debug_destroy(&as->cl); 529 mempool_free(as, &c->btree_interior_update_pool); 530 531 /* 532 * Have to do the wakeup with btree_interior_update_lock still held, 533 * since being on btree_interior_update_list is our ref on @c: 534 */ 535 closure_wake_up(&c->btree_interior_update_wait); 536 537 mutex_unlock(&c->btree_interior_update_lock); 538 } 539 540 static void btree_update_add_key(struct btree_update *as, 541 struct keylist *keys, struct btree *b) 542 { 543 struct bkey_i *k = &b->key; 544 545 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 546 ARRAY_SIZE(as->_old_keys)); 547 548 bkey_copy(keys->top, k); 549 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 550 551 bch2_keylist_push(keys); 552 } 553 554 /* 555 * The transactional part of an interior btree node update, where we journal the 556 * update we did to the interior node and update alloc info: 557 */ 558 static int btree_update_nodes_written_trans(struct btree_trans *trans, 559 struct btree_update *as) 560 { 561 struct bkey_i *k; 562 int ret; 563 564 ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s); 565 if (ret) 566 return ret; 567 568 memcpy(&darray_top(trans->extra_journal_entries), 569 as->journal_entries, 570 as->journal_u64s * sizeof(u64)); 571 trans->extra_journal_entries.nr += as->journal_u64s; 572 573 trans->journal_pin = &as->journal; 574 575 for_each_keylist_key(&as->old_keys, k) { 576 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 577 578 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0); 579 if (ret) 580 return ret; 581 } 582 583 for_each_keylist_key(&as->new_keys, k) { 584 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 585 586 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0); 587 if (ret) 588 return ret; 589 } 590 591 return 0; 592 } 593 594 static void btree_update_nodes_written(struct btree_update *as) 595 { 596 struct bch_fs *c = as->c; 597 struct btree *b; 598 struct btree_trans *trans = bch2_trans_get(c); 599 u64 journal_seq = 0; 600 unsigned i; 601 int ret; 602 603 /* 604 * If we're already in an error state, it might be because a btree node 605 * was never written, and we might be trying to free that same btree 606 * node here, but it won't have been marked as allocated and we'll see 607 * spurious disk usage inconsistencies in the transactional part below 608 * if we don't skip it: 609 */ 610 ret = bch2_journal_error(&c->journal); 611 if (ret) 612 goto err; 613 614 /* 615 * Wait for any in flight writes to finish before we free the old nodes 616 * on disk: 617 */ 618 for (i = 0; i < as->nr_old_nodes; i++) { 619 __le64 seq; 620 621 b = as->old_nodes[i]; 622 623 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 624 seq = b->data ? b->data->keys.seq : 0; 625 six_unlock_read(&b->c.lock); 626 627 if (seq == as->old_nodes_seq[i]) 628 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 629 TASK_UNINTERRUPTIBLE); 630 } 631 632 /* 633 * We did an update to a parent node where the pointers we added pointed 634 * to child nodes that weren't written yet: now, the child nodes have 635 * been written so we can write out the update to the interior node. 636 */ 637 638 /* 639 * We can't call into journal reclaim here: we'd block on the journal 640 * reclaim lock, but we may need to release the open buckets we have 641 * pinned in order for other btree updates to make forward progress, and 642 * journal reclaim does btree updates when flushing bkey_cached entries, 643 * which may require allocations as well. 644 */ 645 ret = commit_do(trans, &as->disk_res, &journal_seq, 646 BCH_WATERMARK_reclaim| 647 BTREE_INSERT_NOFAIL| 648 BTREE_INSERT_NOCHECK_RW| 649 BTREE_INSERT_JOURNAL_RECLAIM, 650 btree_update_nodes_written_trans(trans, as)); 651 bch2_trans_unlock(trans); 652 653 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 654 "%s(): error %s", __func__, bch2_err_str(ret)); 655 err: 656 if (as->b) { 657 struct btree_path *path; 658 659 b = as->b; 660 path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p); 661 /* 662 * @b is the node we did the final insert into: 663 * 664 * On failure to get a journal reservation, we still have to 665 * unblock the write and allow most of the write path to happen 666 * so that shutdown works, but the i->journal_seq mechanism 667 * won't work to prevent the btree write from being visible (we 668 * didn't get a journal sequence number) - instead 669 * __bch2_btree_node_write() doesn't do the actual write if 670 * we're in journal error state: 671 */ 672 673 /* 674 * Ensure transaction is unlocked before using 675 * btree_node_lock_nopath() (the use of which is always suspect, 676 * we need to work on removing this in the future) 677 * 678 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 679 * calls bch2_path_upgrade(), before we call path_make_mut(), so 680 * we may rarely end up with a locked path besides the one we 681 * have here: 682 */ 683 bch2_trans_unlock(trans); 684 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 685 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 686 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 687 path->l[b->c.level].b = b; 688 689 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 690 691 mutex_lock(&c->btree_interior_update_lock); 692 693 list_del(&as->write_blocked_list); 694 if (list_empty(&b->write_blocked)) 695 clear_btree_node_write_blocked(b); 696 697 /* 698 * Node might have been freed, recheck under 699 * btree_interior_update_lock: 700 */ 701 if (as->b == b) { 702 BUG_ON(!b->c.level); 703 BUG_ON(!btree_node_dirty(b)); 704 705 if (!ret) { 706 struct bset *last = btree_bset_last(b); 707 708 last->journal_seq = cpu_to_le64( 709 max(journal_seq, 710 le64_to_cpu(last->journal_seq))); 711 712 bch2_btree_add_journal_pin(c, b, journal_seq); 713 } else { 714 /* 715 * If we didn't get a journal sequence number we 716 * can't write this btree node, because recovery 717 * won't know to ignore this write: 718 */ 719 set_btree_node_never_write(b); 720 } 721 } 722 723 mutex_unlock(&c->btree_interior_update_lock); 724 725 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 726 six_unlock_write(&b->c.lock); 727 728 btree_node_write_if_need(c, b, SIX_LOCK_intent); 729 btree_node_unlock(trans, path, b->c.level); 730 bch2_path_put(trans, path, true); 731 } 732 733 bch2_journal_pin_drop(&c->journal, &as->journal); 734 735 mutex_lock(&c->btree_interior_update_lock); 736 for (i = 0; i < as->nr_new_nodes; i++) { 737 b = as->new_nodes[i]; 738 739 BUG_ON(b->will_make_reachable != (unsigned long) as); 740 b->will_make_reachable = 0; 741 clear_btree_node_will_make_reachable(b); 742 } 743 mutex_unlock(&c->btree_interior_update_lock); 744 745 for (i = 0; i < as->nr_new_nodes; i++) { 746 b = as->new_nodes[i]; 747 748 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 749 btree_node_write_if_need(c, b, SIX_LOCK_read); 750 six_unlock_read(&b->c.lock); 751 } 752 753 for (i = 0; i < as->nr_open_buckets; i++) 754 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 755 756 bch2_btree_update_free(as, trans); 757 bch2_trans_put(trans); 758 } 759 760 static void btree_interior_update_work(struct work_struct *work) 761 { 762 struct bch_fs *c = 763 container_of(work, struct bch_fs, btree_interior_update_work); 764 struct btree_update *as; 765 766 while (1) { 767 mutex_lock(&c->btree_interior_update_lock); 768 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 769 struct btree_update, unwritten_list); 770 if (as && !as->nodes_written) 771 as = NULL; 772 mutex_unlock(&c->btree_interior_update_lock); 773 774 if (!as) 775 break; 776 777 btree_update_nodes_written(as); 778 } 779 } 780 781 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 782 { 783 closure_type(as, struct btree_update, cl); 784 struct bch_fs *c = as->c; 785 786 mutex_lock(&c->btree_interior_update_lock); 787 as->nodes_written = true; 788 mutex_unlock(&c->btree_interior_update_lock); 789 790 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 791 } 792 793 /* 794 * We're updating @b with pointers to nodes that haven't finished writing yet: 795 * block @b from being written until @as completes 796 */ 797 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 798 { 799 struct bch_fs *c = as->c; 800 801 mutex_lock(&c->btree_interior_update_lock); 802 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 803 804 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 805 BUG_ON(!btree_node_dirty(b)); 806 BUG_ON(!b->c.level); 807 808 as->mode = BTREE_INTERIOR_UPDATING_NODE; 809 as->b = b; 810 811 set_btree_node_write_blocked(b); 812 list_add(&as->write_blocked_list, &b->write_blocked); 813 814 mutex_unlock(&c->btree_interior_update_lock); 815 } 816 817 static void btree_update_reparent(struct btree_update *as, 818 struct btree_update *child) 819 { 820 struct bch_fs *c = as->c; 821 822 lockdep_assert_held(&c->btree_interior_update_lock); 823 824 child->b = NULL; 825 child->mode = BTREE_INTERIOR_UPDATING_AS; 826 827 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL); 828 } 829 830 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 831 { 832 struct bkey_i *insert = &b->key; 833 struct bch_fs *c = as->c; 834 835 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 836 837 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 838 ARRAY_SIZE(as->journal_entries)); 839 840 as->journal_u64s += 841 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 842 BCH_JSET_ENTRY_btree_root, 843 b->c.btree_id, b->c.level, 844 insert, insert->k.u64s); 845 846 mutex_lock(&c->btree_interior_update_lock); 847 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 848 849 as->mode = BTREE_INTERIOR_UPDATING_ROOT; 850 mutex_unlock(&c->btree_interior_update_lock); 851 } 852 853 /* 854 * bch2_btree_update_add_new_node: 855 * 856 * This causes @as to wait on @b to be written, before it gets to 857 * bch2_btree_update_nodes_written 858 * 859 * Additionally, it sets b->will_make_reachable to prevent any additional writes 860 * to @b from happening besides the first until @b is reachable on disk 861 * 862 * And it adds @b to the list of @as's new nodes, so that we can update sector 863 * counts in bch2_btree_update_nodes_written: 864 */ 865 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 866 { 867 struct bch_fs *c = as->c; 868 869 closure_get(&as->cl); 870 871 mutex_lock(&c->btree_interior_update_lock); 872 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 873 BUG_ON(b->will_make_reachable); 874 875 as->new_nodes[as->nr_new_nodes++] = b; 876 b->will_make_reachable = 1UL|(unsigned long) as; 877 set_btree_node_will_make_reachable(b); 878 879 mutex_unlock(&c->btree_interior_update_lock); 880 881 btree_update_add_key(as, &as->new_keys, b); 882 883 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 884 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 885 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 886 887 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 888 cpu_to_le16(sectors); 889 } 890 } 891 892 /* 893 * returns true if @b was a new node 894 */ 895 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 896 { 897 struct btree_update *as; 898 unsigned long v; 899 unsigned i; 900 901 mutex_lock(&c->btree_interior_update_lock); 902 /* 903 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 904 * dropped when it gets written by bch2_btree_complete_write - the 905 * xchg() is for synchronization with bch2_btree_complete_write: 906 */ 907 v = xchg(&b->will_make_reachable, 0); 908 clear_btree_node_will_make_reachable(b); 909 as = (struct btree_update *) (v & ~1UL); 910 911 if (!as) { 912 mutex_unlock(&c->btree_interior_update_lock); 913 return; 914 } 915 916 for (i = 0; i < as->nr_new_nodes; i++) 917 if (as->new_nodes[i] == b) 918 goto found; 919 920 BUG(); 921 found: 922 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 923 mutex_unlock(&c->btree_interior_update_lock); 924 925 if (v & 1) 926 closure_put(&as->cl); 927 } 928 929 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 930 { 931 while (b->ob.nr) 932 as->open_buckets[as->nr_open_buckets++] = 933 b->ob.v[--b->ob.nr]; 934 } 935 936 /* 937 * @b is being split/rewritten: it may have pointers to not-yet-written btree 938 * nodes and thus outstanding btree_updates - redirect @b's 939 * btree_updates to point to this btree_update: 940 */ 941 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 942 struct btree *b) 943 { 944 struct bch_fs *c = as->c; 945 struct btree_update *p, *n; 946 struct btree_write *w; 947 948 set_btree_node_dying(b); 949 950 if (btree_node_fake(b)) 951 return; 952 953 mutex_lock(&c->btree_interior_update_lock); 954 955 /* 956 * Does this node have any btree_update operations preventing 957 * it from being written? 958 * 959 * If so, redirect them to point to this btree_update: we can 960 * write out our new nodes, but we won't make them visible until those 961 * operations complete 962 */ 963 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 964 list_del_init(&p->write_blocked_list); 965 btree_update_reparent(as, p); 966 967 /* 968 * for flush_held_btree_writes() waiting on updates to flush or 969 * nodes to be writeable: 970 */ 971 closure_wake_up(&c->btree_interior_update_wait); 972 } 973 974 clear_btree_node_dirty_acct(c, b); 975 clear_btree_node_need_write(b); 976 clear_btree_node_write_blocked(b); 977 978 /* 979 * Does this node have unwritten data that has a pin on the journal? 980 * 981 * If so, transfer that pin to the btree_update operation - 982 * note that if we're freeing multiple nodes, we only need to keep the 983 * oldest pin of any of the nodes we're freeing. We'll release the pin 984 * when the new nodes are persistent and reachable on disk: 985 */ 986 w = btree_current_write(b); 987 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 988 bch2_journal_pin_drop(&c->journal, &w->journal); 989 990 w = btree_prev_write(b); 991 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); 992 bch2_journal_pin_drop(&c->journal, &w->journal); 993 994 mutex_unlock(&c->btree_interior_update_lock); 995 996 /* 997 * Is this a node that isn't reachable on disk yet? 998 * 999 * Nodes that aren't reachable yet have writes blocked until they're 1000 * reachable - now that we've cancelled any pending writes and moved 1001 * things waiting on that write to wait on this update, we can drop this 1002 * node from the list of nodes that the other update is making 1003 * reachable, prior to freeing it: 1004 */ 1005 btree_update_drop_new_node(c, b); 1006 1007 btree_update_add_key(as, &as->old_keys, b); 1008 1009 as->old_nodes[as->nr_old_nodes] = b; 1010 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1011 as->nr_old_nodes++; 1012 } 1013 1014 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1015 { 1016 struct bch_fs *c = as->c; 1017 u64 start_time = as->start_time; 1018 1019 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); 1020 1021 if (as->took_gc_lock) 1022 up_read(&as->c->gc_lock); 1023 as->took_gc_lock = false; 1024 1025 bch2_btree_reserve_put(as, trans); 1026 1027 continue_at(&as->cl, btree_update_set_nodes_written, 1028 as->c->btree_interior_update_worker); 1029 1030 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1031 start_time); 1032 } 1033 1034 static struct btree_update * 1035 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1036 unsigned level, bool split, unsigned flags) 1037 { 1038 struct bch_fs *c = trans->c; 1039 struct btree_update *as; 1040 u64 start_time = local_clock(); 1041 int disk_res_flags = (flags & BTREE_INSERT_NOFAIL) 1042 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1043 unsigned nr_nodes[2] = { 0, 0 }; 1044 unsigned update_level = level; 1045 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1046 int ret = 0; 1047 u32 restart_count = trans->restart_count; 1048 1049 BUG_ON(!path->should_be_locked); 1050 1051 if (watermark == BCH_WATERMARK_copygc) 1052 watermark = BCH_WATERMARK_btree_copygc; 1053 if (watermark < BCH_WATERMARK_btree) 1054 watermark = BCH_WATERMARK_btree; 1055 1056 flags &= ~BCH_WATERMARK_MASK; 1057 flags |= watermark; 1058 1059 while (1) { 1060 nr_nodes[!!update_level] += 1 + split; 1061 update_level++; 1062 1063 ret = bch2_btree_path_upgrade(trans, path, update_level + 1); 1064 if (ret) 1065 return ERR_PTR(ret); 1066 1067 if (!btree_path_node(path, update_level)) { 1068 /* Allocating new root? */ 1069 nr_nodes[1] += split; 1070 update_level = BTREE_MAX_DEPTH; 1071 break; 1072 } 1073 1074 /* 1075 * Always check for space for two keys, even if we won't have to 1076 * split at prior level - it might have been a merge instead: 1077 */ 1078 if (bch2_btree_node_insert_fits(c, path->l[update_level].b, 1079 BKEY_BTREE_PTR_U64s_MAX * 2)) 1080 break; 1081 1082 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1083 } 1084 1085 if (flags & BTREE_INSERT_GC_LOCK_HELD) 1086 lockdep_assert_held(&c->gc_lock); 1087 else if (!down_read_trylock(&c->gc_lock)) { 1088 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1089 if (ret) { 1090 up_read(&c->gc_lock); 1091 return ERR_PTR(ret); 1092 } 1093 } 1094 1095 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1096 memset(as, 0, sizeof(*as)); 1097 closure_init(&as->cl, NULL); 1098 as->c = c; 1099 as->start_time = start_time; 1100 as->mode = BTREE_INTERIOR_NO_UPDATE; 1101 as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD); 1102 as->btree_id = path->btree_id; 1103 as->update_level = update_level; 1104 INIT_LIST_HEAD(&as->list); 1105 INIT_LIST_HEAD(&as->unwritten_list); 1106 INIT_LIST_HEAD(&as->write_blocked_list); 1107 bch2_keylist_init(&as->old_keys, as->_old_keys); 1108 bch2_keylist_init(&as->new_keys, as->_new_keys); 1109 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1110 1111 mutex_lock(&c->btree_interior_update_lock); 1112 list_add_tail(&as->list, &c->btree_interior_update_list); 1113 mutex_unlock(&c->btree_interior_update_lock); 1114 1115 /* 1116 * We don't want to allocate if we're in an error state, that can cause 1117 * deadlock on emergency shutdown due to open buckets getting stuck in 1118 * the btree_reserve_cache after allocator shutdown has cleared it out. 1119 * This check needs to come after adding us to the btree_interior_update 1120 * list but before calling bch2_btree_reserve_get, to synchronize with 1121 * __bch2_fs_read_only(). 1122 */ 1123 ret = bch2_journal_error(&c->journal); 1124 if (ret) 1125 goto err; 1126 1127 ret = bch2_disk_reservation_get(c, &as->disk_res, 1128 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1129 c->opts.metadata_replicas, 1130 disk_res_flags); 1131 if (ret) 1132 goto err; 1133 1134 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1135 if (bch2_err_matches(ret, ENOSPC) || 1136 bch2_err_matches(ret, ENOMEM)) { 1137 struct closure cl; 1138 1139 /* 1140 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1141 * flag 1142 */ 1143 if (bch2_err_matches(ret, ENOSPC) && 1144 (flags & BTREE_INSERT_JOURNAL_RECLAIM) && 1145 watermark != BCH_WATERMARK_reclaim) { 1146 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1147 goto err; 1148 } 1149 1150 closure_init_stack(&cl); 1151 1152 do { 1153 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1154 1155 bch2_trans_unlock(trans); 1156 closure_sync(&cl); 1157 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1158 } 1159 1160 if (ret) { 1161 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1162 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1163 goto err; 1164 } 1165 1166 ret = bch2_trans_relock(trans); 1167 if (ret) 1168 goto err; 1169 1170 bch2_trans_verify_not_restarted(trans, restart_count); 1171 return as; 1172 err: 1173 bch2_btree_update_free(as, trans); 1174 return ERR_PTR(ret); 1175 } 1176 1177 /* Btree root updates: */ 1178 1179 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1180 { 1181 /* Root nodes cannot be reaped */ 1182 mutex_lock(&c->btree_cache.lock); 1183 list_del_init(&b->list); 1184 mutex_unlock(&c->btree_cache.lock); 1185 1186 mutex_lock(&c->btree_root_lock); 1187 BUG_ON(btree_node_root(c, b) && 1188 (b->c.level < btree_node_root(c, b)->c.level || 1189 !btree_node_dying(btree_node_root(c, b)))); 1190 1191 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1192 mutex_unlock(&c->btree_root_lock); 1193 1194 bch2_recalc_btree_reserve(c); 1195 } 1196 1197 static void bch2_btree_set_root(struct btree_update *as, 1198 struct btree_trans *trans, 1199 struct btree_path *path, 1200 struct btree *b) 1201 { 1202 struct bch_fs *c = as->c; 1203 struct btree *old; 1204 1205 trace_and_count(c, btree_node_set_root, c, b); 1206 1207 old = btree_node_root(c, b); 1208 1209 /* 1210 * Ensure no one is using the old root while we switch to the 1211 * new root: 1212 */ 1213 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1214 1215 bch2_btree_set_root_inmem(c, b); 1216 1217 btree_update_updated_root(as, b); 1218 1219 /* 1220 * Unlock old root after new root is visible: 1221 * 1222 * The new root isn't persistent, but that's ok: we still have 1223 * an intent lock on the new root, and any updates that would 1224 * depend on the new root would have to update the new root. 1225 */ 1226 bch2_btree_node_unlock_write(trans, path, old); 1227 } 1228 1229 /* Interior node updates: */ 1230 1231 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1232 struct btree_trans *trans, 1233 struct btree_path *path, 1234 struct btree *b, 1235 struct btree_node_iter *node_iter, 1236 struct bkey_i *insert) 1237 { 1238 struct bch_fs *c = as->c; 1239 struct bkey_packed *k; 1240 struct printbuf buf = PRINTBUF; 1241 unsigned long old, new, v; 1242 1243 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1244 !btree_ptr_sectors_written(insert)); 1245 1246 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1247 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1248 1249 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1250 btree_node_type(b), WRITE, &buf) ?: 1251 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1252 printbuf_reset(&buf); 1253 prt_printf(&buf, "inserting invalid bkey\n "); 1254 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1255 prt_printf(&buf, "\n "); 1256 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1257 btree_node_type(b), WRITE, &buf); 1258 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1259 1260 bch2_fs_inconsistent(c, "%s", buf.buf); 1261 dump_stack(); 1262 } 1263 1264 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1265 ARRAY_SIZE(as->journal_entries)); 1266 1267 as->journal_u64s += 1268 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1269 BCH_JSET_ENTRY_btree_keys, 1270 b->c.btree_id, b->c.level, 1271 insert, insert->k.u64s); 1272 1273 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1274 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1275 bch2_btree_node_iter_advance(node_iter, b); 1276 1277 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1278 set_btree_node_dirty_acct(c, b); 1279 1280 v = READ_ONCE(b->flags); 1281 do { 1282 old = new = v; 1283 1284 new &= ~BTREE_WRITE_TYPE_MASK; 1285 new |= BTREE_WRITE_interior; 1286 new |= 1 << BTREE_NODE_need_write; 1287 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1288 1289 printbuf_exit(&buf); 1290 } 1291 1292 static void 1293 __bch2_btree_insert_keys_interior(struct btree_update *as, 1294 struct btree_trans *trans, 1295 struct btree_path *path, 1296 struct btree *b, 1297 struct btree_node_iter node_iter, 1298 struct keylist *keys) 1299 { 1300 struct bkey_i *insert = bch2_keylist_front(keys); 1301 struct bkey_packed *k; 1302 1303 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1304 1305 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1306 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1307 ; 1308 1309 while (!bch2_keylist_empty(keys)) { 1310 insert = bch2_keylist_front(keys); 1311 1312 if (bpos_gt(insert->k.p, b->key.k.p)) 1313 break; 1314 1315 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1316 bch2_keylist_pop_front(keys); 1317 } 1318 } 1319 1320 /* 1321 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1322 * node) 1323 */ 1324 static void __btree_split_node(struct btree_update *as, 1325 struct btree_trans *trans, 1326 struct btree *b, 1327 struct btree *n[2]) 1328 { 1329 struct bkey_packed *k; 1330 struct bpos n1_pos = POS_MIN; 1331 struct btree_node_iter iter; 1332 struct bset *bsets[2]; 1333 struct bkey_format_state format[2]; 1334 struct bkey_packed *out[2]; 1335 struct bkey uk; 1336 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1337 int i; 1338 1339 for (i = 0; i < 2; i++) { 1340 BUG_ON(n[i]->nsets != 1); 1341 1342 bsets[i] = btree_bset_first(n[i]); 1343 out[i] = bsets[i]->start; 1344 1345 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1346 bch2_bkey_format_init(&format[i]); 1347 } 1348 1349 u64s = 0; 1350 for_each_btree_node_key(b, k, &iter) { 1351 if (bkey_deleted(k)) 1352 continue; 1353 1354 i = u64s >= n1_u64s; 1355 u64s += k->u64s; 1356 uk = bkey_unpack_key(b, k); 1357 if (!i) 1358 n1_pos = uk.p; 1359 bch2_bkey_format_add_key(&format[i], &uk); 1360 } 1361 1362 btree_set_min(n[0], b->data->min_key); 1363 btree_set_max(n[0], n1_pos); 1364 btree_set_min(n[1], bpos_successor(n1_pos)); 1365 btree_set_max(n[1], b->data->max_key); 1366 1367 for (i = 0; i < 2; i++) { 1368 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1369 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1370 1371 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1372 btree_node_set_format(n[i], n[i]->data->format); 1373 } 1374 1375 u64s = 0; 1376 for_each_btree_node_key(b, k, &iter) { 1377 if (bkey_deleted(k)) 1378 continue; 1379 1380 i = u64s >= n1_u64s; 1381 u64s += k->u64s; 1382 1383 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1384 ? &b->format: &bch2_bkey_format_current, k)) 1385 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1386 else 1387 bch2_bkey_unpack(b, (void *) out[i], k); 1388 1389 out[i]->needs_whiteout = false; 1390 1391 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1392 out[i] = bkey_p_next(out[i]); 1393 } 1394 1395 for (i = 0; i < 2; i++) { 1396 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1397 1398 BUG_ON(!bsets[i]->u64s); 1399 1400 set_btree_bset_end(n[i], n[i]->set); 1401 1402 btree_node_reset_sib_u64s(n[i]); 1403 1404 bch2_verify_btree_nr_keys(n[i]); 1405 1406 if (b->c.level) 1407 btree_node_interior_verify(as->c, n[i]); 1408 } 1409 } 1410 1411 /* 1412 * For updates to interior nodes, we've got to do the insert before we split 1413 * because the stuff we're inserting has to be inserted atomically. Post split, 1414 * the keys might have to go in different nodes and the split would no longer be 1415 * atomic. 1416 * 1417 * Worse, if the insert is from btree node coalescing, if we do the insert after 1418 * we do the split (and pick the pivot) - the pivot we pick might be between 1419 * nodes that were coalesced, and thus in the middle of a child node post 1420 * coalescing: 1421 */ 1422 static void btree_split_insert_keys(struct btree_update *as, 1423 struct btree_trans *trans, 1424 struct btree_path *path, 1425 struct btree *b, 1426 struct keylist *keys) 1427 { 1428 if (!bch2_keylist_empty(keys) && 1429 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1430 struct btree_node_iter node_iter; 1431 1432 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1433 1434 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1435 1436 btree_node_interior_verify(as->c, b); 1437 } 1438 } 1439 1440 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1441 struct btree_path *path, struct btree *b, 1442 struct keylist *keys, unsigned flags) 1443 { 1444 struct bch_fs *c = as->c; 1445 struct btree *parent = btree_node_parent(path, b); 1446 struct btree *n1, *n2 = NULL, *n3 = NULL; 1447 struct btree_path *path1 = NULL, *path2 = NULL; 1448 u64 start_time = local_clock(); 1449 int ret = 0; 1450 1451 BUG_ON(!parent && (b != btree_node_root(c, b))); 1452 BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1)); 1453 1454 bch2_btree_interior_update_will_free_node(as, b); 1455 1456 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1457 struct btree *n[2]; 1458 1459 trace_and_count(c, btree_node_split, c, b); 1460 1461 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1462 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1463 1464 __btree_split_node(as, trans, b, n); 1465 1466 if (keys) { 1467 btree_split_insert_keys(as, trans, path, n1, keys); 1468 btree_split_insert_keys(as, trans, path, n2, keys); 1469 BUG_ON(!bch2_keylist_empty(keys)); 1470 } 1471 1472 bch2_btree_build_aux_trees(n2); 1473 bch2_btree_build_aux_trees(n1); 1474 1475 bch2_btree_update_add_new_node(as, n1); 1476 bch2_btree_update_add_new_node(as, n2); 1477 six_unlock_write(&n2->c.lock); 1478 six_unlock_write(&n1->c.lock); 1479 1480 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1481 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1482 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1483 bch2_btree_path_level_init(trans, path1, n1); 1484 1485 path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p); 1486 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1487 mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1488 bch2_btree_path_level_init(trans, path2, n2); 1489 1490 /* 1491 * Note that on recursive parent_keys == keys, so we 1492 * can't start adding new keys to parent_keys before emptying it 1493 * out (which we did with btree_split_insert_keys() above) 1494 */ 1495 bch2_keylist_add(&as->parent_keys, &n1->key); 1496 bch2_keylist_add(&as->parent_keys, &n2->key); 1497 1498 if (!parent) { 1499 /* Depth increases, make a new root */ 1500 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1501 1502 bch2_btree_update_add_new_node(as, n3); 1503 six_unlock_write(&n3->c.lock); 1504 1505 path2->locks_want++; 1506 BUG_ON(btree_node_locked(path2, n3->c.level)); 1507 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1508 mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1509 bch2_btree_path_level_init(trans, path2, n3); 1510 1511 n3->sib_u64s[0] = U16_MAX; 1512 n3->sib_u64s[1] = U16_MAX; 1513 1514 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1515 } 1516 } else { 1517 trace_and_count(c, btree_node_compact, c, b); 1518 1519 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1520 1521 if (keys) { 1522 btree_split_insert_keys(as, trans, path, n1, keys); 1523 BUG_ON(!bch2_keylist_empty(keys)); 1524 } 1525 1526 bch2_btree_build_aux_trees(n1); 1527 bch2_btree_update_add_new_node(as, n1); 1528 six_unlock_write(&n1->c.lock); 1529 1530 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); 1531 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1532 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1533 bch2_btree_path_level_init(trans, path1, n1); 1534 1535 if (parent) 1536 bch2_keylist_add(&as->parent_keys, &n1->key); 1537 } 1538 1539 /* New nodes all written, now make them visible: */ 1540 1541 if (parent) { 1542 /* Split a non root node */ 1543 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1544 if (ret) 1545 goto err; 1546 } else if (n3) { 1547 bch2_btree_set_root(as, trans, path, n3); 1548 } else { 1549 /* Root filled up but didn't need to be split */ 1550 bch2_btree_set_root(as, trans, path, n1); 1551 } 1552 1553 if (n3) { 1554 bch2_btree_update_get_open_buckets(as, n3); 1555 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1556 } 1557 if (n2) { 1558 bch2_btree_update_get_open_buckets(as, n2); 1559 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1560 } 1561 bch2_btree_update_get_open_buckets(as, n1); 1562 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1563 1564 /* 1565 * The old node must be freed (in memory) _before_ unlocking the new 1566 * nodes - else another thread could re-acquire a read lock on the old 1567 * node after another thread has locked and updated the new node, thus 1568 * seeing stale data: 1569 */ 1570 bch2_btree_node_free_inmem(trans, path, b); 1571 1572 if (n3) 1573 bch2_trans_node_add(trans, n3); 1574 if (n2) 1575 bch2_trans_node_add(trans, n2); 1576 bch2_trans_node_add(trans, n1); 1577 1578 if (n3) 1579 six_unlock_intent(&n3->c.lock); 1580 if (n2) 1581 six_unlock_intent(&n2->c.lock); 1582 six_unlock_intent(&n1->c.lock); 1583 out: 1584 if (path2) { 1585 __bch2_btree_path_unlock(trans, path2); 1586 bch2_path_put(trans, path2, true); 1587 } 1588 if (path1) { 1589 __bch2_btree_path_unlock(trans, path1); 1590 bch2_path_put(trans, path1, true); 1591 } 1592 1593 bch2_trans_verify_locks(trans); 1594 1595 bch2_time_stats_update(&c->times[n2 1596 ? BCH_TIME_btree_node_split 1597 : BCH_TIME_btree_node_compact], 1598 start_time); 1599 return ret; 1600 err: 1601 if (n3) 1602 bch2_btree_node_free_never_used(as, trans, n3); 1603 if (n2) 1604 bch2_btree_node_free_never_used(as, trans, n2); 1605 bch2_btree_node_free_never_used(as, trans, n1); 1606 goto out; 1607 } 1608 1609 static void 1610 bch2_btree_insert_keys_interior(struct btree_update *as, 1611 struct btree_trans *trans, 1612 struct btree_path *path, 1613 struct btree *b, 1614 struct keylist *keys) 1615 { 1616 struct btree_path *linked; 1617 1618 __bch2_btree_insert_keys_interior(as, trans, path, b, 1619 path->l[b->c.level].iter, keys); 1620 1621 btree_update_updated_node(as, b); 1622 1623 trans_for_each_path_with_node(trans, b, linked) 1624 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1625 1626 bch2_trans_verify_paths(trans); 1627 } 1628 1629 /** 1630 * bch2_btree_insert_node - insert bkeys into a given btree node 1631 * 1632 * @as: btree_update object 1633 * @trans: btree_trans object 1634 * @path: path that points to current node 1635 * @b: node to insert keys into 1636 * @keys: list of keys to insert 1637 * @flags: transaction commit flags 1638 * 1639 * Returns: 0 on success, typically transaction restart error on failure 1640 * 1641 * Inserts as many keys as it can into a given btree node, splitting it if full. 1642 * If a split occurred, this function will return early. This can only happen 1643 * for leaf nodes -- inserts into interior nodes have to be atomic. 1644 */ 1645 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1646 struct btree_path *path, struct btree *b, 1647 struct keylist *keys, unsigned flags) 1648 { 1649 struct bch_fs *c = as->c; 1650 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1651 int old_live_u64s = b->nr.live_u64s; 1652 int live_u64s_added, u64s_added; 1653 int ret; 1654 1655 lockdep_assert_held(&c->gc_lock); 1656 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1657 BUG_ON(!b->c.level); 1658 BUG_ON(!as || as->b); 1659 bch2_verify_keylist_sorted(keys); 1660 1661 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1662 if (ret) 1663 return ret; 1664 1665 bch2_btree_node_prep_for_write(trans, path, b); 1666 1667 if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) { 1668 bch2_btree_node_unlock_write(trans, path, b); 1669 goto split; 1670 } 1671 1672 btree_node_interior_verify(c, b); 1673 1674 bch2_btree_insert_keys_interior(as, trans, path, b, keys); 1675 1676 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1677 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1678 1679 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1680 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1681 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1682 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1683 1684 if (u64s_added > live_u64s_added && 1685 bch2_maybe_compact_whiteouts(c, b)) 1686 bch2_trans_node_reinit_iter(trans, b); 1687 1688 bch2_btree_node_unlock_write(trans, path, b); 1689 1690 btree_node_interior_verify(c, b); 1691 return 0; 1692 split: 1693 /* 1694 * We could attempt to avoid the transaction restart, by calling 1695 * bch2_btree_path_upgrade() and allocating more nodes: 1696 */ 1697 if (b->c.level >= as->update_level) { 1698 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1699 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1700 } 1701 1702 return btree_split(as, trans, path, b, keys, flags); 1703 } 1704 1705 int bch2_btree_split_leaf(struct btree_trans *trans, 1706 struct btree_path *path, 1707 unsigned flags) 1708 { 1709 struct btree *b = path_l(path)->b; 1710 struct btree_update *as; 1711 unsigned l; 1712 int ret = 0; 1713 1714 as = bch2_btree_update_start(trans, path, path->level, 1715 true, flags); 1716 if (IS_ERR(as)) 1717 return PTR_ERR(as); 1718 1719 ret = btree_split(as, trans, path, b, NULL, flags); 1720 if (ret) { 1721 bch2_btree_update_free(as, trans); 1722 return ret; 1723 } 1724 1725 bch2_btree_update_done(as, trans); 1726 1727 for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++) 1728 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1729 1730 return ret; 1731 } 1732 1733 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1734 struct btree_path *path, 1735 unsigned level, 1736 unsigned flags, 1737 enum btree_node_sibling sib) 1738 { 1739 struct bch_fs *c = trans->c; 1740 struct btree_path *sib_path = NULL, *new_path = NULL; 1741 struct btree_update *as; 1742 struct bkey_format_state new_s; 1743 struct bkey_format new_f; 1744 struct bkey_i delete; 1745 struct btree *b, *m, *n, *prev, *next, *parent; 1746 struct bpos sib_pos; 1747 size_t sib_u64s; 1748 u64 start_time = local_clock(); 1749 int ret = 0; 1750 1751 BUG_ON(!path->should_be_locked); 1752 BUG_ON(!btree_node_locked(path, level)); 1753 1754 b = path->l[level].b; 1755 1756 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1757 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1758 b->sib_u64s[sib] = U16_MAX; 1759 return 0; 1760 } 1761 1762 sib_pos = sib == btree_prev_sib 1763 ? bpos_predecessor(b->data->min_key) 1764 : bpos_successor(b->data->max_key); 1765 1766 sib_path = bch2_path_get(trans, path->btree_id, sib_pos, 1767 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1768 ret = bch2_btree_path_traverse(trans, sib_path, false); 1769 if (ret) 1770 goto err; 1771 1772 btree_path_set_should_be_locked(sib_path); 1773 1774 m = sib_path->l[level].b; 1775 1776 if (btree_node_parent(path, b) != 1777 btree_node_parent(sib_path, m)) { 1778 b->sib_u64s[sib] = U16_MAX; 1779 goto out; 1780 } 1781 1782 if (sib == btree_prev_sib) { 1783 prev = m; 1784 next = b; 1785 } else { 1786 prev = b; 1787 next = m; 1788 } 1789 1790 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 1791 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 1792 1793 bch2_bpos_to_text(&buf1, prev->data->max_key); 1794 bch2_bpos_to_text(&buf2, next->data->min_key); 1795 bch_err(c, 1796 "%s(): btree topology error:\n" 1797 " prev ends at %s\n" 1798 " next starts at %s", 1799 __func__, buf1.buf, buf2.buf); 1800 printbuf_exit(&buf1); 1801 printbuf_exit(&buf2); 1802 bch2_topology_error(c); 1803 ret = -EIO; 1804 goto err; 1805 } 1806 1807 bch2_bkey_format_init(&new_s); 1808 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 1809 __bch2_btree_calc_format(&new_s, prev); 1810 __bch2_btree_calc_format(&new_s, next); 1811 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 1812 new_f = bch2_bkey_format_done(&new_s); 1813 1814 sib_u64s = btree_node_u64s_with_format(b, &new_f) + 1815 btree_node_u64s_with_format(m, &new_f); 1816 1817 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 1818 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1819 sib_u64s /= 2; 1820 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1821 } 1822 1823 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 1824 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 1825 b->sib_u64s[sib] = sib_u64s; 1826 1827 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 1828 goto out; 1829 1830 parent = btree_node_parent(path, b); 1831 as = bch2_btree_update_start(trans, path, level, false, 1832 BTREE_INSERT_NOFAIL|flags); 1833 ret = PTR_ERR_OR_ZERO(as); 1834 if (ret) 1835 goto err; 1836 1837 trace_and_count(c, btree_node_merge, c, b); 1838 1839 bch2_btree_interior_update_will_free_node(as, b); 1840 bch2_btree_interior_update_will_free_node(as, m); 1841 1842 n = bch2_btree_node_alloc(as, trans, b->c.level); 1843 1844 SET_BTREE_NODE_SEQ(n->data, 1845 max(BTREE_NODE_SEQ(b->data), 1846 BTREE_NODE_SEQ(m->data)) + 1); 1847 1848 btree_set_min(n, prev->data->min_key); 1849 btree_set_max(n, next->data->max_key); 1850 1851 n->data->format = new_f; 1852 btree_node_set_format(n, new_f); 1853 1854 bch2_btree_sort_into(c, n, prev); 1855 bch2_btree_sort_into(c, n, next); 1856 1857 bch2_btree_build_aux_trees(n); 1858 bch2_btree_update_add_new_node(as, n); 1859 six_unlock_write(&n->c.lock); 1860 1861 new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p); 1862 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1863 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1864 bch2_btree_path_level_init(trans, new_path, n); 1865 1866 bkey_init(&delete.k); 1867 delete.k.p = prev->key.k.p; 1868 bch2_keylist_add(&as->parent_keys, &delete); 1869 bch2_keylist_add(&as->parent_keys, &n->key); 1870 1871 bch2_trans_verify_paths(trans); 1872 1873 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1874 if (ret) 1875 goto err_free_update; 1876 1877 bch2_trans_verify_paths(trans); 1878 1879 bch2_btree_update_get_open_buckets(as, n); 1880 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1881 1882 bch2_btree_node_free_inmem(trans, path, b); 1883 bch2_btree_node_free_inmem(trans, sib_path, m); 1884 1885 bch2_trans_node_add(trans, n); 1886 1887 bch2_trans_verify_paths(trans); 1888 1889 six_unlock_intent(&n->c.lock); 1890 1891 bch2_btree_update_done(as, trans); 1892 1893 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 1894 out: 1895 err: 1896 if (new_path) 1897 bch2_path_put(trans, new_path, true); 1898 bch2_path_put(trans, sib_path, true); 1899 bch2_trans_verify_locks(trans); 1900 return ret; 1901 err_free_update: 1902 bch2_btree_node_free_never_used(as, trans, n); 1903 bch2_btree_update_free(as, trans); 1904 goto out; 1905 } 1906 1907 int bch2_btree_node_rewrite(struct btree_trans *trans, 1908 struct btree_iter *iter, 1909 struct btree *b, 1910 unsigned flags) 1911 { 1912 struct bch_fs *c = trans->c; 1913 struct btree_path *new_path = NULL; 1914 struct btree *n, *parent; 1915 struct btree_update *as; 1916 int ret; 1917 1918 flags |= BTREE_INSERT_NOFAIL; 1919 1920 parent = btree_node_parent(iter->path, b); 1921 as = bch2_btree_update_start(trans, iter->path, b->c.level, 1922 false, flags); 1923 ret = PTR_ERR_OR_ZERO(as); 1924 if (ret) 1925 goto out; 1926 1927 bch2_btree_interior_update_will_free_node(as, b); 1928 1929 n = bch2_btree_node_alloc_replacement(as, trans, b); 1930 1931 bch2_btree_build_aux_trees(n); 1932 bch2_btree_update_add_new_node(as, n); 1933 six_unlock_write(&n->c.lock); 1934 1935 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 1936 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1937 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1938 bch2_btree_path_level_init(trans, new_path, n); 1939 1940 trace_and_count(c, btree_node_rewrite, c, b); 1941 1942 if (parent) { 1943 bch2_keylist_add(&as->parent_keys, &n->key); 1944 ret = bch2_btree_insert_node(as, trans, iter->path, parent, 1945 &as->parent_keys, flags); 1946 if (ret) 1947 goto err; 1948 } else { 1949 bch2_btree_set_root(as, trans, iter->path, n); 1950 } 1951 1952 bch2_btree_update_get_open_buckets(as, n); 1953 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1954 1955 bch2_btree_node_free_inmem(trans, iter->path, b); 1956 1957 bch2_trans_node_add(trans, n); 1958 six_unlock_intent(&n->c.lock); 1959 1960 bch2_btree_update_done(as, trans); 1961 out: 1962 if (new_path) 1963 bch2_path_put(trans, new_path, true); 1964 bch2_trans_downgrade(trans); 1965 return ret; 1966 err: 1967 bch2_btree_node_free_never_used(as, trans, n); 1968 bch2_btree_update_free(as, trans); 1969 goto out; 1970 } 1971 1972 struct async_btree_rewrite { 1973 struct bch_fs *c; 1974 struct work_struct work; 1975 struct list_head list; 1976 enum btree_id btree_id; 1977 unsigned level; 1978 struct bpos pos; 1979 __le64 seq; 1980 }; 1981 1982 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 1983 struct async_btree_rewrite *a) 1984 { 1985 struct bch_fs *c = trans->c; 1986 struct btree_iter iter; 1987 struct btree *b; 1988 int ret; 1989 1990 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 1991 BTREE_MAX_DEPTH, a->level, 0); 1992 b = bch2_btree_iter_peek_node(&iter); 1993 ret = PTR_ERR_OR_ZERO(b); 1994 if (ret) 1995 goto out; 1996 1997 if (!b || b->data->keys.seq != a->seq) { 1998 struct printbuf buf = PRINTBUF; 1999 2000 if (b) 2001 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2002 else 2003 prt_str(&buf, "(null"); 2004 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2005 __func__, a->seq, buf.buf); 2006 printbuf_exit(&buf); 2007 goto out; 2008 } 2009 2010 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2011 out: 2012 bch2_trans_iter_exit(trans, &iter); 2013 2014 return ret; 2015 } 2016 2017 static void async_btree_node_rewrite_work(struct work_struct *work) 2018 { 2019 struct async_btree_rewrite *a = 2020 container_of(work, struct async_btree_rewrite, work); 2021 struct bch_fs *c = a->c; 2022 int ret; 2023 2024 ret = bch2_trans_do(c, NULL, NULL, 0, 2025 async_btree_node_rewrite_trans(trans, a)); 2026 if (ret) 2027 bch_err_fn(c, ret); 2028 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2029 kfree(a); 2030 } 2031 2032 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2033 { 2034 struct async_btree_rewrite *a; 2035 int ret; 2036 2037 a = kmalloc(sizeof(*a), GFP_NOFS); 2038 if (!a) { 2039 bch_err(c, "%s: error allocating memory", __func__); 2040 return; 2041 } 2042 2043 a->c = c; 2044 a->btree_id = b->c.btree_id; 2045 a->level = b->c.level; 2046 a->pos = b->key.k.p; 2047 a->seq = b->data->keys.seq; 2048 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2049 2050 if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) { 2051 mutex_lock(&c->pending_node_rewrites_lock); 2052 list_add(&a->list, &c->pending_node_rewrites); 2053 mutex_unlock(&c->pending_node_rewrites_lock); 2054 return; 2055 } 2056 2057 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2058 if (test_bit(BCH_FS_STARTED, &c->flags)) { 2059 bch_err(c, "%s: error getting c->writes ref", __func__); 2060 kfree(a); 2061 return; 2062 } 2063 2064 ret = bch2_fs_read_write_early(c); 2065 if (ret) { 2066 bch_err_msg(c, ret, "going read-write"); 2067 kfree(a); 2068 return; 2069 } 2070 2071 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2072 } 2073 2074 queue_work(c->btree_interior_update_worker, &a->work); 2075 } 2076 2077 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2078 { 2079 struct async_btree_rewrite *a, *n; 2080 2081 mutex_lock(&c->pending_node_rewrites_lock); 2082 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2083 list_del(&a->list); 2084 2085 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2086 queue_work(c->btree_interior_update_worker, &a->work); 2087 } 2088 mutex_unlock(&c->pending_node_rewrites_lock); 2089 } 2090 2091 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2092 { 2093 struct async_btree_rewrite *a, *n; 2094 2095 mutex_lock(&c->pending_node_rewrites_lock); 2096 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2097 list_del(&a->list); 2098 2099 kfree(a); 2100 } 2101 mutex_unlock(&c->pending_node_rewrites_lock); 2102 } 2103 2104 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2105 struct btree_iter *iter, 2106 struct btree *b, struct btree *new_hash, 2107 struct bkey_i *new_key, 2108 unsigned commit_flags, 2109 bool skip_triggers) 2110 { 2111 struct bch_fs *c = trans->c; 2112 struct btree_iter iter2 = { NULL }; 2113 struct btree *parent; 2114 int ret; 2115 2116 if (!skip_triggers) { 2117 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1, 2118 bkey_i_to_s_c(&b->key), 0); 2119 if (ret) 2120 return ret; 2121 2122 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1, 2123 new_key, 0); 2124 if (ret) 2125 return ret; 2126 } 2127 2128 if (new_hash) { 2129 bkey_copy(&new_hash->key, new_key); 2130 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2131 new_hash, b->c.level, b->c.btree_id); 2132 BUG_ON(ret); 2133 } 2134 2135 parent = btree_node_parent(iter->path, b); 2136 if (parent) { 2137 bch2_trans_copy_iter(&iter2, iter); 2138 2139 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2140 iter2.flags & BTREE_ITER_INTENT, 2141 _THIS_IP_); 2142 2143 BUG_ON(iter2.path->level != b->c.level); 2144 BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p)); 2145 2146 btree_path_set_level_up(trans, iter2.path); 2147 2148 trans->paths_sorted = false; 2149 2150 ret = bch2_btree_iter_traverse(&iter2) ?: 2151 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2152 if (ret) 2153 goto err; 2154 } else { 2155 BUG_ON(btree_node_root(c, b) != b); 2156 2157 ret = darray_make_room(&trans->extra_journal_entries, 2158 jset_u64s(new_key->k.u64s)); 2159 if (ret) 2160 return ret; 2161 2162 journal_entry_set((void *) &darray_top(trans->extra_journal_entries), 2163 BCH_JSET_ENTRY_btree_root, 2164 b->c.btree_id, b->c.level, 2165 new_key, new_key->k.u64s); 2166 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s); 2167 } 2168 2169 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2170 if (ret) 2171 goto err; 2172 2173 bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c); 2174 2175 if (new_hash) { 2176 mutex_lock(&c->btree_cache.lock); 2177 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2178 bch2_btree_node_hash_remove(&c->btree_cache, b); 2179 2180 bkey_copy(&b->key, new_key); 2181 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2182 BUG_ON(ret); 2183 mutex_unlock(&c->btree_cache.lock); 2184 } else { 2185 bkey_copy(&b->key, new_key); 2186 } 2187 2188 bch2_btree_node_unlock_write(trans, iter->path, b); 2189 out: 2190 bch2_trans_iter_exit(trans, &iter2); 2191 return ret; 2192 err: 2193 if (new_hash) { 2194 mutex_lock(&c->btree_cache.lock); 2195 bch2_btree_node_hash_remove(&c->btree_cache, b); 2196 mutex_unlock(&c->btree_cache.lock); 2197 } 2198 goto out; 2199 } 2200 2201 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2202 struct btree *b, struct bkey_i *new_key, 2203 unsigned commit_flags, bool skip_triggers) 2204 { 2205 struct bch_fs *c = trans->c; 2206 struct btree *new_hash = NULL; 2207 struct btree_path *path = iter->path; 2208 struct closure cl; 2209 int ret = 0; 2210 2211 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2212 if (ret) 2213 return ret; 2214 2215 closure_init_stack(&cl); 2216 2217 /* 2218 * check btree_ptr_hash_val() after @b is locked by 2219 * btree_iter_traverse(): 2220 */ 2221 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2222 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2223 if (ret) { 2224 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2225 if (ret) 2226 return ret; 2227 } 2228 2229 new_hash = bch2_btree_node_mem_alloc(trans, false); 2230 } 2231 2232 path->intent_ref++; 2233 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2234 commit_flags, skip_triggers); 2235 --path->intent_ref; 2236 2237 if (new_hash) { 2238 mutex_lock(&c->btree_cache.lock); 2239 list_move(&new_hash->list, &c->btree_cache.freeable); 2240 mutex_unlock(&c->btree_cache.lock); 2241 2242 six_unlock_write(&new_hash->c.lock); 2243 six_unlock_intent(&new_hash->c.lock); 2244 } 2245 closure_sync(&cl); 2246 bch2_btree_cache_cannibalize_unlock(c); 2247 return ret; 2248 } 2249 2250 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2251 struct btree *b, struct bkey_i *new_key, 2252 unsigned commit_flags, bool skip_triggers) 2253 { 2254 struct btree_iter iter; 2255 int ret; 2256 2257 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2258 BTREE_MAX_DEPTH, b->c.level, 2259 BTREE_ITER_INTENT); 2260 ret = bch2_btree_iter_traverse(&iter); 2261 if (ret) 2262 goto out; 2263 2264 /* has node been freed? */ 2265 if (iter.path->l[b->c.level].b != b) { 2266 /* node has been freed: */ 2267 BUG_ON(!btree_node_dying(b)); 2268 goto out; 2269 } 2270 2271 BUG_ON(!btree_node_hashed(b)); 2272 2273 struct bch_extent_ptr *ptr; 2274 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2275 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2276 2277 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2278 commit_flags, skip_triggers); 2279 out: 2280 bch2_trans_iter_exit(trans, &iter); 2281 return ret; 2282 } 2283 2284 /* Init code: */ 2285 2286 /* 2287 * Only for filesystem bringup, when first reading the btree roots or allocating 2288 * btree roots when initializing a new filesystem: 2289 */ 2290 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2291 { 2292 BUG_ON(btree_node_root(c, b)); 2293 2294 bch2_btree_set_root_inmem(c, b); 2295 } 2296 2297 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) 2298 { 2299 struct bch_fs *c = trans->c; 2300 struct closure cl; 2301 struct btree *b; 2302 int ret; 2303 2304 closure_init_stack(&cl); 2305 2306 do { 2307 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 2308 closure_sync(&cl); 2309 } while (ret); 2310 2311 b = bch2_btree_node_mem_alloc(trans, false); 2312 bch2_btree_cache_cannibalize_unlock(c); 2313 2314 set_btree_node_fake(b); 2315 set_btree_node_need_rewrite(b); 2316 b->c.level = 0; 2317 b->c.btree_id = id; 2318 2319 bkey_btree_ptr_init(&b->key); 2320 b->key.k.p = SPOS_MAX; 2321 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2322 2323 bch2_bset_init_first(b, &b->data->keys); 2324 bch2_btree_build_aux_trees(b); 2325 2326 b->data->flags = 0; 2327 btree_set_min(b, POS_MIN); 2328 btree_set_max(b, SPOS_MAX); 2329 b->data->format = bch2_btree_calc_format(b); 2330 btree_node_set_format(b, b->data->format); 2331 2332 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2333 b->c.level, b->c.btree_id); 2334 BUG_ON(ret); 2335 2336 bch2_btree_set_root_inmem(c, b); 2337 2338 six_unlock_write(&b->c.lock); 2339 six_unlock_intent(&b->c.lock); 2340 return 0; 2341 } 2342 2343 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) 2344 { 2345 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); 2346 } 2347 2348 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2349 { 2350 struct btree_update *as; 2351 2352 mutex_lock(&c->btree_interior_update_lock); 2353 list_for_each_entry(as, &c->btree_interior_update_list, list) 2354 prt_printf(out, "%p m %u w %u r %u j %llu\n", 2355 as, 2356 as->mode, 2357 as->nodes_written, 2358 closure_nr_remaining(&as->cl), 2359 as->journal.seq); 2360 mutex_unlock(&c->btree_interior_update_lock); 2361 } 2362 2363 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2364 { 2365 bool ret; 2366 2367 mutex_lock(&c->btree_interior_update_lock); 2368 ret = !list_empty(&c->btree_interior_update_list); 2369 mutex_unlock(&c->btree_interior_update_lock); 2370 2371 return ret; 2372 } 2373 2374 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2375 { 2376 bool ret = bch2_btree_interior_updates_pending(c); 2377 2378 if (ret) 2379 closure_wait_event(&c->btree_interior_update_wait, 2380 !bch2_btree_interior_updates_pending(c)); 2381 return ret; 2382 } 2383 2384 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2385 { 2386 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2387 2388 mutex_lock(&c->btree_root_lock); 2389 2390 r->level = entry->level; 2391 r->alive = true; 2392 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2393 2394 mutex_unlock(&c->btree_root_lock); 2395 } 2396 2397 struct jset_entry * 2398 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2399 struct jset_entry *end, 2400 unsigned long skip) 2401 { 2402 unsigned i; 2403 2404 mutex_lock(&c->btree_root_lock); 2405 2406 for (i = 0; i < btree_id_nr_alive(c); i++) { 2407 struct btree_root *r = bch2_btree_id_root(c, i); 2408 2409 if (r->alive && !test_bit(i, &skip)) { 2410 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2411 i, r->level, &r->key, r->key.k.u64s); 2412 end = vstruct_next(end); 2413 } 2414 } 2415 2416 mutex_unlock(&c->btree_root_lock); 2417 2418 return end; 2419 } 2420 2421 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2422 { 2423 if (c->btree_interior_update_worker) 2424 destroy_workqueue(c->btree_interior_update_worker); 2425 mempool_exit(&c->btree_interior_update_pool); 2426 } 2427 2428 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2429 { 2430 mutex_init(&c->btree_reserve_cache_lock); 2431 INIT_LIST_HEAD(&c->btree_interior_update_list); 2432 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2433 mutex_init(&c->btree_interior_update_lock); 2434 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2435 2436 INIT_LIST_HEAD(&c->pending_node_rewrites); 2437 mutex_init(&c->pending_node_rewrites_lock); 2438 } 2439 2440 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2441 { 2442 c->btree_interior_update_worker = 2443 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 2444 if (!c->btree_interior_update_worker) 2445 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2446 2447 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2448 sizeof(struct btree_update))) 2449 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2450 2451 return 0; 2452 } 2453