1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_buf.h" 6 #include "bkey_methods.h" 7 #include "btree_cache.h" 8 #include "btree_gc.h" 9 #include "btree_journal_iter.h" 10 #include "btree_update.h" 11 #include "btree_update_interior.h" 12 #include "btree_io.h" 13 #include "btree_iter.h" 14 #include "btree_locking.h" 15 #include "buckets.h" 16 #include "clock.h" 17 #include "error.h" 18 #include "extents.h" 19 #include "io_write.h" 20 #include "journal.h" 21 #include "journal_reclaim.h" 22 #include "keylist.h" 23 #include "recovery_passes.h" 24 #include "replicas.h" 25 #include "sb-members.h" 26 #include "super-io.h" 27 #include "trace.h" 28 29 #include <linux/random.h> 30 31 static const char * const bch2_btree_update_modes[] = { 32 #define x(t) #t, 33 BTREE_UPDATE_MODES() 34 #undef x 35 NULL 36 }; 37 38 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 39 btree_path_idx_t, struct btree *, struct keylist *); 40 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 41 42 /* 43 * Verify that child nodes correctly span parent node's range: 44 */ 45 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b) 46 { 47 struct bch_fs *c = trans->c; 48 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2 49 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key 50 : b->data->min_key; 51 struct btree_and_journal_iter iter; 52 struct bkey_s_c k; 53 struct printbuf buf = PRINTBUF; 54 struct bkey_buf prev; 55 int ret = 0; 56 57 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && 58 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, 59 b->data->min_key)); 60 61 bch2_bkey_buf_init(&prev); 62 bkey_init(&prev.k->k); 63 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); 64 65 if (b == btree_node_root(c, b)) { 66 if (!bpos_eq(b->data->min_key, POS_MIN)) { 67 printbuf_reset(&buf); 68 bch2_bpos_to_text(&buf, b->data->min_key); 69 log_fsck_err(trans, btree_root_bad_min_key, 70 "btree root with incorrect min_key: %s", buf.buf); 71 goto topology_repair; 72 } 73 74 if (!bpos_eq(b->data->max_key, SPOS_MAX)) { 75 printbuf_reset(&buf); 76 bch2_bpos_to_text(&buf, b->data->max_key); 77 log_fsck_err(trans, btree_root_bad_max_key, 78 "btree root with incorrect max_key: %s", buf.buf); 79 goto topology_repair; 80 } 81 } 82 83 if (!b->c.level) 84 goto out; 85 86 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { 87 if (k.k->type != KEY_TYPE_btree_ptr_v2) 88 goto out; 89 90 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 91 92 struct bpos expected_min = bkey_deleted(&prev.k->k) 93 ? node_min 94 : bpos_successor(prev.k->k.p); 95 96 if (!bpos_eq(expected_min, bp.v->min_key)) { 97 bch2_topology_error(c); 98 99 printbuf_reset(&buf); 100 prt_str(&buf, "end of prev node doesn't match start of next node\n in "); 101 bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level); 102 prt_str(&buf, " node "); 103 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 104 prt_str(&buf, "\n prev "); 105 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 106 prt_str(&buf, "\n next "); 107 bch2_bkey_val_to_text(&buf, c, k); 108 109 log_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf); 110 goto topology_repair; 111 } 112 113 bch2_bkey_buf_reassemble(&prev, c, k); 114 bch2_btree_and_journal_iter_advance(&iter); 115 } 116 117 if (bkey_deleted(&prev.k->k)) { 118 bch2_topology_error(c); 119 120 printbuf_reset(&buf); 121 prt_str(&buf, "empty interior node\n in "); 122 bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level); 123 prt_str(&buf, " node "); 124 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 125 126 log_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf); 127 goto topology_repair; 128 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) { 129 bch2_topology_error(c); 130 131 printbuf_reset(&buf); 132 prt_str(&buf, "last child node doesn't end at end of parent node\n in "); 133 bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level); 134 prt_str(&buf, " node "); 135 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 136 prt_str(&buf, "\n last key "); 137 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 138 139 log_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf); 140 goto topology_repair; 141 } 142 out: 143 fsck_err: 144 bch2_btree_and_journal_iter_exit(&iter); 145 bch2_bkey_buf_exit(&prev, c); 146 printbuf_exit(&buf); 147 return ret; 148 topology_repair: 149 ret = bch2_topology_error(c); 150 goto out; 151 } 152 153 /* Calculate ideal packed bkey format for new btree nodes: */ 154 155 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 156 { 157 struct bkey_packed *k; 158 struct bkey uk; 159 160 for_each_bset(b, t) 161 bset_tree_for_each_key(b, t, k) 162 if (!bkey_deleted(k)) { 163 uk = bkey_unpack_key(b, k); 164 bch2_bkey_format_add_key(s, &uk); 165 } 166 } 167 168 static struct bkey_format bch2_btree_calc_format(struct btree *b) 169 { 170 struct bkey_format_state s; 171 172 bch2_bkey_format_init(&s); 173 bch2_bkey_format_add_pos(&s, b->data->min_key); 174 bch2_bkey_format_add_pos(&s, b->data->max_key); 175 __bch2_btree_calc_format(&s, b); 176 177 return bch2_bkey_format_done(&s); 178 } 179 180 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 181 struct bkey_format *old_f, 182 struct bkey_format *new_f) 183 { 184 /* stupid integer promotion rules */ 185 ssize_t delta = 186 (((int) new_f->key_u64s - old_f->key_u64s) * 187 (int) nr.packed_keys) + 188 (((int) new_f->key_u64s - BKEY_U64s) * 189 (int) nr.unpacked_keys); 190 191 BUG_ON(delta + nr.live_u64s < 0); 192 193 return nr.live_u64s + delta; 194 } 195 196 /** 197 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 198 * 199 * @c: filesystem handle 200 * @b: btree node to rewrite 201 * @nr: number of keys for new node (i.e. b->nr) 202 * @new_f: bkey format to translate keys to 203 * 204 * Returns: true if all re-packed keys will be able to fit in a new node. 205 * 206 * Assumes all keys will successfully pack with the new format. 207 */ 208 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 209 struct btree_nr_keys nr, 210 struct bkey_format *new_f) 211 { 212 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 213 214 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 215 } 216 217 /* Btree node freeing/allocation: */ 218 219 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 220 { 221 struct bch_fs *c = trans->c; 222 223 trace_and_count(c, btree_node_free, trans, b); 224 225 BUG_ON(btree_node_write_blocked(b)); 226 BUG_ON(btree_node_dirty(b)); 227 BUG_ON(btree_node_need_write(b)); 228 BUG_ON(b == btree_node_root(c, b)); 229 BUG_ON(b->ob.nr); 230 BUG_ON(!list_empty(&b->write_blocked)); 231 BUG_ON(b->will_make_reachable); 232 233 clear_btree_node_noevict(b); 234 } 235 236 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 237 struct btree_path *path, 238 struct btree *b) 239 { 240 struct bch_fs *c = trans->c; 241 242 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 243 244 __btree_node_free(trans, b); 245 246 mutex_lock(&c->btree_cache.lock); 247 bch2_btree_node_hash_remove(&c->btree_cache, b); 248 mutex_unlock(&c->btree_cache.lock); 249 250 six_unlock_write(&b->c.lock); 251 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 252 253 bch2_trans_node_drop(trans, b); 254 } 255 256 static void bch2_btree_node_free_never_used(struct btree_update *as, 257 struct btree_trans *trans, 258 struct btree *b) 259 { 260 struct bch_fs *c = as->c; 261 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 262 263 BUG_ON(!list_empty(&b->write_blocked)); 264 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 265 266 b->will_make_reachable = 0; 267 closure_put(&as->cl); 268 269 clear_btree_node_will_make_reachable(b); 270 clear_btree_node_accessed(b); 271 clear_btree_node_dirty_acct(c, b); 272 clear_btree_node_need_write(b); 273 274 mutex_lock(&c->btree_cache.lock); 275 __bch2_btree_node_hash_remove(&c->btree_cache, b); 276 mutex_unlock(&c->btree_cache.lock); 277 278 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 279 p->b[p->nr++] = b; 280 281 six_unlock_intent(&b->c.lock); 282 283 bch2_trans_node_drop(trans, b); 284 } 285 286 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 287 struct disk_reservation *res, 288 struct closure *cl, 289 bool interior_node, 290 unsigned flags) 291 { 292 struct bch_fs *c = trans->c; 293 struct write_point *wp; 294 struct btree *b; 295 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 296 struct open_buckets obs = { .nr = 0 }; 297 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 298 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 299 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim 300 ? BTREE_NODE_RESERVE 301 : 0; 302 int ret; 303 304 b = bch2_btree_node_mem_alloc(trans, interior_node); 305 if (IS_ERR(b)) 306 return b; 307 308 BUG_ON(b->ob.nr); 309 310 mutex_lock(&c->btree_reserve_cache_lock); 311 if (c->btree_reserve_cache_nr > nr_reserve) { 312 struct btree_alloc *a = 313 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 314 315 obs = a->ob; 316 bkey_copy(&tmp.k, &a->k); 317 mutex_unlock(&c->btree_reserve_cache_lock); 318 goto out; 319 } 320 mutex_unlock(&c->btree_reserve_cache_lock); 321 retry: 322 ret = bch2_alloc_sectors_start_trans(trans, 323 c->opts.metadata_target ?: 324 c->opts.foreground_target, 325 0, 326 writepoint_ptr(&c->btree_write_point), 327 &devs_have, 328 res->nr_replicas, 329 min(res->nr_replicas, 330 c->opts.metadata_replicas_required), 331 watermark, 0, cl, &wp); 332 if (unlikely(ret)) 333 goto err; 334 335 if (wp->sectors_free < btree_sectors(c)) { 336 struct open_bucket *ob; 337 unsigned i; 338 339 open_bucket_for_each(c, &wp->ptrs, ob, i) 340 if (ob->sectors_free < btree_sectors(c)) 341 ob->sectors_free = 0; 342 343 bch2_alloc_sectors_done(c, wp); 344 goto retry; 345 } 346 347 bkey_btree_ptr_v2_init(&tmp.k); 348 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 349 350 bch2_open_bucket_get(c, wp, &obs); 351 bch2_alloc_sectors_done(c, wp); 352 out: 353 bkey_copy(&b->key, &tmp.k); 354 b->ob = obs; 355 six_unlock_write(&b->c.lock); 356 six_unlock_intent(&b->c.lock); 357 358 return b; 359 err: 360 bch2_btree_node_to_freelist(c, b); 361 return ERR_PTR(ret); 362 } 363 364 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 365 struct btree_trans *trans, 366 unsigned level) 367 { 368 struct bch_fs *c = as->c; 369 struct btree *b; 370 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 371 int ret; 372 373 BUG_ON(level >= BTREE_MAX_DEPTH); 374 BUG_ON(!p->nr); 375 376 b = p->b[--p->nr]; 377 378 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 379 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 380 381 set_btree_node_accessed(b); 382 set_btree_node_dirty_acct(c, b); 383 set_btree_node_need_write(b); 384 385 bch2_bset_init_first(b, &b->data->keys); 386 b->c.level = level; 387 b->c.btree_id = as->btree_id; 388 b->version_ondisk = c->sb.version; 389 390 memset(&b->nr, 0, sizeof(b->nr)); 391 b->data->magic = cpu_to_le64(bset_magic(c)); 392 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 393 b->data->flags = 0; 394 SET_BTREE_NODE_ID(b->data, as->btree_id); 395 SET_BTREE_NODE_LEVEL(b->data, level); 396 397 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 398 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 399 400 bp->v.mem_ptr = 0; 401 bp->v.seq = b->data->keys.seq; 402 bp->v.sectors_written = 0; 403 } 404 405 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 406 407 bch2_btree_build_aux_trees(b); 408 409 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 410 BUG_ON(ret); 411 412 trace_and_count(c, btree_node_alloc, trans, b); 413 bch2_increment_clock(c, btree_sectors(c), WRITE); 414 return b; 415 } 416 417 static void btree_set_min(struct btree *b, struct bpos pos) 418 { 419 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 420 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 421 b->data->min_key = pos; 422 } 423 424 static void btree_set_max(struct btree *b, struct bpos pos) 425 { 426 b->key.k.p = pos; 427 b->data->max_key = pos; 428 } 429 430 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 431 struct btree_trans *trans, 432 struct btree *b) 433 { 434 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 435 struct bkey_format format = bch2_btree_calc_format(b); 436 437 /* 438 * The keys might expand with the new format - if they wouldn't fit in 439 * the btree node anymore, use the old format for now: 440 */ 441 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 442 format = b->format; 443 444 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 445 446 btree_set_min(n, b->data->min_key); 447 btree_set_max(n, b->data->max_key); 448 449 n->data->format = format; 450 btree_node_set_format(n, format); 451 452 bch2_btree_sort_into(as->c, n, b); 453 454 btree_node_reset_sib_u64s(n); 455 return n; 456 } 457 458 static struct btree *__btree_root_alloc(struct btree_update *as, 459 struct btree_trans *trans, unsigned level) 460 { 461 struct btree *b = bch2_btree_node_alloc(as, trans, level); 462 463 btree_set_min(b, POS_MIN); 464 btree_set_max(b, SPOS_MAX); 465 b->data->format = bch2_btree_calc_format(b); 466 467 btree_node_set_format(b, b->data->format); 468 bch2_btree_build_aux_trees(b); 469 470 return b; 471 } 472 473 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 474 { 475 struct bch_fs *c = as->c; 476 struct prealloc_nodes *p; 477 478 for (p = as->prealloc_nodes; 479 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 480 p++) { 481 while (p->nr) { 482 struct btree *b = p->b[--p->nr]; 483 484 mutex_lock(&c->btree_reserve_cache_lock); 485 486 if (c->btree_reserve_cache_nr < 487 ARRAY_SIZE(c->btree_reserve_cache)) { 488 struct btree_alloc *a = 489 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 490 491 a->ob = b->ob; 492 b->ob.nr = 0; 493 bkey_copy(&a->k, &b->key); 494 } else { 495 bch2_open_buckets_put(c, &b->ob); 496 } 497 498 mutex_unlock(&c->btree_reserve_cache_lock); 499 500 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 501 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 502 __btree_node_free(trans, b); 503 bch2_btree_node_to_freelist(c, b); 504 } 505 } 506 } 507 508 static int bch2_btree_reserve_get(struct btree_trans *trans, 509 struct btree_update *as, 510 unsigned nr_nodes[2], 511 unsigned flags, 512 struct closure *cl) 513 { 514 struct btree *b; 515 unsigned interior; 516 int ret = 0; 517 518 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 519 520 /* 521 * Protects reaping from the btree node cache and using the btree node 522 * open bucket reserve: 523 */ 524 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 525 if (ret) 526 return ret; 527 528 for (interior = 0; interior < 2; interior++) { 529 struct prealloc_nodes *p = as->prealloc_nodes + interior; 530 531 while (p->nr < nr_nodes[interior]) { 532 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 533 interior, flags); 534 if (IS_ERR(b)) { 535 ret = PTR_ERR(b); 536 goto err; 537 } 538 539 p->b[p->nr++] = b; 540 } 541 } 542 err: 543 bch2_btree_cache_cannibalize_unlock(trans); 544 return ret; 545 } 546 547 /* Asynchronous interior node update machinery */ 548 549 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 550 { 551 struct bch_fs *c = as->c; 552 553 if (as->took_gc_lock) 554 up_read(&c->gc_lock); 555 as->took_gc_lock = false; 556 557 bch2_journal_pin_drop(&c->journal, &as->journal); 558 bch2_journal_pin_flush(&c->journal, &as->journal); 559 bch2_disk_reservation_put(c, &as->disk_res); 560 bch2_btree_reserve_put(as, trans); 561 562 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 563 as->start_time); 564 565 mutex_lock(&c->btree_interior_update_lock); 566 list_del(&as->unwritten_list); 567 list_del(&as->list); 568 569 closure_debug_destroy(&as->cl); 570 mempool_free(as, &c->btree_interior_update_pool); 571 572 /* 573 * Have to do the wakeup with btree_interior_update_lock still held, 574 * since being on btree_interior_update_list is our ref on @c: 575 */ 576 closure_wake_up(&c->btree_interior_update_wait); 577 578 mutex_unlock(&c->btree_interior_update_lock); 579 } 580 581 static void btree_update_add_key(struct btree_update *as, 582 struct keylist *keys, struct btree *b) 583 { 584 struct bkey_i *k = &b->key; 585 586 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 587 ARRAY_SIZE(as->_old_keys)); 588 589 bkey_copy(keys->top, k); 590 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 591 592 bch2_keylist_push(keys); 593 } 594 595 static bool btree_update_new_nodes_marked_sb(struct btree_update *as) 596 { 597 for_each_keylist_key(&as->new_keys, k) 598 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k))) 599 return false; 600 return true; 601 } 602 603 static void btree_update_new_nodes_mark_sb(struct btree_update *as) 604 { 605 struct bch_fs *c = as->c; 606 607 mutex_lock(&c->sb_lock); 608 for_each_keylist_key(&as->new_keys, k) 609 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k)); 610 611 bch2_write_super(c); 612 mutex_unlock(&c->sb_lock); 613 } 614 615 /* 616 * The transactional part of an interior btree node update, where we journal the 617 * update we did to the interior node and update alloc info: 618 */ 619 static int btree_update_nodes_written_trans(struct btree_trans *trans, 620 struct btree_update *as) 621 { 622 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 623 int ret = PTR_ERR_OR_ZERO(e); 624 if (ret) 625 return ret; 626 627 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 628 629 trans->journal_pin = &as->journal; 630 631 for_each_keylist_key(&as->old_keys, k) { 632 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 633 634 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 635 BTREE_TRIGGER_transactional); 636 if (ret) 637 return ret; 638 } 639 640 for_each_keylist_key(&as->new_keys, k) { 641 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 642 643 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 644 BTREE_TRIGGER_transactional); 645 if (ret) 646 return ret; 647 } 648 649 return 0; 650 } 651 652 static void btree_update_nodes_written(struct btree_update *as) 653 { 654 struct bch_fs *c = as->c; 655 struct btree *b; 656 struct btree_trans *trans = bch2_trans_get(c); 657 u64 journal_seq = 0; 658 unsigned i; 659 int ret; 660 661 /* 662 * If we're already in an error state, it might be because a btree node 663 * was never written, and we might be trying to free that same btree 664 * node here, but it won't have been marked as allocated and we'll see 665 * spurious disk usage inconsistencies in the transactional part below 666 * if we don't skip it: 667 */ 668 ret = bch2_journal_error(&c->journal); 669 if (ret) 670 goto err; 671 672 if (!btree_update_new_nodes_marked_sb(as)) 673 btree_update_new_nodes_mark_sb(as); 674 675 /* 676 * Wait for any in flight writes to finish before we free the old nodes 677 * on disk: 678 */ 679 for (i = 0; i < as->nr_old_nodes; i++) { 680 __le64 seq; 681 682 b = as->old_nodes[i]; 683 684 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 685 seq = b->data ? b->data->keys.seq : 0; 686 six_unlock_read(&b->c.lock); 687 688 if (seq == as->old_nodes_seq[i]) 689 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 690 TASK_UNINTERRUPTIBLE); 691 } 692 693 /* 694 * We did an update to a parent node where the pointers we added pointed 695 * to child nodes that weren't written yet: now, the child nodes have 696 * been written so we can write out the update to the interior node. 697 */ 698 699 /* 700 * We can't call into journal reclaim here: we'd block on the journal 701 * reclaim lock, but we may need to release the open buckets we have 702 * pinned in order for other btree updates to make forward progress, and 703 * journal reclaim does btree updates when flushing bkey_cached entries, 704 * which may require allocations as well. 705 */ 706 ret = commit_do(trans, &as->disk_res, &journal_seq, 707 BCH_WATERMARK_interior_updates| 708 BCH_TRANS_COMMIT_no_enospc| 709 BCH_TRANS_COMMIT_no_check_rw| 710 BCH_TRANS_COMMIT_journal_reclaim, 711 btree_update_nodes_written_trans(trans, as)); 712 bch2_trans_unlock(trans); 713 714 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 715 "%s", bch2_err_str(ret)); 716 err: 717 /* 718 * Ensure transaction is unlocked before using btree_node_lock_nopath() 719 * (the use of which is always suspect, we need to work on removing this 720 * in the future) 721 * 722 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get() 723 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may 724 * rarely end up with a locked path besides the one we have here: 725 */ 726 bch2_trans_unlock(trans); 727 bch2_trans_begin(trans); 728 729 /* 730 * We have to be careful because another thread might be getting ready 731 * to free as->b and calling btree_update_reparent() on us - we'll 732 * recheck under btree_update_lock below: 733 */ 734 b = READ_ONCE(as->b); 735 if (b) { 736 /* 737 * @b is the node we did the final insert into: 738 * 739 * On failure to get a journal reservation, we still have to 740 * unblock the write and allow most of the write path to happen 741 * so that shutdown works, but the i->journal_seq mechanism 742 * won't work to prevent the btree write from being visible (we 743 * didn't get a journal sequence number) - instead 744 * __bch2_btree_node_write() doesn't do the actual write if 745 * we're in journal error state: 746 */ 747 748 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans, 749 as->btree_id, b->c.level, b->key.k.p); 750 struct btree_path *path = trans->paths + path_idx; 751 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 752 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 753 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 754 path->l[b->c.level].b = b; 755 756 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 757 758 mutex_lock(&c->btree_interior_update_lock); 759 760 list_del(&as->write_blocked_list); 761 if (list_empty(&b->write_blocked)) 762 clear_btree_node_write_blocked(b); 763 764 /* 765 * Node might have been freed, recheck under 766 * btree_interior_update_lock: 767 */ 768 if (as->b == b) { 769 BUG_ON(!b->c.level); 770 BUG_ON(!btree_node_dirty(b)); 771 772 if (!ret) { 773 struct bset *last = btree_bset_last(b); 774 775 last->journal_seq = cpu_to_le64( 776 max(journal_seq, 777 le64_to_cpu(last->journal_seq))); 778 779 bch2_btree_add_journal_pin(c, b, journal_seq); 780 } else { 781 /* 782 * If we didn't get a journal sequence number we 783 * can't write this btree node, because recovery 784 * won't know to ignore this write: 785 */ 786 set_btree_node_never_write(b); 787 } 788 } 789 790 mutex_unlock(&c->btree_interior_update_lock); 791 792 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 793 six_unlock_write(&b->c.lock); 794 795 btree_node_write_if_need(trans, b, SIX_LOCK_intent); 796 btree_node_unlock(trans, path, b->c.level); 797 bch2_path_put(trans, path_idx, true); 798 } 799 800 bch2_journal_pin_drop(&c->journal, &as->journal); 801 802 mutex_lock(&c->btree_interior_update_lock); 803 for (i = 0; i < as->nr_new_nodes; i++) { 804 b = as->new_nodes[i]; 805 806 BUG_ON(b->will_make_reachable != (unsigned long) as); 807 b->will_make_reachable = 0; 808 clear_btree_node_will_make_reachable(b); 809 } 810 mutex_unlock(&c->btree_interior_update_lock); 811 812 for (i = 0; i < as->nr_new_nodes; i++) { 813 b = as->new_nodes[i]; 814 815 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 816 btree_node_write_if_need(trans, b, SIX_LOCK_read); 817 six_unlock_read(&b->c.lock); 818 } 819 820 for (i = 0; i < as->nr_open_buckets; i++) 821 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 822 823 bch2_btree_update_free(as, trans); 824 bch2_trans_put(trans); 825 } 826 827 static void btree_interior_update_work(struct work_struct *work) 828 { 829 struct bch_fs *c = 830 container_of(work, struct bch_fs, btree_interior_update_work); 831 struct btree_update *as; 832 833 while (1) { 834 mutex_lock(&c->btree_interior_update_lock); 835 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 836 struct btree_update, unwritten_list); 837 if (as && !as->nodes_written) 838 as = NULL; 839 mutex_unlock(&c->btree_interior_update_lock); 840 841 if (!as) 842 break; 843 844 btree_update_nodes_written(as); 845 } 846 } 847 848 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 849 { 850 closure_type(as, struct btree_update, cl); 851 struct bch_fs *c = as->c; 852 853 mutex_lock(&c->btree_interior_update_lock); 854 as->nodes_written = true; 855 mutex_unlock(&c->btree_interior_update_lock); 856 857 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 858 } 859 860 /* 861 * We're updating @b with pointers to nodes that haven't finished writing yet: 862 * block @b from being written until @as completes 863 */ 864 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 865 { 866 struct bch_fs *c = as->c; 867 868 BUG_ON(as->mode != BTREE_UPDATE_none); 869 BUG_ON(as->update_level_end < b->c.level); 870 BUG_ON(!btree_node_dirty(b)); 871 BUG_ON(!b->c.level); 872 873 mutex_lock(&c->btree_interior_update_lock); 874 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 875 876 as->mode = BTREE_UPDATE_node; 877 as->b = b; 878 as->update_level_end = b->c.level; 879 880 set_btree_node_write_blocked(b); 881 list_add(&as->write_blocked_list, &b->write_blocked); 882 883 mutex_unlock(&c->btree_interior_update_lock); 884 } 885 886 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 887 struct journal_entry_pin *_pin, u64 seq) 888 { 889 return 0; 890 } 891 892 static void btree_update_reparent(struct btree_update *as, 893 struct btree_update *child) 894 { 895 struct bch_fs *c = as->c; 896 897 lockdep_assert_held(&c->btree_interior_update_lock); 898 899 child->b = NULL; 900 child->mode = BTREE_UPDATE_update; 901 902 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 903 bch2_update_reparent_journal_pin_flush); 904 } 905 906 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 907 { 908 struct bkey_i *insert = &b->key; 909 struct bch_fs *c = as->c; 910 911 BUG_ON(as->mode != BTREE_UPDATE_none); 912 913 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 914 ARRAY_SIZE(as->journal_entries)); 915 916 as->journal_u64s += 917 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 918 BCH_JSET_ENTRY_btree_root, 919 b->c.btree_id, b->c.level, 920 insert, insert->k.u64s); 921 922 mutex_lock(&c->btree_interior_update_lock); 923 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 924 925 as->mode = BTREE_UPDATE_root; 926 mutex_unlock(&c->btree_interior_update_lock); 927 } 928 929 /* 930 * bch2_btree_update_add_new_node: 931 * 932 * This causes @as to wait on @b to be written, before it gets to 933 * bch2_btree_update_nodes_written 934 * 935 * Additionally, it sets b->will_make_reachable to prevent any additional writes 936 * to @b from happening besides the first until @b is reachable on disk 937 * 938 * And it adds @b to the list of @as's new nodes, so that we can update sector 939 * counts in bch2_btree_update_nodes_written: 940 */ 941 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 942 { 943 struct bch_fs *c = as->c; 944 945 closure_get(&as->cl); 946 947 mutex_lock(&c->btree_interior_update_lock); 948 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 949 BUG_ON(b->will_make_reachable); 950 951 as->new_nodes[as->nr_new_nodes++] = b; 952 b->will_make_reachable = 1UL|(unsigned long) as; 953 set_btree_node_will_make_reachable(b); 954 955 mutex_unlock(&c->btree_interior_update_lock); 956 957 btree_update_add_key(as, &as->new_keys, b); 958 959 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 960 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 961 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 962 963 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 964 cpu_to_le16(sectors); 965 } 966 } 967 968 /* 969 * returns true if @b was a new node 970 */ 971 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 972 { 973 struct btree_update *as; 974 unsigned long v; 975 unsigned i; 976 977 mutex_lock(&c->btree_interior_update_lock); 978 /* 979 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 980 * dropped when it gets written by bch2_btree_complete_write - the 981 * xchg() is for synchronization with bch2_btree_complete_write: 982 */ 983 v = xchg(&b->will_make_reachable, 0); 984 clear_btree_node_will_make_reachable(b); 985 as = (struct btree_update *) (v & ~1UL); 986 987 if (!as) { 988 mutex_unlock(&c->btree_interior_update_lock); 989 return; 990 } 991 992 for (i = 0; i < as->nr_new_nodes; i++) 993 if (as->new_nodes[i] == b) 994 goto found; 995 996 BUG(); 997 found: 998 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 999 mutex_unlock(&c->btree_interior_update_lock); 1000 1001 if (v & 1) 1002 closure_put(&as->cl); 1003 } 1004 1005 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 1006 { 1007 while (b->ob.nr) 1008 as->open_buckets[as->nr_open_buckets++] = 1009 b->ob.v[--b->ob.nr]; 1010 } 1011 1012 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 1013 struct journal_entry_pin *_pin, u64 seq) 1014 { 1015 return 0; 1016 } 1017 1018 /* 1019 * @b is being split/rewritten: it may have pointers to not-yet-written btree 1020 * nodes and thus outstanding btree_updates - redirect @b's 1021 * btree_updates to point to this btree_update: 1022 */ 1023 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 1024 struct btree *b) 1025 { 1026 struct bch_fs *c = as->c; 1027 struct btree_update *p, *n; 1028 struct btree_write *w; 1029 1030 set_btree_node_dying(b); 1031 1032 if (btree_node_fake(b)) 1033 return; 1034 1035 mutex_lock(&c->btree_interior_update_lock); 1036 1037 /* 1038 * Does this node have any btree_update operations preventing 1039 * it from being written? 1040 * 1041 * If so, redirect them to point to this btree_update: we can 1042 * write out our new nodes, but we won't make them visible until those 1043 * operations complete 1044 */ 1045 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 1046 list_del_init(&p->write_blocked_list); 1047 btree_update_reparent(as, p); 1048 1049 /* 1050 * for flush_held_btree_writes() waiting on updates to flush or 1051 * nodes to be writeable: 1052 */ 1053 closure_wake_up(&c->btree_interior_update_wait); 1054 } 1055 1056 clear_btree_node_dirty_acct(c, b); 1057 clear_btree_node_need_write(b); 1058 clear_btree_node_write_blocked(b); 1059 1060 /* 1061 * Does this node have unwritten data that has a pin on the journal? 1062 * 1063 * If so, transfer that pin to the btree_update operation - 1064 * note that if we're freeing multiple nodes, we only need to keep the 1065 * oldest pin of any of the nodes we're freeing. We'll release the pin 1066 * when the new nodes are persistent and reachable on disk: 1067 */ 1068 w = btree_current_write(b); 1069 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1070 bch2_btree_update_will_free_node_journal_pin_flush); 1071 bch2_journal_pin_drop(&c->journal, &w->journal); 1072 1073 w = btree_prev_write(b); 1074 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1075 bch2_btree_update_will_free_node_journal_pin_flush); 1076 bch2_journal_pin_drop(&c->journal, &w->journal); 1077 1078 mutex_unlock(&c->btree_interior_update_lock); 1079 1080 /* 1081 * Is this a node that isn't reachable on disk yet? 1082 * 1083 * Nodes that aren't reachable yet have writes blocked until they're 1084 * reachable - now that we've cancelled any pending writes and moved 1085 * things waiting on that write to wait on this update, we can drop this 1086 * node from the list of nodes that the other update is making 1087 * reachable, prior to freeing it: 1088 */ 1089 btree_update_drop_new_node(c, b); 1090 1091 btree_update_add_key(as, &as->old_keys, b); 1092 1093 as->old_nodes[as->nr_old_nodes] = b; 1094 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1095 as->nr_old_nodes++; 1096 } 1097 1098 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1099 { 1100 struct bch_fs *c = as->c; 1101 u64 start_time = as->start_time; 1102 1103 BUG_ON(as->mode == BTREE_UPDATE_none); 1104 1105 if (as->took_gc_lock) 1106 up_read(&as->c->gc_lock); 1107 as->took_gc_lock = false; 1108 1109 bch2_btree_reserve_put(as, trans); 1110 1111 continue_at(&as->cl, btree_update_set_nodes_written, 1112 as->c->btree_interior_update_worker); 1113 1114 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1115 start_time); 1116 } 1117 1118 static struct btree_update * 1119 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1120 unsigned level_start, bool split, unsigned flags) 1121 { 1122 struct bch_fs *c = trans->c; 1123 struct btree_update *as; 1124 u64 start_time = local_clock(); 1125 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1126 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1127 unsigned nr_nodes[2] = { 0, 0 }; 1128 unsigned level_end = level_start; 1129 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1130 int ret = 0; 1131 u32 restart_count = trans->restart_count; 1132 1133 BUG_ON(!path->should_be_locked); 1134 1135 if (watermark == BCH_WATERMARK_copygc) 1136 watermark = BCH_WATERMARK_btree_copygc; 1137 if (watermark < BCH_WATERMARK_btree) 1138 watermark = BCH_WATERMARK_btree; 1139 1140 flags &= ~BCH_WATERMARK_MASK; 1141 flags |= watermark; 1142 1143 if (watermark < BCH_WATERMARK_reclaim && 1144 test_bit(JOURNAL_space_low, &c->journal.flags)) { 1145 if (flags & BCH_TRANS_COMMIT_journal_reclaim) 1146 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock); 1147 1148 ret = drop_locks_do(trans, 1149 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; })); 1150 if (ret) 1151 return ERR_PTR(ret); 1152 } 1153 1154 while (1) { 1155 nr_nodes[!!level_end] += 1 + split; 1156 level_end++; 1157 1158 ret = bch2_btree_path_upgrade(trans, path, level_end + 1); 1159 if (ret) 1160 return ERR_PTR(ret); 1161 1162 if (!btree_path_node(path, level_end)) { 1163 /* Allocating new root? */ 1164 nr_nodes[1] += split; 1165 level_end = BTREE_MAX_DEPTH; 1166 break; 1167 } 1168 1169 /* 1170 * Always check for space for two keys, even if we won't have to 1171 * split at prior level - it might have been a merge instead: 1172 */ 1173 if (bch2_btree_node_insert_fits(path->l[level_end].b, 1174 BKEY_BTREE_PTR_U64s_MAX * 2)) 1175 break; 1176 1177 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1178 } 1179 1180 if (!down_read_trylock(&c->gc_lock)) { 1181 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1182 if (ret) { 1183 up_read(&c->gc_lock); 1184 return ERR_PTR(ret); 1185 } 1186 } 1187 1188 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1189 memset(as, 0, sizeof(*as)); 1190 closure_init(&as->cl, NULL); 1191 as->c = c; 1192 as->start_time = start_time; 1193 as->ip_started = _RET_IP_; 1194 as->mode = BTREE_UPDATE_none; 1195 as->flags = flags; 1196 as->took_gc_lock = true; 1197 as->btree_id = path->btree_id; 1198 as->update_level_start = level_start; 1199 as->update_level_end = level_end; 1200 INIT_LIST_HEAD(&as->list); 1201 INIT_LIST_HEAD(&as->unwritten_list); 1202 INIT_LIST_HEAD(&as->write_blocked_list); 1203 bch2_keylist_init(&as->old_keys, as->_old_keys); 1204 bch2_keylist_init(&as->new_keys, as->_new_keys); 1205 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1206 1207 mutex_lock(&c->btree_interior_update_lock); 1208 list_add_tail(&as->list, &c->btree_interior_update_list); 1209 mutex_unlock(&c->btree_interior_update_lock); 1210 1211 /* 1212 * We don't want to allocate if we're in an error state, that can cause 1213 * deadlock on emergency shutdown due to open buckets getting stuck in 1214 * the btree_reserve_cache after allocator shutdown has cleared it out. 1215 * This check needs to come after adding us to the btree_interior_update 1216 * list but before calling bch2_btree_reserve_get, to synchronize with 1217 * __bch2_fs_read_only(). 1218 */ 1219 ret = bch2_journal_error(&c->journal); 1220 if (ret) 1221 goto err; 1222 1223 ret = bch2_disk_reservation_get(c, &as->disk_res, 1224 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1225 c->opts.metadata_replicas, 1226 disk_res_flags); 1227 if (ret) 1228 goto err; 1229 1230 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1231 if (bch2_err_matches(ret, ENOSPC) || 1232 bch2_err_matches(ret, ENOMEM)) { 1233 struct closure cl; 1234 1235 /* 1236 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1237 * flag 1238 */ 1239 if (bch2_err_matches(ret, ENOSPC) && 1240 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1241 watermark < BCH_WATERMARK_reclaim) { 1242 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1243 goto err; 1244 } 1245 1246 closure_init_stack(&cl); 1247 1248 do { 1249 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1250 1251 bch2_trans_unlock(trans); 1252 bch2_wait_on_allocator(c, &cl); 1253 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1254 } 1255 1256 if (ret) { 1257 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1258 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1259 goto err; 1260 } 1261 1262 ret = bch2_trans_relock(trans); 1263 if (ret) 1264 goto err; 1265 1266 bch2_trans_verify_not_restarted(trans, restart_count); 1267 return as; 1268 err: 1269 bch2_btree_update_free(as, trans); 1270 if (!bch2_err_matches(ret, ENOSPC) && 1271 !bch2_err_matches(ret, EROFS) && 1272 ret != -BCH_ERR_journal_reclaim_would_deadlock) 1273 bch_err_fn_ratelimited(c, ret); 1274 return ERR_PTR(ret); 1275 } 1276 1277 /* Btree root updates: */ 1278 1279 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1280 { 1281 /* Root nodes cannot be reaped */ 1282 mutex_lock(&c->btree_cache.lock); 1283 list_del_init(&b->list); 1284 mutex_unlock(&c->btree_cache.lock); 1285 1286 mutex_lock(&c->btree_root_lock); 1287 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1288 mutex_unlock(&c->btree_root_lock); 1289 1290 bch2_recalc_btree_reserve(c); 1291 } 1292 1293 static int bch2_btree_set_root(struct btree_update *as, 1294 struct btree_trans *trans, 1295 struct btree_path *path, 1296 struct btree *b, 1297 bool nofail) 1298 { 1299 struct bch_fs *c = as->c; 1300 1301 trace_and_count(c, btree_node_set_root, trans, b); 1302 1303 struct btree *old = btree_node_root(c, b); 1304 1305 /* 1306 * Ensure no one is using the old root while we switch to the 1307 * new root: 1308 */ 1309 if (nofail) { 1310 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1311 } else { 1312 int ret = bch2_btree_node_lock_write(trans, path, &old->c); 1313 if (ret) 1314 return ret; 1315 } 1316 1317 bch2_btree_set_root_inmem(c, b); 1318 1319 btree_update_updated_root(as, b); 1320 1321 /* 1322 * Unlock old root after new root is visible: 1323 * 1324 * The new root isn't persistent, but that's ok: we still have 1325 * an intent lock on the new root, and any updates that would 1326 * depend on the new root would have to update the new root. 1327 */ 1328 bch2_btree_node_unlock_write(trans, path, old); 1329 return 0; 1330 } 1331 1332 /* Interior node updates: */ 1333 1334 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1335 struct btree_trans *trans, 1336 struct btree_path *path, 1337 struct btree *b, 1338 struct btree_node_iter *node_iter, 1339 struct bkey_i *insert) 1340 { 1341 struct bch_fs *c = as->c; 1342 struct bkey_packed *k; 1343 struct printbuf buf = PRINTBUF; 1344 unsigned long old, new; 1345 1346 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1347 !btree_ptr_sectors_written(bkey_i_to_s_c(insert))); 1348 1349 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags))) 1350 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1351 1352 struct bkey_validate_context from = (struct bkey_validate_context) { 1353 .from = BKEY_VALIDATE_btree_node, 1354 .level = b->c.level, 1355 .btree = b->c.btree_id, 1356 .flags = BCH_VALIDATE_commit, 1357 }; 1358 if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), from) ?: 1359 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), from)) { 1360 bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__); 1361 dump_stack(); 1362 } 1363 1364 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1365 ARRAY_SIZE(as->journal_entries)); 1366 1367 as->journal_u64s += 1368 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1369 BCH_JSET_ENTRY_btree_keys, 1370 b->c.btree_id, b->c.level, 1371 insert, insert->k.u64s); 1372 1373 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1374 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1375 bch2_btree_node_iter_advance(node_iter, b); 1376 1377 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1378 set_btree_node_dirty_acct(c, b); 1379 1380 old = READ_ONCE(b->flags); 1381 do { 1382 new = old; 1383 1384 new &= ~BTREE_WRITE_TYPE_MASK; 1385 new |= BTREE_WRITE_interior; 1386 new |= 1 << BTREE_NODE_need_write; 1387 } while (!try_cmpxchg(&b->flags, &old, new)); 1388 1389 printbuf_exit(&buf); 1390 } 1391 1392 static void 1393 bch2_btree_insert_keys_interior(struct btree_update *as, 1394 struct btree_trans *trans, 1395 struct btree_path *path, 1396 struct btree *b, 1397 struct btree_node_iter node_iter, 1398 struct keylist *keys) 1399 { 1400 struct bkey_i *insert = bch2_keylist_front(keys); 1401 struct bkey_packed *k; 1402 1403 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1404 1405 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1406 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1407 ; 1408 1409 for (; 1410 insert != keys->top && bpos_le(insert->k.p, b->key.k.p); 1411 insert = bkey_next(insert)) 1412 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1413 1414 if (bch2_btree_node_check_topology(trans, b)) { 1415 struct printbuf buf = PRINTBUF; 1416 1417 for (struct bkey_i *k = keys->keys; 1418 k != insert; 1419 k = bkey_next(k)) { 1420 bch2_bkey_val_to_text(&buf, trans->c, bkey_i_to_s_c(k)); 1421 prt_newline(&buf); 1422 } 1423 1424 panic("%s(): check_topology error: inserted keys\n%s", __func__, buf.buf); 1425 } 1426 1427 memmove_u64s_down(keys->keys, insert, keys->top_p - insert->_data); 1428 keys->top_p -= insert->_data - keys->keys_p; 1429 } 1430 1431 static bool key_deleted_in_insert(struct keylist *insert_keys, struct bpos pos) 1432 { 1433 if (insert_keys) 1434 for_each_keylist_key(insert_keys, k) 1435 if (bkey_deleted(&k->k) && bpos_eq(k->k.p, pos)) 1436 return true; 1437 return false; 1438 } 1439 1440 /* 1441 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1442 * node) 1443 */ 1444 static void __btree_split_node(struct btree_update *as, 1445 struct btree_trans *trans, 1446 struct btree *b, 1447 struct btree *n[2], 1448 struct keylist *insert_keys) 1449 { 1450 struct bkey_packed *k; 1451 struct bpos n1_pos = POS_MIN; 1452 struct btree_node_iter iter; 1453 struct bset *bsets[2]; 1454 struct bkey_format_state format[2]; 1455 struct bkey_packed *out[2]; 1456 struct bkey uk; 1457 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1458 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1459 int i; 1460 1461 memset(&nr_keys, 0, sizeof(nr_keys)); 1462 1463 for (i = 0; i < 2; i++) { 1464 BUG_ON(n[i]->nsets != 1); 1465 1466 bsets[i] = btree_bset_first(n[i]); 1467 out[i] = bsets[i]->start; 1468 1469 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1470 bch2_bkey_format_init(&format[i]); 1471 } 1472 1473 u64s = 0; 1474 for_each_btree_node_key(b, k, &iter) { 1475 if (bkey_deleted(k)) 1476 continue; 1477 1478 uk = bkey_unpack_key(b, k); 1479 1480 if (b->c.level && 1481 u64s < n1_u64s && 1482 u64s + k->u64s >= n1_u64s && 1483 (bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p) || 1484 key_deleted_in_insert(insert_keys, uk.p))) 1485 n1_u64s += k->u64s; 1486 1487 i = u64s >= n1_u64s; 1488 u64s += k->u64s; 1489 if (!i) 1490 n1_pos = uk.p; 1491 bch2_bkey_format_add_key(&format[i], &uk); 1492 1493 nr_keys[i].nr_keys++; 1494 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1495 } 1496 1497 btree_set_min(n[0], b->data->min_key); 1498 btree_set_max(n[0], n1_pos); 1499 btree_set_min(n[1], bpos_successor(n1_pos)); 1500 btree_set_max(n[1], b->data->max_key); 1501 1502 for (i = 0; i < 2; i++) { 1503 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1504 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1505 1506 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1507 1508 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1509 nr_keys[i].val_u64s; 1510 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1511 n[i]->data->format = b->format; 1512 1513 btree_node_set_format(n[i], n[i]->data->format); 1514 } 1515 1516 u64s = 0; 1517 for_each_btree_node_key(b, k, &iter) { 1518 if (bkey_deleted(k)) 1519 continue; 1520 1521 i = u64s >= n1_u64s; 1522 u64s += k->u64s; 1523 1524 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1525 ? &b->format: &bch2_bkey_format_current, k)) 1526 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1527 else 1528 bch2_bkey_unpack(b, (void *) out[i], k); 1529 1530 out[i]->needs_whiteout = false; 1531 1532 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1533 out[i] = bkey_p_next(out[i]); 1534 } 1535 1536 for (i = 0; i < 2; i++) { 1537 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1538 1539 BUG_ON(!bsets[i]->u64s); 1540 1541 set_btree_bset_end(n[i], n[i]->set); 1542 1543 btree_node_reset_sib_u64s(n[i]); 1544 1545 bch2_verify_btree_nr_keys(n[i]); 1546 1547 BUG_ON(bch2_btree_node_check_topology(trans, n[i])); 1548 } 1549 } 1550 1551 /* 1552 * For updates to interior nodes, we've got to do the insert before we split 1553 * because the stuff we're inserting has to be inserted atomically. Post split, 1554 * the keys might have to go in different nodes and the split would no longer be 1555 * atomic. 1556 * 1557 * Worse, if the insert is from btree node coalescing, if we do the insert after 1558 * we do the split (and pick the pivot) - the pivot we pick might be between 1559 * nodes that were coalesced, and thus in the middle of a child node post 1560 * coalescing: 1561 */ 1562 static void btree_split_insert_keys(struct btree_update *as, 1563 struct btree_trans *trans, 1564 btree_path_idx_t path_idx, 1565 struct btree *b, 1566 struct keylist *keys) 1567 { 1568 struct btree_path *path = trans->paths + path_idx; 1569 1570 if (!bch2_keylist_empty(keys) && 1571 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1572 struct btree_node_iter node_iter; 1573 1574 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1575 1576 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1577 } 1578 } 1579 1580 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1581 btree_path_idx_t path, struct btree *b, 1582 struct keylist *keys) 1583 { 1584 struct bch_fs *c = as->c; 1585 struct btree *parent = btree_node_parent(trans->paths + path, b); 1586 struct btree *n1, *n2 = NULL, *n3 = NULL; 1587 btree_path_idx_t path1 = 0, path2 = 0; 1588 u64 start_time = local_clock(); 1589 int ret = 0; 1590 1591 bch2_verify_btree_nr_keys(b); 1592 BUG_ON(!parent && (b != btree_node_root(c, b))); 1593 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1594 1595 ret = bch2_btree_node_check_topology(trans, b); 1596 if (ret) 1597 return ret; 1598 1599 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1600 struct btree *n[2]; 1601 1602 trace_and_count(c, btree_node_split, trans, b); 1603 1604 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1605 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1606 1607 __btree_split_node(as, trans, b, n, keys); 1608 1609 if (keys) { 1610 btree_split_insert_keys(as, trans, path, n1, keys); 1611 btree_split_insert_keys(as, trans, path, n2, keys); 1612 BUG_ON(!bch2_keylist_empty(keys)); 1613 } 1614 1615 bch2_btree_build_aux_trees(n2); 1616 bch2_btree_build_aux_trees(n1); 1617 1618 bch2_btree_update_add_new_node(as, n1); 1619 bch2_btree_update_add_new_node(as, n2); 1620 six_unlock_write(&n2->c.lock); 1621 six_unlock_write(&n1->c.lock); 1622 1623 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1624 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1625 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1626 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1627 1628 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p); 1629 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1630 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1631 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1632 1633 /* 1634 * Note that on recursive parent_keys == keys, so we 1635 * can't start adding new keys to parent_keys before emptying it 1636 * out (which we did with btree_split_insert_keys() above) 1637 */ 1638 bch2_keylist_add(&as->parent_keys, &n1->key); 1639 bch2_keylist_add(&as->parent_keys, &n2->key); 1640 1641 if (!parent) { 1642 /* Depth increases, make a new root */ 1643 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1644 1645 bch2_btree_update_add_new_node(as, n3); 1646 six_unlock_write(&n3->c.lock); 1647 1648 trans->paths[path2].locks_want++; 1649 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1650 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1651 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1652 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1653 1654 n3->sib_u64s[0] = U16_MAX; 1655 n3->sib_u64s[1] = U16_MAX; 1656 1657 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1658 } 1659 } else { 1660 trace_and_count(c, btree_node_compact, trans, b); 1661 1662 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1663 1664 if (keys) { 1665 btree_split_insert_keys(as, trans, path, n1, keys); 1666 BUG_ON(!bch2_keylist_empty(keys)); 1667 } 1668 1669 bch2_btree_build_aux_trees(n1); 1670 bch2_btree_update_add_new_node(as, n1); 1671 six_unlock_write(&n1->c.lock); 1672 1673 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); 1674 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1675 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1676 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1677 1678 if (parent) 1679 bch2_keylist_add(&as->parent_keys, &n1->key); 1680 } 1681 1682 /* New nodes all written, now make them visible: */ 1683 1684 if (parent) { 1685 /* Split a non root node */ 1686 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1687 } else if (n3) { 1688 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false); 1689 } else { 1690 /* Root filled up but didn't need to be split */ 1691 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false); 1692 } 1693 1694 if (ret) 1695 goto err; 1696 1697 bch2_btree_interior_update_will_free_node(as, b); 1698 1699 if (n3) { 1700 bch2_btree_update_get_open_buckets(as, n3); 1701 bch2_btree_node_write_trans(trans, n3, SIX_LOCK_intent, 0); 1702 } 1703 if (n2) { 1704 bch2_btree_update_get_open_buckets(as, n2); 1705 bch2_btree_node_write_trans(trans, n2, SIX_LOCK_intent, 0); 1706 } 1707 bch2_btree_update_get_open_buckets(as, n1); 1708 bch2_btree_node_write_trans(trans, n1, SIX_LOCK_intent, 0); 1709 1710 /* 1711 * The old node must be freed (in memory) _before_ unlocking the new 1712 * nodes - else another thread could re-acquire a read lock on the old 1713 * node after another thread has locked and updated the new node, thus 1714 * seeing stale data: 1715 */ 1716 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1717 1718 if (n3) 1719 bch2_trans_node_add(trans, trans->paths + path, n3); 1720 if (n2) 1721 bch2_trans_node_add(trans, trans->paths + path2, n2); 1722 bch2_trans_node_add(trans, trans->paths + path1, n1); 1723 1724 if (n3) 1725 six_unlock_intent(&n3->c.lock); 1726 if (n2) 1727 six_unlock_intent(&n2->c.lock); 1728 six_unlock_intent(&n1->c.lock); 1729 out: 1730 if (path2) { 1731 __bch2_btree_path_unlock(trans, trans->paths + path2); 1732 bch2_path_put(trans, path2, true); 1733 } 1734 if (path1) { 1735 __bch2_btree_path_unlock(trans, trans->paths + path1); 1736 bch2_path_put(trans, path1, true); 1737 } 1738 1739 bch2_trans_verify_locks(trans); 1740 1741 bch2_time_stats_update(&c->times[n2 1742 ? BCH_TIME_btree_node_split 1743 : BCH_TIME_btree_node_compact], 1744 start_time); 1745 return ret; 1746 err: 1747 if (n3) 1748 bch2_btree_node_free_never_used(as, trans, n3); 1749 if (n2) 1750 bch2_btree_node_free_never_used(as, trans, n2); 1751 bch2_btree_node_free_never_used(as, trans, n1); 1752 goto out; 1753 } 1754 1755 /** 1756 * bch2_btree_insert_node - insert bkeys into a given btree node 1757 * 1758 * @as: btree_update object 1759 * @trans: btree_trans object 1760 * @path_idx: path that points to current node 1761 * @b: node to insert keys into 1762 * @keys: list of keys to insert 1763 * 1764 * Returns: 0 on success, typically transaction restart error on failure 1765 * 1766 * Inserts as many keys as it can into a given btree node, splitting it if full. 1767 * If a split occurred, this function will return early. This can only happen 1768 * for leaf nodes -- inserts into interior nodes have to be atomic. 1769 */ 1770 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1771 btree_path_idx_t path_idx, struct btree *b, 1772 struct keylist *keys) 1773 { 1774 struct bch_fs *c = as->c; 1775 struct btree_path *path = trans->paths + path_idx, *linked; 1776 unsigned i; 1777 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1778 int old_live_u64s = b->nr.live_u64s; 1779 int live_u64s_added, u64s_added; 1780 int ret; 1781 1782 lockdep_assert_held(&c->gc_lock); 1783 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1784 BUG_ON(!b->c.level); 1785 BUG_ON(!as || as->b); 1786 bch2_verify_keylist_sorted(keys); 1787 1788 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1789 if (ret) 1790 return ret; 1791 1792 bch2_btree_node_prep_for_write(trans, path, b); 1793 1794 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1795 bch2_btree_node_unlock_write(trans, path, b); 1796 goto split; 1797 } 1798 1799 ret = bch2_btree_node_check_topology(trans, b); 1800 if (ret) { 1801 bch2_btree_node_unlock_write(trans, path, b); 1802 return ret; 1803 } 1804 1805 bch2_btree_insert_keys_interior(as, trans, path, b, 1806 path->l[b->c.level].iter, keys); 1807 1808 trans_for_each_path_with_node(trans, b, linked, i) 1809 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1810 1811 bch2_trans_verify_paths(trans); 1812 1813 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1814 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1815 1816 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1817 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1818 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1819 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1820 1821 if (u64s_added > live_u64s_added && 1822 bch2_maybe_compact_whiteouts(c, b)) 1823 bch2_trans_node_reinit_iter(trans, b); 1824 1825 btree_update_updated_node(as, b); 1826 bch2_btree_node_unlock_write(trans, path, b); 1827 return 0; 1828 split: 1829 /* 1830 * We could attempt to avoid the transaction restart, by calling 1831 * bch2_btree_path_upgrade() and allocating more nodes: 1832 */ 1833 if (b->c.level >= as->update_level_end) { 1834 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1835 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1836 } 1837 1838 return btree_split(as, trans, path_idx, b, keys); 1839 } 1840 1841 int bch2_btree_split_leaf(struct btree_trans *trans, 1842 btree_path_idx_t path, 1843 unsigned flags) 1844 { 1845 /* btree_split & merge may both cause paths array to be reallocated */ 1846 struct btree *b = path_l(trans->paths + path)->b; 1847 struct btree_update *as; 1848 unsigned l; 1849 int ret = 0; 1850 1851 as = bch2_btree_update_start(trans, trans->paths + path, 1852 trans->paths[path].level, 1853 true, flags); 1854 if (IS_ERR(as)) 1855 return PTR_ERR(as); 1856 1857 ret = btree_split(as, trans, path, b, NULL); 1858 if (ret) { 1859 bch2_btree_update_free(as, trans); 1860 return ret; 1861 } 1862 1863 bch2_btree_update_done(as, trans); 1864 1865 for (l = trans->paths[path].level + 1; 1866 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1867 l++) 1868 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1869 1870 return ret; 1871 } 1872 1873 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans, 1874 btree_path_idx_t path_idx) 1875 { 1876 struct bch_fs *c = as->c; 1877 struct btree_path *path = trans->paths + path_idx; 1878 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b; 1879 1880 BUG_ON(!btree_node_locked(path, b->c.level)); 1881 1882 n = __btree_root_alloc(as, trans, b->c.level + 1); 1883 1884 bch2_btree_update_add_new_node(as, n); 1885 six_unlock_write(&n->c.lock); 1886 1887 path->locks_want++; 1888 BUG_ON(btree_node_locked(path, n->c.level)); 1889 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1890 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1891 bch2_btree_path_level_init(trans, path, n); 1892 1893 n->sib_u64s[0] = U16_MAX; 1894 n->sib_u64s[1] = U16_MAX; 1895 1896 bch2_keylist_add(&as->parent_keys, &b->key); 1897 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys); 1898 1899 int ret = bch2_btree_set_root(as, trans, path, n, true); 1900 BUG_ON(ret); 1901 1902 bch2_btree_update_get_open_buckets(as, n); 1903 bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0); 1904 bch2_trans_node_add(trans, path, n); 1905 six_unlock_intent(&n->c.lock); 1906 1907 mutex_lock(&c->btree_cache.lock); 1908 list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list); 1909 mutex_unlock(&c->btree_cache.lock); 1910 1911 bch2_trans_verify_locks(trans); 1912 } 1913 1914 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) 1915 { 1916 struct bch_fs *c = trans->c; 1917 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b; 1918 1919 if (btree_node_fake(b)) 1920 return bch2_btree_split_leaf(trans, path, flags); 1921 1922 struct btree_update *as = 1923 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags); 1924 if (IS_ERR(as)) 1925 return PTR_ERR(as); 1926 1927 __btree_increase_depth(as, trans, path); 1928 bch2_btree_update_done(as, trans); 1929 return 0; 1930 } 1931 1932 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1933 btree_path_idx_t path, 1934 unsigned level, 1935 unsigned flags, 1936 enum btree_node_sibling sib) 1937 { 1938 struct bch_fs *c = trans->c; 1939 struct btree_update *as; 1940 struct bkey_format_state new_s; 1941 struct bkey_format new_f; 1942 struct bkey_i delete; 1943 struct btree *b, *m, *n, *prev, *next, *parent; 1944 struct bpos sib_pos; 1945 size_t sib_u64s; 1946 enum btree_id btree = trans->paths[path].btree_id; 1947 btree_path_idx_t sib_path = 0, new_path = 0; 1948 u64 start_time = local_clock(); 1949 int ret = 0; 1950 1951 bch2_trans_verify_not_unlocked_or_in_restart(trans); 1952 BUG_ON(!trans->paths[path].should_be_locked); 1953 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1954 1955 /* 1956 * Work around a deadlock caused by the btree write buffer not doing 1957 * merges and leaving tons of merges for us to do - we really don't need 1958 * to be doing merges at all from the interior update path, and if the 1959 * interior update path is generating too many new interior updates we 1960 * deadlock: 1961 */ 1962 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates) 1963 return 0; 1964 1965 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) { 1966 flags &= ~BCH_WATERMARK_MASK; 1967 flags |= BCH_WATERMARK_btree; 1968 flags |= BCH_TRANS_COMMIT_journal_reclaim; 1969 } 1970 1971 b = trans->paths[path].l[level].b; 1972 1973 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1974 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1975 b->sib_u64s[sib] = U16_MAX; 1976 return 0; 1977 } 1978 1979 sib_pos = sib == btree_prev_sib 1980 ? bpos_predecessor(b->data->min_key) 1981 : bpos_successor(b->data->max_key); 1982 1983 sib_path = bch2_path_get(trans, btree, sib_pos, 1984 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_); 1985 ret = bch2_btree_path_traverse(trans, sib_path, false); 1986 if (ret) 1987 goto err; 1988 1989 btree_path_set_should_be_locked(trans, trans->paths + sib_path); 1990 1991 m = trans->paths[sib_path].l[level].b; 1992 1993 if (btree_node_parent(trans->paths + path, b) != 1994 btree_node_parent(trans->paths + sib_path, m)) { 1995 b->sib_u64s[sib] = U16_MAX; 1996 goto out; 1997 } 1998 1999 if (sib == btree_prev_sib) { 2000 prev = m; 2001 next = b; 2002 } else { 2003 prev = b; 2004 next = m; 2005 } 2006 2007 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 2008 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 2009 2010 bch2_bpos_to_text(&buf1, prev->data->max_key); 2011 bch2_bpos_to_text(&buf2, next->data->min_key); 2012 bch_err(c, 2013 "%s(): btree topology error:\n" 2014 " prev ends at %s\n" 2015 " next starts at %s", 2016 __func__, buf1.buf, buf2.buf); 2017 printbuf_exit(&buf1); 2018 printbuf_exit(&buf2); 2019 ret = bch2_topology_error(c); 2020 goto err; 2021 } 2022 2023 bch2_bkey_format_init(&new_s); 2024 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 2025 __bch2_btree_calc_format(&new_s, prev); 2026 __bch2_btree_calc_format(&new_s, next); 2027 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 2028 new_f = bch2_bkey_format_done(&new_s); 2029 2030 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 2031 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 2032 2033 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 2034 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2035 sib_u64s /= 2; 2036 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2037 } 2038 2039 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 2040 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 2041 b->sib_u64s[sib] = sib_u64s; 2042 2043 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 2044 goto out; 2045 2046 parent = btree_node_parent(trans->paths + path, b); 2047 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 2048 BCH_TRANS_COMMIT_no_enospc|flags); 2049 ret = PTR_ERR_OR_ZERO(as); 2050 if (ret) 2051 goto err; 2052 2053 trace_and_count(c, btree_node_merge, trans, b); 2054 2055 n = bch2_btree_node_alloc(as, trans, b->c.level); 2056 2057 SET_BTREE_NODE_SEQ(n->data, 2058 max(BTREE_NODE_SEQ(b->data), 2059 BTREE_NODE_SEQ(m->data)) + 1); 2060 2061 btree_set_min(n, prev->data->min_key); 2062 btree_set_max(n, next->data->max_key); 2063 2064 n->data->format = new_f; 2065 btree_node_set_format(n, new_f); 2066 2067 bch2_btree_sort_into(c, n, prev); 2068 bch2_btree_sort_into(c, n, next); 2069 2070 bch2_btree_build_aux_trees(n); 2071 bch2_btree_update_add_new_node(as, n); 2072 six_unlock_write(&n->c.lock); 2073 2074 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p); 2075 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2076 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2077 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2078 2079 bkey_init(&delete.k); 2080 delete.k.p = prev->key.k.p; 2081 bch2_keylist_add(&as->parent_keys, &delete); 2082 bch2_keylist_add(&as->parent_keys, &n->key); 2083 2084 bch2_trans_verify_paths(trans); 2085 2086 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 2087 if (ret) 2088 goto err_free_update; 2089 2090 bch2_btree_interior_update_will_free_node(as, b); 2091 bch2_btree_interior_update_will_free_node(as, m); 2092 2093 bch2_trans_verify_paths(trans); 2094 2095 bch2_btree_update_get_open_buckets(as, n); 2096 bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0); 2097 2098 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 2099 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 2100 2101 bch2_trans_node_add(trans, trans->paths + path, n); 2102 2103 bch2_trans_verify_paths(trans); 2104 2105 six_unlock_intent(&n->c.lock); 2106 2107 bch2_btree_update_done(as, trans); 2108 2109 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 2110 out: 2111 err: 2112 if (new_path) 2113 bch2_path_put(trans, new_path, true); 2114 bch2_path_put(trans, sib_path, true); 2115 bch2_trans_verify_locks(trans); 2116 if (ret == -BCH_ERR_journal_reclaim_would_deadlock) 2117 ret = 0; 2118 if (!ret) 2119 ret = bch2_trans_relock(trans); 2120 return ret; 2121 err_free_update: 2122 bch2_btree_node_free_never_used(as, trans, n); 2123 bch2_btree_update_free(as, trans); 2124 goto out; 2125 } 2126 2127 int bch2_btree_node_rewrite(struct btree_trans *trans, 2128 struct btree_iter *iter, 2129 struct btree *b, 2130 unsigned flags) 2131 { 2132 struct bch_fs *c = trans->c; 2133 struct btree *n, *parent; 2134 struct btree_update *as; 2135 btree_path_idx_t new_path = 0; 2136 int ret; 2137 2138 flags |= BCH_TRANS_COMMIT_no_enospc; 2139 2140 struct btree_path *path = btree_iter_path(trans, iter); 2141 parent = btree_node_parent(path, b); 2142 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 2143 ret = PTR_ERR_OR_ZERO(as); 2144 if (ret) 2145 goto out; 2146 2147 n = bch2_btree_node_alloc_replacement(as, trans, b); 2148 2149 bch2_btree_build_aux_trees(n); 2150 bch2_btree_update_add_new_node(as, n); 2151 six_unlock_write(&n->c.lock); 2152 2153 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p); 2154 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2155 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2156 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2157 2158 trace_and_count(c, btree_node_rewrite, trans, b); 2159 2160 if (parent) { 2161 bch2_keylist_add(&as->parent_keys, &n->key); 2162 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys); 2163 } else { 2164 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false); 2165 } 2166 2167 if (ret) 2168 goto err; 2169 2170 bch2_btree_interior_update_will_free_node(as, b); 2171 2172 bch2_btree_update_get_open_buckets(as, n); 2173 bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0); 2174 2175 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2176 2177 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2178 six_unlock_intent(&n->c.lock); 2179 2180 bch2_btree_update_done(as, trans); 2181 out: 2182 if (new_path) 2183 bch2_path_put(trans, new_path, true); 2184 bch2_trans_downgrade(trans); 2185 return ret; 2186 err: 2187 bch2_btree_node_free_never_used(as, trans, n); 2188 bch2_btree_update_free(as, trans); 2189 goto out; 2190 } 2191 2192 struct async_btree_rewrite { 2193 struct bch_fs *c; 2194 struct work_struct work; 2195 struct list_head list; 2196 enum btree_id btree_id; 2197 unsigned level; 2198 struct bkey_buf key; 2199 }; 2200 2201 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2202 struct async_btree_rewrite *a) 2203 { 2204 struct btree_iter iter; 2205 bch2_trans_node_iter_init(trans, &iter, 2206 a->btree_id, a->key.k->k.p, 2207 BTREE_MAX_DEPTH, a->level, 0); 2208 struct btree *b = bch2_btree_iter_peek_node(&iter); 2209 int ret = PTR_ERR_OR_ZERO(b); 2210 if (ret) 2211 goto out; 2212 2213 bool found = b && btree_ptr_hash_val(&b->key) == btree_ptr_hash_val(a->key.k); 2214 ret = found 2215 ? bch2_btree_node_rewrite(trans, &iter, b, 0) 2216 : -ENOENT; 2217 2218 #if 0 2219 /* Tracepoint... */ 2220 if (!ret || ret == -ENOENT) { 2221 struct bch_fs *c = trans->c; 2222 struct printbuf buf = PRINTBUF; 2223 2224 if (!ret) { 2225 prt_printf(&buf, "rewrite node:\n "); 2226 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(a->key.k)); 2227 } else { 2228 prt_printf(&buf, "node to rewrite not found:\n want: "); 2229 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(a->key.k)); 2230 prt_printf(&buf, "\n got: "); 2231 if (b) 2232 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2233 else 2234 prt_str(&buf, "(null)"); 2235 } 2236 bch_info(c, "%s", buf.buf); 2237 printbuf_exit(&buf); 2238 } 2239 #endif 2240 out: 2241 bch2_trans_iter_exit(trans, &iter); 2242 return ret; 2243 } 2244 2245 static void async_btree_node_rewrite_work(struct work_struct *work) 2246 { 2247 struct async_btree_rewrite *a = 2248 container_of(work, struct async_btree_rewrite, work); 2249 struct bch_fs *c = a->c; 2250 2251 int ret = bch2_trans_do(c, async_btree_node_rewrite_trans(trans, a)); 2252 if (ret != -ENOENT) 2253 bch_err_fn_ratelimited(c, ret); 2254 2255 spin_lock(&c->btree_node_rewrites_lock); 2256 list_del(&a->list); 2257 spin_unlock(&c->btree_node_rewrites_lock); 2258 2259 closure_wake_up(&c->btree_node_rewrites_wait); 2260 2261 bch2_bkey_buf_exit(&a->key, c); 2262 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2263 kfree(a); 2264 } 2265 2266 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2267 { 2268 struct async_btree_rewrite *a = kmalloc(sizeof(*a), GFP_NOFS); 2269 if (!a) 2270 return; 2271 2272 a->c = c; 2273 a->btree_id = b->c.btree_id; 2274 a->level = b->c.level; 2275 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2276 2277 bch2_bkey_buf_init(&a->key); 2278 bch2_bkey_buf_copy(&a->key, c, &b->key); 2279 2280 bool now = false, pending = false; 2281 2282 spin_lock(&c->btree_node_rewrites_lock); 2283 if (c->curr_recovery_pass > BCH_RECOVERY_PASS_journal_replay && 2284 bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2285 list_add(&a->list, &c->btree_node_rewrites); 2286 now = true; 2287 } else if (!test_bit(BCH_FS_may_go_rw, &c->flags)) { 2288 list_add(&a->list, &c->btree_node_rewrites_pending); 2289 pending = true; 2290 } 2291 spin_unlock(&c->btree_node_rewrites_lock); 2292 2293 if (now) { 2294 queue_work(c->btree_node_rewrite_worker, &a->work); 2295 } else if (pending) { 2296 /* bch2_do_pending_node_rewrites will execute */ 2297 } else { 2298 bch2_bkey_buf_exit(&a->key, c); 2299 kfree(a); 2300 } 2301 } 2302 2303 void bch2_async_btree_node_rewrites_flush(struct bch_fs *c) 2304 { 2305 closure_wait_event(&c->btree_node_rewrites_wait, 2306 list_empty(&c->btree_node_rewrites)); 2307 } 2308 2309 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2310 { 2311 while (1) { 2312 spin_lock(&c->btree_node_rewrites_lock); 2313 struct async_btree_rewrite *a = 2314 list_pop_entry(&c->btree_node_rewrites_pending, 2315 struct async_btree_rewrite, list); 2316 if (a) 2317 list_add(&a->list, &c->btree_node_rewrites); 2318 spin_unlock(&c->btree_node_rewrites_lock); 2319 2320 if (!a) 2321 break; 2322 2323 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2324 queue_work(c->btree_node_rewrite_worker, &a->work); 2325 } 2326 } 2327 2328 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2329 { 2330 while (1) { 2331 spin_lock(&c->btree_node_rewrites_lock); 2332 struct async_btree_rewrite *a = 2333 list_pop_entry(&c->btree_node_rewrites_pending, 2334 struct async_btree_rewrite, list); 2335 spin_unlock(&c->btree_node_rewrites_lock); 2336 2337 if (!a) 2338 break; 2339 2340 bch2_bkey_buf_exit(&a->key, c); 2341 kfree(a); 2342 } 2343 } 2344 2345 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2346 struct btree_iter *iter, 2347 struct btree *b, struct btree *new_hash, 2348 struct bkey_i *new_key, 2349 unsigned commit_flags, 2350 bool skip_triggers) 2351 { 2352 struct bch_fs *c = trans->c; 2353 struct btree_iter iter2 = { NULL }; 2354 struct btree *parent; 2355 int ret; 2356 2357 if (!skip_triggers) { 2358 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2359 bkey_i_to_s_c(&b->key), 2360 BTREE_TRIGGER_transactional) ?: 2361 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2362 bkey_i_to_s(new_key), 2363 BTREE_TRIGGER_transactional); 2364 if (ret) 2365 return ret; 2366 } 2367 2368 if (new_hash) { 2369 bkey_copy(&new_hash->key, new_key); 2370 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2371 new_hash, b->c.level, b->c.btree_id); 2372 BUG_ON(ret); 2373 } 2374 2375 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2376 if (parent) { 2377 bch2_trans_copy_iter(&iter2, iter); 2378 2379 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2380 iter2.flags & BTREE_ITER_intent, 2381 _THIS_IP_); 2382 2383 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2384 BUG_ON(path2->level != b->c.level); 2385 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2386 2387 btree_path_set_level_up(trans, path2); 2388 2389 trans->paths_sorted = false; 2390 2391 ret = bch2_btree_iter_traverse(&iter2) ?: 2392 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun); 2393 if (ret) 2394 goto err; 2395 } else { 2396 BUG_ON(btree_node_root(c, b) != b); 2397 2398 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2399 jset_u64s(new_key->k.u64s)); 2400 ret = PTR_ERR_OR_ZERO(e); 2401 if (ret) 2402 return ret; 2403 2404 journal_entry_set(e, 2405 BCH_JSET_ENTRY_btree_root, 2406 b->c.btree_id, b->c.level, 2407 new_key, new_key->k.u64s); 2408 } 2409 2410 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2411 if (ret) 2412 goto err; 2413 2414 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2415 2416 if (new_hash) { 2417 mutex_lock(&c->btree_cache.lock); 2418 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2419 2420 __bch2_btree_node_hash_remove(&c->btree_cache, b); 2421 2422 bkey_copy(&b->key, new_key); 2423 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2424 BUG_ON(ret); 2425 mutex_unlock(&c->btree_cache.lock); 2426 } else { 2427 bkey_copy(&b->key, new_key); 2428 } 2429 2430 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2431 out: 2432 bch2_trans_iter_exit(trans, &iter2); 2433 return ret; 2434 err: 2435 if (new_hash) { 2436 mutex_lock(&c->btree_cache.lock); 2437 bch2_btree_node_hash_remove(&c->btree_cache, b); 2438 mutex_unlock(&c->btree_cache.lock); 2439 } 2440 goto out; 2441 } 2442 2443 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2444 struct btree *b, struct bkey_i *new_key, 2445 unsigned commit_flags, bool skip_triggers) 2446 { 2447 struct bch_fs *c = trans->c; 2448 struct btree *new_hash = NULL; 2449 struct btree_path *path = btree_iter_path(trans, iter); 2450 struct closure cl; 2451 int ret = 0; 2452 2453 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2454 if (ret) 2455 return ret; 2456 2457 closure_init_stack(&cl); 2458 2459 /* 2460 * check btree_ptr_hash_val() after @b is locked by 2461 * btree_iter_traverse(): 2462 */ 2463 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2464 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2465 if (ret) { 2466 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2467 if (ret) 2468 return ret; 2469 } 2470 2471 new_hash = bch2_btree_node_mem_alloc(trans, false); 2472 ret = PTR_ERR_OR_ZERO(new_hash); 2473 if (ret) 2474 goto err; 2475 } 2476 2477 path->intent_ref++; 2478 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2479 commit_flags, skip_triggers); 2480 --path->intent_ref; 2481 2482 if (new_hash) 2483 bch2_btree_node_to_freelist(c, new_hash); 2484 err: 2485 closure_sync(&cl); 2486 bch2_btree_cache_cannibalize_unlock(trans); 2487 return ret; 2488 } 2489 2490 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2491 struct btree *b, struct bkey_i *new_key, 2492 unsigned commit_flags, bool skip_triggers) 2493 { 2494 struct btree_iter iter; 2495 int ret; 2496 2497 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2498 BTREE_MAX_DEPTH, b->c.level, 2499 BTREE_ITER_intent); 2500 ret = bch2_btree_iter_traverse(&iter); 2501 if (ret) 2502 goto out; 2503 2504 /* has node been freed? */ 2505 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2506 /* node has been freed: */ 2507 BUG_ON(!btree_node_dying(b)); 2508 goto out; 2509 } 2510 2511 BUG_ON(!btree_node_hashed(b)); 2512 2513 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2514 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2515 2516 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2517 commit_flags, skip_triggers); 2518 out: 2519 bch2_trans_iter_exit(trans, &iter); 2520 return ret; 2521 } 2522 2523 /* Init code: */ 2524 2525 /* 2526 * Only for filesystem bringup, when first reading the btree roots or allocating 2527 * btree roots when initializing a new filesystem: 2528 */ 2529 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2530 { 2531 BUG_ON(btree_node_root(c, b)); 2532 2533 bch2_btree_set_root_inmem(c, b); 2534 } 2535 2536 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level) 2537 { 2538 struct bch_fs *c = trans->c; 2539 struct closure cl; 2540 struct btree *b; 2541 int ret; 2542 2543 closure_init_stack(&cl); 2544 2545 do { 2546 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2547 closure_sync(&cl); 2548 } while (ret); 2549 2550 b = bch2_btree_node_mem_alloc(trans, false); 2551 bch2_btree_cache_cannibalize_unlock(trans); 2552 2553 ret = PTR_ERR_OR_ZERO(b); 2554 if (ret) 2555 return ret; 2556 2557 set_btree_node_fake(b); 2558 set_btree_node_need_rewrite(b); 2559 b->c.level = level; 2560 b->c.btree_id = id; 2561 2562 bkey_btree_ptr_init(&b->key); 2563 b->key.k.p = SPOS_MAX; 2564 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2565 2566 bch2_bset_init_first(b, &b->data->keys); 2567 bch2_btree_build_aux_trees(b); 2568 2569 b->data->flags = 0; 2570 btree_set_min(b, POS_MIN); 2571 btree_set_max(b, SPOS_MAX); 2572 b->data->format = bch2_btree_calc_format(b); 2573 btree_node_set_format(b, b->data->format); 2574 2575 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2576 b->c.level, b->c.btree_id); 2577 BUG_ON(ret); 2578 2579 bch2_btree_set_root_inmem(c, b); 2580 2581 six_unlock_write(&b->c.lock); 2582 six_unlock_intent(&b->c.lock); 2583 return 0; 2584 } 2585 2586 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level) 2587 { 2588 bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level))); 2589 } 2590 2591 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as) 2592 { 2593 prt_printf(out, "%ps: ", (void *) as->ip_started); 2594 bch2_trans_commit_flags_to_text(out, as->flags); 2595 2596 prt_str(out, " "); 2597 bch2_btree_id_to_text(out, as->btree_id); 2598 prt_printf(out, " l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n", 2599 as->update_level_start, 2600 as->update_level_end, 2601 bch2_btree_update_modes[as->mode], 2602 as->nodes_written, 2603 closure_nr_remaining(&as->cl), 2604 as->journal.seq); 2605 } 2606 2607 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2608 { 2609 struct btree_update *as; 2610 2611 mutex_lock(&c->btree_interior_update_lock); 2612 list_for_each_entry(as, &c->btree_interior_update_list, list) 2613 bch2_btree_update_to_text(out, as); 2614 mutex_unlock(&c->btree_interior_update_lock); 2615 } 2616 2617 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2618 { 2619 bool ret; 2620 2621 mutex_lock(&c->btree_interior_update_lock); 2622 ret = !list_empty(&c->btree_interior_update_list); 2623 mutex_unlock(&c->btree_interior_update_lock); 2624 2625 return ret; 2626 } 2627 2628 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2629 { 2630 bool ret = bch2_btree_interior_updates_pending(c); 2631 2632 if (ret) 2633 closure_wait_event(&c->btree_interior_update_wait, 2634 !bch2_btree_interior_updates_pending(c)); 2635 return ret; 2636 } 2637 2638 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2639 { 2640 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2641 2642 mutex_lock(&c->btree_root_lock); 2643 2644 r->level = entry->level; 2645 r->alive = true; 2646 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2647 2648 mutex_unlock(&c->btree_root_lock); 2649 } 2650 2651 struct jset_entry * 2652 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2653 struct jset_entry *end, 2654 unsigned long skip) 2655 { 2656 unsigned i; 2657 2658 mutex_lock(&c->btree_root_lock); 2659 2660 for (i = 0; i < btree_id_nr_alive(c); i++) { 2661 struct btree_root *r = bch2_btree_id_root(c, i); 2662 2663 if (r->alive && !test_bit(i, &skip)) { 2664 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2665 i, r->level, &r->key, r->key.k.u64s); 2666 end = vstruct_next(end); 2667 } 2668 } 2669 2670 mutex_unlock(&c->btree_root_lock); 2671 2672 return end; 2673 } 2674 2675 static void bch2_btree_alloc_to_text(struct printbuf *out, 2676 struct bch_fs *c, 2677 struct btree_alloc *a) 2678 { 2679 printbuf_indent_add(out, 2); 2680 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k)); 2681 prt_newline(out); 2682 2683 struct open_bucket *ob; 2684 unsigned i; 2685 open_bucket_for_each(c, &a->ob, ob, i) 2686 bch2_open_bucket_to_text(out, c, ob); 2687 2688 printbuf_indent_sub(out, 2); 2689 } 2690 2691 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c) 2692 { 2693 for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++) 2694 bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]); 2695 } 2696 2697 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2698 { 2699 WARN_ON(!list_empty(&c->btree_node_rewrites)); 2700 WARN_ON(!list_empty(&c->btree_node_rewrites_pending)); 2701 2702 if (c->btree_node_rewrite_worker) 2703 destroy_workqueue(c->btree_node_rewrite_worker); 2704 if (c->btree_interior_update_worker) 2705 destroy_workqueue(c->btree_interior_update_worker); 2706 mempool_exit(&c->btree_interior_update_pool); 2707 } 2708 2709 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2710 { 2711 mutex_init(&c->btree_reserve_cache_lock); 2712 INIT_LIST_HEAD(&c->btree_interior_update_list); 2713 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2714 mutex_init(&c->btree_interior_update_lock); 2715 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2716 2717 INIT_LIST_HEAD(&c->btree_node_rewrites); 2718 INIT_LIST_HEAD(&c->btree_node_rewrites_pending); 2719 spin_lock_init(&c->btree_node_rewrites_lock); 2720 } 2721 2722 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2723 { 2724 c->btree_interior_update_worker = 2725 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8); 2726 if (!c->btree_interior_update_worker) 2727 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2728 2729 c->btree_node_rewrite_worker = 2730 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND); 2731 if (!c->btree_node_rewrite_worker) 2732 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2733 2734 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2735 sizeof(struct btree_update))) 2736 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2737 2738 return 0; 2739 } 2740