xref: /linux/fs/bcachefs/btree_update_interior.c (revision 1cbfb828e05171ca2dd77b5988d068e6872480fe)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_buf.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
8 #include "btree_gc.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "btree_io.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
15 #include "buckets.h"
16 #include "clock.h"
17 #include "error.h"
18 #include "extents.h"
19 #include "io_write.h"
20 #include "journal.h"
21 #include "journal_reclaim.h"
22 #include "keylist.h"
23 #include "recovery_passes.h"
24 #include "replicas.h"
25 #include "sb-members.h"
26 #include "super-io.h"
27 #include "trace.h"
28 
29 #include <linux/random.h>
30 
31 static const char * const bch2_btree_update_modes[] = {
32 #define x(t) #t,
33 	BTREE_UPDATE_MODES()
34 #undef x
35 	NULL
36 };
37 
38 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
39 				  btree_path_idx_t, struct btree *, struct keylist *);
40 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
41 
42 /*
43  * Verify that child nodes correctly span parent node's range:
44  */
45 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
46 {
47 	struct bch_fs *c = trans->c;
48 	struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
49 		? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
50 		: b->data->min_key;
51 	struct btree_and_journal_iter iter;
52 	struct bkey_s_c k;
53 	struct printbuf buf = PRINTBUF;
54 	struct bkey_buf prev;
55 	int ret = 0;
56 
57 	BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
58 	       !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
59 			b->data->min_key));
60 
61 	bch2_bkey_buf_init(&prev);
62 	bkey_init(&prev.k->k);
63 	bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
64 
65 	if (b == btree_node_root(c, b)) {
66 		if (!bpos_eq(b->data->min_key, POS_MIN)) {
67 			printbuf_reset(&buf);
68 			bch2_bpos_to_text(&buf, b->data->min_key);
69 			log_fsck_err(trans, btree_root_bad_min_key,
70 				      "btree root with incorrect min_key: %s", buf.buf);
71 			goto topology_repair;
72 		}
73 
74 		if (!bpos_eq(b->data->max_key, SPOS_MAX)) {
75 			printbuf_reset(&buf);
76 			bch2_bpos_to_text(&buf, b->data->max_key);
77 			log_fsck_err(trans, btree_root_bad_max_key,
78 				      "btree root with incorrect max_key: %s", buf.buf);
79 			goto topology_repair;
80 		}
81 	}
82 
83 	if (!b->c.level)
84 		goto out;
85 
86 	while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
87 		if (k.k->type != KEY_TYPE_btree_ptr_v2)
88 			goto out;
89 
90 		struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
91 
92 		struct bpos expected_min = bkey_deleted(&prev.k->k)
93 			? node_min
94 			: bpos_successor(prev.k->k.p);
95 
96 		if (!bpos_eq(expected_min, bp.v->min_key)) {
97 			bch2_topology_error(c);
98 
99 			printbuf_reset(&buf);
100 			prt_str(&buf, "end of prev node doesn't match start of next node\n  in ");
101 			bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
102 			prt_str(&buf, " node ");
103 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
104 			prt_str(&buf, "\n  prev ");
105 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
106 			prt_str(&buf, "\n  next ");
107 			bch2_bkey_val_to_text(&buf, c, k);
108 
109 			log_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf);
110 			goto topology_repair;
111 		}
112 
113 		bch2_bkey_buf_reassemble(&prev, c, k);
114 		bch2_btree_and_journal_iter_advance(&iter);
115 	}
116 
117 	if (bkey_deleted(&prev.k->k)) {
118 		bch2_topology_error(c);
119 
120 		printbuf_reset(&buf);
121 		prt_str(&buf, "empty interior node\n  in ");
122 		bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
123 		prt_str(&buf, " node ");
124 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
125 
126 		log_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf);
127 		goto topology_repair;
128 	} else if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
129 		bch2_topology_error(c);
130 
131 		printbuf_reset(&buf);
132 		prt_str(&buf, "last child node doesn't end at end of parent node\n  in ");
133 		bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
134 		prt_str(&buf, " node ");
135 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
136 		prt_str(&buf, "\n  last key ");
137 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
138 
139 		log_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf);
140 		goto topology_repair;
141 	}
142 out:
143 fsck_err:
144 	bch2_btree_and_journal_iter_exit(&iter);
145 	bch2_bkey_buf_exit(&prev, c);
146 	printbuf_exit(&buf);
147 	return ret;
148 topology_repair:
149 	ret = bch2_topology_error(c);
150 	goto out;
151 }
152 
153 /* Calculate ideal packed bkey format for new btree nodes: */
154 
155 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
156 {
157 	struct bkey_packed *k;
158 	struct bkey uk;
159 
160 	for_each_bset(b, t)
161 		bset_tree_for_each_key(b, t, k)
162 			if (!bkey_deleted(k)) {
163 				uk = bkey_unpack_key(b, k);
164 				bch2_bkey_format_add_key(s, &uk);
165 			}
166 }
167 
168 static struct bkey_format bch2_btree_calc_format(struct btree *b)
169 {
170 	struct bkey_format_state s;
171 
172 	bch2_bkey_format_init(&s);
173 	bch2_bkey_format_add_pos(&s, b->data->min_key);
174 	bch2_bkey_format_add_pos(&s, b->data->max_key);
175 	__bch2_btree_calc_format(&s, b);
176 
177 	return bch2_bkey_format_done(&s);
178 }
179 
180 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
181 					  struct bkey_format *old_f,
182 					  struct bkey_format *new_f)
183 {
184 	/* stupid integer promotion rules */
185 	ssize_t delta =
186 	    (((int) new_f->key_u64s - old_f->key_u64s) *
187 	     (int) nr.packed_keys) +
188 	    (((int) new_f->key_u64s - BKEY_U64s) *
189 	     (int) nr.unpacked_keys);
190 
191 	BUG_ON(delta + nr.live_u64s < 0);
192 
193 	return nr.live_u64s + delta;
194 }
195 
196 /**
197  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
198  *
199  * @c:		filesystem handle
200  * @b:		btree node to rewrite
201  * @nr:		number of keys for new node (i.e. b->nr)
202  * @new_f:	bkey format to translate keys to
203  *
204  * Returns: true if all re-packed keys will be able to fit in a new node.
205  *
206  * Assumes all keys will successfully pack with the new format.
207  */
208 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
209 				 struct btree_nr_keys nr,
210 				 struct bkey_format *new_f)
211 {
212 	size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
213 
214 	return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
215 }
216 
217 /* Btree node freeing/allocation: */
218 
219 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
220 {
221 	struct bch_fs *c = trans->c;
222 
223 	trace_and_count(c, btree_node_free, trans, b);
224 
225 	BUG_ON(btree_node_write_blocked(b));
226 	BUG_ON(btree_node_dirty(b));
227 	BUG_ON(btree_node_need_write(b));
228 	BUG_ON(b == btree_node_root(c, b));
229 	BUG_ON(b->ob.nr);
230 	BUG_ON(!list_empty(&b->write_blocked));
231 	BUG_ON(b->will_make_reachable);
232 
233 	clear_btree_node_noevict(b);
234 }
235 
236 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
237 				       struct btree_path *path,
238 				       struct btree *b)
239 {
240 	struct bch_fs *c = trans->c;
241 
242 	bch2_btree_node_lock_write_nofail(trans, path, &b->c);
243 
244 	__btree_node_free(trans, b);
245 
246 	mutex_lock(&c->btree_cache.lock);
247 	bch2_btree_node_hash_remove(&c->btree_cache, b);
248 	mutex_unlock(&c->btree_cache.lock);
249 
250 	six_unlock_write(&b->c.lock);
251 	mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
252 
253 	bch2_trans_node_drop(trans, b);
254 }
255 
256 static void bch2_btree_node_free_never_used(struct btree_update *as,
257 					    struct btree_trans *trans,
258 					    struct btree *b)
259 {
260 	struct bch_fs *c = as->c;
261 	struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
262 
263 	BUG_ON(!list_empty(&b->write_blocked));
264 	BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
265 
266 	b->will_make_reachable = 0;
267 	closure_put(&as->cl);
268 
269 	clear_btree_node_will_make_reachable(b);
270 	clear_btree_node_accessed(b);
271 	clear_btree_node_dirty_acct(c, b);
272 	clear_btree_node_need_write(b);
273 
274 	mutex_lock(&c->btree_cache.lock);
275 	__bch2_btree_node_hash_remove(&c->btree_cache, b);
276 	mutex_unlock(&c->btree_cache.lock);
277 
278 	BUG_ON(p->nr >= ARRAY_SIZE(p->b));
279 	p->b[p->nr++] = b;
280 
281 	six_unlock_intent(&b->c.lock);
282 
283 	bch2_trans_node_drop(trans, b);
284 }
285 
286 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
287 					     struct disk_reservation *res,
288 					     struct closure *cl,
289 					     bool interior_node,
290 					     unsigned flags)
291 {
292 	struct bch_fs *c = trans->c;
293 	struct write_point *wp;
294 	struct btree *b;
295 	BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
296 	struct open_buckets obs = { .nr = 0 };
297 	struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
298 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
299 	unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
300 		? BTREE_NODE_RESERVE
301 		: 0;
302 	int ret;
303 
304 	b = bch2_btree_node_mem_alloc(trans, interior_node);
305 	if (IS_ERR(b))
306 		return b;
307 
308 	BUG_ON(b->ob.nr);
309 
310 	mutex_lock(&c->btree_reserve_cache_lock);
311 	if (c->btree_reserve_cache_nr > nr_reserve) {
312 		struct btree_alloc *a =
313 			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
314 
315 		obs = a->ob;
316 		bkey_copy(&tmp.k, &a->k);
317 		mutex_unlock(&c->btree_reserve_cache_lock);
318 		goto out;
319 	}
320 	mutex_unlock(&c->btree_reserve_cache_lock);
321 retry:
322 	ret = bch2_alloc_sectors_start_trans(trans,
323 				      c->opts.metadata_target ?:
324 				      c->opts.foreground_target,
325 				      0,
326 				      writepoint_ptr(&c->btree_write_point),
327 				      &devs_have,
328 				      res->nr_replicas,
329 				      min(res->nr_replicas,
330 					  c->opts.metadata_replicas_required),
331 				      watermark, 0, cl, &wp);
332 	if (unlikely(ret))
333 		goto err;
334 
335 	if (wp->sectors_free < btree_sectors(c)) {
336 		struct open_bucket *ob;
337 		unsigned i;
338 
339 		open_bucket_for_each(c, &wp->ptrs, ob, i)
340 			if (ob->sectors_free < btree_sectors(c))
341 				ob->sectors_free = 0;
342 
343 		bch2_alloc_sectors_done(c, wp);
344 		goto retry;
345 	}
346 
347 	bkey_btree_ptr_v2_init(&tmp.k);
348 	bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
349 
350 	bch2_open_bucket_get(c, wp, &obs);
351 	bch2_alloc_sectors_done(c, wp);
352 out:
353 	bkey_copy(&b->key, &tmp.k);
354 	b->ob = obs;
355 	six_unlock_write(&b->c.lock);
356 	six_unlock_intent(&b->c.lock);
357 
358 	return b;
359 err:
360 	bch2_btree_node_to_freelist(c, b);
361 	return ERR_PTR(ret);
362 }
363 
364 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
365 					   struct btree_trans *trans,
366 					   unsigned level)
367 {
368 	struct bch_fs *c = as->c;
369 	struct btree *b;
370 	struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
371 	int ret;
372 
373 	BUG_ON(level >= BTREE_MAX_DEPTH);
374 	BUG_ON(!p->nr);
375 
376 	b = p->b[--p->nr];
377 
378 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
379 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
380 
381 	set_btree_node_accessed(b);
382 	set_btree_node_dirty_acct(c, b);
383 	set_btree_node_need_write(b);
384 
385 	bch2_bset_init_first(b, &b->data->keys);
386 	b->c.level	= level;
387 	b->c.btree_id	= as->btree_id;
388 	b->version_ondisk = c->sb.version;
389 
390 	memset(&b->nr, 0, sizeof(b->nr));
391 	b->data->magic = cpu_to_le64(bset_magic(c));
392 	memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
393 	b->data->flags = 0;
394 	SET_BTREE_NODE_ID(b->data, as->btree_id);
395 	SET_BTREE_NODE_LEVEL(b->data, level);
396 
397 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
398 		struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
399 
400 		bp->v.mem_ptr		= 0;
401 		bp->v.seq		= b->data->keys.seq;
402 		bp->v.sectors_written	= 0;
403 	}
404 
405 	SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
406 
407 	bch2_btree_build_aux_trees(b);
408 
409 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
410 	BUG_ON(ret);
411 
412 	trace_and_count(c, btree_node_alloc, trans, b);
413 	bch2_increment_clock(c, btree_sectors(c), WRITE);
414 	return b;
415 }
416 
417 static void btree_set_min(struct btree *b, struct bpos pos)
418 {
419 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
420 		bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
421 	b->data->min_key = pos;
422 }
423 
424 static void btree_set_max(struct btree *b, struct bpos pos)
425 {
426 	b->key.k.p = pos;
427 	b->data->max_key = pos;
428 }
429 
430 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
431 						       struct btree_trans *trans,
432 						       struct btree *b)
433 {
434 	struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
435 	struct bkey_format format = bch2_btree_calc_format(b);
436 
437 	/*
438 	 * The keys might expand with the new format - if they wouldn't fit in
439 	 * the btree node anymore, use the old format for now:
440 	 */
441 	if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
442 		format = b->format;
443 
444 	SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
445 
446 	btree_set_min(n, b->data->min_key);
447 	btree_set_max(n, b->data->max_key);
448 
449 	n->data->format		= format;
450 	btree_node_set_format(n, format);
451 
452 	bch2_btree_sort_into(as->c, n, b);
453 
454 	btree_node_reset_sib_u64s(n);
455 	return n;
456 }
457 
458 static struct btree *__btree_root_alloc(struct btree_update *as,
459 				struct btree_trans *trans, unsigned level)
460 {
461 	struct btree *b = bch2_btree_node_alloc(as, trans, level);
462 
463 	btree_set_min(b, POS_MIN);
464 	btree_set_max(b, SPOS_MAX);
465 	b->data->format = bch2_btree_calc_format(b);
466 
467 	btree_node_set_format(b, b->data->format);
468 	bch2_btree_build_aux_trees(b);
469 
470 	return b;
471 }
472 
473 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
474 {
475 	struct bch_fs *c = as->c;
476 	struct prealloc_nodes *p;
477 
478 	for (p = as->prealloc_nodes;
479 	     p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
480 	     p++) {
481 		while (p->nr) {
482 			struct btree *b = p->b[--p->nr];
483 
484 			mutex_lock(&c->btree_reserve_cache_lock);
485 
486 			if (c->btree_reserve_cache_nr <
487 			    ARRAY_SIZE(c->btree_reserve_cache)) {
488 				struct btree_alloc *a =
489 					&c->btree_reserve_cache[c->btree_reserve_cache_nr++];
490 
491 				a->ob = b->ob;
492 				b->ob.nr = 0;
493 				bkey_copy(&a->k, &b->key);
494 			} else {
495 				bch2_open_buckets_put(c, &b->ob);
496 			}
497 
498 			mutex_unlock(&c->btree_reserve_cache_lock);
499 
500 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
501 			btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
502 			__btree_node_free(trans, b);
503 			bch2_btree_node_to_freelist(c, b);
504 		}
505 	}
506 }
507 
508 static int bch2_btree_reserve_get(struct btree_trans *trans,
509 				  struct btree_update *as,
510 				  unsigned nr_nodes[2],
511 				  unsigned flags,
512 				  struct closure *cl)
513 {
514 	struct btree *b;
515 	unsigned interior;
516 	int ret = 0;
517 
518 	BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
519 
520 	/*
521 	 * Protects reaping from the btree node cache and using the btree node
522 	 * open bucket reserve:
523 	 */
524 	ret = bch2_btree_cache_cannibalize_lock(trans, cl);
525 	if (ret)
526 		return ret;
527 
528 	for (interior = 0; interior < 2; interior++) {
529 		struct prealloc_nodes *p = as->prealloc_nodes + interior;
530 
531 		while (p->nr < nr_nodes[interior]) {
532 			b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
533 						    interior, flags);
534 			if (IS_ERR(b)) {
535 				ret = PTR_ERR(b);
536 				goto err;
537 			}
538 
539 			p->b[p->nr++] = b;
540 		}
541 	}
542 err:
543 	bch2_btree_cache_cannibalize_unlock(trans);
544 	return ret;
545 }
546 
547 /* Asynchronous interior node update machinery */
548 
549 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
550 {
551 	struct bch_fs *c = as->c;
552 
553 	if (as->took_gc_lock)
554 		up_read(&c->gc_lock);
555 	as->took_gc_lock = false;
556 
557 	bch2_journal_pin_drop(&c->journal, &as->journal);
558 	bch2_journal_pin_flush(&c->journal, &as->journal);
559 	bch2_disk_reservation_put(c, &as->disk_res);
560 	bch2_btree_reserve_put(as, trans);
561 
562 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
563 			       as->start_time);
564 
565 	mutex_lock(&c->btree_interior_update_lock);
566 	list_del(&as->unwritten_list);
567 	list_del(&as->list);
568 
569 	closure_debug_destroy(&as->cl);
570 	mempool_free(as, &c->btree_interior_update_pool);
571 
572 	/*
573 	 * Have to do the wakeup with btree_interior_update_lock still held,
574 	 * since being on btree_interior_update_list is our ref on @c:
575 	 */
576 	closure_wake_up(&c->btree_interior_update_wait);
577 
578 	mutex_unlock(&c->btree_interior_update_lock);
579 }
580 
581 static void btree_update_add_key(struct btree_update *as,
582 				 struct keylist *keys, struct btree *b)
583 {
584 	struct bkey_i *k = &b->key;
585 
586 	BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
587 	       ARRAY_SIZE(as->_old_keys));
588 
589 	bkey_copy(keys->top, k);
590 	bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
591 
592 	bch2_keylist_push(keys);
593 }
594 
595 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
596 {
597 	for_each_keylist_key(&as->new_keys, k)
598 		if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
599 			return false;
600 	return true;
601 }
602 
603 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
604 {
605 	struct bch_fs *c = as->c;
606 
607 	mutex_lock(&c->sb_lock);
608 	for_each_keylist_key(&as->new_keys, k)
609 		bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
610 
611 	bch2_write_super(c);
612 	mutex_unlock(&c->sb_lock);
613 }
614 
615 /*
616  * The transactional part of an interior btree node update, where we journal the
617  * update we did to the interior node and update alloc info:
618  */
619 static int btree_update_nodes_written_trans(struct btree_trans *trans,
620 					    struct btree_update *as)
621 {
622 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
623 	int ret = PTR_ERR_OR_ZERO(e);
624 	if (ret)
625 		return ret;
626 
627 	memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
628 
629 	trans->journal_pin = &as->journal;
630 
631 	for_each_keylist_key(&as->old_keys, k) {
632 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
633 
634 		ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
635 					   BTREE_TRIGGER_transactional);
636 		if (ret)
637 			return ret;
638 	}
639 
640 	for_each_keylist_key(&as->new_keys, k) {
641 		unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
642 
643 		ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
644 					   BTREE_TRIGGER_transactional);
645 		if (ret)
646 			return ret;
647 	}
648 
649 	return 0;
650 }
651 
652 static void btree_update_nodes_written(struct btree_update *as)
653 {
654 	struct bch_fs *c = as->c;
655 	struct btree *b;
656 	struct btree_trans *trans = bch2_trans_get(c);
657 	u64 journal_seq = 0;
658 	unsigned i;
659 	int ret;
660 
661 	/*
662 	 * If we're already in an error state, it might be because a btree node
663 	 * was never written, and we might be trying to free that same btree
664 	 * node here, but it won't have been marked as allocated and we'll see
665 	 * spurious disk usage inconsistencies in the transactional part below
666 	 * if we don't skip it:
667 	 */
668 	ret = bch2_journal_error(&c->journal);
669 	if (ret)
670 		goto err;
671 
672 	if (!btree_update_new_nodes_marked_sb(as))
673 		btree_update_new_nodes_mark_sb(as);
674 
675 	/*
676 	 * Wait for any in flight writes to finish before we free the old nodes
677 	 * on disk:
678 	 */
679 	for (i = 0; i < as->nr_old_nodes; i++) {
680 		__le64 seq;
681 
682 		b = as->old_nodes[i];
683 
684 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
685 		seq = b->data ? b->data->keys.seq : 0;
686 		six_unlock_read(&b->c.lock);
687 
688 		if (seq == as->old_nodes_seq[i])
689 			wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
690 				       TASK_UNINTERRUPTIBLE);
691 	}
692 
693 	/*
694 	 * We did an update to a parent node where the pointers we added pointed
695 	 * to child nodes that weren't written yet: now, the child nodes have
696 	 * been written so we can write out the update to the interior node.
697 	 */
698 
699 	/*
700 	 * We can't call into journal reclaim here: we'd block on the journal
701 	 * reclaim lock, but we may need to release the open buckets we have
702 	 * pinned in order for other btree updates to make forward progress, and
703 	 * journal reclaim does btree updates when flushing bkey_cached entries,
704 	 * which may require allocations as well.
705 	 */
706 	ret = commit_do(trans, &as->disk_res, &journal_seq,
707 			BCH_WATERMARK_interior_updates|
708 			BCH_TRANS_COMMIT_no_enospc|
709 			BCH_TRANS_COMMIT_no_check_rw|
710 			BCH_TRANS_COMMIT_journal_reclaim,
711 			btree_update_nodes_written_trans(trans, as));
712 	bch2_trans_unlock(trans);
713 
714 	bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
715 			     "%s", bch2_err_str(ret));
716 err:
717 	/*
718 	 * Ensure transaction is unlocked before using btree_node_lock_nopath()
719 	 * (the use of which is always suspect, we need to work on removing this
720 	 * in the future)
721 	 *
722 	 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get()
723 	 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may
724 	 * rarely end up with a locked path besides the one we have here:
725 	 */
726 	bch2_trans_unlock(trans);
727 	bch2_trans_begin(trans);
728 
729 	/*
730 	 * We have to be careful because another thread might be getting ready
731 	 * to free as->b and calling btree_update_reparent() on us - we'll
732 	 * recheck under btree_update_lock below:
733 	 */
734 	b = READ_ONCE(as->b);
735 	if (b) {
736 		/*
737 		 * @b is the node we did the final insert into:
738 		 *
739 		 * On failure to get a journal reservation, we still have to
740 		 * unblock the write and allow most of the write path to happen
741 		 * so that shutdown works, but the i->journal_seq mechanism
742 		 * won't work to prevent the btree write from being visible (we
743 		 * didn't get a journal sequence number) - instead
744 		 * __bch2_btree_node_write() doesn't do the actual write if
745 		 * we're in journal error state:
746 		 */
747 
748 		btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans,
749 						as->btree_id, b->c.level, b->key.k.p);
750 		struct btree_path *path = trans->paths + path_idx;
751 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
752 		mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
753 		path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
754 		path->l[b->c.level].b = b;
755 
756 		bch2_btree_node_lock_write_nofail(trans, path, &b->c);
757 
758 		mutex_lock(&c->btree_interior_update_lock);
759 
760 		list_del(&as->write_blocked_list);
761 		if (list_empty(&b->write_blocked))
762 			clear_btree_node_write_blocked(b);
763 
764 		/*
765 		 * Node might have been freed, recheck under
766 		 * btree_interior_update_lock:
767 		 */
768 		if (as->b == b) {
769 			BUG_ON(!b->c.level);
770 			BUG_ON(!btree_node_dirty(b));
771 
772 			if (!ret) {
773 				struct bset *last = btree_bset_last(b);
774 
775 				last->journal_seq = cpu_to_le64(
776 							     max(journal_seq,
777 								 le64_to_cpu(last->journal_seq)));
778 
779 				bch2_btree_add_journal_pin(c, b, journal_seq);
780 			} else {
781 				/*
782 				 * If we didn't get a journal sequence number we
783 				 * can't write this btree node, because recovery
784 				 * won't know to ignore this write:
785 				 */
786 				set_btree_node_never_write(b);
787 			}
788 		}
789 
790 		mutex_unlock(&c->btree_interior_update_lock);
791 
792 		mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
793 		six_unlock_write(&b->c.lock);
794 
795 		btree_node_write_if_need(trans, b, SIX_LOCK_intent);
796 		btree_node_unlock(trans, path, b->c.level);
797 		bch2_path_put(trans, path_idx, true);
798 	}
799 
800 	bch2_journal_pin_drop(&c->journal, &as->journal);
801 
802 	mutex_lock(&c->btree_interior_update_lock);
803 	for (i = 0; i < as->nr_new_nodes; i++) {
804 		b = as->new_nodes[i];
805 
806 		BUG_ON(b->will_make_reachable != (unsigned long) as);
807 		b->will_make_reachable = 0;
808 		clear_btree_node_will_make_reachable(b);
809 	}
810 	mutex_unlock(&c->btree_interior_update_lock);
811 
812 	for (i = 0; i < as->nr_new_nodes; i++) {
813 		b = as->new_nodes[i];
814 
815 		btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
816 		btree_node_write_if_need(trans, b, SIX_LOCK_read);
817 		six_unlock_read(&b->c.lock);
818 	}
819 
820 	for (i = 0; i < as->nr_open_buckets; i++)
821 		bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
822 
823 	bch2_btree_update_free(as, trans);
824 	bch2_trans_put(trans);
825 }
826 
827 static void btree_interior_update_work(struct work_struct *work)
828 {
829 	struct bch_fs *c =
830 		container_of(work, struct bch_fs, btree_interior_update_work);
831 	struct btree_update *as;
832 
833 	while (1) {
834 		mutex_lock(&c->btree_interior_update_lock);
835 		as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
836 					      struct btree_update, unwritten_list);
837 		if (as && !as->nodes_written)
838 			as = NULL;
839 		mutex_unlock(&c->btree_interior_update_lock);
840 
841 		if (!as)
842 			break;
843 
844 		btree_update_nodes_written(as);
845 	}
846 }
847 
848 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
849 {
850 	closure_type(as, struct btree_update, cl);
851 	struct bch_fs *c = as->c;
852 
853 	mutex_lock(&c->btree_interior_update_lock);
854 	as->nodes_written = true;
855 	mutex_unlock(&c->btree_interior_update_lock);
856 
857 	queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
858 }
859 
860 /*
861  * We're updating @b with pointers to nodes that haven't finished writing yet:
862  * block @b from being written until @as completes
863  */
864 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
865 {
866 	struct bch_fs *c = as->c;
867 
868 	BUG_ON(as->mode != BTREE_UPDATE_none);
869 	BUG_ON(as->update_level_end < b->c.level);
870 	BUG_ON(!btree_node_dirty(b));
871 	BUG_ON(!b->c.level);
872 
873 	mutex_lock(&c->btree_interior_update_lock);
874 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
875 
876 	as->mode	= BTREE_UPDATE_node;
877 	as->b		= b;
878 	as->update_level_end = b->c.level;
879 
880 	set_btree_node_write_blocked(b);
881 	list_add(&as->write_blocked_list, &b->write_blocked);
882 
883 	mutex_unlock(&c->btree_interior_update_lock);
884 }
885 
886 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
887 				struct journal_entry_pin *_pin, u64 seq)
888 {
889 	return 0;
890 }
891 
892 static void btree_update_reparent(struct btree_update *as,
893 				  struct btree_update *child)
894 {
895 	struct bch_fs *c = as->c;
896 
897 	lockdep_assert_held(&c->btree_interior_update_lock);
898 
899 	child->b = NULL;
900 	child->mode = BTREE_UPDATE_update;
901 
902 	bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
903 			      bch2_update_reparent_journal_pin_flush);
904 }
905 
906 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
907 {
908 	struct bkey_i *insert = &b->key;
909 	struct bch_fs *c = as->c;
910 
911 	BUG_ON(as->mode != BTREE_UPDATE_none);
912 
913 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
914 	       ARRAY_SIZE(as->journal_entries));
915 
916 	as->journal_u64s +=
917 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
918 				  BCH_JSET_ENTRY_btree_root,
919 				  b->c.btree_id, b->c.level,
920 				  insert, insert->k.u64s);
921 
922 	mutex_lock(&c->btree_interior_update_lock);
923 	list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
924 
925 	as->mode	= BTREE_UPDATE_root;
926 	mutex_unlock(&c->btree_interior_update_lock);
927 }
928 
929 /*
930  * bch2_btree_update_add_new_node:
931  *
932  * This causes @as to wait on @b to be written, before it gets to
933  * bch2_btree_update_nodes_written
934  *
935  * Additionally, it sets b->will_make_reachable to prevent any additional writes
936  * to @b from happening besides the first until @b is reachable on disk
937  *
938  * And it adds @b to the list of @as's new nodes, so that we can update sector
939  * counts in bch2_btree_update_nodes_written:
940  */
941 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
942 {
943 	struct bch_fs *c = as->c;
944 
945 	closure_get(&as->cl);
946 
947 	mutex_lock(&c->btree_interior_update_lock);
948 	BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
949 	BUG_ON(b->will_make_reachable);
950 
951 	as->new_nodes[as->nr_new_nodes++] = b;
952 	b->will_make_reachable = 1UL|(unsigned long) as;
953 	set_btree_node_will_make_reachable(b);
954 
955 	mutex_unlock(&c->btree_interior_update_lock);
956 
957 	btree_update_add_key(as, &as->new_keys, b);
958 
959 	if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
960 		unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
961 		unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
962 
963 		bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
964 			cpu_to_le16(sectors);
965 	}
966 }
967 
968 /*
969  * returns true if @b was a new node
970  */
971 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
972 {
973 	struct btree_update *as;
974 	unsigned long v;
975 	unsigned i;
976 
977 	mutex_lock(&c->btree_interior_update_lock);
978 	/*
979 	 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
980 	 * dropped when it gets written by bch2_btree_complete_write - the
981 	 * xchg() is for synchronization with bch2_btree_complete_write:
982 	 */
983 	v = xchg(&b->will_make_reachable, 0);
984 	clear_btree_node_will_make_reachable(b);
985 	as = (struct btree_update *) (v & ~1UL);
986 
987 	if (!as) {
988 		mutex_unlock(&c->btree_interior_update_lock);
989 		return;
990 	}
991 
992 	for (i = 0; i < as->nr_new_nodes; i++)
993 		if (as->new_nodes[i] == b)
994 			goto found;
995 
996 	BUG();
997 found:
998 	array_remove_item(as->new_nodes, as->nr_new_nodes, i);
999 	mutex_unlock(&c->btree_interior_update_lock);
1000 
1001 	if (v & 1)
1002 		closure_put(&as->cl);
1003 }
1004 
1005 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1006 {
1007 	while (b->ob.nr)
1008 		as->open_buckets[as->nr_open_buckets++] =
1009 			b->ob.v[--b->ob.nr];
1010 }
1011 
1012 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1013 				struct journal_entry_pin *_pin, u64 seq)
1014 {
1015 	return 0;
1016 }
1017 
1018 /*
1019  * @b is being split/rewritten: it may have pointers to not-yet-written btree
1020  * nodes and thus outstanding btree_updates - redirect @b's
1021  * btree_updates to point to this btree_update:
1022  */
1023 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1024 						      struct btree *b)
1025 {
1026 	struct bch_fs *c = as->c;
1027 	struct btree_update *p, *n;
1028 	struct btree_write *w;
1029 
1030 	set_btree_node_dying(b);
1031 
1032 	if (btree_node_fake(b))
1033 		return;
1034 
1035 	mutex_lock(&c->btree_interior_update_lock);
1036 
1037 	/*
1038 	 * Does this node have any btree_update operations preventing
1039 	 * it from being written?
1040 	 *
1041 	 * If so, redirect them to point to this btree_update: we can
1042 	 * write out our new nodes, but we won't make them visible until those
1043 	 * operations complete
1044 	 */
1045 	list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1046 		list_del_init(&p->write_blocked_list);
1047 		btree_update_reparent(as, p);
1048 
1049 		/*
1050 		 * for flush_held_btree_writes() waiting on updates to flush or
1051 		 * nodes to be writeable:
1052 		 */
1053 		closure_wake_up(&c->btree_interior_update_wait);
1054 	}
1055 
1056 	clear_btree_node_dirty_acct(c, b);
1057 	clear_btree_node_need_write(b);
1058 	clear_btree_node_write_blocked(b);
1059 
1060 	/*
1061 	 * Does this node have unwritten data that has a pin on the journal?
1062 	 *
1063 	 * If so, transfer that pin to the btree_update operation -
1064 	 * note that if we're freeing multiple nodes, we only need to keep the
1065 	 * oldest pin of any of the nodes we're freeing. We'll release the pin
1066 	 * when the new nodes are persistent and reachable on disk:
1067 	 */
1068 	w = btree_current_write(b);
1069 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1070 			      bch2_btree_update_will_free_node_journal_pin_flush);
1071 	bch2_journal_pin_drop(&c->journal, &w->journal);
1072 
1073 	w = btree_prev_write(b);
1074 	bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1075 			      bch2_btree_update_will_free_node_journal_pin_flush);
1076 	bch2_journal_pin_drop(&c->journal, &w->journal);
1077 
1078 	mutex_unlock(&c->btree_interior_update_lock);
1079 
1080 	/*
1081 	 * Is this a node that isn't reachable on disk yet?
1082 	 *
1083 	 * Nodes that aren't reachable yet have writes blocked until they're
1084 	 * reachable - now that we've cancelled any pending writes and moved
1085 	 * things waiting on that write to wait on this update, we can drop this
1086 	 * node from the list of nodes that the other update is making
1087 	 * reachable, prior to freeing it:
1088 	 */
1089 	btree_update_drop_new_node(c, b);
1090 
1091 	btree_update_add_key(as, &as->old_keys, b);
1092 
1093 	as->old_nodes[as->nr_old_nodes] = b;
1094 	as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1095 	as->nr_old_nodes++;
1096 }
1097 
1098 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1099 {
1100 	struct bch_fs *c = as->c;
1101 	u64 start_time = as->start_time;
1102 
1103 	BUG_ON(as->mode == BTREE_UPDATE_none);
1104 
1105 	if (as->took_gc_lock)
1106 		up_read(&as->c->gc_lock);
1107 	as->took_gc_lock = false;
1108 
1109 	bch2_btree_reserve_put(as, trans);
1110 
1111 	continue_at(&as->cl, btree_update_set_nodes_written,
1112 		    as->c->btree_interior_update_worker);
1113 
1114 	bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1115 			       start_time);
1116 }
1117 
1118 static struct btree_update *
1119 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1120 			unsigned level_start, bool split, unsigned flags)
1121 {
1122 	struct bch_fs *c = trans->c;
1123 	struct btree_update *as;
1124 	u64 start_time = local_clock();
1125 	int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1126 		? BCH_DISK_RESERVATION_NOFAIL : 0;
1127 	unsigned nr_nodes[2] = { 0, 0 };
1128 	unsigned level_end = level_start;
1129 	enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1130 	int ret = 0;
1131 	u32 restart_count = trans->restart_count;
1132 
1133 	BUG_ON(!path->should_be_locked);
1134 
1135 	if (watermark == BCH_WATERMARK_copygc)
1136 		watermark = BCH_WATERMARK_btree_copygc;
1137 	if (watermark < BCH_WATERMARK_btree)
1138 		watermark = BCH_WATERMARK_btree;
1139 
1140 	flags &= ~BCH_WATERMARK_MASK;
1141 	flags |= watermark;
1142 
1143 	if (watermark < BCH_WATERMARK_reclaim &&
1144 	    test_bit(JOURNAL_space_low, &c->journal.flags)) {
1145 		if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1146 			return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1147 
1148 		ret = drop_locks_do(trans,
1149 			({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; }));
1150 		if (ret)
1151 			return ERR_PTR(ret);
1152 	}
1153 
1154 	while (1) {
1155 		nr_nodes[!!level_end] += 1 + split;
1156 		level_end++;
1157 
1158 		ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1159 		if (ret)
1160 			return ERR_PTR(ret);
1161 
1162 		if (!btree_path_node(path, level_end)) {
1163 			/* Allocating new root? */
1164 			nr_nodes[1] += split;
1165 			level_end = BTREE_MAX_DEPTH;
1166 			break;
1167 		}
1168 
1169 		/*
1170 		 * Always check for space for two keys, even if we won't have to
1171 		 * split at prior level - it might have been a merge instead:
1172 		 */
1173 		if (bch2_btree_node_insert_fits(path->l[level_end].b,
1174 						BKEY_BTREE_PTR_U64s_MAX * 2))
1175 			break;
1176 
1177 		split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1178 	}
1179 
1180 	if (!down_read_trylock(&c->gc_lock)) {
1181 		ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1182 		if (ret) {
1183 			up_read(&c->gc_lock);
1184 			return ERR_PTR(ret);
1185 		}
1186 	}
1187 
1188 	as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1189 	memset(as, 0, sizeof(*as));
1190 	closure_init(&as->cl, NULL);
1191 	as->c			= c;
1192 	as->start_time		= start_time;
1193 	as->ip_started		= _RET_IP_;
1194 	as->mode		= BTREE_UPDATE_none;
1195 	as->flags		= flags;
1196 	as->took_gc_lock	= true;
1197 	as->btree_id		= path->btree_id;
1198 	as->update_level_start	= level_start;
1199 	as->update_level_end	= level_end;
1200 	INIT_LIST_HEAD(&as->list);
1201 	INIT_LIST_HEAD(&as->unwritten_list);
1202 	INIT_LIST_HEAD(&as->write_blocked_list);
1203 	bch2_keylist_init(&as->old_keys, as->_old_keys);
1204 	bch2_keylist_init(&as->new_keys, as->_new_keys);
1205 	bch2_keylist_init(&as->parent_keys, as->inline_keys);
1206 
1207 	mutex_lock(&c->btree_interior_update_lock);
1208 	list_add_tail(&as->list, &c->btree_interior_update_list);
1209 	mutex_unlock(&c->btree_interior_update_lock);
1210 
1211 	/*
1212 	 * We don't want to allocate if we're in an error state, that can cause
1213 	 * deadlock on emergency shutdown due to open buckets getting stuck in
1214 	 * the btree_reserve_cache after allocator shutdown has cleared it out.
1215 	 * This check needs to come after adding us to the btree_interior_update
1216 	 * list but before calling bch2_btree_reserve_get, to synchronize with
1217 	 * __bch2_fs_read_only().
1218 	 */
1219 	ret = bch2_journal_error(&c->journal);
1220 	if (ret)
1221 		goto err;
1222 
1223 	ret = bch2_disk_reservation_get(c, &as->disk_res,
1224 			(nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1225 			c->opts.metadata_replicas,
1226 			disk_res_flags);
1227 	if (ret)
1228 		goto err;
1229 
1230 	ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1231 	if (bch2_err_matches(ret, ENOSPC) ||
1232 	    bch2_err_matches(ret, ENOMEM)) {
1233 		struct closure cl;
1234 
1235 		/*
1236 		 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1237 		 * flag
1238 		 */
1239 		if (bch2_err_matches(ret, ENOSPC) &&
1240 		    (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1241 		    watermark < BCH_WATERMARK_reclaim) {
1242 			ret = -BCH_ERR_journal_reclaim_would_deadlock;
1243 			goto err;
1244 		}
1245 
1246 		closure_init_stack(&cl);
1247 
1248 		do {
1249 			ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1250 
1251 			bch2_trans_unlock(trans);
1252 			bch2_wait_on_allocator(c, &cl);
1253 		} while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1254 	}
1255 
1256 	if (ret) {
1257 		trace_and_count(c, btree_reserve_get_fail, trans->fn,
1258 				_RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1259 		goto err;
1260 	}
1261 
1262 	ret = bch2_trans_relock(trans);
1263 	if (ret)
1264 		goto err;
1265 
1266 	bch2_trans_verify_not_restarted(trans, restart_count);
1267 	return as;
1268 err:
1269 	bch2_btree_update_free(as, trans);
1270 	if (!bch2_err_matches(ret, ENOSPC) &&
1271 	    !bch2_err_matches(ret, EROFS) &&
1272 	    ret != -BCH_ERR_journal_reclaim_would_deadlock)
1273 		bch_err_fn_ratelimited(c, ret);
1274 	return ERR_PTR(ret);
1275 }
1276 
1277 /* Btree root updates: */
1278 
1279 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1280 {
1281 	/* Root nodes cannot be reaped */
1282 	mutex_lock(&c->btree_cache.lock);
1283 	list_del_init(&b->list);
1284 	mutex_unlock(&c->btree_cache.lock);
1285 
1286 	mutex_lock(&c->btree_root_lock);
1287 	bch2_btree_id_root(c, b->c.btree_id)->b = b;
1288 	mutex_unlock(&c->btree_root_lock);
1289 
1290 	bch2_recalc_btree_reserve(c);
1291 }
1292 
1293 static int bch2_btree_set_root(struct btree_update *as,
1294 			       struct btree_trans *trans,
1295 			       struct btree_path *path,
1296 			       struct btree *b,
1297 			       bool nofail)
1298 {
1299 	struct bch_fs *c = as->c;
1300 
1301 	trace_and_count(c, btree_node_set_root, trans, b);
1302 
1303 	struct btree *old = btree_node_root(c, b);
1304 
1305 	/*
1306 	 * Ensure no one is using the old root while we switch to the
1307 	 * new root:
1308 	 */
1309 	if (nofail) {
1310 		bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1311 	} else {
1312 		int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1313 		if (ret)
1314 			return ret;
1315 	}
1316 
1317 	bch2_btree_set_root_inmem(c, b);
1318 
1319 	btree_update_updated_root(as, b);
1320 
1321 	/*
1322 	 * Unlock old root after new root is visible:
1323 	 *
1324 	 * The new root isn't persistent, but that's ok: we still have
1325 	 * an intent lock on the new root, and any updates that would
1326 	 * depend on the new root would have to update the new root.
1327 	 */
1328 	bch2_btree_node_unlock_write(trans, path, old);
1329 	return 0;
1330 }
1331 
1332 /* Interior node updates: */
1333 
1334 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1335 					struct btree_trans *trans,
1336 					struct btree_path *path,
1337 					struct btree *b,
1338 					struct btree_node_iter *node_iter,
1339 					struct bkey_i *insert)
1340 {
1341 	struct bch_fs *c = as->c;
1342 	struct bkey_packed *k;
1343 	struct printbuf buf = PRINTBUF;
1344 	unsigned long old, new;
1345 
1346 	BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1347 	       !btree_ptr_sectors_written(bkey_i_to_s_c(insert)));
1348 
1349 	if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags)))
1350 		bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1351 
1352 	struct bkey_validate_context from = (struct bkey_validate_context) {
1353 		.from	= BKEY_VALIDATE_btree_node,
1354 		.level	= b->c.level,
1355 		.btree	= b->c.btree_id,
1356 		.flags	= BCH_VALIDATE_commit,
1357 	};
1358 	if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), from) ?:
1359 	    bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), from)) {
1360 		bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__);
1361 		dump_stack();
1362 	}
1363 
1364 	BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1365 	       ARRAY_SIZE(as->journal_entries));
1366 
1367 	as->journal_u64s +=
1368 		journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1369 				  BCH_JSET_ENTRY_btree_keys,
1370 				  b->c.btree_id, b->c.level,
1371 				  insert, insert->k.u64s);
1372 
1373 	while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1374 	       bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1375 		bch2_btree_node_iter_advance(node_iter, b);
1376 
1377 	bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1378 	set_btree_node_dirty_acct(c, b);
1379 
1380 	old = READ_ONCE(b->flags);
1381 	do {
1382 		new = old;
1383 
1384 		new &= ~BTREE_WRITE_TYPE_MASK;
1385 		new |= BTREE_WRITE_interior;
1386 		new |= 1 << BTREE_NODE_need_write;
1387 	} while (!try_cmpxchg(&b->flags, &old, new));
1388 
1389 	printbuf_exit(&buf);
1390 }
1391 
1392 static void
1393 bch2_btree_insert_keys_interior(struct btree_update *as,
1394 				struct btree_trans *trans,
1395 				struct btree_path *path,
1396 				struct btree *b,
1397 				struct btree_node_iter node_iter,
1398 				struct keylist *keys)
1399 {
1400 	struct bkey_i *insert = bch2_keylist_front(keys);
1401 	struct bkey_packed *k;
1402 
1403 	BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1404 
1405 	while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1406 	       (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1407 		;
1408 
1409 	for (;
1410 	     insert != keys->top && bpos_le(insert->k.p, b->key.k.p);
1411 	     insert = bkey_next(insert))
1412 		bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1413 
1414 	if (bch2_btree_node_check_topology(trans, b)) {
1415 		struct printbuf buf = PRINTBUF;
1416 
1417 		for (struct bkey_i *k = keys->keys;
1418 		     k != insert;
1419 		     k = bkey_next(k)) {
1420 			bch2_bkey_val_to_text(&buf, trans->c, bkey_i_to_s_c(k));
1421 			prt_newline(&buf);
1422 		}
1423 
1424 		panic("%s(): check_topology error: inserted keys\n%s", __func__, buf.buf);
1425 	}
1426 
1427 	memmove_u64s_down(keys->keys, insert, keys->top_p - insert->_data);
1428 	keys->top_p -= insert->_data - keys->keys_p;
1429 }
1430 
1431 static bool key_deleted_in_insert(struct keylist *insert_keys, struct bpos pos)
1432 {
1433 	if (insert_keys)
1434 		for_each_keylist_key(insert_keys, k)
1435 			if (bkey_deleted(&k->k) && bpos_eq(k->k.p, pos))
1436 				return true;
1437 	return false;
1438 }
1439 
1440 /*
1441  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1442  * node)
1443  */
1444 static void __btree_split_node(struct btree_update *as,
1445 			       struct btree_trans *trans,
1446 			       struct btree *b,
1447 			       struct btree *n[2],
1448 			       struct keylist *insert_keys)
1449 {
1450 	struct bkey_packed *k;
1451 	struct bpos n1_pos = POS_MIN;
1452 	struct btree_node_iter iter;
1453 	struct bset *bsets[2];
1454 	struct bkey_format_state format[2];
1455 	struct bkey_packed *out[2];
1456 	struct bkey uk;
1457 	unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1458 	struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1459 	int i;
1460 
1461 	memset(&nr_keys, 0, sizeof(nr_keys));
1462 
1463 	for (i = 0; i < 2; i++) {
1464 		BUG_ON(n[i]->nsets != 1);
1465 
1466 		bsets[i] = btree_bset_first(n[i]);
1467 		out[i] = bsets[i]->start;
1468 
1469 		SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1470 		bch2_bkey_format_init(&format[i]);
1471 	}
1472 
1473 	u64s = 0;
1474 	for_each_btree_node_key(b, k, &iter) {
1475 		if (bkey_deleted(k))
1476 			continue;
1477 
1478 		uk = bkey_unpack_key(b, k);
1479 
1480 		if (b->c.level &&
1481 		    u64s < n1_u64s &&
1482 		    u64s + k->u64s >= n1_u64s &&
1483 		    (bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p) ||
1484 		     key_deleted_in_insert(insert_keys, uk.p)))
1485 			n1_u64s += k->u64s;
1486 
1487 		i = u64s >= n1_u64s;
1488 		u64s += k->u64s;
1489 		if (!i)
1490 			n1_pos = uk.p;
1491 		bch2_bkey_format_add_key(&format[i], &uk);
1492 
1493 		nr_keys[i].nr_keys++;
1494 		nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1495 	}
1496 
1497 	btree_set_min(n[0], b->data->min_key);
1498 	btree_set_max(n[0], n1_pos);
1499 	btree_set_min(n[1], bpos_successor(n1_pos));
1500 	btree_set_max(n[1], b->data->max_key);
1501 
1502 	for (i = 0; i < 2; i++) {
1503 		bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1504 		bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1505 
1506 		n[i]->data->format = bch2_bkey_format_done(&format[i]);
1507 
1508 		unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1509 			nr_keys[i].val_u64s;
1510 		if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1511 			n[i]->data->format = b->format;
1512 
1513 		btree_node_set_format(n[i], n[i]->data->format);
1514 	}
1515 
1516 	u64s = 0;
1517 	for_each_btree_node_key(b, k, &iter) {
1518 		if (bkey_deleted(k))
1519 			continue;
1520 
1521 		i = u64s >= n1_u64s;
1522 		u64s += k->u64s;
1523 
1524 		if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1525 					? &b->format: &bch2_bkey_format_current, k))
1526 			out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1527 		else
1528 			bch2_bkey_unpack(b, (void *) out[i], k);
1529 
1530 		out[i]->needs_whiteout = false;
1531 
1532 		btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1533 		out[i] = bkey_p_next(out[i]);
1534 	}
1535 
1536 	for (i = 0; i < 2; i++) {
1537 		bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1538 
1539 		BUG_ON(!bsets[i]->u64s);
1540 
1541 		set_btree_bset_end(n[i], n[i]->set);
1542 
1543 		btree_node_reset_sib_u64s(n[i]);
1544 
1545 		bch2_verify_btree_nr_keys(n[i]);
1546 
1547 		BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1548 	}
1549 }
1550 
1551 /*
1552  * For updates to interior nodes, we've got to do the insert before we split
1553  * because the stuff we're inserting has to be inserted atomically. Post split,
1554  * the keys might have to go in different nodes and the split would no longer be
1555  * atomic.
1556  *
1557  * Worse, if the insert is from btree node coalescing, if we do the insert after
1558  * we do the split (and pick the pivot) - the pivot we pick might be between
1559  * nodes that were coalesced, and thus in the middle of a child node post
1560  * coalescing:
1561  */
1562 static void btree_split_insert_keys(struct btree_update *as,
1563 				    struct btree_trans *trans,
1564 				    btree_path_idx_t path_idx,
1565 				    struct btree *b,
1566 				    struct keylist *keys)
1567 {
1568 	struct btree_path *path = trans->paths + path_idx;
1569 
1570 	if (!bch2_keylist_empty(keys) &&
1571 	    bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1572 		struct btree_node_iter node_iter;
1573 
1574 		bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1575 
1576 		bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1577 	}
1578 }
1579 
1580 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1581 		       btree_path_idx_t path, struct btree *b,
1582 		       struct keylist *keys)
1583 {
1584 	struct bch_fs *c = as->c;
1585 	struct btree *parent = btree_node_parent(trans->paths + path, b);
1586 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1587 	btree_path_idx_t path1 = 0, path2 = 0;
1588 	u64 start_time = local_clock();
1589 	int ret = 0;
1590 
1591 	bch2_verify_btree_nr_keys(b);
1592 	BUG_ON(!parent && (b != btree_node_root(c, b)));
1593 	BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1594 
1595 	ret = bch2_btree_node_check_topology(trans, b);
1596 	if (ret)
1597 		return ret;
1598 
1599 	if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1600 		struct btree *n[2];
1601 
1602 		trace_and_count(c, btree_node_split, trans, b);
1603 
1604 		n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1605 		n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1606 
1607 		__btree_split_node(as, trans, b, n, keys);
1608 
1609 		if (keys) {
1610 			btree_split_insert_keys(as, trans, path, n1, keys);
1611 			btree_split_insert_keys(as, trans, path, n2, keys);
1612 			BUG_ON(!bch2_keylist_empty(keys));
1613 		}
1614 
1615 		bch2_btree_build_aux_trees(n2);
1616 		bch2_btree_build_aux_trees(n1);
1617 
1618 		bch2_btree_update_add_new_node(as, n1);
1619 		bch2_btree_update_add_new_node(as, n2);
1620 		six_unlock_write(&n2->c.lock);
1621 		six_unlock_write(&n1->c.lock);
1622 
1623 		path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1624 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1625 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1626 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1627 
1628 		path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p);
1629 		six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1630 		mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1631 		bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1632 
1633 		/*
1634 		 * Note that on recursive parent_keys == keys, so we
1635 		 * can't start adding new keys to parent_keys before emptying it
1636 		 * out (which we did with btree_split_insert_keys() above)
1637 		 */
1638 		bch2_keylist_add(&as->parent_keys, &n1->key);
1639 		bch2_keylist_add(&as->parent_keys, &n2->key);
1640 
1641 		if (!parent) {
1642 			/* Depth increases, make a new root */
1643 			n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1644 
1645 			bch2_btree_update_add_new_node(as, n3);
1646 			six_unlock_write(&n3->c.lock);
1647 
1648 			trans->paths[path2].locks_want++;
1649 			BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1650 			six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1651 			mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1652 			bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1653 
1654 			n3->sib_u64s[0] = U16_MAX;
1655 			n3->sib_u64s[1] = U16_MAX;
1656 
1657 			btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1658 		}
1659 	} else {
1660 		trace_and_count(c, btree_node_compact, trans, b);
1661 
1662 		n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1663 
1664 		if (keys) {
1665 			btree_split_insert_keys(as, trans, path, n1, keys);
1666 			BUG_ON(!bch2_keylist_empty(keys));
1667 		}
1668 
1669 		bch2_btree_build_aux_trees(n1);
1670 		bch2_btree_update_add_new_node(as, n1);
1671 		six_unlock_write(&n1->c.lock);
1672 
1673 		path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1674 		six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1675 		mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1676 		bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1677 
1678 		if (parent)
1679 			bch2_keylist_add(&as->parent_keys, &n1->key);
1680 	}
1681 
1682 	/* New nodes all written, now make them visible: */
1683 
1684 	if (parent) {
1685 		/* Split a non root node */
1686 		ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1687 	} else if (n3) {
1688 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1689 	} else {
1690 		/* Root filled up but didn't need to be split */
1691 		ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1692 	}
1693 
1694 	if (ret)
1695 		goto err;
1696 
1697 	bch2_btree_interior_update_will_free_node(as, b);
1698 
1699 	if (n3) {
1700 		bch2_btree_update_get_open_buckets(as, n3);
1701 		bch2_btree_node_write_trans(trans, n3, SIX_LOCK_intent, 0);
1702 	}
1703 	if (n2) {
1704 		bch2_btree_update_get_open_buckets(as, n2);
1705 		bch2_btree_node_write_trans(trans, n2, SIX_LOCK_intent, 0);
1706 	}
1707 	bch2_btree_update_get_open_buckets(as, n1);
1708 	bch2_btree_node_write_trans(trans, n1, SIX_LOCK_intent, 0);
1709 
1710 	/*
1711 	 * The old node must be freed (in memory) _before_ unlocking the new
1712 	 * nodes - else another thread could re-acquire a read lock on the old
1713 	 * node after another thread has locked and updated the new node, thus
1714 	 * seeing stale data:
1715 	 */
1716 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1717 
1718 	if (n3)
1719 		bch2_trans_node_add(trans, trans->paths + path, n3);
1720 	if (n2)
1721 		bch2_trans_node_add(trans, trans->paths + path2, n2);
1722 	bch2_trans_node_add(trans, trans->paths + path1, n1);
1723 
1724 	if (n3)
1725 		six_unlock_intent(&n3->c.lock);
1726 	if (n2)
1727 		six_unlock_intent(&n2->c.lock);
1728 	six_unlock_intent(&n1->c.lock);
1729 out:
1730 	if (path2) {
1731 		__bch2_btree_path_unlock(trans, trans->paths + path2);
1732 		bch2_path_put(trans, path2, true);
1733 	}
1734 	if (path1) {
1735 		__bch2_btree_path_unlock(trans, trans->paths + path1);
1736 		bch2_path_put(trans, path1, true);
1737 	}
1738 
1739 	bch2_trans_verify_locks(trans);
1740 
1741 	bch2_time_stats_update(&c->times[n2
1742 			       ? BCH_TIME_btree_node_split
1743 			       : BCH_TIME_btree_node_compact],
1744 			       start_time);
1745 	return ret;
1746 err:
1747 	if (n3)
1748 		bch2_btree_node_free_never_used(as, trans, n3);
1749 	if (n2)
1750 		bch2_btree_node_free_never_used(as, trans, n2);
1751 	bch2_btree_node_free_never_used(as, trans, n1);
1752 	goto out;
1753 }
1754 
1755 /**
1756  * bch2_btree_insert_node - insert bkeys into a given btree node
1757  *
1758  * @as:			btree_update object
1759  * @trans:		btree_trans object
1760  * @path_idx:		path that points to current node
1761  * @b:			node to insert keys into
1762  * @keys:		list of keys to insert
1763  *
1764  * Returns: 0 on success, typically transaction restart error on failure
1765  *
1766  * Inserts as many keys as it can into a given btree node, splitting it if full.
1767  * If a split occurred, this function will return early. This can only happen
1768  * for leaf nodes -- inserts into interior nodes have to be atomic.
1769  */
1770 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1771 				  btree_path_idx_t path_idx, struct btree *b,
1772 				  struct keylist *keys)
1773 {
1774 	struct bch_fs *c = as->c;
1775 	struct btree_path *path = trans->paths + path_idx, *linked;
1776 	unsigned i;
1777 	int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1778 	int old_live_u64s = b->nr.live_u64s;
1779 	int live_u64s_added, u64s_added;
1780 	int ret;
1781 
1782 	lockdep_assert_held(&c->gc_lock);
1783 	BUG_ON(!btree_node_intent_locked(path, b->c.level));
1784 	BUG_ON(!b->c.level);
1785 	BUG_ON(!as || as->b);
1786 	bch2_verify_keylist_sorted(keys);
1787 
1788 	ret = bch2_btree_node_lock_write(trans, path, &b->c);
1789 	if (ret)
1790 		return ret;
1791 
1792 	bch2_btree_node_prep_for_write(trans, path, b);
1793 
1794 	if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1795 		bch2_btree_node_unlock_write(trans, path, b);
1796 		goto split;
1797 	}
1798 
1799 	ret = bch2_btree_node_check_topology(trans, b);
1800 	if (ret) {
1801 		bch2_btree_node_unlock_write(trans, path, b);
1802 		return ret;
1803 	}
1804 
1805 	bch2_btree_insert_keys_interior(as, trans, path, b,
1806 					path->l[b->c.level].iter, keys);
1807 
1808 	trans_for_each_path_with_node(trans, b, linked, i)
1809 		bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1810 
1811 	bch2_trans_verify_paths(trans);
1812 
1813 	live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1814 	u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1815 
1816 	if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1817 		b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1818 	if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1819 		b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1820 
1821 	if (u64s_added > live_u64s_added &&
1822 	    bch2_maybe_compact_whiteouts(c, b))
1823 		bch2_trans_node_reinit_iter(trans, b);
1824 
1825 	btree_update_updated_node(as, b);
1826 	bch2_btree_node_unlock_write(trans, path, b);
1827 	return 0;
1828 split:
1829 	/*
1830 	 * We could attempt to avoid the transaction restart, by calling
1831 	 * bch2_btree_path_upgrade() and allocating more nodes:
1832 	 */
1833 	if (b->c.level >= as->update_level_end) {
1834 		trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1835 		return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1836 	}
1837 
1838 	return btree_split(as, trans, path_idx, b, keys);
1839 }
1840 
1841 int bch2_btree_split_leaf(struct btree_trans *trans,
1842 			  btree_path_idx_t path,
1843 			  unsigned flags)
1844 {
1845 	/* btree_split & merge may both cause paths array to be reallocated */
1846 	struct btree *b = path_l(trans->paths + path)->b;
1847 	struct btree_update *as;
1848 	unsigned l;
1849 	int ret = 0;
1850 
1851 	as = bch2_btree_update_start(trans, trans->paths + path,
1852 				     trans->paths[path].level,
1853 				     true, flags);
1854 	if (IS_ERR(as))
1855 		return PTR_ERR(as);
1856 
1857 	ret = btree_split(as, trans, path, b, NULL);
1858 	if (ret) {
1859 		bch2_btree_update_free(as, trans);
1860 		return ret;
1861 	}
1862 
1863 	bch2_btree_update_done(as, trans);
1864 
1865 	for (l = trans->paths[path].level + 1;
1866 	     btree_node_intent_locked(&trans->paths[path], l) && !ret;
1867 	     l++)
1868 		ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1869 
1870 	return ret;
1871 }
1872 
1873 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1874 				   btree_path_idx_t path_idx)
1875 {
1876 	struct bch_fs *c = as->c;
1877 	struct btree_path *path = trans->paths + path_idx;
1878 	struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1879 
1880 	BUG_ON(!btree_node_locked(path, b->c.level));
1881 
1882 	n = __btree_root_alloc(as, trans, b->c.level + 1);
1883 
1884 	bch2_btree_update_add_new_node(as, n);
1885 	six_unlock_write(&n->c.lock);
1886 
1887 	path->locks_want++;
1888 	BUG_ON(btree_node_locked(path, n->c.level));
1889 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1890 	mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1891 	bch2_btree_path_level_init(trans, path, n);
1892 
1893 	n->sib_u64s[0] = U16_MAX;
1894 	n->sib_u64s[1] = U16_MAX;
1895 
1896 	bch2_keylist_add(&as->parent_keys, &b->key);
1897 	btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1898 
1899 	int ret = bch2_btree_set_root(as, trans, path, n, true);
1900 	BUG_ON(ret);
1901 
1902 	bch2_btree_update_get_open_buckets(as, n);
1903 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
1904 	bch2_trans_node_add(trans, path, n);
1905 	six_unlock_intent(&n->c.lock);
1906 
1907 	mutex_lock(&c->btree_cache.lock);
1908 	list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list);
1909 	mutex_unlock(&c->btree_cache.lock);
1910 
1911 	bch2_trans_verify_locks(trans);
1912 }
1913 
1914 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1915 {
1916 	struct bch_fs *c = trans->c;
1917 	struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1918 
1919 	if (btree_node_fake(b))
1920 		return bch2_btree_split_leaf(trans, path, flags);
1921 
1922 	struct btree_update *as =
1923 		bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags);
1924 	if (IS_ERR(as))
1925 		return PTR_ERR(as);
1926 
1927 	__btree_increase_depth(as, trans, path);
1928 	bch2_btree_update_done(as, trans);
1929 	return 0;
1930 }
1931 
1932 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1933 				  btree_path_idx_t path,
1934 				  unsigned level,
1935 				  unsigned flags,
1936 				  enum btree_node_sibling sib)
1937 {
1938 	struct bch_fs *c = trans->c;
1939 	struct btree_update *as;
1940 	struct bkey_format_state new_s;
1941 	struct bkey_format new_f;
1942 	struct bkey_i delete;
1943 	struct btree *b, *m, *n, *prev, *next, *parent;
1944 	struct bpos sib_pos;
1945 	size_t sib_u64s;
1946 	enum btree_id btree = trans->paths[path].btree_id;
1947 	btree_path_idx_t sib_path = 0, new_path = 0;
1948 	u64 start_time = local_clock();
1949 	int ret = 0;
1950 
1951 	bch2_trans_verify_not_unlocked_or_in_restart(trans);
1952 	BUG_ON(!trans->paths[path].should_be_locked);
1953 	BUG_ON(!btree_node_locked(&trans->paths[path], level));
1954 
1955 	/*
1956 	 * Work around a deadlock caused by the btree write buffer not doing
1957 	 * merges and leaving tons of merges for us to do - we really don't need
1958 	 * to be doing merges at all from the interior update path, and if the
1959 	 * interior update path is generating too many new interior updates we
1960 	 * deadlock:
1961 	 */
1962 	if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
1963 		return 0;
1964 
1965 	if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
1966 		flags &= ~BCH_WATERMARK_MASK;
1967 		flags |= BCH_WATERMARK_btree;
1968 		flags |= BCH_TRANS_COMMIT_journal_reclaim;
1969 	}
1970 
1971 	b = trans->paths[path].l[level].b;
1972 
1973 	if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1974 	    (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1975 		b->sib_u64s[sib] = U16_MAX;
1976 		return 0;
1977 	}
1978 
1979 	sib_pos = sib == btree_prev_sib
1980 		? bpos_predecessor(b->data->min_key)
1981 		: bpos_successor(b->data->max_key);
1982 
1983 	sib_path = bch2_path_get(trans, btree, sib_pos,
1984 				 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_);
1985 	ret = bch2_btree_path_traverse(trans, sib_path, false);
1986 	if (ret)
1987 		goto err;
1988 
1989 	btree_path_set_should_be_locked(trans, trans->paths + sib_path);
1990 
1991 	m = trans->paths[sib_path].l[level].b;
1992 
1993 	if (btree_node_parent(trans->paths + path, b) !=
1994 	    btree_node_parent(trans->paths + sib_path, m)) {
1995 		b->sib_u64s[sib] = U16_MAX;
1996 		goto out;
1997 	}
1998 
1999 	if (sib == btree_prev_sib) {
2000 		prev = m;
2001 		next = b;
2002 	} else {
2003 		prev = b;
2004 		next = m;
2005 	}
2006 
2007 	if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2008 		struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
2009 
2010 		bch2_bpos_to_text(&buf1, prev->data->max_key);
2011 		bch2_bpos_to_text(&buf2, next->data->min_key);
2012 		bch_err(c,
2013 			"%s(): btree topology error:\n"
2014 			"  prev ends at   %s\n"
2015 			"  next starts at %s",
2016 			__func__, buf1.buf, buf2.buf);
2017 		printbuf_exit(&buf1);
2018 		printbuf_exit(&buf2);
2019 		ret = bch2_topology_error(c);
2020 		goto err;
2021 	}
2022 
2023 	bch2_bkey_format_init(&new_s);
2024 	bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2025 	__bch2_btree_calc_format(&new_s, prev);
2026 	__bch2_btree_calc_format(&new_s, next);
2027 	bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2028 	new_f = bch2_bkey_format_done(&new_s);
2029 
2030 	sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2031 		btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2032 
2033 	if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2034 		sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2035 		sib_u64s /= 2;
2036 		sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2037 	}
2038 
2039 	sib_u64s = min(sib_u64s, btree_max_u64s(c));
2040 	sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2041 	b->sib_u64s[sib] = sib_u64s;
2042 
2043 	if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2044 		goto out;
2045 
2046 	parent = btree_node_parent(trans->paths + path, b);
2047 	as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2048 				     BCH_TRANS_COMMIT_no_enospc|flags);
2049 	ret = PTR_ERR_OR_ZERO(as);
2050 	if (ret)
2051 		goto err;
2052 
2053 	trace_and_count(c, btree_node_merge, trans, b);
2054 
2055 	n = bch2_btree_node_alloc(as, trans, b->c.level);
2056 
2057 	SET_BTREE_NODE_SEQ(n->data,
2058 			   max(BTREE_NODE_SEQ(b->data),
2059 			       BTREE_NODE_SEQ(m->data)) + 1);
2060 
2061 	btree_set_min(n, prev->data->min_key);
2062 	btree_set_max(n, next->data->max_key);
2063 
2064 	n->data->format	 = new_f;
2065 	btree_node_set_format(n, new_f);
2066 
2067 	bch2_btree_sort_into(c, n, prev);
2068 	bch2_btree_sort_into(c, n, next);
2069 
2070 	bch2_btree_build_aux_trees(n);
2071 	bch2_btree_update_add_new_node(as, n);
2072 	six_unlock_write(&n->c.lock);
2073 
2074 	new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p);
2075 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2076 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2077 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2078 
2079 	bkey_init(&delete.k);
2080 	delete.k.p = prev->key.k.p;
2081 	bch2_keylist_add(&as->parent_keys, &delete);
2082 	bch2_keylist_add(&as->parent_keys, &n->key);
2083 
2084 	bch2_trans_verify_paths(trans);
2085 
2086 	ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2087 	if (ret)
2088 		goto err_free_update;
2089 
2090 	bch2_btree_interior_update_will_free_node(as, b);
2091 	bch2_btree_interior_update_will_free_node(as, m);
2092 
2093 	bch2_trans_verify_paths(trans);
2094 
2095 	bch2_btree_update_get_open_buckets(as, n);
2096 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2097 
2098 	bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2099 	bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2100 
2101 	bch2_trans_node_add(trans, trans->paths + path, n);
2102 
2103 	bch2_trans_verify_paths(trans);
2104 
2105 	six_unlock_intent(&n->c.lock);
2106 
2107 	bch2_btree_update_done(as, trans);
2108 
2109 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2110 out:
2111 err:
2112 	if (new_path)
2113 		bch2_path_put(trans, new_path, true);
2114 	bch2_path_put(trans, sib_path, true);
2115 	bch2_trans_verify_locks(trans);
2116 	if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2117 		ret = 0;
2118 	if (!ret)
2119 		ret = bch2_trans_relock(trans);
2120 	return ret;
2121 err_free_update:
2122 	bch2_btree_node_free_never_used(as, trans, n);
2123 	bch2_btree_update_free(as, trans);
2124 	goto out;
2125 }
2126 
2127 int bch2_btree_node_rewrite(struct btree_trans *trans,
2128 			    struct btree_iter *iter,
2129 			    struct btree *b,
2130 			    unsigned flags)
2131 {
2132 	struct bch_fs *c = trans->c;
2133 	struct btree *n, *parent;
2134 	struct btree_update *as;
2135 	btree_path_idx_t new_path = 0;
2136 	int ret;
2137 
2138 	flags |= BCH_TRANS_COMMIT_no_enospc;
2139 
2140 	struct btree_path *path = btree_iter_path(trans, iter);
2141 	parent = btree_node_parent(path, b);
2142 	as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2143 	ret = PTR_ERR_OR_ZERO(as);
2144 	if (ret)
2145 		goto out;
2146 
2147 	n = bch2_btree_node_alloc_replacement(as, trans, b);
2148 
2149 	bch2_btree_build_aux_trees(n);
2150 	bch2_btree_update_add_new_node(as, n);
2151 	six_unlock_write(&n->c.lock);
2152 
2153 	new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p);
2154 	six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2155 	mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2156 	bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2157 
2158 	trace_and_count(c, btree_node_rewrite, trans, b);
2159 
2160 	if (parent) {
2161 		bch2_keylist_add(&as->parent_keys, &n->key);
2162 		ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2163 	} else {
2164 		ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2165 	}
2166 
2167 	if (ret)
2168 		goto err;
2169 
2170 	bch2_btree_interior_update_will_free_node(as, b);
2171 
2172 	bch2_btree_update_get_open_buckets(as, n);
2173 	bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2174 
2175 	bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2176 
2177 	bch2_trans_node_add(trans, trans->paths + iter->path, n);
2178 	six_unlock_intent(&n->c.lock);
2179 
2180 	bch2_btree_update_done(as, trans);
2181 out:
2182 	if (new_path)
2183 		bch2_path_put(trans, new_path, true);
2184 	bch2_trans_downgrade(trans);
2185 	return ret;
2186 err:
2187 	bch2_btree_node_free_never_used(as, trans, n);
2188 	bch2_btree_update_free(as, trans);
2189 	goto out;
2190 }
2191 
2192 struct async_btree_rewrite {
2193 	struct bch_fs		*c;
2194 	struct work_struct	work;
2195 	struct list_head	list;
2196 	enum btree_id		btree_id;
2197 	unsigned		level;
2198 	struct bkey_buf		key;
2199 };
2200 
2201 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2202 					  struct async_btree_rewrite *a)
2203 {
2204 	struct btree_iter iter;
2205 	bch2_trans_node_iter_init(trans, &iter,
2206 				  a->btree_id, a->key.k->k.p,
2207 				  BTREE_MAX_DEPTH, a->level, 0);
2208 	struct btree *b = bch2_btree_iter_peek_node(&iter);
2209 	int ret = PTR_ERR_OR_ZERO(b);
2210 	if (ret)
2211 		goto out;
2212 
2213 	bool found = b && btree_ptr_hash_val(&b->key) == btree_ptr_hash_val(a->key.k);
2214 	ret = found
2215 		? bch2_btree_node_rewrite(trans, &iter, b, 0)
2216 		: -ENOENT;
2217 
2218 #if 0
2219 	/* Tracepoint... */
2220 	if (!ret || ret == -ENOENT) {
2221 		struct bch_fs *c = trans->c;
2222 		struct printbuf buf = PRINTBUF;
2223 
2224 		if (!ret) {
2225 			prt_printf(&buf, "rewrite node:\n  ");
2226 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(a->key.k));
2227 		} else {
2228 			prt_printf(&buf, "node to rewrite not found:\n  want: ");
2229 			bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(a->key.k));
2230 			prt_printf(&buf, "\n  got:  ");
2231 			if (b)
2232 				bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2233 			else
2234 				prt_str(&buf, "(null)");
2235 		}
2236 		bch_info(c, "%s", buf.buf);
2237 		printbuf_exit(&buf);
2238 	}
2239 #endif
2240 out:
2241 	bch2_trans_iter_exit(trans, &iter);
2242 	return ret;
2243 }
2244 
2245 static void async_btree_node_rewrite_work(struct work_struct *work)
2246 {
2247 	struct async_btree_rewrite *a =
2248 		container_of(work, struct async_btree_rewrite, work);
2249 	struct bch_fs *c = a->c;
2250 
2251 	int ret = bch2_trans_do(c, async_btree_node_rewrite_trans(trans, a));
2252 	if (ret != -ENOENT)
2253 		bch_err_fn_ratelimited(c, ret);
2254 
2255 	spin_lock(&c->btree_node_rewrites_lock);
2256 	list_del(&a->list);
2257 	spin_unlock(&c->btree_node_rewrites_lock);
2258 
2259 	closure_wake_up(&c->btree_node_rewrites_wait);
2260 
2261 	bch2_bkey_buf_exit(&a->key, c);
2262 	bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2263 	kfree(a);
2264 }
2265 
2266 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2267 {
2268 	struct async_btree_rewrite *a = kmalloc(sizeof(*a), GFP_NOFS);
2269 	if (!a)
2270 		return;
2271 
2272 	a->c		= c;
2273 	a->btree_id	= b->c.btree_id;
2274 	a->level	= b->c.level;
2275 	INIT_WORK(&a->work, async_btree_node_rewrite_work);
2276 
2277 	bch2_bkey_buf_init(&a->key);
2278 	bch2_bkey_buf_copy(&a->key, c, &b->key);
2279 
2280 	bool now = false, pending = false;
2281 
2282 	spin_lock(&c->btree_node_rewrites_lock);
2283 	if (c->curr_recovery_pass > BCH_RECOVERY_PASS_journal_replay &&
2284 	    bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2285 		list_add(&a->list, &c->btree_node_rewrites);
2286 		now = true;
2287 	} else if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
2288 		list_add(&a->list, &c->btree_node_rewrites_pending);
2289 		pending = true;
2290 	}
2291 	spin_unlock(&c->btree_node_rewrites_lock);
2292 
2293 	if (now) {
2294 		queue_work(c->btree_node_rewrite_worker, &a->work);
2295 	} else if (pending) {
2296 		/* bch2_do_pending_node_rewrites will execute */
2297 	} else {
2298 		bch2_bkey_buf_exit(&a->key, c);
2299 		kfree(a);
2300 	}
2301 }
2302 
2303 void bch2_async_btree_node_rewrites_flush(struct bch_fs *c)
2304 {
2305 	closure_wait_event(&c->btree_node_rewrites_wait,
2306 			   list_empty(&c->btree_node_rewrites));
2307 }
2308 
2309 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2310 {
2311 	while (1) {
2312 		spin_lock(&c->btree_node_rewrites_lock);
2313 		struct async_btree_rewrite *a =
2314 			list_pop_entry(&c->btree_node_rewrites_pending,
2315 				       struct async_btree_rewrite, list);
2316 		if (a)
2317 			list_add(&a->list, &c->btree_node_rewrites);
2318 		spin_unlock(&c->btree_node_rewrites_lock);
2319 
2320 		if (!a)
2321 			break;
2322 
2323 		bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2324 		queue_work(c->btree_node_rewrite_worker, &a->work);
2325 	}
2326 }
2327 
2328 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2329 {
2330 	while (1) {
2331 		spin_lock(&c->btree_node_rewrites_lock);
2332 		struct async_btree_rewrite *a =
2333 			list_pop_entry(&c->btree_node_rewrites_pending,
2334 				       struct async_btree_rewrite, list);
2335 		spin_unlock(&c->btree_node_rewrites_lock);
2336 
2337 		if (!a)
2338 			break;
2339 
2340 		bch2_bkey_buf_exit(&a->key, c);
2341 		kfree(a);
2342 	}
2343 }
2344 
2345 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2346 					struct btree_iter *iter,
2347 					struct btree *b, struct btree *new_hash,
2348 					struct bkey_i *new_key,
2349 					unsigned commit_flags,
2350 					bool skip_triggers)
2351 {
2352 	struct bch_fs *c = trans->c;
2353 	struct btree_iter iter2 = { NULL };
2354 	struct btree *parent;
2355 	int ret;
2356 
2357 	if (!skip_triggers) {
2358 		ret   = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2359 					     bkey_i_to_s_c(&b->key),
2360 					     BTREE_TRIGGER_transactional) ?:
2361 			bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2362 					     bkey_i_to_s(new_key),
2363 					     BTREE_TRIGGER_transactional);
2364 		if (ret)
2365 			return ret;
2366 	}
2367 
2368 	if (new_hash) {
2369 		bkey_copy(&new_hash->key, new_key);
2370 		ret = bch2_btree_node_hash_insert(&c->btree_cache,
2371 				new_hash, b->c.level, b->c.btree_id);
2372 		BUG_ON(ret);
2373 	}
2374 
2375 	parent = btree_node_parent(btree_iter_path(trans, iter), b);
2376 	if (parent) {
2377 		bch2_trans_copy_iter(&iter2, iter);
2378 
2379 		iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2380 				iter2.flags & BTREE_ITER_intent,
2381 				_THIS_IP_);
2382 
2383 		struct btree_path *path2 = btree_iter_path(trans, &iter2);
2384 		BUG_ON(path2->level != b->c.level);
2385 		BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2386 
2387 		btree_path_set_level_up(trans, path2);
2388 
2389 		trans->paths_sorted = false;
2390 
2391 		ret   = bch2_btree_iter_traverse(&iter2) ?:
2392 			bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun);
2393 		if (ret)
2394 			goto err;
2395 	} else {
2396 		BUG_ON(btree_node_root(c, b) != b);
2397 
2398 		struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2399 				       jset_u64s(new_key->k.u64s));
2400 		ret = PTR_ERR_OR_ZERO(e);
2401 		if (ret)
2402 			return ret;
2403 
2404 		journal_entry_set(e,
2405 				  BCH_JSET_ENTRY_btree_root,
2406 				  b->c.btree_id, b->c.level,
2407 				  new_key, new_key->k.u64s);
2408 	}
2409 
2410 	ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2411 	if (ret)
2412 		goto err;
2413 
2414 	bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2415 
2416 	if (new_hash) {
2417 		mutex_lock(&c->btree_cache.lock);
2418 		bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2419 
2420 		__bch2_btree_node_hash_remove(&c->btree_cache, b);
2421 
2422 		bkey_copy(&b->key, new_key);
2423 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2424 		BUG_ON(ret);
2425 		mutex_unlock(&c->btree_cache.lock);
2426 	} else {
2427 		bkey_copy(&b->key, new_key);
2428 	}
2429 
2430 	bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2431 out:
2432 	bch2_trans_iter_exit(trans, &iter2);
2433 	return ret;
2434 err:
2435 	if (new_hash) {
2436 		mutex_lock(&c->btree_cache.lock);
2437 		bch2_btree_node_hash_remove(&c->btree_cache, b);
2438 		mutex_unlock(&c->btree_cache.lock);
2439 	}
2440 	goto out;
2441 }
2442 
2443 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2444 			       struct btree *b, struct bkey_i *new_key,
2445 			       unsigned commit_flags, bool skip_triggers)
2446 {
2447 	struct bch_fs *c = trans->c;
2448 	struct btree *new_hash = NULL;
2449 	struct btree_path *path = btree_iter_path(trans, iter);
2450 	struct closure cl;
2451 	int ret = 0;
2452 
2453 	ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2454 	if (ret)
2455 		return ret;
2456 
2457 	closure_init_stack(&cl);
2458 
2459 	/*
2460 	 * check btree_ptr_hash_val() after @b is locked by
2461 	 * btree_iter_traverse():
2462 	 */
2463 	if (btree_ptr_hash_val(new_key) != b->hash_val) {
2464 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2465 		if (ret) {
2466 			ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2467 			if (ret)
2468 				return ret;
2469 		}
2470 
2471 		new_hash = bch2_btree_node_mem_alloc(trans, false);
2472 		ret = PTR_ERR_OR_ZERO(new_hash);
2473 		if (ret)
2474 			goto err;
2475 	}
2476 
2477 	path->intent_ref++;
2478 	ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2479 					   commit_flags, skip_triggers);
2480 	--path->intent_ref;
2481 
2482 	if (new_hash)
2483 		bch2_btree_node_to_freelist(c, new_hash);
2484 err:
2485 	closure_sync(&cl);
2486 	bch2_btree_cache_cannibalize_unlock(trans);
2487 	return ret;
2488 }
2489 
2490 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2491 					struct btree *b, struct bkey_i *new_key,
2492 					unsigned commit_flags, bool skip_triggers)
2493 {
2494 	struct btree_iter iter;
2495 	int ret;
2496 
2497 	bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2498 				  BTREE_MAX_DEPTH, b->c.level,
2499 				  BTREE_ITER_intent);
2500 	ret = bch2_btree_iter_traverse(&iter);
2501 	if (ret)
2502 		goto out;
2503 
2504 	/* has node been freed? */
2505 	if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2506 		/* node has been freed: */
2507 		BUG_ON(!btree_node_dying(b));
2508 		goto out;
2509 	}
2510 
2511 	BUG_ON(!btree_node_hashed(b));
2512 
2513 	bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2514 			    !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2515 
2516 	ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2517 					 commit_flags, skip_triggers);
2518 out:
2519 	bch2_trans_iter_exit(trans, &iter);
2520 	return ret;
2521 }
2522 
2523 /* Init code: */
2524 
2525 /*
2526  * Only for filesystem bringup, when first reading the btree roots or allocating
2527  * btree roots when initializing a new filesystem:
2528  */
2529 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2530 {
2531 	BUG_ON(btree_node_root(c, b));
2532 
2533 	bch2_btree_set_root_inmem(c, b);
2534 }
2535 
2536 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level)
2537 {
2538 	struct bch_fs *c = trans->c;
2539 	struct closure cl;
2540 	struct btree *b;
2541 	int ret;
2542 
2543 	closure_init_stack(&cl);
2544 
2545 	do {
2546 		ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2547 		closure_sync(&cl);
2548 	} while (ret);
2549 
2550 	b = bch2_btree_node_mem_alloc(trans, false);
2551 	bch2_btree_cache_cannibalize_unlock(trans);
2552 
2553 	ret = PTR_ERR_OR_ZERO(b);
2554 	if (ret)
2555 		return ret;
2556 
2557 	set_btree_node_fake(b);
2558 	set_btree_node_need_rewrite(b);
2559 	b->c.level	= level;
2560 	b->c.btree_id	= id;
2561 
2562 	bkey_btree_ptr_init(&b->key);
2563 	b->key.k.p = SPOS_MAX;
2564 	*((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2565 
2566 	bch2_bset_init_first(b, &b->data->keys);
2567 	bch2_btree_build_aux_trees(b);
2568 
2569 	b->data->flags = 0;
2570 	btree_set_min(b, POS_MIN);
2571 	btree_set_max(b, SPOS_MAX);
2572 	b->data->format = bch2_btree_calc_format(b);
2573 	btree_node_set_format(b, b->data->format);
2574 
2575 	ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2576 					  b->c.level, b->c.btree_id);
2577 	BUG_ON(ret);
2578 
2579 	bch2_btree_set_root_inmem(c, b);
2580 
2581 	six_unlock_write(&b->c.lock);
2582 	six_unlock_intent(&b->c.lock);
2583 	return 0;
2584 }
2585 
2586 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2587 {
2588 	bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level)));
2589 }
2590 
2591 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2592 {
2593 	prt_printf(out, "%ps: ", (void *) as->ip_started);
2594 	bch2_trans_commit_flags_to_text(out, as->flags);
2595 
2596 	prt_str(out, " ");
2597 	bch2_btree_id_to_text(out, as->btree_id);
2598 	prt_printf(out, " l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2599 		   as->update_level_start,
2600 		   as->update_level_end,
2601 		   bch2_btree_update_modes[as->mode],
2602 		   as->nodes_written,
2603 		   closure_nr_remaining(&as->cl),
2604 		   as->journal.seq);
2605 }
2606 
2607 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2608 {
2609 	struct btree_update *as;
2610 
2611 	mutex_lock(&c->btree_interior_update_lock);
2612 	list_for_each_entry(as, &c->btree_interior_update_list, list)
2613 		bch2_btree_update_to_text(out, as);
2614 	mutex_unlock(&c->btree_interior_update_lock);
2615 }
2616 
2617 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2618 {
2619 	bool ret;
2620 
2621 	mutex_lock(&c->btree_interior_update_lock);
2622 	ret = !list_empty(&c->btree_interior_update_list);
2623 	mutex_unlock(&c->btree_interior_update_lock);
2624 
2625 	return ret;
2626 }
2627 
2628 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2629 {
2630 	bool ret = bch2_btree_interior_updates_pending(c);
2631 
2632 	if (ret)
2633 		closure_wait_event(&c->btree_interior_update_wait,
2634 				   !bch2_btree_interior_updates_pending(c));
2635 	return ret;
2636 }
2637 
2638 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2639 {
2640 	struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2641 
2642 	mutex_lock(&c->btree_root_lock);
2643 
2644 	r->level = entry->level;
2645 	r->alive = true;
2646 	bkey_copy(&r->key, (struct bkey_i *) entry->start);
2647 
2648 	mutex_unlock(&c->btree_root_lock);
2649 }
2650 
2651 struct jset_entry *
2652 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2653 				    struct jset_entry *end,
2654 				    unsigned long skip)
2655 {
2656 	unsigned i;
2657 
2658 	mutex_lock(&c->btree_root_lock);
2659 
2660 	for (i = 0; i < btree_id_nr_alive(c); i++) {
2661 		struct btree_root *r = bch2_btree_id_root(c, i);
2662 
2663 		if (r->alive && !test_bit(i, &skip)) {
2664 			journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2665 					  i, r->level, &r->key, r->key.k.u64s);
2666 			end = vstruct_next(end);
2667 		}
2668 	}
2669 
2670 	mutex_unlock(&c->btree_root_lock);
2671 
2672 	return end;
2673 }
2674 
2675 static void bch2_btree_alloc_to_text(struct printbuf *out,
2676 				     struct bch_fs *c,
2677 				     struct btree_alloc *a)
2678 {
2679 	printbuf_indent_add(out, 2);
2680 	bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k));
2681 	prt_newline(out);
2682 
2683 	struct open_bucket *ob;
2684 	unsigned i;
2685 	open_bucket_for_each(c, &a->ob, ob, i)
2686 		bch2_open_bucket_to_text(out, c, ob);
2687 
2688 	printbuf_indent_sub(out, 2);
2689 }
2690 
2691 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c)
2692 {
2693 	for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++)
2694 		bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]);
2695 }
2696 
2697 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2698 {
2699 	WARN_ON(!list_empty(&c->btree_node_rewrites));
2700 	WARN_ON(!list_empty(&c->btree_node_rewrites_pending));
2701 
2702 	if (c->btree_node_rewrite_worker)
2703 		destroy_workqueue(c->btree_node_rewrite_worker);
2704 	if (c->btree_interior_update_worker)
2705 		destroy_workqueue(c->btree_interior_update_worker);
2706 	mempool_exit(&c->btree_interior_update_pool);
2707 }
2708 
2709 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2710 {
2711 	mutex_init(&c->btree_reserve_cache_lock);
2712 	INIT_LIST_HEAD(&c->btree_interior_update_list);
2713 	INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2714 	mutex_init(&c->btree_interior_update_lock);
2715 	INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2716 
2717 	INIT_LIST_HEAD(&c->btree_node_rewrites);
2718 	INIT_LIST_HEAD(&c->btree_node_rewrites_pending);
2719 	spin_lock_init(&c->btree_node_rewrites_lock);
2720 }
2721 
2722 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2723 {
2724 	c->btree_interior_update_worker =
2725 		alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2726 	if (!c->btree_interior_update_worker)
2727 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2728 
2729 	c->btree_node_rewrite_worker =
2730 		alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2731 	if (!c->btree_node_rewrite_worker)
2732 		return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2733 
2734 	if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2735 				      sizeof(struct btree_update)))
2736 		return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2737 
2738 	return 0;
2739 }
2740