1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_methods.h" 6 #include "btree_cache.h" 7 #include "btree_gc.h" 8 #include "btree_journal_iter.h" 9 #include "btree_update.h" 10 #include "btree_update_interior.h" 11 #include "btree_io.h" 12 #include "btree_iter.h" 13 #include "btree_locking.h" 14 #include "buckets.h" 15 #include "clock.h" 16 #include "error.h" 17 #include "extents.h" 18 #include "journal.h" 19 #include "journal_reclaim.h" 20 #include "keylist.h" 21 #include "replicas.h" 22 #include "super-io.h" 23 #include "trace.h" 24 25 #include <linux/random.h> 26 27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 28 btree_path_idx_t, struct btree *, 29 struct keylist *, unsigned); 30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 31 32 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans, 33 enum btree_id btree_id, 34 unsigned level, 35 struct bpos pos) 36 { 37 btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level, 38 BTREE_ITER_NOPRESERVE| 39 BTREE_ITER_INTENT, _RET_IP_); 40 path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_); 41 42 struct btree_path *path = trans->paths + path_idx; 43 bch2_btree_path_downgrade(trans, path); 44 __bch2_btree_path_unlock(trans, path); 45 return path_idx; 46 } 47 48 /* Debug code: */ 49 50 /* 51 * Verify that child nodes correctly span parent node's range: 52 */ 53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) 54 { 55 #ifdef CONFIG_BCACHEFS_DEBUG 56 struct bpos next_node = b->data->min_key; 57 struct btree_node_iter iter; 58 struct bkey_s_c k; 59 struct bkey_s_c_btree_ptr_v2 bp; 60 struct bkey unpacked; 61 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 62 63 BUG_ON(!b->c.level); 64 65 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) 66 return; 67 68 bch2_btree_node_iter_init_from_start(&iter, b); 69 70 while (1) { 71 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); 72 if (k.k->type != KEY_TYPE_btree_ptr_v2) 73 break; 74 bp = bkey_s_c_to_btree_ptr_v2(k); 75 76 if (!bpos_eq(next_node, bp.v->min_key)) { 77 bch2_dump_btree_node(c, b); 78 bch2_bpos_to_text(&buf1, next_node); 79 bch2_bpos_to_text(&buf2, bp.v->min_key); 80 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); 81 } 82 83 bch2_btree_node_iter_advance(&iter, b); 84 85 if (bch2_btree_node_iter_end(&iter)) { 86 if (!bpos_eq(k.k->p, b->key.k.p)) { 87 bch2_dump_btree_node(c, b); 88 bch2_bpos_to_text(&buf1, b->key.k.p); 89 bch2_bpos_to_text(&buf2, k.k->p); 90 panic("expected end %s got %s\n", buf1.buf, buf2.buf); 91 } 92 break; 93 } 94 95 next_node = bpos_successor(k.k->p); 96 } 97 #endif 98 } 99 100 /* Calculate ideal packed bkey format for new btree nodes: */ 101 102 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 103 { 104 struct bkey_packed *k; 105 struct bset_tree *t; 106 struct bkey uk; 107 108 for_each_bset(b, t) 109 bset_tree_for_each_key(b, t, k) 110 if (!bkey_deleted(k)) { 111 uk = bkey_unpack_key(b, k); 112 bch2_bkey_format_add_key(s, &uk); 113 } 114 } 115 116 static struct bkey_format bch2_btree_calc_format(struct btree *b) 117 { 118 struct bkey_format_state s; 119 120 bch2_bkey_format_init(&s); 121 bch2_bkey_format_add_pos(&s, b->data->min_key); 122 bch2_bkey_format_add_pos(&s, b->data->max_key); 123 __bch2_btree_calc_format(&s, b); 124 125 return bch2_bkey_format_done(&s); 126 } 127 128 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 129 struct bkey_format *old_f, 130 struct bkey_format *new_f) 131 { 132 /* stupid integer promotion rules */ 133 ssize_t delta = 134 (((int) new_f->key_u64s - old_f->key_u64s) * 135 (int) nr.packed_keys) + 136 (((int) new_f->key_u64s - BKEY_U64s) * 137 (int) nr.unpacked_keys); 138 139 BUG_ON(delta + nr.live_u64s < 0); 140 141 return nr.live_u64s + delta; 142 } 143 144 /** 145 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 146 * 147 * @c: filesystem handle 148 * @b: btree node to rewrite 149 * @nr: number of keys for new node (i.e. b->nr) 150 * @new_f: bkey format to translate keys to 151 * 152 * Returns: true if all re-packed keys will be able to fit in a new node. 153 * 154 * Assumes all keys will successfully pack with the new format. 155 */ 156 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 157 struct btree_nr_keys nr, 158 struct bkey_format *new_f) 159 { 160 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 161 162 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 163 } 164 165 /* Btree node freeing/allocation: */ 166 167 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 168 { 169 struct bch_fs *c = trans->c; 170 171 trace_and_count(c, btree_node_free, trans, b); 172 173 BUG_ON(btree_node_write_blocked(b)); 174 BUG_ON(btree_node_dirty(b)); 175 BUG_ON(btree_node_need_write(b)); 176 BUG_ON(b == btree_node_root(c, b)); 177 BUG_ON(b->ob.nr); 178 BUG_ON(!list_empty(&b->write_blocked)); 179 BUG_ON(b->will_make_reachable); 180 181 clear_btree_node_noevict(b); 182 183 mutex_lock(&c->btree_cache.lock); 184 list_move(&b->list, &c->btree_cache.freeable); 185 mutex_unlock(&c->btree_cache.lock); 186 } 187 188 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 189 struct btree_path *path, 190 struct btree *b) 191 { 192 struct bch_fs *c = trans->c; 193 unsigned i, level = b->c.level; 194 195 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 196 bch2_btree_node_hash_remove(&c->btree_cache, b); 197 __btree_node_free(trans, b); 198 six_unlock_write(&b->c.lock); 199 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 200 201 trans_for_each_path(trans, path, i) 202 if (path->l[level].b == b) { 203 btree_node_unlock(trans, path, level); 204 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 205 } 206 } 207 208 static void bch2_btree_node_free_never_used(struct btree_update *as, 209 struct btree_trans *trans, 210 struct btree *b) 211 { 212 struct bch_fs *c = as->c; 213 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 214 struct btree_path *path; 215 unsigned i, level = b->c.level; 216 217 BUG_ON(!list_empty(&b->write_blocked)); 218 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 219 220 b->will_make_reachable = 0; 221 closure_put(&as->cl); 222 223 clear_btree_node_will_make_reachable(b); 224 clear_btree_node_accessed(b); 225 clear_btree_node_dirty_acct(c, b); 226 clear_btree_node_need_write(b); 227 228 mutex_lock(&c->btree_cache.lock); 229 list_del_init(&b->list); 230 bch2_btree_node_hash_remove(&c->btree_cache, b); 231 mutex_unlock(&c->btree_cache.lock); 232 233 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 234 p->b[p->nr++] = b; 235 236 six_unlock_intent(&b->c.lock); 237 238 trans_for_each_path(trans, path, i) 239 if (path->l[level].b == b) { 240 btree_node_unlock(trans, path, level); 241 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 242 } 243 } 244 245 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 246 struct disk_reservation *res, 247 struct closure *cl, 248 bool interior_node, 249 unsigned flags) 250 { 251 struct bch_fs *c = trans->c; 252 struct write_point *wp; 253 struct btree *b; 254 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 255 struct open_buckets obs = { .nr = 0 }; 256 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 257 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 258 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim 259 ? BTREE_NODE_RESERVE 260 : 0; 261 int ret; 262 263 mutex_lock(&c->btree_reserve_cache_lock); 264 if (c->btree_reserve_cache_nr > nr_reserve) { 265 struct btree_alloc *a = 266 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 267 268 obs = a->ob; 269 bkey_copy(&tmp.k, &a->k); 270 mutex_unlock(&c->btree_reserve_cache_lock); 271 goto mem_alloc; 272 } 273 mutex_unlock(&c->btree_reserve_cache_lock); 274 275 retry: 276 ret = bch2_alloc_sectors_start_trans(trans, 277 c->opts.metadata_target ?: 278 c->opts.foreground_target, 279 0, 280 writepoint_ptr(&c->btree_write_point), 281 &devs_have, 282 res->nr_replicas, 283 c->opts.metadata_replicas_required, 284 watermark, 0, cl, &wp); 285 if (unlikely(ret)) 286 return ERR_PTR(ret); 287 288 if (wp->sectors_free < btree_sectors(c)) { 289 struct open_bucket *ob; 290 unsigned i; 291 292 open_bucket_for_each(c, &wp->ptrs, ob, i) 293 if (ob->sectors_free < btree_sectors(c)) 294 ob->sectors_free = 0; 295 296 bch2_alloc_sectors_done(c, wp); 297 goto retry; 298 } 299 300 bkey_btree_ptr_v2_init(&tmp.k); 301 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 302 303 bch2_open_bucket_get(c, wp, &obs); 304 bch2_alloc_sectors_done(c, wp); 305 mem_alloc: 306 b = bch2_btree_node_mem_alloc(trans, interior_node); 307 six_unlock_write(&b->c.lock); 308 six_unlock_intent(&b->c.lock); 309 310 /* we hold cannibalize_lock: */ 311 BUG_ON(IS_ERR(b)); 312 BUG_ON(b->ob.nr); 313 314 bkey_copy(&b->key, &tmp.k); 315 b->ob = obs; 316 317 return b; 318 } 319 320 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 321 struct btree_trans *trans, 322 unsigned level) 323 { 324 struct bch_fs *c = as->c; 325 struct btree *b; 326 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 327 int ret; 328 329 BUG_ON(level >= BTREE_MAX_DEPTH); 330 BUG_ON(!p->nr); 331 332 b = p->b[--p->nr]; 333 334 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 335 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 336 337 set_btree_node_accessed(b); 338 set_btree_node_dirty_acct(c, b); 339 set_btree_node_need_write(b); 340 341 bch2_bset_init_first(b, &b->data->keys); 342 b->c.level = level; 343 b->c.btree_id = as->btree_id; 344 b->version_ondisk = c->sb.version; 345 346 memset(&b->nr, 0, sizeof(b->nr)); 347 b->data->magic = cpu_to_le64(bset_magic(c)); 348 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 349 b->data->flags = 0; 350 SET_BTREE_NODE_ID(b->data, as->btree_id); 351 SET_BTREE_NODE_LEVEL(b->data, level); 352 353 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 354 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 355 356 bp->v.mem_ptr = 0; 357 bp->v.seq = b->data->keys.seq; 358 bp->v.sectors_written = 0; 359 } 360 361 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 362 363 bch2_btree_build_aux_trees(b); 364 365 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 366 BUG_ON(ret); 367 368 trace_and_count(c, btree_node_alloc, trans, b); 369 bch2_increment_clock(c, btree_sectors(c), WRITE); 370 return b; 371 } 372 373 static void btree_set_min(struct btree *b, struct bpos pos) 374 { 375 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 376 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 377 b->data->min_key = pos; 378 } 379 380 static void btree_set_max(struct btree *b, struct bpos pos) 381 { 382 b->key.k.p = pos; 383 b->data->max_key = pos; 384 } 385 386 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 387 struct btree_trans *trans, 388 struct btree *b) 389 { 390 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 391 struct bkey_format format = bch2_btree_calc_format(b); 392 393 /* 394 * The keys might expand with the new format - if they wouldn't fit in 395 * the btree node anymore, use the old format for now: 396 */ 397 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 398 format = b->format; 399 400 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 401 402 btree_set_min(n, b->data->min_key); 403 btree_set_max(n, b->data->max_key); 404 405 n->data->format = format; 406 btree_node_set_format(n, format); 407 408 bch2_btree_sort_into(as->c, n, b); 409 410 btree_node_reset_sib_u64s(n); 411 return n; 412 } 413 414 static struct btree *__btree_root_alloc(struct btree_update *as, 415 struct btree_trans *trans, unsigned level) 416 { 417 struct btree *b = bch2_btree_node_alloc(as, trans, level); 418 419 btree_set_min(b, POS_MIN); 420 btree_set_max(b, SPOS_MAX); 421 b->data->format = bch2_btree_calc_format(b); 422 423 btree_node_set_format(b, b->data->format); 424 bch2_btree_build_aux_trees(b); 425 426 return b; 427 } 428 429 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 430 { 431 struct bch_fs *c = as->c; 432 struct prealloc_nodes *p; 433 434 for (p = as->prealloc_nodes; 435 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 436 p++) { 437 while (p->nr) { 438 struct btree *b = p->b[--p->nr]; 439 440 mutex_lock(&c->btree_reserve_cache_lock); 441 442 if (c->btree_reserve_cache_nr < 443 ARRAY_SIZE(c->btree_reserve_cache)) { 444 struct btree_alloc *a = 445 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 446 447 a->ob = b->ob; 448 b->ob.nr = 0; 449 bkey_copy(&a->k, &b->key); 450 } else { 451 bch2_open_buckets_put(c, &b->ob); 452 } 453 454 mutex_unlock(&c->btree_reserve_cache_lock); 455 456 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 457 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 458 __btree_node_free(trans, b); 459 six_unlock_write(&b->c.lock); 460 six_unlock_intent(&b->c.lock); 461 } 462 } 463 } 464 465 static int bch2_btree_reserve_get(struct btree_trans *trans, 466 struct btree_update *as, 467 unsigned nr_nodes[2], 468 unsigned flags, 469 struct closure *cl) 470 { 471 struct btree *b; 472 unsigned interior; 473 int ret = 0; 474 475 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 476 477 /* 478 * Protects reaping from the btree node cache and using the btree node 479 * open bucket reserve: 480 */ 481 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 482 if (ret) 483 return ret; 484 485 for (interior = 0; interior < 2; interior++) { 486 struct prealloc_nodes *p = as->prealloc_nodes + interior; 487 488 while (p->nr < nr_nodes[interior]) { 489 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 490 interior, flags); 491 if (IS_ERR(b)) { 492 ret = PTR_ERR(b); 493 goto err; 494 } 495 496 p->b[p->nr++] = b; 497 } 498 } 499 err: 500 bch2_btree_cache_cannibalize_unlock(trans); 501 return ret; 502 } 503 504 /* Asynchronous interior node update machinery */ 505 506 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 507 { 508 struct bch_fs *c = as->c; 509 510 if (as->took_gc_lock) 511 up_read(&c->gc_lock); 512 as->took_gc_lock = false; 513 514 bch2_journal_pin_drop(&c->journal, &as->journal); 515 bch2_journal_pin_flush(&c->journal, &as->journal); 516 bch2_disk_reservation_put(c, &as->disk_res); 517 bch2_btree_reserve_put(as, trans); 518 519 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 520 as->start_time); 521 522 mutex_lock(&c->btree_interior_update_lock); 523 list_del(&as->unwritten_list); 524 list_del(&as->list); 525 526 closure_debug_destroy(&as->cl); 527 mempool_free(as, &c->btree_interior_update_pool); 528 529 /* 530 * Have to do the wakeup with btree_interior_update_lock still held, 531 * since being on btree_interior_update_list is our ref on @c: 532 */ 533 closure_wake_up(&c->btree_interior_update_wait); 534 535 mutex_unlock(&c->btree_interior_update_lock); 536 } 537 538 static void btree_update_add_key(struct btree_update *as, 539 struct keylist *keys, struct btree *b) 540 { 541 struct bkey_i *k = &b->key; 542 543 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 544 ARRAY_SIZE(as->_old_keys)); 545 546 bkey_copy(keys->top, k); 547 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 548 549 bch2_keylist_push(keys); 550 } 551 552 /* 553 * The transactional part of an interior btree node update, where we journal the 554 * update we did to the interior node and update alloc info: 555 */ 556 static int btree_update_nodes_written_trans(struct btree_trans *trans, 557 struct btree_update *as) 558 { 559 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 560 int ret = PTR_ERR_OR_ZERO(e); 561 if (ret) 562 return ret; 563 564 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 565 566 trans->journal_pin = &as->journal; 567 568 for_each_keylist_key(&as->old_keys, k) { 569 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 570 571 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 572 BTREE_TRIGGER_TRANSACTIONAL); 573 if (ret) 574 return ret; 575 } 576 577 for_each_keylist_key(&as->new_keys, k) { 578 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 579 580 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 581 BTREE_TRIGGER_TRANSACTIONAL); 582 if (ret) 583 return ret; 584 } 585 586 return 0; 587 } 588 589 static void btree_update_nodes_written(struct btree_update *as) 590 { 591 struct bch_fs *c = as->c; 592 struct btree *b; 593 struct btree_trans *trans = bch2_trans_get(c); 594 u64 journal_seq = 0; 595 unsigned i; 596 int ret; 597 598 /* 599 * If we're already in an error state, it might be because a btree node 600 * was never written, and we might be trying to free that same btree 601 * node here, but it won't have been marked as allocated and we'll see 602 * spurious disk usage inconsistencies in the transactional part below 603 * if we don't skip it: 604 */ 605 ret = bch2_journal_error(&c->journal); 606 if (ret) 607 goto err; 608 609 /* 610 * Wait for any in flight writes to finish before we free the old nodes 611 * on disk: 612 */ 613 for (i = 0; i < as->nr_old_nodes; i++) { 614 __le64 seq; 615 616 b = as->old_nodes[i]; 617 618 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 619 seq = b->data ? b->data->keys.seq : 0; 620 six_unlock_read(&b->c.lock); 621 622 if (seq == as->old_nodes_seq[i]) 623 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 624 TASK_UNINTERRUPTIBLE); 625 } 626 627 /* 628 * We did an update to a parent node where the pointers we added pointed 629 * to child nodes that weren't written yet: now, the child nodes have 630 * been written so we can write out the update to the interior node. 631 */ 632 633 /* 634 * We can't call into journal reclaim here: we'd block on the journal 635 * reclaim lock, but we may need to release the open buckets we have 636 * pinned in order for other btree updates to make forward progress, and 637 * journal reclaim does btree updates when flushing bkey_cached entries, 638 * which may require allocations as well. 639 */ 640 ret = commit_do(trans, &as->disk_res, &journal_seq, 641 BCH_WATERMARK_reclaim| 642 BCH_TRANS_COMMIT_no_enospc| 643 BCH_TRANS_COMMIT_no_check_rw| 644 BCH_TRANS_COMMIT_journal_reclaim, 645 btree_update_nodes_written_trans(trans, as)); 646 bch2_trans_unlock(trans); 647 648 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 649 "%s(): error %s", __func__, bch2_err_str(ret)); 650 err: 651 if (as->b) { 652 653 b = as->b; 654 btree_path_idx_t path_idx = get_unlocked_mut_path(trans, 655 as->btree_id, b->c.level, b->key.k.p); 656 struct btree_path *path = trans->paths + path_idx; 657 /* 658 * @b is the node we did the final insert into: 659 * 660 * On failure to get a journal reservation, we still have to 661 * unblock the write and allow most of the write path to happen 662 * so that shutdown works, but the i->journal_seq mechanism 663 * won't work to prevent the btree write from being visible (we 664 * didn't get a journal sequence number) - instead 665 * __bch2_btree_node_write() doesn't do the actual write if 666 * we're in journal error state: 667 */ 668 669 /* 670 * Ensure transaction is unlocked before using 671 * btree_node_lock_nopath() (the use of which is always suspect, 672 * we need to work on removing this in the future) 673 * 674 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 675 * calls bch2_path_upgrade(), before we call path_make_mut(), so 676 * we may rarely end up with a locked path besides the one we 677 * have here: 678 */ 679 bch2_trans_unlock(trans); 680 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 681 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 682 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 683 path->l[b->c.level].b = b; 684 685 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 686 687 mutex_lock(&c->btree_interior_update_lock); 688 689 list_del(&as->write_blocked_list); 690 if (list_empty(&b->write_blocked)) 691 clear_btree_node_write_blocked(b); 692 693 /* 694 * Node might have been freed, recheck under 695 * btree_interior_update_lock: 696 */ 697 if (as->b == b) { 698 BUG_ON(!b->c.level); 699 BUG_ON(!btree_node_dirty(b)); 700 701 if (!ret) { 702 struct bset *last = btree_bset_last(b); 703 704 last->journal_seq = cpu_to_le64( 705 max(journal_seq, 706 le64_to_cpu(last->journal_seq))); 707 708 bch2_btree_add_journal_pin(c, b, journal_seq); 709 } else { 710 /* 711 * If we didn't get a journal sequence number we 712 * can't write this btree node, because recovery 713 * won't know to ignore this write: 714 */ 715 set_btree_node_never_write(b); 716 } 717 } 718 719 mutex_unlock(&c->btree_interior_update_lock); 720 721 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 722 six_unlock_write(&b->c.lock); 723 724 btree_node_write_if_need(c, b, SIX_LOCK_intent); 725 btree_node_unlock(trans, path, b->c.level); 726 bch2_path_put(trans, path_idx, true); 727 } 728 729 bch2_journal_pin_drop(&c->journal, &as->journal); 730 731 mutex_lock(&c->btree_interior_update_lock); 732 for (i = 0; i < as->nr_new_nodes; i++) { 733 b = as->new_nodes[i]; 734 735 BUG_ON(b->will_make_reachable != (unsigned long) as); 736 b->will_make_reachable = 0; 737 clear_btree_node_will_make_reachable(b); 738 } 739 mutex_unlock(&c->btree_interior_update_lock); 740 741 for (i = 0; i < as->nr_new_nodes; i++) { 742 b = as->new_nodes[i]; 743 744 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 745 btree_node_write_if_need(c, b, SIX_LOCK_read); 746 six_unlock_read(&b->c.lock); 747 } 748 749 for (i = 0; i < as->nr_open_buckets; i++) 750 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 751 752 bch2_btree_update_free(as, trans); 753 bch2_trans_put(trans); 754 } 755 756 static void btree_interior_update_work(struct work_struct *work) 757 { 758 struct bch_fs *c = 759 container_of(work, struct bch_fs, btree_interior_update_work); 760 struct btree_update *as; 761 762 while (1) { 763 mutex_lock(&c->btree_interior_update_lock); 764 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 765 struct btree_update, unwritten_list); 766 if (as && !as->nodes_written) 767 as = NULL; 768 mutex_unlock(&c->btree_interior_update_lock); 769 770 if (!as) 771 break; 772 773 btree_update_nodes_written(as); 774 } 775 } 776 777 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 778 { 779 closure_type(as, struct btree_update, cl); 780 struct bch_fs *c = as->c; 781 782 mutex_lock(&c->btree_interior_update_lock); 783 as->nodes_written = true; 784 mutex_unlock(&c->btree_interior_update_lock); 785 786 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 787 } 788 789 /* 790 * We're updating @b with pointers to nodes that haven't finished writing yet: 791 * block @b from being written until @as completes 792 */ 793 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 794 { 795 struct bch_fs *c = as->c; 796 797 mutex_lock(&c->btree_interior_update_lock); 798 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 799 800 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 801 BUG_ON(!btree_node_dirty(b)); 802 BUG_ON(!b->c.level); 803 804 as->mode = BTREE_INTERIOR_UPDATING_NODE; 805 as->b = b; 806 807 set_btree_node_write_blocked(b); 808 list_add(&as->write_blocked_list, &b->write_blocked); 809 810 mutex_unlock(&c->btree_interior_update_lock); 811 } 812 813 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 814 struct journal_entry_pin *_pin, u64 seq) 815 { 816 return 0; 817 } 818 819 static void btree_update_reparent(struct btree_update *as, 820 struct btree_update *child) 821 { 822 struct bch_fs *c = as->c; 823 824 lockdep_assert_held(&c->btree_interior_update_lock); 825 826 child->b = NULL; 827 child->mode = BTREE_INTERIOR_UPDATING_AS; 828 829 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 830 bch2_update_reparent_journal_pin_flush); 831 } 832 833 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 834 { 835 struct bkey_i *insert = &b->key; 836 struct bch_fs *c = as->c; 837 838 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); 839 840 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 841 ARRAY_SIZE(as->journal_entries)); 842 843 as->journal_u64s += 844 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 845 BCH_JSET_ENTRY_btree_root, 846 b->c.btree_id, b->c.level, 847 insert, insert->k.u64s); 848 849 mutex_lock(&c->btree_interior_update_lock); 850 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 851 852 as->mode = BTREE_INTERIOR_UPDATING_ROOT; 853 mutex_unlock(&c->btree_interior_update_lock); 854 } 855 856 /* 857 * bch2_btree_update_add_new_node: 858 * 859 * This causes @as to wait on @b to be written, before it gets to 860 * bch2_btree_update_nodes_written 861 * 862 * Additionally, it sets b->will_make_reachable to prevent any additional writes 863 * to @b from happening besides the first until @b is reachable on disk 864 * 865 * And it adds @b to the list of @as's new nodes, so that we can update sector 866 * counts in bch2_btree_update_nodes_written: 867 */ 868 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 869 { 870 struct bch_fs *c = as->c; 871 872 closure_get(&as->cl); 873 874 mutex_lock(&c->btree_interior_update_lock); 875 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 876 BUG_ON(b->will_make_reachable); 877 878 as->new_nodes[as->nr_new_nodes++] = b; 879 b->will_make_reachable = 1UL|(unsigned long) as; 880 set_btree_node_will_make_reachable(b); 881 882 mutex_unlock(&c->btree_interior_update_lock); 883 884 btree_update_add_key(as, &as->new_keys, b); 885 886 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 887 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 888 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 889 890 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 891 cpu_to_le16(sectors); 892 } 893 } 894 895 /* 896 * returns true if @b was a new node 897 */ 898 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 899 { 900 struct btree_update *as; 901 unsigned long v; 902 unsigned i; 903 904 mutex_lock(&c->btree_interior_update_lock); 905 /* 906 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 907 * dropped when it gets written by bch2_btree_complete_write - the 908 * xchg() is for synchronization with bch2_btree_complete_write: 909 */ 910 v = xchg(&b->will_make_reachable, 0); 911 clear_btree_node_will_make_reachable(b); 912 as = (struct btree_update *) (v & ~1UL); 913 914 if (!as) { 915 mutex_unlock(&c->btree_interior_update_lock); 916 return; 917 } 918 919 for (i = 0; i < as->nr_new_nodes; i++) 920 if (as->new_nodes[i] == b) 921 goto found; 922 923 BUG(); 924 found: 925 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 926 mutex_unlock(&c->btree_interior_update_lock); 927 928 if (v & 1) 929 closure_put(&as->cl); 930 } 931 932 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 933 { 934 while (b->ob.nr) 935 as->open_buckets[as->nr_open_buckets++] = 936 b->ob.v[--b->ob.nr]; 937 } 938 939 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 940 struct journal_entry_pin *_pin, u64 seq) 941 { 942 return 0; 943 } 944 945 /* 946 * @b is being split/rewritten: it may have pointers to not-yet-written btree 947 * nodes and thus outstanding btree_updates - redirect @b's 948 * btree_updates to point to this btree_update: 949 */ 950 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 951 struct btree *b) 952 { 953 struct bch_fs *c = as->c; 954 struct btree_update *p, *n; 955 struct btree_write *w; 956 957 set_btree_node_dying(b); 958 959 if (btree_node_fake(b)) 960 return; 961 962 mutex_lock(&c->btree_interior_update_lock); 963 964 /* 965 * Does this node have any btree_update operations preventing 966 * it from being written? 967 * 968 * If so, redirect them to point to this btree_update: we can 969 * write out our new nodes, but we won't make them visible until those 970 * operations complete 971 */ 972 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 973 list_del_init(&p->write_blocked_list); 974 btree_update_reparent(as, p); 975 976 /* 977 * for flush_held_btree_writes() waiting on updates to flush or 978 * nodes to be writeable: 979 */ 980 closure_wake_up(&c->btree_interior_update_wait); 981 } 982 983 clear_btree_node_dirty_acct(c, b); 984 clear_btree_node_need_write(b); 985 clear_btree_node_write_blocked(b); 986 987 /* 988 * Does this node have unwritten data that has a pin on the journal? 989 * 990 * If so, transfer that pin to the btree_update operation - 991 * note that if we're freeing multiple nodes, we only need to keep the 992 * oldest pin of any of the nodes we're freeing. We'll release the pin 993 * when the new nodes are persistent and reachable on disk: 994 */ 995 w = btree_current_write(b); 996 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 997 bch2_btree_update_will_free_node_journal_pin_flush); 998 bch2_journal_pin_drop(&c->journal, &w->journal); 999 1000 w = btree_prev_write(b); 1001 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1002 bch2_btree_update_will_free_node_journal_pin_flush); 1003 bch2_journal_pin_drop(&c->journal, &w->journal); 1004 1005 mutex_unlock(&c->btree_interior_update_lock); 1006 1007 /* 1008 * Is this a node that isn't reachable on disk yet? 1009 * 1010 * Nodes that aren't reachable yet have writes blocked until they're 1011 * reachable - now that we've cancelled any pending writes and moved 1012 * things waiting on that write to wait on this update, we can drop this 1013 * node from the list of nodes that the other update is making 1014 * reachable, prior to freeing it: 1015 */ 1016 btree_update_drop_new_node(c, b); 1017 1018 btree_update_add_key(as, &as->old_keys, b); 1019 1020 as->old_nodes[as->nr_old_nodes] = b; 1021 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1022 as->nr_old_nodes++; 1023 } 1024 1025 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1026 { 1027 struct bch_fs *c = as->c; 1028 u64 start_time = as->start_time; 1029 1030 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); 1031 1032 if (as->took_gc_lock) 1033 up_read(&as->c->gc_lock); 1034 as->took_gc_lock = false; 1035 1036 bch2_btree_reserve_put(as, trans); 1037 1038 continue_at(&as->cl, btree_update_set_nodes_written, 1039 as->c->btree_interior_update_worker); 1040 1041 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1042 start_time); 1043 } 1044 1045 static struct btree_update * 1046 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1047 unsigned level, bool split, unsigned flags) 1048 { 1049 struct bch_fs *c = trans->c; 1050 struct btree_update *as; 1051 u64 start_time = local_clock(); 1052 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1053 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1054 unsigned nr_nodes[2] = { 0, 0 }; 1055 unsigned update_level = level; 1056 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1057 int ret = 0; 1058 u32 restart_count = trans->restart_count; 1059 1060 BUG_ON(!path->should_be_locked); 1061 1062 if (watermark == BCH_WATERMARK_copygc) 1063 watermark = BCH_WATERMARK_btree_copygc; 1064 if (watermark < BCH_WATERMARK_btree) 1065 watermark = BCH_WATERMARK_btree; 1066 1067 flags &= ~BCH_WATERMARK_MASK; 1068 flags |= watermark; 1069 1070 if (!(flags & BCH_TRANS_COMMIT_journal_reclaim) && 1071 watermark < c->journal.watermark) { 1072 struct journal_res res = { 0 }; 1073 1074 ret = drop_locks_do(trans, 1075 bch2_journal_res_get(&c->journal, &res, 1, 1076 watermark|JOURNAL_RES_GET_CHECK)); 1077 if (ret) 1078 return ERR_PTR(ret); 1079 } 1080 1081 while (1) { 1082 nr_nodes[!!update_level] += 1 + split; 1083 update_level++; 1084 1085 ret = bch2_btree_path_upgrade(trans, path, update_level + 1); 1086 if (ret) 1087 return ERR_PTR(ret); 1088 1089 if (!btree_path_node(path, update_level)) { 1090 /* Allocating new root? */ 1091 nr_nodes[1] += split; 1092 update_level = BTREE_MAX_DEPTH; 1093 break; 1094 } 1095 1096 /* 1097 * Always check for space for two keys, even if we won't have to 1098 * split at prior level - it might have been a merge instead: 1099 */ 1100 if (bch2_btree_node_insert_fits(path->l[update_level].b, 1101 BKEY_BTREE_PTR_U64s_MAX * 2)) 1102 break; 1103 1104 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1105 } 1106 1107 if (!down_read_trylock(&c->gc_lock)) { 1108 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1109 if (ret) { 1110 up_read(&c->gc_lock); 1111 return ERR_PTR(ret); 1112 } 1113 } 1114 1115 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1116 memset(as, 0, sizeof(*as)); 1117 closure_init(&as->cl, NULL); 1118 as->c = c; 1119 as->start_time = start_time; 1120 as->mode = BTREE_INTERIOR_NO_UPDATE; 1121 as->took_gc_lock = true; 1122 as->btree_id = path->btree_id; 1123 as->update_level = update_level; 1124 INIT_LIST_HEAD(&as->list); 1125 INIT_LIST_HEAD(&as->unwritten_list); 1126 INIT_LIST_HEAD(&as->write_blocked_list); 1127 bch2_keylist_init(&as->old_keys, as->_old_keys); 1128 bch2_keylist_init(&as->new_keys, as->_new_keys); 1129 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1130 1131 mutex_lock(&c->btree_interior_update_lock); 1132 list_add_tail(&as->list, &c->btree_interior_update_list); 1133 mutex_unlock(&c->btree_interior_update_lock); 1134 1135 /* 1136 * We don't want to allocate if we're in an error state, that can cause 1137 * deadlock on emergency shutdown due to open buckets getting stuck in 1138 * the btree_reserve_cache after allocator shutdown has cleared it out. 1139 * This check needs to come after adding us to the btree_interior_update 1140 * list but before calling bch2_btree_reserve_get, to synchronize with 1141 * __bch2_fs_read_only(). 1142 */ 1143 ret = bch2_journal_error(&c->journal); 1144 if (ret) 1145 goto err; 1146 1147 ret = bch2_disk_reservation_get(c, &as->disk_res, 1148 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1149 c->opts.metadata_replicas, 1150 disk_res_flags); 1151 if (ret) 1152 goto err; 1153 1154 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1155 if (bch2_err_matches(ret, ENOSPC) || 1156 bch2_err_matches(ret, ENOMEM)) { 1157 struct closure cl; 1158 1159 /* 1160 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1161 * flag 1162 */ 1163 if (bch2_err_matches(ret, ENOSPC) && 1164 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1165 watermark != BCH_WATERMARK_reclaim) { 1166 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1167 goto err; 1168 } 1169 1170 closure_init_stack(&cl); 1171 1172 do { 1173 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1174 1175 bch2_trans_unlock(trans); 1176 closure_sync(&cl); 1177 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1178 } 1179 1180 if (ret) { 1181 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1182 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1183 goto err; 1184 } 1185 1186 ret = bch2_trans_relock(trans); 1187 if (ret) 1188 goto err; 1189 1190 bch2_trans_verify_not_restarted(trans, restart_count); 1191 return as; 1192 err: 1193 bch2_btree_update_free(as, trans); 1194 if (!bch2_err_matches(ret, ENOSPC) && 1195 !bch2_err_matches(ret, EROFS)) 1196 bch_err_fn_ratelimited(c, ret); 1197 return ERR_PTR(ret); 1198 } 1199 1200 /* Btree root updates: */ 1201 1202 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1203 { 1204 /* Root nodes cannot be reaped */ 1205 mutex_lock(&c->btree_cache.lock); 1206 list_del_init(&b->list); 1207 mutex_unlock(&c->btree_cache.lock); 1208 1209 mutex_lock(&c->btree_root_lock); 1210 BUG_ON(btree_node_root(c, b) && 1211 (b->c.level < btree_node_root(c, b)->c.level || 1212 !btree_node_dying(btree_node_root(c, b)))); 1213 1214 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1215 mutex_unlock(&c->btree_root_lock); 1216 1217 bch2_recalc_btree_reserve(c); 1218 } 1219 1220 static void bch2_btree_set_root(struct btree_update *as, 1221 struct btree_trans *trans, 1222 struct btree_path *path, 1223 struct btree *b) 1224 { 1225 struct bch_fs *c = as->c; 1226 struct btree *old; 1227 1228 trace_and_count(c, btree_node_set_root, trans, b); 1229 1230 old = btree_node_root(c, b); 1231 1232 /* 1233 * Ensure no one is using the old root while we switch to the 1234 * new root: 1235 */ 1236 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1237 1238 bch2_btree_set_root_inmem(c, b); 1239 1240 btree_update_updated_root(as, b); 1241 1242 /* 1243 * Unlock old root after new root is visible: 1244 * 1245 * The new root isn't persistent, but that's ok: we still have 1246 * an intent lock on the new root, and any updates that would 1247 * depend on the new root would have to update the new root. 1248 */ 1249 bch2_btree_node_unlock_write(trans, path, old); 1250 } 1251 1252 /* Interior node updates: */ 1253 1254 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1255 struct btree_trans *trans, 1256 struct btree_path *path, 1257 struct btree *b, 1258 struct btree_node_iter *node_iter, 1259 struct bkey_i *insert) 1260 { 1261 struct bch_fs *c = as->c; 1262 struct bkey_packed *k; 1263 struct printbuf buf = PRINTBUF; 1264 unsigned long old, new, v; 1265 1266 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1267 !btree_ptr_sectors_written(insert)); 1268 1269 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1270 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1271 1272 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1273 btree_node_type(b), WRITE, &buf) ?: 1274 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1275 printbuf_reset(&buf); 1276 prt_printf(&buf, "inserting invalid bkey\n "); 1277 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1278 prt_printf(&buf, "\n "); 1279 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1280 btree_node_type(b), WRITE, &buf); 1281 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1282 1283 bch2_fs_inconsistent(c, "%s", buf.buf); 1284 dump_stack(); 1285 } 1286 1287 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1288 ARRAY_SIZE(as->journal_entries)); 1289 1290 as->journal_u64s += 1291 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1292 BCH_JSET_ENTRY_btree_keys, 1293 b->c.btree_id, b->c.level, 1294 insert, insert->k.u64s); 1295 1296 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1297 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1298 bch2_btree_node_iter_advance(node_iter, b); 1299 1300 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1301 set_btree_node_dirty_acct(c, b); 1302 1303 v = READ_ONCE(b->flags); 1304 do { 1305 old = new = v; 1306 1307 new &= ~BTREE_WRITE_TYPE_MASK; 1308 new |= BTREE_WRITE_interior; 1309 new |= 1 << BTREE_NODE_need_write; 1310 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1311 1312 printbuf_exit(&buf); 1313 } 1314 1315 static void 1316 __bch2_btree_insert_keys_interior(struct btree_update *as, 1317 struct btree_trans *trans, 1318 struct btree_path *path, 1319 struct btree *b, 1320 struct btree_node_iter node_iter, 1321 struct keylist *keys) 1322 { 1323 struct bkey_i *insert = bch2_keylist_front(keys); 1324 struct bkey_packed *k; 1325 1326 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1327 1328 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1329 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1330 ; 1331 1332 while (!bch2_keylist_empty(keys)) { 1333 insert = bch2_keylist_front(keys); 1334 1335 if (bpos_gt(insert->k.p, b->key.k.p)) 1336 break; 1337 1338 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1339 bch2_keylist_pop_front(keys); 1340 } 1341 } 1342 1343 /* 1344 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1345 * node) 1346 */ 1347 static void __btree_split_node(struct btree_update *as, 1348 struct btree_trans *trans, 1349 struct btree *b, 1350 struct btree *n[2]) 1351 { 1352 struct bkey_packed *k; 1353 struct bpos n1_pos = POS_MIN; 1354 struct btree_node_iter iter; 1355 struct bset *bsets[2]; 1356 struct bkey_format_state format[2]; 1357 struct bkey_packed *out[2]; 1358 struct bkey uk; 1359 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1360 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1361 int i; 1362 1363 memset(&nr_keys, 0, sizeof(nr_keys)); 1364 1365 for (i = 0; i < 2; i++) { 1366 BUG_ON(n[i]->nsets != 1); 1367 1368 bsets[i] = btree_bset_first(n[i]); 1369 out[i] = bsets[i]->start; 1370 1371 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1372 bch2_bkey_format_init(&format[i]); 1373 } 1374 1375 u64s = 0; 1376 for_each_btree_node_key(b, k, &iter) { 1377 if (bkey_deleted(k)) 1378 continue; 1379 1380 i = u64s >= n1_u64s; 1381 u64s += k->u64s; 1382 uk = bkey_unpack_key(b, k); 1383 if (!i) 1384 n1_pos = uk.p; 1385 bch2_bkey_format_add_key(&format[i], &uk); 1386 1387 nr_keys[i].nr_keys++; 1388 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1389 } 1390 1391 btree_set_min(n[0], b->data->min_key); 1392 btree_set_max(n[0], n1_pos); 1393 btree_set_min(n[1], bpos_successor(n1_pos)); 1394 btree_set_max(n[1], b->data->max_key); 1395 1396 for (i = 0; i < 2; i++) { 1397 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1398 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1399 1400 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1401 1402 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1403 nr_keys[i].val_u64s; 1404 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1405 n[i]->data->format = b->format; 1406 1407 btree_node_set_format(n[i], n[i]->data->format); 1408 } 1409 1410 u64s = 0; 1411 for_each_btree_node_key(b, k, &iter) { 1412 if (bkey_deleted(k)) 1413 continue; 1414 1415 i = u64s >= n1_u64s; 1416 u64s += k->u64s; 1417 1418 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1419 ? &b->format: &bch2_bkey_format_current, k)) 1420 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1421 else 1422 bch2_bkey_unpack(b, (void *) out[i], k); 1423 1424 out[i]->needs_whiteout = false; 1425 1426 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1427 out[i] = bkey_p_next(out[i]); 1428 } 1429 1430 for (i = 0; i < 2; i++) { 1431 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1432 1433 BUG_ON(!bsets[i]->u64s); 1434 1435 set_btree_bset_end(n[i], n[i]->set); 1436 1437 btree_node_reset_sib_u64s(n[i]); 1438 1439 bch2_verify_btree_nr_keys(n[i]); 1440 1441 if (b->c.level) 1442 btree_node_interior_verify(as->c, n[i]); 1443 } 1444 } 1445 1446 /* 1447 * For updates to interior nodes, we've got to do the insert before we split 1448 * because the stuff we're inserting has to be inserted atomically. Post split, 1449 * the keys might have to go in different nodes and the split would no longer be 1450 * atomic. 1451 * 1452 * Worse, if the insert is from btree node coalescing, if we do the insert after 1453 * we do the split (and pick the pivot) - the pivot we pick might be between 1454 * nodes that were coalesced, and thus in the middle of a child node post 1455 * coalescing: 1456 */ 1457 static void btree_split_insert_keys(struct btree_update *as, 1458 struct btree_trans *trans, 1459 btree_path_idx_t path_idx, 1460 struct btree *b, 1461 struct keylist *keys) 1462 { 1463 struct btree_path *path = trans->paths + path_idx; 1464 1465 if (!bch2_keylist_empty(keys) && 1466 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1467 struct btree_node_iter node_iter; 1468 1469 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1470 1471 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1472 1473 btree_node_interior_verify(as->c, b); 1474 } 1475 } 1476 1477 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1478 btree_path_idx_t path, struct btree *b, 1479 struct keylist *keys, unsigned flags) 1480 { 1481 struct bch_fs *c = as->c; 1482 struct btree *parent = btree_node_parent(trans->paths + path, b); 1483 struct btree *n1, *n2 = NULL, *n3 = NULL; 1484 btree_path_idx_t path1 = 0, path2 = 0; 1485 u64 start_time = local_clock(); 1486 int ret = 0; 1487 1488 BUG_ON(!parent && (b != btree_node_root(c, b))); 1489 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1490 1491 bch2_btree_interior_update_will_free_node(as, b); 1492 1493 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1494 struct btree *n[2]; 1495 1496 trace_and_count(c, btree_node_split, trans, b); 1497 1498 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1499 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1500 1501 __btree_split_node(as, trans, b, n); 1502 1503 if (keys) { 1504 btree_split_insert_keys(as, trans, path, n1, keys); 1505 btree_split_insert_keys(as, trans, path, n2, keys); 1506 BUG_ON(!bch2_keylist_empty(keys)); 1507 } 1508 1509 bch2_btree_build_aux_trees(n2); 1510 bch2_btree_build_aux_trees(n1); 1511 1512 bch2_btree_update_add_new_node(as, n1); 1513 bch2_btree_update_add_new_node(as, n2); 1514 six_unlock_write(&n2->c.lock); 1515 six_unlock_write(&n1->c.lock); 1516 1517 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1518 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1519 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1520 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1521 1522 path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p); 1523 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1524 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1525 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1526 1527 /* 1528 * Note that on recursive parent_keys == keys, so we 1529 * can't start adding new keys to parent_keys before emptying it 1530 * out (which we did with btree_split_insert_keys() above) 1531 */ 1532 bch2_keylist_add(&as->parent_keys, &n1->key); 1533 bch2_keylist_add(&as->parent_keys, &n2->key); 1534 1535 if (!parent) { 1536 /* Depth increases, make a new root */ 1537 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1538 1539 bch2_btree_update_add_new_node(as, n3); 1540 six_unlock_write(&n3->c.lock); 1541 1542 trans->paths[path2].locks_want++; 1543 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1544 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1545 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1546 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1547 1548 n3->sib_u64s[0] = U16_MAX; 1549 n3->sib_u64s[1] = U16_MAX; 1550 1551 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1552 } 1553 } else { 1554 trace_and_count(c, btree_node_compact, trans, b); 1555 1556 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1557 1558 if (keys) { 1559 btree_split_insert_keys(as, trans, path, n1, keys); 1560 BUG_ON(!bch2_keylist_empty(keys)); 1561 } 1562 1563 bch2_btree_build_aux_trees(n1); 1564 bch2_btree_update_add_new_node(as, n1); 1565 six_unlock_write(&n1->c.lock); 1566 1567 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1568 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1569 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1570 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1571 1572 if (parent) 1573 bch2_keylist_add(&as->parent_keys, &n1->key); 1574 } 1575 1576 /* New nodes all written, now make them visible: */ 1577 1578 if (parent) { 1579 /* Split a non root node */ 1580 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1581 if (ret) 1582 goto err; 1583 } else if (n3) { 1584 bch2_btree_set_root(as, trans, trans->paths + path, n3); 1585 } else { 1586 /* Root filled up but didn't need to be split */ 1587 bch2_btree_set_root(as, trans, trans->paths + path, n1); 1588 } 1589 1590 if (n3) { 1591 bch2_btree_update_get_open_buckets(as, n3); 1592 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1593 } 1594 if (n2) { 1595 bch2_btree_update_get_open_buckets(as, n2); 1596 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1597 } 1598 bch2_btree_update_get_open_buckets(as, n1); 1599 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1600 1601 /* 1602 * The old node must be freed (in memory) _before_ unlocking the new 1603 * nodes - else another thread could re-acquire a read lock on the old 1604 * node after another thread has locked and updated the new node, thus 1605 * seeing stale data: 1606 */ 1607 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1608 1609 if (n3) 1610 bch2_trans_node_add(trans, trans->paths + path, n3); 1611 if (n2) 1612 bch2_trans_node_add(trans, trans->paths + path2, n2); 1613 bch2_trans_node_add(trans, trans->paths + path1, n1); 1614 1615 if (n3) 1616 six_unlock_intent(&n3->c.lock); 1617 if (n2) 1618 six_unlock_intent(&n2->c.lock); 1619 six_unlock_intent(&n1->c.lock); 1620 out: 1621 if (path2) { 1622 __bch2_btree_path_unlock(trans, trans->paths + path2); 1623 bch2_path_put(trans, path2, true); 1624 } 1625 if (path1) { 1626 __bch2_btree_path_unlock(trans, trans->paths + path1); 1627 bch2_path_put(trans, path1, true); 1628 } 1629 1630 bch2_trans_verify_locks(trans); 1631 1632 bch2_time_stats_update(&c->times[n2 1633 ? BCH_TIME_btree_node_split 1634 : BCH_TIME_btree_node_compact], 1635 start_time); 1636 return ret; 1637 err: 1638 if (n3) 1639 bch2_btree_node_free_never_used(as, trans, n3); 1640 if (n2) 1641 bch2_btree_node_free_never_used(as, trans, n2); 1642 bch2_btree_node_free_never_used(as, trans, n1); 1643 goto out; 1644 } 1645 1646 static void 1647 bch2_btree_insert_keys_interior(struct btree_update *as, 1648 struct btree_trans *trans, 1649 struct btree_path *path, 1650 struct btree *b, 1651 struct keylist *keys) 1652 { 1653 struct btree_path *linked; 1654 unsigned i; 1655 1656 __bch2_btree_insert_keys_interior(as, trans, path, b, 1657 path->l[b->c.level].iter, keys); 1658 1659 btree_update_updated_node(as, b); 1660 1661 trans_for_each_path_with_node(trans, b, linked, i) 1662 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1663 1664 bch2_trans_verify_paths(trans); 1665 } 1666 1667 /** 1668 * bch2_btree_insert_node - insert bkeys into a given btree node 1669 * 1670 * @as: btree_update object 1671 * @trans: btree_trans object 1672 * @path_idx: path that points to current node 1673 * @b: node to insert keys into 1674 * @keys: list of keys to insert 1675 * @flags: transaction commit flags 1676 * 1677 * Returns: 0 on success, typically transaction restart error on failure 1678 * 1679 * Inserts as many keys as it can into a given btree node, splitting it if full. 1680 * If a split occurred, this function will return early. This can only happen 1681 * for leaf nodes -- inserts into interior nodes have to be atomic. 1682 */ 1683 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1684 btree_path_idx_t path_idx, struct btree *b, 1685 struct keylist *keys, unsigned flags) 1686 { 1687 struct bch_fs *c = as->c; 1688 struct btree_path *path = trans->paths + path_idx; 1689 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1690 int old_live_u64s = b->nr.live_u64s; 1691 int live_u64s_added, u64s_added; 1692 int ret; 1693 1694 lockdep_assert_held(&c->gc_lock); 1695 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1696 BUG_ON(!b->c.level); 1697 BUG_ON(!as || as->b); 1698 bch2_verify_keylist_sorted(keys); 1699 1700 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1701 if (ret) 1702 return ret; 1703 1704 bch2_btree_node_prep_for_write(trans, path, b); 1705 1706 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1707 bch2_btree_node_unlock_write(trans, path, b); 1708 goto split; 1709 } 1710 1711 btree_node_interior_verify(c, b); 1712 1713 bch2_btree_insert_keys_interior(as, trans, path, b, keys); 1714 1715 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1716 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1717 1718 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1719 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1720 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1721 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1722 1723 if (u64s_added > live_u64s_added && 1724 bch2_maybe_compact_whiteouts(c, b)) 1725 bch2_trans_node_reinit_iter(trans, b); 1726 1727 bch2_btree_node_unlock_write(trans, path, b); 1728 1729 btree_node_interior_verify(c, b); 1730 return 0; 1731 split: 1732 /* 1733 * We could attempt to avoid the transaction restart, by calling 1734 * bch2_btree_path_upgrade() and allocating more nodes: 1735 */ 1736 if (b->c.level >= as->update_level) { 1737 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1738 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1739 } 1740 1741 return btree_split(as, trans, path_idx, b, keys, flags); 1742 } 1743 1744 int bch2_btree_split_leaf(struct btree_trans *trans, 1745 btree_path_idx_t path, 1746 unsigned flags) 1747 { 1748 /* btree_split & merge may both cause paths array to be reallocated */ 1749 1750 struct btree *b = path_l(trans->paths + path)->b; 1751 struct btree_update *as; 1752 unsigned l; 1753 int ret = 0; 1754 1755 as = bch2_btree_update_start(trans, trans->paths + path, 1756 trans->paths[path].level, 1757 true, flags); 1758 if (IS_ERR(as)) 1759 return PTR_ERR(as); 1760 1761 ret = btree_split(as, trans, path, b, NULL, flags); 1762 if (ret) { 1763 bch2_btree_update_free(as, trans); 1764 return ret; 1765 } 1766 1767 bch2_btree_update_done(as, trans); 1768 1769 for (l = trans->paths[path].level + 1; 1770 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1771 l++) 1772 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1773 1774 return ret; 1775 } 1776 1777 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1778 btree_path_idx_t path, 1779 unsigned level, 1780 unsigned flags, 1781 enum btree_node_sibling sib) 1782 { 1783 struct bch_fs *c = trans->c; 1784 struct btree_update *as; 1785 struct bkey_format_state new_s; 1786 struct bkey_format new_f; 1787 struct bkey_i delete; 1788 struct btree *b, *m, *n, *prev, *next, *parent; 1789 struct bpos sib_pos; 1790 size_t sib_u64s; 1791 enum btree_id btree = trans->paths[path].btree_id; 1792 btree_path_idx_t sib_path = 0, new_path = 0; 1793 u64 start_time = local_clock(); 1794 int ret = 0; 1795 1796 BUG_ON(!trans->paths[path].should_be_locked); 1797 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1798 1799 b = trans->paths[path].l[level].b; 1800 1801 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1802 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1803 b->sib_u64s[sib] = U16_MAX; 1804 return 0; 1805 } 1806 1807 sib_pos = sib == btree_prev_sib 1808 ? bpos_predecessor(b->data->min_key) 1809 : bpos_successor(b->data->max_key); 1810 1811 sib_path = bch2_path_get(trans, btree, sib_pos, 1812 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1813 ret = bch2_btree_path_traverse(trans, sib_path, false); 1814 if (ret) 1815 goto err; 1816 1817 btree_path_set_should_be_locked(trans->paths + sib_path); 1818 1819 m = trans->paths[sib_path].l[level].b; 1820 1821 if (btree_node_parent(trans->paths + path, b) != 1822 btree_node_parent(trans->paths + sib_path, m)) { 1823 b->sib_u64s[sib] = U16_MAX; 1824 goto out; 1825 } 1826 1827 if (sib == btree_prev_sib) { 1828 prev = m; 1829 next = b; 1830 } else { 1831 prev = b; 1832 next = m; 1833 } 1834 1835 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 1836 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 1837 1838 bch2_bpos_to_text(&buf1, prev->data->max_key); 1839 bch2_bpos_to_text(&buf2, next->data->min_key); 1840 bch_err(c, 1841 "%s(): btree topology error:\n" 1842 " prev ends at %s\n" 1843 " next starts at %s", 1844 __func__, buf1.buf, buf2.buf); 1845 printbuf_exit(&buf1); 1846 printbuf_exit(&buf2); 1847 bch2_topology_error(c); 1848 ret = -EIO; 1849 goto err; 1850 } 1851 1852 bch2_bkey_format_init(&new_s); 1853 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 1854 __bch2_btree_calc_format(&new_s, prev); 1855 __bch2_btree_calc_format(&new_s, next); 1856 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 1857 new_f = bch2_bkey_format_done(&new_s); 1858 1859 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 1860 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 1861 1862 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 1863 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1864 sib_u64s /= 2; 1865 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 1866 } 1867 1868 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 1869 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 1870 b->sib_u64s[sib] = sib_u64s; 1871 1872 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 1873 goto out; 1874 1875 parent = btree_node_parent(trans->paths + path, b); 1876 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 1877 BCH_TRANS_COMMIT_no_enospc|flags); 1878 ret = PTR_ERR_OR_ZERO(as); 1879 if (ret) 1880 goto err; 1881 1882 trace_and_count(c, btree_node_merge, trans, b); 1883 1884 bch2_btree_interior_update_will_free_node(as, b); 1885 bch2_btree_interior_update_will_free_node(as, m); 1886 1887 n = bch2_btree_node_alloc(as, trans, b->c.level); 1888 1889 SET_BTREE_NODE_SEQ(n->data, 1890 max(BTREE_NODE_SEQ(b->data), 1891 BTREE_NODE_SEQ(m->data)) + 1); 1892 1893 btree_set_min(n, prev->data->min_key); 1894 btree_set_max(n, next->data->max_key); 1895 1896 n->data->format = new_f; 1897 btree_node_set_format(n, new_f); 1898 1899 bch2_btree_sort_into(c, n, prev); 1900 bch2_btree_sort_into(c, n, next); 1901 1902 bch2_btree_build_aux_trees(n); 1903 bch2_btree_update_add_new_node(as, n); 1904 six_unlock_write(&n->c.lock); 1905 1906 new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p); 1907 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1908 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1909 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 1910 1911 bkey_init(&delete.k); 1912 delete.k.p = prev->key.k.p; 1913 bch2_keylist_add(&as->parent_keys, &delete); 1914 bch2_keylist_add(&as->parent_keys, &n->key); 1915 1916 bch2_trans_verify_paths(trans); 1917 1918 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); 1919 if (ret) 1920 goto err_free_update; 1921 1922 bch2_trans_verify_paths(trans); 1923 1924 bch2_btree_update_get_open_buckets(as, n); 1925 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1926 1927 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1928 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 1929 1930 bch2_trans_node_add(trans, trans->paths + path, n); 1931 1932 bch2_trans_verify_paths(trans); 1933 1934 six_unlock_intent(&n->c.lock); 1935 1936 bch2_btree_update_done(as, trans); 1937 1938 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 1939 out: 1940 err: 1941 if (new_path) 1942 bch2_path_put(trans, new_path, true); 1943 bch2_path_put(trans, sib_path, true); 1944 bch2_trans_verify_locks(trans); 1945 return ret; 1946 err_free_update: 1947 bch2_btree_node_free_never_used(as, trans, n); 1948 bch2_btree_update_free(as, trans); 1949 goto out; 1950 } 1951 1952 int bch2_btree_node_rewrite(struct btree_trans *trans, 1953 struct btree_iter *iter, 1954 struct btree *b, 1955 unsigned flags) 1956 { 1957 struct bch_fs *c = trans->c; 1958 struct btree *n, *parent; 1959 struct btree_update *as; 1960 btree_path_idx_t new_path = 0; 1961 int ret; 1962 1963 flags |= BCH_TRANS_COMMIT_no_enospc; 1964 1965 struct btree_path *path = btree_iter_path(trans, iter); 1966 parent = btree_node_parent(path, b); 1967 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 1968 ret = PTR_ERR_OR_ZERO(as); 1969 if (ret) 1970 goto out; 1971 1972 bch2_btree_interior_update_will_free_node(as, b); 1973 1974 n = bch2_btree_node_alloc_replacement(as, trans, b); 1975 1976 bch2_btree_build_aux_trees(n); 1977 bch2_btree_update_add_new_node(as, n); 1978 six_unlock_write(&n->c.lock); 1979 1980 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 1981 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1982 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1983 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 1984 1985 trace_and_count(c, btree_node_rewrite, trans, b); 1986 1987 if (parent) { 1988 bch2_keylist_add(&as->parent_keys, &n->key); 1989 ret = bch2_btree_insert_node(as, trans, iter->path, 1990 parent, &as->parent_keys, flags); 1991 if (ret) 1992 goto err; 1993 } else { 1994 bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n); 1995 } 1996 1997 bch2_btree_update_get_open_buckets(as, n); 1998 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1999 2000 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2001 2002 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2003 six_unlock_intent(&n->c.lock); 2004 2005 bch2_btree_update_done(as, trans); 2006 out: 2007 if (new_path) 2008 bch2_path_put(trans, new_path, true); 2009 bch2_trans_downgrade(trans); 2010 return ret; 2011 err: 2012 bch2_btree_node_free_never_used(as, trans, n); 2013 bch2_btree_update_free(as, trans); 2014 goto out; 2015 } 2016 2017 struct async_btree_rewrite { 2018 struct bch_fs *c; 2019 struct work_struct work; 2020 struct list_head list; 2021 enum btree_id btree_id; 2022 unsigned level; 2023 struct bpos pos; 2024 __le64 seq; 2025 }; 2026 2027 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2028 struct async_btree_rewrite *a) 2029 { 2030 struct bch_fs *c = trans->c; 2031 struct btree_iter iter; 2032 struct btree *b; 2033 int ret; 2034 2035 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2036 BTREE_MAX_DEPTH, a->level, 0); 2037 b = bch2_btree_iter_peek_node(&iter); 2038 ret = PTR_ERR_OR_ZERO(b); 2039 if (ret) 2040 goto out; 2041 2042 if (!b || b->data->keys.seq != a->seq) { 2043 struct printbuf buf = PRINTBUF; 2044 2045 if (b) 2046 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2047 else 2048 prt_str(&buf, "(null"); 2049 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2050 __func__, a->seq, buf.buf); 2051 printbuf_exit(&buf); 2052 goto out; 2053 } 2054 2055 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2056 out: 2057 bch2_trans_iter_exit(trans, &iter); 2058 2059 return ret; 2060 } 2061 2062 static void async_btree_node_rewrite_work(struct work_struct *work) 2063 { 2064 struct async_btree_rewrite *a = 2065 container_of(work, struct async_btree_rewrite, work); 2066 struct bch_fs *c = a->c; 2067 int ret; 2068 2069 ret = bch2_trans_do(c, NULL, NULL, 0, 2070 async_btree_node_rewrite_trans(trans, a)); 2071 bch_err_fn(c, ret); 2072 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2073 kfree(a); 2074 } 2075 2076 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2077 { 2078 struct async_btree_rewrite *a; 2079 int ret; 2080 2081 a = kmalloc(sizeof(*a), GFP_NOFS); 2082 if (!a) { 2083 bch_err(c, "%s: error allocating memory", __func__); 2084 return; 2085 } 2086 2087 a->c = c; 2088 a->btree_id = b->c.btree_id; 2089 a->level = b->c.level; 2090 a->pos = b->key.k.p; 2091 a->seq = b->data->keys.seq; 2092 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2093 2094 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { 2095 mutex_lock(&c->pending_node_rewrites_lock); 2096 list_add(&a->list, &c->pending_node_rewrites); 2097 mutex_unlock(&c->pending_node_rewrites_lock); 2098 return; 2099 } 2100 2101 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2102 if (test_bit(BCH_FS_started, &c->flags)) { 2103 bch_err(c, "%s: error getting c->writes ref", __func__); 2104 kfree(a); 2105 return; 2106 } 2107 2108 ret = bch2_fs_read_write_early(c); 2109 bch_err_msg(c, ret, "going read-write"); 2110 if (ret) { 2111 kfree(a); 2112 return; 2113 } 2114 2115 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2116 } 2117 2118 queue_work(c->btree_interior_update_worker, &a->work); 2119 } 2120 2121 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2122 { 2123 struct async_btree_rewrite *a, *n; 2124 2125 mutex_lock(&c->pending_node_rewrites_lock); 2126 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2127 list_del(&a->list); 2128 2129 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2130 queue_work(c->btree_interior_update_worker, &a->work); 2131 } 2132 mutex_unlock(&c->pending_node_rewrites_lock); 2133 } 2134 2135 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2136 { 2137 struct async_btree_rewrite *a, *n; 2138 2139 mutex_lock(&c->pending_node_rewrites_lock); 2140 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2141 list_del(&a->list); 2142 2143 kfree(a); 2144 } 2145 mutex_unlock(&c->pending_node_rewrites_lock); 2146 } 2147 2148 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2149 struct btree_iter *iter, 2150 struct btree *b, struct btree *new_hash, 2151 struct bkey_i *new_key, 2152 unsigned commit_flags, 2153 bool skip_triggers) 2154 { 2155 struct bch_fs *c = trans->c; 2156 struct btree_iter iter2 = { NULL }; 2157 struct btree *parent; 2158 int ret; 2159 2160 if (!skip_triggers) { 2161 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2162 bkey_i_to_s_c(&b->key), 2163 BTREE_TRIGGER_TRANSACTIONAL) ?: 2164 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2165 bkey_i_to_s(new_key), 2166 BTREE_TRIGGER_TRANSACTIONAL); 2167 if (ret) 2168 return ret; 2169 } 2170 2171 if (new_hash) { 2172 bkey_copy(&new_hash->key, new_key); 2173 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2174 new_hash, b->c.level, b->c.btree_id); 2175 BUG_ON(ret); 2176 } 2177 2178 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2179 if (parent) { 2180 bch2_trans_copy_iter(&iter2, iter); 2181 2182 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2183 iter2.flags & BTREE_ITER_INTENT, 2184 _THIS_IP_); 2185 2186 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2187 BUG_ON(path2->level != b->c.level); 2188 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2189 2190 btree_path_set_level_up(trans, path2); 2191 2192 trans->paths_sorted = false; 2193 2194 ret = bch2_btree_iter_traverse(&iter2) ?: 2195 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2196 if (ret) 2197 goto err; 2198 } else { 2199 BUG_ON(btree_node_root(c, b) != b); 2200 2201 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2202 jset_u64s(new_key->k.u64s)); 2203 ret = PTR_ERR_OR_ZERO(e); 2204 if (ret) 2205 return ret; 2206 2207 journal_entry_set(e, 2208 BCH_JSET_ENTRY_btree_root, 2209 b->c.btree_id, b->c.level, 2210 new_key, new_key->k.u64s); 2211 } 2212 2213 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2214 if (ret) 2215 goto err; 2216 2217 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2218 2219 if (new_hash) { 2220 mutex_lock(&c->btree_cache.lock); 2221 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2222 bch2_btree_node_hash_remove(&c->btree_cache, b); 2223 2224 bkey_copy(&b->key, new_key); 2225 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2226 BUG_ON(ret); 2227 mutex_unlock(&c->btree_cache.lock); 2228 } else { 2229 bkey_copy(&b->key, new_key); 2230 } 2231 2232 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2233 out: 2234 bch2_trans_iter_exit(trans, &iter2); 2235 return ret; 2236 err: 2237 if (new_hash) { 2238 mutex_lock(&c->btree_cache.lock); 2239 bch2_btree_node_hash_remove(&c->btree_cache, b); 2240 mutex_unlock(&c->btree_cache.lock); 2241 } 2242 goto out; 2243 } 2244 2245 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2246 struct btree *b, struct bkey_i *new_key, 2247 unsigned commit_flags, bool skip_triggers) 2248 { 2249 struct bch_fs *c = trans->c; 2250 struct btree *new_hash = NULL; 2251 struct btree_path *path = btree_iter_path(trans, iter); 2252 struct closure cl; 2253 int ret = 0; 2254 2255 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2256 if (ret) 2257 return ret; 2258 2259 closure_init_stack(&cl); 2260 2261 /* 2262 * check btree_ptr_hash_val() after @b is locked by 2263 * btree_iter_traverse(): 2264 */ 2265 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2266 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2267 if (ret) { 2268 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2269 if (ret) 2270 return ret; 2271 } 2272 2273 new_hash = bch2_btree_node_mem_alloc(trans, false); 2274 } 2275 2276 path->intent_ref++; 2277 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2278 commit_flags, skip_triggers); 2279 --path->intent_ref; 2280 2281 if (new_hash) { 2282 mutex_lock(&c->btree_cache.lock); 2283 list_move(&new_hash->list, &c->btree_cache.freeable); 2284 mutex_unlock(&c->btree_cache.lock); 2285 2286 six_unlock_write(&new_hash->c.lock); 2287 six_unlock_intent(&new_hash->c.lock); 2288 } 2289 closure_sync(&cl); 2290 bch2_btree_cache_cannibalize_unlock(trans); 2291 return ret; 2292 } 2293 2294 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2295 struct btree *b, struct bkey_i *new_key, 2296 unsigned commit_flags, bool skip_triggers) 2297 { 2298 struct btree_iter iter; 2299 int ret; 2300 2301 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2302 BTREE_MAX_DEPTH, b->c.level, 2303 BTREE_ITER_INTENT); 2304 ret = bch2_btree_iter_traverse(&iter); 2305 if (ret) 2306 goto out; 2307 2308 /* has node been freed? */ 2309 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2310 /* node has been freed: */ 2311 BUG_ON(!btree_node_dying(b)); 2312 goto out; 2313 } 2314 2315 BUG_ON(!btree_node_hashed(b)); 2316 2317 struct bch_extent_ptr *ptr; 2318 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2319 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2320 2321 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2322 commit_flags, skip_triggers); 2323 out: 2324 bch2_trans_iter_exit(trans, &iter); 2325 return ret; 2326 } 2327 2328 /* Init code: */ 2329 2330 /* 2331 * Only for filesystem bringup, when first reading the btree roots or allocating 2332 * btree roots when initializing a new filesystem: 2333 */ 2334 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2335 { 2336 BUG_ON(btree_node_root(c, b)); 2337 2338 bch2_btree_set_root_inmem(c, b); 2339 } 2340 2341 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) 2342 { 2343 struct bch_fs *c = trans->c; 2344 struct closure cl; 2345 struct btree *b; 2346 int ret; 2347 2348 closure_init_stack(&cl); 2349 2350 do { 2351 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2352 closure_sync(&cl); 2353 } while (ret); 2354 2355 b = bch2_btree_node_mem_alloc(trans, false); 2356 bch2_btree_cache_cannibalize_unlock(trans); 2357 2358 set_btree_node_fake(b); 2359 set_btree_node_need_rewrite(b); 2360 b->c.level = 0; 2361 b->c.btree_id = id; 2362 2363 bkey_btree_ptr_init(&b->key); 2364 b->key.k.p = SPOS_MAX; 2365 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2366 2367 bch2_bset_init_first(b, &b->data->keys); 2368 bch2_btree_build_aux_trees(b); 2369 2370 b->data->flags = 0; 2371 btree_set_min(b, POS_MIN); 2372 btree_set_max(b, SPOS_MAX); 2373 b->data->format = bch2_btree_calc_format(b); 2374 btree_node_set_format(b, b->data->format); 2375 2376 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2377 b->c.level, b->c.btree_id); 2378 BUG_ON(ret); 2379 2380 bch2_btree_set_root_inmem(c, b); 2381 2382 six_unlock_write(&b->c.lock); 2383 six_unlock_intent(&b->c.lock); 2384 return 0; 2385 } 2386 2387 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) 2388 { 2389 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); 2390 } 2391 2392 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2393 { 2394 struct btree_update *as; 2395 2396 mutex_lock(&c->btree_interior_update_lock); 2397 list_for_each_entry(as, &c->btree_interior_update_list, list) 2398 prt_printf(out, "%p m %u w %u r %u j %llu\n", 2399 as, 2400 as->mode, 2401 as->nodes_written, 2402 closure_nr_remaining(&as->cl), 2403 as->journal.seq); 2404 mutex_unlock(&c->btree_interior_update_lock); 2405 } 2406 2407 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2408 { 2409 bool ret; 2410 2411 mutex_lock(&c->btree_interior_update_lock); 2412 ret = !list_empty(&c->btree_interior_update_list); 2413 mutex_unlock(&c->btree_interior_update_lock); 2414 2415 return ret; 2416 } 2417 2418 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2419 { 2420 bool ret = bch2_btree_interior_updates_pending(c); 2421 2422 if (ret) 2423 closure_wait_event(&c->btree_interior_update_wait, 2424 !bch2_btree_interior_updates_pending(c)); 2425 return ret; 2426 } 2427 2428 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2429 { 2430 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2431 2432 mutex_lock(&c->btree_root_lock); 2433 2434 r->level = entry->level; 2435 r->alive = true; 2436 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2437 2438 mutex_unlock(&c->btree_root_lock); 2439 } 2440 2441 struct jset_entry * 2442 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2443 struct jset_entry *end, 2444 unsigned long skip) 2445 { 2446 unsigned i; 2447 2448 mutex_lock(&c->btree_root_lock); 2449 2450 for (i = 0; i < btree_id_nr_alive(c); i++) { 2451 struct btree_root *r = bch2_btree_id_root(c, i); 2452 2453 if (r->alive && !test_bit(i, &skip)) { 2454 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2455 i, r->level, &r->key, r->key.k.u64s); 2456 end = vstruct_next(end); 2457 } 2458 } 2459 2460 mutex_unlock(&c->btree_root_lock); 2461 2462 return end; 2463 } 2464 2465 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2466 { 2467 if (c->btree_interior_update_worker) 2468 destroy_workqueue(c->btree_interior_update_worker); 2469 mempool_exit(&c->btree_interior_update_pool); 2470 } 2471 2472 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2473 { 2474 mutex_init(&c->btree_reserve_cache_lock); 2475 INIT_LIST_HEAD(&c->btree_interior_update_list); 2476 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2477 mutex_init(&c->btree_interior_update_lock); 2478 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2479 2480 INIT_LIST_HEAD(&c->pending_node_rewrites); 2481 mutex_init(&c->pending_node_rewrites_lock); 2482 } 2483 2484 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2485 { 2486 c->btree_interior_update_worker = 2487 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 2488 if (!c->btree_interior_update_worker) 2489 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2490 2491 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2492 sizeof(struct btree_update))) 2493 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2494 2495 return 0; 2496 } 2497