1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_foreground.h" 5 #include "bkey_buf.h" 6 #include "bkey_methods.h" 7 #include "btree_cache.h" 8 #include "btree_gc.h" 9 #include "btree_journal_iter.h" 10 #include "btree_update.h" 11 #include "btree_update_interior.h" 12 #include "btree_io.h" 13 #include "btree_iter.h" 14 #include "btree_locking.h" 15 #include "buckets.h" 16 #include "clock.h" 17 #include "error.h" 18 #include "extents.h" 19 #include "journal.h" 20 #include "journal_reclaim.h" 21 #include "keylist.h" 22 #include "recovery_passes.h" 23 #include "replicas.h" 24 #include "sb-members.h" 25 #include "super-io.h" 26 #include "trace.h" 27 28 #include <linux/random.h> 29 30 static const char * const bch2_btree_update_modes[] = { 31 #define x(t) #t, 32 BTREE_UPDATE_MODES() 33 #undef x 34 NULL 35 }; 36 37 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, 38 btree_path_idx_t, struct btree *, struct keylist *); 39 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); 40 41 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans, 42 enum btree_id btree_id, 43 unsigned level, 44 struct bpos pos) 45 { 46 btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level, 47 BTREE_ITER_NOPRESERVE| 48 BTREE_ITER_INTENT, _RET_IP_); 49 path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_); 50 51 struct btree_path *path = trans->paths + path_idx; 52 bch2_btree_path_downgrade(trans, path); 53 __bch2_btree_path_unlock(trans, path); 54 return path_idx; 55 } 56 57 /* 58 * Verify that child nodes correctly span parent node's range: 59 */ 60 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b) 61 { 62 struct bch_fs *c = trans->c; 63 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2 64 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key 65 : b->data->min_key; 66 struct btree_and_journal_iter iter; 67 struct bkey_s_c k; 68 struct printbuf buf = PRINTBUF; 69 struct bkey_buf prev; 70 int ret = 0; 71 72 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && 73 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, 74 b->data->min_key)); 75 76 if (!b->c.level) 77 return 0; 78 79 bch2_bkey_buf_init(&prev); 80 bkey_init(&prev.k->k); 81 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); 82 83 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { 84 if (k.k->type != KEY_TYPE_btree_ptr_v2) 85 goto out; 86 87 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 88 89 struct bpos expected_min = bkey_deleted(&prev.k->k) 90 ? node_min 91 : bpos_successor(prev.k->k.p); 92 93 if (!bpos_eq(expected_min, bp.v->min_key)) { 94 bch2_topology_error(c); 95 96 printbuf_reset(&buf); 97 prt_str(&buf, "end of prev node doesn't match start of next node\n"), 98 prt_printf(&buf, " in btree %s level %u node ", 99 bch2_btree_id_str(b->c.btree_id), b->c.level); 100 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 101 prt_str(&buf, "\n prev "); 102 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 103 prt_str(&buf, "\n next "); 104 bch2_bkey_val_to_text(&buf, c, k); 105 106 need_fsck_err(c, btree_node_topology_bad_min_key, "%s", buf.buf); 107 goto topology_repair; 108 } 109 110 bch2_bkey_buf_reassemble(&prev, c, k); 111 bch2_btree_and_journal_iter_advance(&iter); 112 } 113 114 if (bkey_deleted(&prev.k->k)) { 115 bch2_topology_error(c); 116 117 printbuf_reset(&buf); 118 prt_str(&buf, "empty interior node\n"); 119 prt_printf(&buf, " in btree %s level %u node ", 120 bch2_btree_id_str(b->c.btree_id), b->c.level); 121 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 122 123 need_fsck_err(c, btree_node_topology_empty_interior_node, "%s", buf.buf); 124 goto topology_repair; 125 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) { 126 bch2_topology_error(c); 127 128 printbuf_reset(&buf); 129 prt_str(&buf, "last child node doesn't end at end of parent node\n"); 130 prt_printf(&buf, " in btree %s level %u node ", 131 bch2_btree_id_str(b->c.btree_id), b->c.level); 132 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 133 prt_str(&buf, "\n last key "); 134 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); 135 136 need_fsck_err(c, btree_node_topology_bad_max_key, "%s", buf.buf); 137 goto topology_repair; 138 } 139 out: 140 fsck_err: 141 bch2_btree_and_journal_iter_exit(&iter); 142 bch2_bkey_buf_exit(&prev, c); 143 printbuf_exit(&buf); 144 return ret; 145 topology_repair: 146 if ((c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) && 147 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) { 148 bch2_inconsistent_error(c); 149 ret = -BCH_ERR_btree_need_topology_repair; 150 } else { 151 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); 152 } 153 goto out; 154 } 155 156 /* Calculate ideal packed bkey format for new btree nodes: */ 157 158 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) 159 { 160 struct bkey_packed *k; 161 struct bset_tree *t; 162 struct bkey uk; 163 164 for_each_bset(b, t) 165 bset_tree_for_each_key(b, t, k) 166 if (!bkey_deleted(k)) { 167 uk = bkey_unpack_key(b, k); 168 bch2_bkey_format_add_key(s, &uk); 169 } 170 } 171 172 static struct bkey_format bch2_btree_calc_format(struct btree *b) 173 { 174 struct bkey_format_state s; 175 176 bch2_bkey_format_init(&s); 177 bch2_bkey_format_add_pos(&s, b->data->min_key); 178 bch2_bkey_format_add_pos(&s, b->data->max_key); 179 __bch2_btree_calc_format(&s, b); 180 181 return bch2_bkey_format_done(&s); 182 } 183 184 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, 185 struct bkey_format *old_f, 186 struct bkey_format *new_f) 187 { 188 /* stupid integer promotion rules */ 189 ssize_t delta = 190 (((int) new_f->key_u64s - old_f->key_u64s) * 191 (int) nr.packed_keys) + 192 (((int) new_f->key_u64s - BKEY_U64s) * 193 (int) nr.unpacked_keys); 194 195 BUG_ON(delta + nr.live_u64s < 0); 196 197 return nr.live_u64s + delta; 198 } 199 200 /** 201 * bch2_btree_node_format_fits - check if we could rewrite node with a new format 202 * 203 * @c: filesystem handle 204 * @b: btree node to rewrite 205 * @nr: number of keys for new node (i.e. b->nr) 206 * @new_f: bkey format to translate keys to 207 * 208 * Returns: true if all re-packed keys will be able to fit in a new node. 209 * 210 * Assumes all keys will successfully pack with the new format. 211 */ 212 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, 213 struct btree_nr_keys nr, 214 struct bkey_format *new_f) 215 { 216 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); 217 218 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); 219 } 220 221 /* Btree node freeing/allocation: */ 222 223 static void __btree_node_free(struct btree_trans *trans, struct btree *b) 224 { 225 struct bch_fs *c = trans->c; 226 227 trace_and_count(c, btree_node_free, trans, b); 228 229 BUG_ON(btree_node_write_blocked(b)); 230 BUG_ON(btree_node_dirty(b)); 231 BUG_ON(btree_node_need_write(b)); 232 BUG_ON(b == btree_node_root(c, b)); 233 BUG_ON(b->ob.nr); 234 BUG_ON(!list_empty(&b->write_blocked)); 235 BUG_ON(b->will_make_reachable); 236 237 clear_btree_node_noevict(b); 238 239 mutex_lock(&c->btree_cache.lock); 240 list_move(&b->list, &c->btree_cache.freeable); 241 mutex_unlock(&c->btree_cache.lock); 242 } 243 244 static void bch2_btree_node_free_inmem(struct btree_trans *trans, 245 struct btree_path *path, 246 struct btree *b) 247 { 248 struct bch_fs *c = trans->c; 249 unsigned i, level = b->c.level; 250 251 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 252 bch2_btree_node_hash_remove(&c->btree_cache, b); 253 __btree_node_free(trans, b); 254 six_unlock_write(&b->c.lock); 255 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); 256 257 trans_for_each_path(trans, path, i) 258 if (path->l[level].b == b) { 259 btree_node_unlock(trans, path, level); 260 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 261 } 262 } 263 264 static void bch2_btree_node_free_never_used(struct btree_update *as, 265 struct btree_trans *trans, 266 struct btree *b) 267 { 268 struct bch_fs *c = as->c; 269 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; 270 struct btree_path *path; 271 unsigned i, level = b->c.level; 272 273 BUG_ON(!list_empty(&b->write_blocked)); 274 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); 275 276 b->will_make_reachable = 0; 277 closure_put(&as->cl); 278 279 clear_btree_node_will_make_reachable(b); 280 clear_btree_node_accessed(b); 281 clear_btree_node_dirty_acct(c, b); 282 clear_btree_node_need_write(b); 283 284 mutex_lock(&c->btree_cache.lock); 285 list_del_init(&b->list); 286 bch2_btree_node_hash_remove(&c->btree_cache, b); 287 mutex_unlock(&c->btree_cache.lock); 288 289 BUG_ON(p->nr >= ARRAY_SIZE(p->b)); 290 p->b[p->nr++] = b; 291 292 six_unlock_intent(&b->c.lock); 293 294 trans_for_each_path(trans, path, i) 295 if (path->l[level].b == b) { 296 btree_node_unlock(trans, path, level); 297 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); 298 } 299 } 300 301 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, 302 struct disk_reservation *res, 303 struct closure *cl, 304 bool interior_node, 305 unsigned flags) 306 { 307 struct bch_fs *c = trans->c; 308 struct write_point *wp; 309 struct btree *b; 310 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 311 struct open_buckets obs = { .nr = 0 }; 312 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; 313 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 314 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim 315 ? BTREE_NODE_RESERVE 316 : 0; 317 int ret; 318 319 mutex_lock(&c->btree_reserve_cache_lock); 320 if (c->btree_reserve_cache_nr > nr_reserve) { 321 struct btree_alloc *a = 322 &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; 323 324 obs = a->ob; 325 bkey_copy(&tmp.k, &a->k); 326 mutex_unlock(&c->btree_reserve_cache_lock); 327 goto mem_alloc; 328 } 329 mutex_unlock(&c->btree_reserve_cache_lock); 330 331 retry: 332 ret = bch2_alloc_sectors_start_trans(trans, 333 c->opts.metadata_target ?: 334 c->opts.foreground_target, 335 0, 336 writepoint_ptr(&c->btree_write_point), 337 &devs_have, 338 res->nr_replicas, 339 min(res->nr_replicas, 340 c->opts.metadata_replicas_required), 341 watermark, 0, cl, &wp); 342 if (unlikely(ret)) 343 return ERR_PTR(ret); 344 345 if (wp->sectors_free < btree_sectors(c)) { 346 struct open_bucket *ob; 347 unsigned i; 348 349 open_bucket_for_each(c, &wp->ptrs, ob, i) 350 if (ob->sectors_free < btree_sectors(c)) 351 ob->sectors_free = 0; 352 353 bch2_alloc_sectors_done(c, wp); 354 goto retry; 355 } 356 357 bkey_btree_ptr_v2_init(&tmp.k); 358 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); 359 360 bch2_open_bucket_get(c, wp, &obs); 361 bch2_alloc_sectors_done(c, wp); 362 mem_alloc: 363 b = bch2_btree_node_mem_alloc(trans, interior_node); 364 six_unlock_write(&b->c.lock); 365 six_unlock_intent(&b->c.lock); 366 367 /* we hold cannibalize_lock: */ 368 BUG_ON(IS_ERR(b)); 369 BUG_ON(b->ob.nr); 370 371 bkey_copy(&b->key, &tmp.k); 372 b->ob = obs; 373 374 return b; 375 } 376 377 static struct btree *bch2_btree_node_alloc(struct btree_update *as, 378 struct btree_trans *trans, 379 unsigned level) 380 { 381 struct bch_fs *c = as->c; 382 struct btree *b; 383 struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; 384 int ret; 385 386 BUG_ON(level >= BTREE_MAX_DEPTH); 387 BUG_ON(!p->nr); 388 389 b = p->b[--p->nr]; 390 391 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 392 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 393 394 set_btree_node_accessed(b); 395 set_btree_node_dirty_acct(c, b); 396 set_btree_node_need_write(b); 397 398 bch2_bset_init_first(b, &b->data->keys); 399 b->c.level = level; 400 b->c.btree_id = as->btree_id; 401 b->version_ondisk = c->sb.version; 402 403 memset(&b->nr, 0, sizeof(b->nr)); 404 b->data->magic = cpu_to_le64(bset_magic(c)); 405 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); 406 b->data->flags = 0; 407 SET_BTREE_NODE_ID(b->data, as->btree_id); 408 SET_BTREE_NODE_LEVEL(b->data, level); 409 410 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 411 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); 412 413 bp->v.mem_ptr = 0; 414 bp->v.seq = b->data->keys.seq; 415 bp->v.sectors_written = 0; 416 } 417 418 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); 419 420 bch2_btree_build_aux_trees(b); 421 422 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); 423 BUG_ON(ret); 424 425 trace_and_count(c, btree_node_alloc, trans, b); 426 bch2_increment_clock(c, btree_sectors(c), WRITE); 427 return b; 428 } 429 430 static void btree_set_min(struct btree *b, struct bpos pos) 431 { 432 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) 433 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; 434 b->data->min_key = pos; 435 } 436 437 static void btree_set_max(struct btree *b, struct bpos pos) 438 { 439 b->key.k.p = pos; 440 b->data->max_key = pos; 441 } 442 443 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, 444 struct btree_trans *trans, 445 struct btree *b) 446 { 447 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); 448 struct bkey_format format = bch2_btree_calc_format(b); 449 450 /* 451 * The keys might expand with the new format - if they wouldn't fit in 452 * the btree node anymore, use the old format for now: 453 */ 454 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) 455 format = b->format; 456 457 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); 458 459 btree_set_min(n, b->data->min_key); 460 btree_set_max(n, b->data->max_key); 461 462 n->data->format = format; 463 btree_node_set_format(n, format); 464 465 bch2_btree_sort_into(as->c, n, b); 466 467 btree_node_reset_sib_u64s(n); 468 return n; 469 } 470 471 static struct btree *__btree_root_alloc(struct btree_update *as, 472 struct btree_trans *trans, unsigned level) 473 { 474 struct btree *b = bch2_btree_node_alloc(as, trans, level); 475 476 btree_set_min(b, POS_MIN); 477 btree_set_max(b, SPOS_MAX); 478 b->data->format = bch2_btree_calc_format(b); 479 480 btree_node_set_format(b, b->data->format); 481 bch2_btree_build_aux_trees(b); 482 483 return b; 484 } 485 486 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) 487 { 488 struct bch_fs *c = as->c; 489 struct prealloc_nodes *p; 490 491 for (p = as->prealloc_nodes; 492 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); 493 p++) { 494 while (p->nr) { 495 struct btree *b = p->b[--p->nr]; 496 497 mutex_lock(&c->btree_reserve_cache_lock); 498 499 if (c->btree_reserve_cache_nr < 500 ARRAY_SIZE(c->btree_reserve_cache)) { 501 struct btree_alloc *a = 502 &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; 503 504 a->ob = b->ob; 505 b->ob.nr = 0; 506 bkey_copy(&a->k, &b->key); 507 } else { 508 bch2_open_buckets_put(c, &b->ob); 509 } 510 511 mutex_unlock(&c->btree_reserve_cache_lock); 512 513 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 514 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); 515 __btree_node_free(trans, b); 516 six_unlock_write(&b->c.lock); 517 six_unlock_intent(&b->c.lock); 518 } 519 } 520 } 521 522 static int bch2_btree_reserve_get(struct btree_trans *trans, 523 struct btree_update *as, 524 unsigned nr_nodes[2], 525 unsigned flags, 526 struct closure *cl) 527 { 528 struct btree *b; 529 unsigned interior; 530 int ret = 0; 531 532 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); 533 534 /* 535 * Protects reaping from the btree node cache and using the btree node 536 * open bucket reserve: 537 */ 538 ret = bch2_btree_cache_cannibalize_lock(trans, cl); 539 if (ret) 540 return ret; 541 542 for (interior = 0; interior < 2; interior++) { 543 struct prealloc_nodes *p = as->prealloc_nodes + interior; 544 545 while (p->nr < nr_nodes[interior]) { 546 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, 547 interior, flags); 548 if (IS_ERR(b)) { 549 ret = PTR_ERR(b); 550 goto err; 551 } 552 553 p->b[p->nr++] = b; 554 } 555 } 556 err: 557 bch2_btree_cache_cannibalize_unlock(trans); 558 return ret; 559 } 560 561 /* Asynchronous interior node update machinery */ 562 563 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) 564 { 565 struct bch_fs *c = as->c; 566 567 if (as->took_gc_lock) 568 up_read(&c->gc_lock); 569 as->took_gc_lock = false; 570 571 bch2_journal_pin_drop(&c->journal, &as->journal); 572 bch2_journal_pin_flush(&c->journal, &as->journal); 573 bch2_disk_reservation_put(c, &as->disk_res); 574 bch2_btree_reserve_put(as, trans); 575 576 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], 577 as->start_time); 578 579 mutex_lock(&c->btree_interior_update_lock); 580 list_del(&as->unwritten_list); 581 list_del(&as->list); 582 583 closure_debug_destroy(&as->cl); 584 mempool_free(as, &c->btree_interior_update_pool); 585 586 /* 587 * Have to do the wakeup with btree_interior_update_lock still held, 588 * since being on btree_interior_update_list is our ref on @c: 589 */ 590 closure_wake_up(&c->btree_interior_update_wait); 591 592 mutex_unlock(&c->btree_interior_update_lock); 593 } 594 595 static void btree_update_add_key(struct btree_update *as, 596 struct keylist *keys, struct btree *b) 597 { 598 struct bkey_i *k = &b->key; 599 600 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > 601 ARRAY_SIZE(as->_old_keys)); 602 603 bkey_copy(keys->top, k); 604 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; 605 606 bch2_keylist_push(keys); 607 } 608 609 static bool btree_update_new_nodes_marked_sb(struct btree_update *as) 610 { 611 for_each_keylist_key(&as->new_keys, k) 612 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k))) 613 return false; 614 return true; 615 } 616 617 static void btree_update_new_nodes_mark_sb(struct btree_update *as) 618 { 619 struct bch_fs *c = as->c; 620 621 mutex_lock(&c->sb_lock); 622 for_each_keylist_key(&as->new_keys, k) 623 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k)); 624 625 bch2_write_super(c); 626 mutex_unlock(&c->sb_lock); 627 } 628 629 /* 630 * The transactional part of an interior btree node update, where we journal the 631 * update we did to the interior node and update alloc info: 632 */ 633 static int btree_update_nodes_written_trans(struct btree_trans *trans, 634 struct btree_update *as) 635 { 636 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); 637 int ret = PTR_ERR_OR_ZERO(e); 638 if (ret) 639 return ret; 640 641 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); 642 643 trans->journal_pin = &as->journal; 644 645 for_each_keylist_key(&as->old_keys, k) { 646 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 647 648 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 649 BTREE_TRIGGER_TRANSACTIONAL); 650 if (ret) 651 return ret; 652 } 653 654 for_each_keylist_key(&as->new_keys, k) { 655 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; 656 657 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), 658 BTREE_TRIGGER_TRANSACTIONAL); 659 if (ret) 660 return ret; 661 } 662 663 return 0; 664 } 665 666 static void btree_update_nodes_written(struct btree_update *as) 667 { 668 struct bch_fs *c = as->c; 669 struct btree *b; 670 struct btree_trans *trans = bch2_trans_get(c); 671 u64 journal_seq = 0; 672 unsigned i; 673 int ret; 674 675 /* 676 * If we're already in an error state, it might be because a btree node 677 * was never written, and we might be trying to free that same btree 678 * node here, but it won't have been marked as allocated and we'll see 679 * spurious disk usage inconsistencies in the transactional part below 680 * if we don't skip it: 681 */ 682 ret = bch2_journal_error(&c->journal); 683 if (ret) 684 goto err; 685 686 if (!btree_update_new_nodes_marked_sb(as)) 687 btree_update_new_nodes_mark_sb(as); 688 689 /* 690 * Wait for any in flight writes to finish before we free the old nodes 691 * on disk: 692 */ 693 for (i = 0; i < as->nr_old_nodes; i++) { 694 __le64 seq; 695 696 b = as->old_nodes[i]; 697 698 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 699 seq = b->data ? b->data->keys.seq : 0; 700 six_unlock_read(&b->c.lock); 701 702 if (seq == as->old_nodes_seq[i]) 703 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, 704 TASK_UNINTERRUPTIBLE); 705 } 706 707 /* 708 * We did an update to a parent node where the pointers we added pointed 709 * to child nodes that weren't written yet: now, the child nodes have 710 * been written so we can write out the update to the interior node. 711 */ 712 713 /* 714 * We can't call into journal reclaim here: we'd block on the journal 715 * reclaim lock, but we may need to release the open buckets we have 716 * pinned in order for other btree updates to make forward progress, and 717 * journal reclaim does btree updates when flushing bkey_cached entries, 718 * which may require allocations as well. 719 */ 720 ret = commit_do(trans, &as->disk_res, &journal_seq, 721 BCH_WATERMARK_interior_updates| 722 BCH_TRANS_COMMIT_no_enospc| 723 BCH_TRANS_COMMIT_no_check_rw| 724 BCH_TRANS_COMMIT_journal_reclaim, 725 btree_update_nodes_written_trans(trans, as)); 726 bch2_trans_unlock(trans); 727 728 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, 729 "%s", bch2_err_str(ret)); 730 err: 731 /* 732 * We have to be careful because another thread might be getting ready 733 * to free as->b and calling btree_update_reparent() on us - we'll 734 * recheck under btree_update_lock below: 735 */ 736 b = READ_ONCE(as->b); 737 if (b) { 738 btree_path_idx_t path_idx = get_unlocked_mut_path(trans, 739 as->btree_id, b->c.level, b->key.k.p); 740 struct btree_path *path = trans->paths + path_idx; 741 /* 742 * @b is the node we did the final insert into: 743 * 744 * On failure to get a journal reservation, we still have to 745 * unblock the write and allow most of the write path to happen 746 * so that shutdown works, but the i->journal_seq mechanism 747 * won't work to prevent the btree write from being visible (we 748 * didn't get a journal sequence number) - instead 749 * __bch2_btree_node_write() doesn't do the actual write if 750 * we're in journal error state: 751 */ 752 753 /* 754 * Ensure transaction is unlocked before using 755 * btree_node_lock_nopath() (the use of which is always suspect, 756 * we need to work on removing this in the future) 757 * 758 * It should be, but get_unlocked_mut_path() -> bch2_path_get() 759 * calls bch2_path_upgrade(), before we call path_make_mut(), so 760 * we may rarely end up with a locked path besides the one we 761 * have here: 762 */ 763 bch2_trans_unlock(trans); 764 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); 765 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); 766 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); 767 path->l[b->c.level].b = b; 768 769 bch2_btree_node_lock_write_nofail(trans, path, &b->c); 770 771 mutex_lock(&c->btree_interior_update_lock); 772 773 list_del(&as->write_blocked_list); 774 if (list_empty(&b->write_blocked)) 775 clear_btree_node_write_blocked(b); 776 777 /* 778 * Node might have been freed, recheck under 779 * btree_interior_update_lock: 780 */ 781 if (as->b == b) { 782 BUG_ON(!b->c.level); 783 BUG_ON(!btree_node_dirty(b)); 784 785 if (!ret) { 786 struct bset *last = btree_bset_last(b); 787 788 last->journal_seq = cpu_to_le64( 789 max(journal_seq, 790 le64_to_cpu(last->journal_seq))); 791 792 bch2_btree_add_journal_pin(c, b, journal_seq); 793 } else { 794 /* 795 * If we didn't get a journal sequence number we 796 * can't write this btree node, because recovery 797 * won't know to ignore this write: 798 */ 799 set_btree_node_never_write(b); 800 } 801 } 802 803 mutex_unlock(&c->btree_interior_update_lock); 804 805 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); 806 six_unlock_write(&b->c.lock); 807 808 btree_node_write_if_need(c, b, SIX_LOCK_intent); 809 btree_node_unlock(trans, path, b->c.level); 810 bch2_path_put(trans, path_idx, true); 811 } 812 813 bch2_journal_pin_drop(&c->journal, &as->journal); 814 815 mutex_lock(&c->btree_interior_update_lock); 816 for (i = 0; i < as->nr_new_nodes; i++) { 817 b = as->new_nodes[i]; 818 819 BUG_ON(b->will_make_reachable != (unsigned long) as); 820 b->will_make_reachable = 0; 821 clear_btree_node_will_make_reachable(b); 822 } 823 mutex_unlock(&c->btree_interior_update_lock); 824 825 for (i = 0; i < as->nr_new_nodes; i++) { 826 b = as->new_nodes[i]; 827 828 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 829 btree_node_write_if_need(c, b, SIX_LOCK_read); 830 six_unlock_read(&b->c.lock); 831 } 832 833 for (i = 0; i < as->nr_open_buckets; i++) 834 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); 835 836 bch2_btree_update_free(as, trans); 837 bch2_trans_put(trans); 838 } 839 840 static void btree_interior_update_work(struct work_struct *work) 841 { 842 struct bch_fs *c = 843 container_of(work, struct bch_fs, btree_interior_update_work); 844 struct btree_update *as; 845 846 while (1) { 847 mutex_lock(&c->btree_interior_update_lock); 848 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, 849 struct btree_update, unwritten_list); 850 if (as && !as->nodes_written) 851 as = NULL; 852 mutex_unlock(&c->btree_interior_update_lock); 853 854 if (!as) 855 break; 856 857 btree_update_nodes_written(as); 858 } 859 } 860 861 static CLOSURE_CALLBACK(btree_update_set_nodes_written) 862 { 863 closure_type(as, struct btree_update, cl); 864 struct bch_fs *c = as->c; 865 866 mutex_lock(&c->btree_interior_update_lock); 867 as->nodes_written = true; 868 mutex_unlock(&c->btree_interior_update_lock); 869 870 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); 871 } 872 873 /* 874 * We're updating @b with pointers to nodes that haven't finished writing yet: 875 * block @b from being written until @as completes 876 */ 877 static void btree_update_updated_node(struct btree_update *as, struct btree *b) 878 { 879 struct bch_fs *c = as->c; 880 881 BUG_ON(as->mode != BTREE_UPDATE_none); 882 BUG_ON(as->update_level_end < b->c.level); 883 BUG_ON(!btree_node_dirty(b)); 884 BUG_ON(!b->c.level); 885 886 mutex_lock(&c->btree_interior_update_lock); 887 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 888 889 as->mode = BTREE_UPDATE_node; 890 as->b = b; 891 as->update_level_end = b->c.level; 892 893 set_btree_node_write_blocked(b); 894 list_add(&as->write_blocked_list, &b->write_blocked); 895 896 mutex_unlock(&c->btree_interior_update_lock); 897 } 898 899 static int bch2_update_reparent_journal_pin_flush(struct journal *j, 900 struct journal_entry_pin *_pin, u64 seq) 901 { 902 return 0; 903 } 904 905 static void btree_update_reparent(struct btree_update *as, 906 struct btree_update *child) 907 { 908 struct bch_fs *c = as->c; 909 910 lockdep_assert_held(&c->btree_interior_update_lock); 911 912 child->b = NULL; 913 child->mode = BTREE_UPDATE_update; 914 915 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, 916 bch2_update_reparent_journal_pin_flush); 917 } 918 919 static void btree_update_updated_root(struct btree_update *as, struct btree *b) 920 { 921 struct bkey_i *insert = &b->key; 922 struct bch_fs *c = as->c; 923 924 BUG_ON(as->mode != BTREE_UPDATE_none); 925 926 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 927 ARRAY_SIZE(as->journal_entries)); 928 929 as->journal_u64s += 930 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 931 BCH_JSET_ENTRY_btree_root, 932 b->c.btree_id, b->c.level, 933 insert, insert->k.u64s); 934 935 mutex_lock(&c->btree_interior_update_lock); 936 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); 937 938 as->mode = BTREE_UPDATE_root; 939 mutex_unlock(&c->btree_interior_update_lock); 940 } 941 942 /* 943 * bch2_btree_update_add_new_node: 944 * 945 * This causes @as to wait on @b to be written, before it gets to 946 * bch2_btree_update_nodes_written 947 * 948 * Additionally, it sets b->will_make_reachable to prevent any additional writes 949 * to @b from happening besides the first until @b is reachable on disk 950 * 951 * And it adds @b to the list of @as's new nodes, so that we can update sector 952 * counts in bch2_btree_update_nodes_written: 953 */ 954 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) 955 { 956 struct bch_fs *c = as->c; 957 958 closure_get(&as->cl); 959 960 mutex_lock(&c->btree_interior_update_lock); 961 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); 962 BUG_ON(b->will_make_reachable); 963 964 as->new_nodes[as->nr_new_nodes++] = b; 965 b->will_make_reachable = 1UL|(unsigned long) as; 966 set_btree_node_will_make_reachable(b); 967 968 mutex_unlock(&c->btree_interior_update_lock); 969 970 btree_update_add_key(as, &as->new_keys, b); 971 972 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 973 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; 974 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; 975 976 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = 977 cpu_to_le16(sectors); 978 } 979 } 980 981 /* 982 * returns true if @b was a new node 983 */ 984 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) 985 { 986 struct btree_update *as; 987 unsigned long v; 988 unsigned i; 989 990 mutex_lock(&c->btree_interior_update_lock); 991 /* 992 * When b->will_make_reachable != 0, it owns a ref on as->cl that's 993 * dropped when it gets written by bch2_btree_complete_write - the 994 * xchg() is for synchronization with bch2_btree_complete_write: 995 */ 996 v = xchg(&b->will_make_reachable, 0); 997 clear_btree_node_will_make_reachable(b); 998 as = (struct btree_update *) (v & ~1UL); 999 1000 if (!as) { 1001 mutex_unlock(&c->btree_interior_update_lock); 1002 return; 1003 } 1004 1005 for (i = 0; i < as->nr_new_nodes; i++) 1006 if (as->new_nodes[i] == b) 1007 goto found; 1008 1009 BUG(); 1010 found: 1011 array_remove_item(as->new_nodes, as->nr_new_nodes, i); 1012 mutex_unlock(&c->btree_interior_update_lock); 1013 1014 if (v & 1) 1015 closure_put(&as->cl); 1016 } 1017 1018 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) 1019 { 1020 while (b->ob.nr) 1021 as->open_buckets[as->nr_open_buckets++] = 1022 b->ob.v[--b->ob.nr]; 1023 } 1024 1025 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, 1026 struct journal_entry_pin *_pin, u64 seq) 1027 { 1028 return 0; 1029 } 1030 1031 /* 1032 * @b is being split/rewritten: it may have pointers to not-yet-written btree 1033 * nodes and thus outstanding btree_updates - redirect @b's 1034 * btree_updates to point to this btree_update: 1035 */ 1036 static void bch2_btree_interior_update_will_free_node(struct btree_update *as, 1037 struct btree *b) 1038 { 1039 struct bch_fs *c = as->c; 1040 struct btree_update *p, *n; 1041 struct btree_write *w; 1042 1043 set_btree_node_dying(b); 1044 1045 if (btree_node_fake(b)) 1046 return; 1047 1048 mutex_lock(&c->btree_interior_update_lock); 1049 1050 /* 1051 * Does this node have any btree_update operations preventing 1052 * it from being written? 1053 * 1054 * If so, redirect them to point to this btree_update: we can 1055 * write out our new nodes, but we won't make them visible until those 1056 * operations complete 1057 */ 1058 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { 1059 list_del_init(&p->write_blocked_list); 1060 btree_update_reparent(as, p); 1061 1062 /* 1063 * for flush_held_btree_writes() waiting on updates to flush or 1064 * nodes to be writeable: 1065 */ 1066 closure_wake_up(&c->btree_interior_update_wait); 1067 } 1068 1069 clear_btree_node_dirty_acct(c, b); 1070 clear_btree_node_need_write(b); 1071 clear_btree_node_write_blocked(b); 1072 1073 /* 1074 * Does this node have unwritten data that has a pin on the journal? 1075 * 1076 * If so, transfer that pin to the btree_update operation - 1077 * note that if we're freeing multiple nodes, we only need to keep the 1078 * oldest pin of any of the nodes we're freeing. We'll release the pin 1079 * when the new nodes are persistent and reachable on disk: 1080 */ 1081 w = btree_current_write(b); 1082 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1083 bch2_btree_update_will_free_node_journal_pin_flush); 1084 bch2_journal_pin_drop(&c->journal, &w->journal); 1085 1086 w = btree_prev_write(b); 1087 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, 1088 bch2_btree_update_will_free_node_journal_pin_flush); 1089 bch2_journal_pin_drop(&c->journal, &w->journal); 1090 1091 mutex_unlock(&c->btree_interior_update_lock); 1092 1093 /* 1094 * Is this a node that isn't reachable on disk yet? 1095 * 1096 * Nodes that aren't reachable yet have writes blocked until they're 1097 * reachable - now that we've cancelled any pending writes and moved 1098 * things waiting on that write to wait on this update, we can drop this 1099 * node from the list of nodes that the other update is making 1100 * reachable, prior to freeing it: 1101 */ 1102 btree_update_drop_new_node(c, b); 1103 1104 btree_update_add_key(as, &as->old_keys, b); 1105 1106 as->old_nodes[as->nr_old_nodes] = b; 1107 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; 1108 as->nr_old_nodes++; 1109 } 1110 1111 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) 1112 { 1113 struct bch_fs *c = as->c; 1114 u64 start_time = as->start_time; 1115 1116 BUG_ON(as->mode == BTREE_UPDATE_none); 1117 1118 if (as->took_gc_lock) 1119 up_read(&as->c->gc_lock); 1120 as->took_gc_lock = false; 1121 1122 bch2_btree_reserve_put(as, trans); 1123 1124 continue_at(&as->cl, btree_update_set_nodes_written, 1125 as->c->btree_interior_update_worker); 1126 1127 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], 1128 start_time); 1129 } 1130 1131 static struct btree_update * 1132 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, 1133 unsigned level_start, bool split, unsigned flags) 1134 { 1135 struct bch_fs *c = trans->c; 1136 struct btree_update *as; 1137 u64 start_time = local_clock(); 1138 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) 1139 ? BCH_DISK_RESERVATION_NOFAIL : 0; 1140 unsigned nr_nodes[2] = { 0, 0 }; 1141 unsigned level_end = level_start; 1142 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; 1143 int ret = 0; 1144 u32 restart_count = trans->restart_count; 1145 1146 BUG_ON(!path->should_be_locked); 1147 1148 if (watermark == BCH_WATERMARK_copygc) 1149 watermark = BCH_WATERMARK_btree_copygc; 1150 if (watermark < BCH_WATERMARK_btree) 1151 watermark = BCH_WATERMARK_btree; 1152 1153 flags &= ~BCH_WATERMARK_MASK; 1154 flags |= watermark; 1155 1156 if (watermark < BCH_WATERMARK_reclaim && 1157 test_bit(JOURNAL_SPACE_LOW, &c->journal.flags)) { 1158 if (flags & BCH_TRANS_COMMIT_journal_reclaim) 1159 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock); 1160 1161 bch2_trans_unlock(trans); 1162 wait_event(c->journal.wait, !test_bit(JOURNAL_SPACE_LOW, &c->journal.flags)); 1163 ret = bch2_trans_relock(trans); 1164 if (ret) 1165 return ERR_PTR(ret); 1166 } 1167 1168 while (1) { 1169 nr_nodes[!!level_end] += 1 + split; 1170 level_end++; 1171 1172 ret = bch2_btree_path_upgrade(trans, path, level_end + 1); 1173 if (ret) 1174 return ERR_PTR(ret); 1175 1176 if (!btree_path_node(path, level_end)) { 1177 /* Allocating new root? */ 1178 nr_nodes[1] += split; 1179 level_end = BTREE_MAX_DEPTH; 1180 break; 1181 } 1182 1183 /* 1184 * Always check for space for two keys, even if we won't have to 1185 * split at prior level - it might have been a merge instead: 1186 */ 1187 if (bch2_btree_node_insert_fits(path->l[level_end].b, 1188 BKEY_BTREE_PTR_U64s_MAX * 2)) 1189 break; 1190 1191 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); 1192 } 1193 1194 if (!down_read_trylock(&c->gc_lock)) { 1195 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); 1196 if (ret) { 1197 up_read(&c->gc_lock); 1198 return ERR_PTR(ret); 1199 } 1200 } 1201 1202 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); 1203 memset(as, 0, sizeof(*as)); 1204 closure_init(&as->cl, NULL); 1205 as->c = c; 1206 as->start_time = start_time; 1207 as->ip_started = _RET_IP_; 1208 as->mode = BTREE_UPDATE_none; 1209 as->watermark = watermark; 1210 as->took_gc_lock = true; 1211 as->btree_id = path->btree_id; 1212 as->update_level_start = level_start; 1213 as->update_level_end = level_end; 1214 INIT_LIST_HEAD(&as->list); 1215 INIT_LIST_HEAD(&as->unwritten_list); 1216 INIT_LIST_HEAD(&as->write_blocked_list); 1217 bch2_keylist_init(&as->old_keys, as->_old_keys); 1218 bch2_keylist_init(&as->new_keys, as->_new_keys); 1219 bch2_keylist_init(&as->parent_keys, as->inline_keys); 1220 1221 mutex_lock(&c->btree_interior_update_lock); 1222 list_add_tail(&as->list, &c->btree_interior_update_list); 1223 mutex_unlock(&c->btree_interior_update_lock); 1224 1225 /* 1226 * We don't want to allocate if we're in an error state, that can cause 1227 * deadlock on emergency shutdown due to open buckets getting stuck in 1228 * the btree_reserve_cache after allocator shutdown has cleared it out. 1229 * This check needs to come after adding us to the btree_interior_update 1230 * list but before calling bch2_btree_reserve_get, to synchronize with 1231 * __bch2_fs_read_only(). 1232 */ 1233 ret = bch2_journal_error(&c->journal); 1234 if (ret) 1235 goto err; 1236 1237 ret = bch2_disk_reservation_get(c, &as->disk_res, 1238 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), 1239 c->opts.metadata_replicas, 1240 disk_res_flags); 1241 if (ret) 1242 goto err; 1243 1244 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); 1245 if (bch2_err_matches(ret, ENOSPC) || 1246 bch2_err_matches(ret, ENOMEM)) { 1247 struct closure cl; 1248 1249 /* 1250 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK 1251 * flag 1252 */ 1253 if (bch2_err_matches(ret, ENOSPC) && 1254 (flags & BCH_TRANS_COMMIT_journal_reclaim) && 1255 watermark < BCH_WATERMARK_reclaim) { 1256 ret = -BCH_ERR_journal_reclaim_would_deadlock; 1257 goto err; 1258 } 1259 1260 closure_init_stack(&cl); 1261 1262 do { 1263 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); 1264 1265 bch2_trans_unlock(trans); 1266 closure_sync(&cl); 1267 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); 1268 } 1269 1270 if (ret) { 1271 trace_and_count(c, btree_reserve_get_fail, trans->fn, 1272 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); 1273 goto err; 1274 } 1275 1276 ret = bch2_trans_relock(trans); 1277 if (ret) 1278 goto err; 1279 1280 bch2_trans_verify_not_restarted(trans, restart_count); 1281 return as; 1282 err: 1283 bch2_btree_update_free(as, trans); 1284 if (!bch2_err_matches(ret, ENOSPC) && 1285 !bch2_err_matches(ret, EROFS) && 1286 ret != -BCH_ERR_journal_reclaim_would_deadlock) 1287 bch_err_fn_ratelimited(c, ret); 1288 return ERR_PTR(ret); 1289 } 1290 1291 /* Btree root updates: */ 1292 1293 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) 1294 { 1295 /* Root nodes cannot be reaped */ 1296 mutex_lock(&c->btree_cache.lock); 1297 list_del_init(&b->list); 1298 mutex_unlock(&c->btree_cache.lock); 1299 1300 mutex_lock(&c->btree_root_lock); 1301 bch2_btree_id_root(c, b->c.btree_id)->b = b; 1302 mutex_unlock(&c->btree_root_lock); 1303 1304 bch2_recalc_btree_reserve(c); 1305 } 1306 1307 static int bch2_btree_set_root(struct btree_update *as, 1308 struct btree_trans *trans, 1309 struct btree_path *path, 1310 struct btree *b, 1311 bool nofail) 1312 { 1313 struct bch_fs *c = as->c; 1314 1315 trace_and_count(c, btree_node_set_root, trans, b); 1316 1317 struct btree *old = btree_node_root(c, b); 1318 1319 /* 1320 * Ensure no one is using the old root while we switch to the 1321 * new root: 1322 */ 1323 if (nofail) { 1324 bch2_btree_node_lock_write_nofail(trans, path, &old->c); 1325 } else { 1326 int ret = bch2_btree_node_lock_write(trans, path, &old->c); 1327 if (ret) 1328 return ret; 1329 } 1330 1331 bch2_btree_set_root_inmem(c, b); 1332 1333 btree_update_updated_root(as, b); 1334 1335 /* 1336 * Unlock old root after new root is visible: 1337 * 1338 * The new root isn't persistent, but that's ok: we still have 1339 * an intent lock on the new root, and any updates that would 1340 * depend on the new root would have to update the new root. 1341 */ 1342 bch2_btree_node_unlock_write(trans, path, old); 1343 return 0; 1344 } 1345 1346 /* Interior node updates: */ 1347 1348 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, 1349 struct btree_trans *trans, 1350 struct btree_path *path, 1351 struct btree *b, 1352 struct btree_node_iter *node_iter, 1353 struct bkey_i *insert) 1354 { 1355 struct bch_fs *c = as->c; 1356 struct bkey_packed *k; 1357 struct printbuf buf = PRINTBUF; 1358 unsigned long old, new, v; 1359 1360 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && 1361 !btree_ptr_sectors_written(insert)); 1362 1363 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) 1364 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); 1365 1366 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1367 btree_node_type(b), WRITE, &buf) ?: 1368 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { 1369 printbuf_reset(&buf); 1370 prt_printf(&buf, "inserting invalid bkey\n "); 1371 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); 1372 prt_printf(&buf, "\n "); 1373 bch2_bkey_invalid(c, bkey_i_to_s_c(insert), 1374 btree_node_type(b), WRITE, &buf); 1375 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); 1376 1377 bch2_fs_inconsistent(c, "%s", buf.buf); 1378 dump_stack(); 1379 } 1380 1381 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > 1382 ARRAY_SIZE(as->journal_entries)); 1383 1384 as->journal_u64s += 1385 journal_entry_set((void *) &as->journal_entries[as->journal_u64s], 1386 BCH_JSET_ENTRY_btree_keys, 1387 b->c.btree_id, b->c.level, 1388 insert, insert->k.u64s); 1389 1390 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && 1391 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) 1392 bch2_btree_node_iter_advance(node_iter, b); 1393 1394 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); 1395 set_btree_node_dirty_acct(c, b); 1396 1397 v = READ_ONCE(b->flags); 1398 do { 1399 old = new = v; 1400 1401 new &= ~BTREE_WRITE_TYPE_MASK; 1402 new |= BTREE_WRITE_interior; 1403 new |= 1 << BTREE_NODE_need_write; 1404 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1405 1406 printbuf_exit(&buf); 1407 } 1408 1409 static void 1410 bch2_btree_insert_keys_interior(struct btree_update *as, 1411 struct btree_trans *trans, 1412 struct btree_path *path, 1413 struct btree *b, 1414 struct btree_node_iter node_iter, 1415 struct keylist *keys) 1416 { 1417 struct bkey_i *insert = bch2_keylist_front(keys); 1418 struct bkey_packed *k; 1419 1420 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); 1421 1422 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && 1423 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) 1424 ; 1425 1426 while (!bch2_keylist_empty(keys)) { 1427 insert = bch2_keylist_front(keys); 1428 1429 if (bpos_gt(insert->k.p, b->key.k.p)) 1430 break; 1431 1432 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); 1433 bch2_keylist_pop_front(keys); 1434 } 1435 } 1436 1437 /* 1438 * Move keys from n1 (original replacement node, now lower node) to n2 (higher 1439 * node) 1440 */ 1441 static void __btree_split_node(struct btree_update *as, 1442 struct btree_trans *trans, 1443 struct btree *b, 1444 struct btree *n[2]) 1445 { 1446 struct bkey_packed *k; 1447 struct bpos n1_pos = POS_MIN; 1448 struct btree_node_iter iter; 1449 struct bset *bsets[2]; 1450 struct bkey_format_state format[2]; 1451 struct bkey_packed *out[2]; 1452 struct bkey uk; 1453 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; 1454 struct { unsigned nr_keys, val_u64s; } nr_keys[2]; 1455 int i; 1456 1457 memset(&nr_keys, 0, sizeof(nr_keys)); 1458 1459 for (i = 0; i < 2; i++) { 1460 BUG_ON(n[i]->nsets != 1); 1461 1462 bsets[i] = btree_bset_first(n[i]); 1463 out[i] = bsets[i]->start; 1464 1465 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); 1466 bch2_bkey_format_init(&format[i]); 1467 } 1468 1469 u64s = 0; 1470 for_each_btree_node_key(b, k, &iter) { 1471 if (bkey_deleted(k)) 1472 continue; 1473 1474 uk = bkey_unpack_key(b, k); 1475 1476 if (b->c.level && 1477 u64s < n1_u64s && 1478 u64s + k->u64s >= n1_u64s && 1479 bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p)) 1480 n1_u64s += k->u64s; 1481 1482 i = u64s >= n1_u64s; 1483 u64s += k->u64s; 1484 if (!i) 1485 n1_pos = uk.p; 1486 bch2_bkey_format_add_key(&format[i], &uk); 1487 1488 nr_keys[i].nr_keys++; 1489 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); 1490 } 1491 1492 btree_set_min(n[0], b->data->min_key); 1493 btree_set_max(n[0], n1_pos); 1494 btree_set_min(n[1], bpos_successor(n1_pos)); 1495 btree_set_max(n[1], b->data->max_key); 1496 1497 for (i = 0; i < 2; i++) { 1498 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); 1499 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); 1500 1501 n[i]->data->format = bch2_bkey_format_done(&format[i]); 1502 1503 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + 1504 nr_keys[i].val_u64s; 1505 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) 1506 n[i]->data->format = b->format; 1507 1508 btree_node_set_format(n[i], n[i]->data->format); 1509 } 1510 1511 u64s = 0; 1512 for_each_btree_node_key(b, k, &iter) { 1513 if (bkey_deleted(k)) 1514 continue; 1515 1516 i = u64s >= n1_u64s; 1517 u64s += k->u64s; 1518 1519 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) 1520 ? &b->format: &bch2_bkey_format_current, k)) 1521 out[i]->format = KEY_FORMAT_LOCAL_BTREE; 1522 else 1523 bch2_bkey_unpack(b, (void *) out[i], k); 1524 1525 out[i]->needs_whiteout = false; 1526 1527 btree_keys_account_key_add(&n[i]->nr, 0, out[i]); 1528 out[i] = bkey_p_next(out[i]); 1529 } 1530 1531 for (i = 0; i < 2; i++) { 1532 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); 1533 1534 BUG_ON(!bsets[i]->u64s); 1535 1536 set_btree_bset_end(n[i], n[i]->set); 1537 1538 btree_node_reset_sib_u64s(n[i]); 1539 1540 bch2_verify_btree_nr_keys(n[i]); 1541 1542 BUG_ON(bch2_btree_node_check_topology(trans, n[i])); 1543 } 1544 } 1545 1546 /* 1547 * For updates to interior nodes, we've got to do the insert before we split 1548 * because the stuff we're inserting has to be inserted atomically. Post split, 1549 * the keys might have to go in different nodes and the split would no longer be 1550 * atomic. 1551 * 1552 * Worse, if the insert is from btree node coalescing, if we do the insert after 1553 * we do the split (and pick the pivot) - the pivot we pick might be between 1554 * nodes that were coalesced, and thus in the middle of a child node post 1555 * coalescing: 1556 */ 1557 static void btree_split_insert_keys(struct btree_update *as, 1558 struct btree_trans *trans, 1559 btree_path_idx_t path_idx, 1560 struct btree *b, 1561 struct keylist *keys) 1562 { 1563 struct btree_path *path = trans->paths + path_idx; 1564 1565 if (!bch2_keylist_empty(keys) && 1566 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { 1567 struct btree_node_iter node_iter; 1568 1569 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); 1570 1571 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); 1572 1573 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1574 } 1575 } 1576 1577 static int btree_split(struct btree_update *as, struct btree_trans *trans, 1578 btree_path_idx_t path, struct btree *b, 1579 struct keylist *keys) 1580 { 1581 struct bch_fs *c = as->c; 1582 struct btree *parent = btree_node_parent(trans->paths + path, b); 1583 struct btree *n1, *n2 = NULL, *n3 = NULL; 1584 btree_path_idx_t path1 = 0, path2 = 0; 1585 u64 start_time = local_clock(); 1586 int ret = 0; 1587 1588 bch2_verify_btree_nr_keys(b); 1589 BUG_ON(!parent && (b != btree_node_root(c, b))); 1590 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); 1591 1592 ret = bch2_btree_node_check_topology(trans, b); 1593 if (ret) 1594 return ret; 1595 1596 bch2_btree_interior_update_will_free_node(as, b); 1597 1598 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { 1599 struct btree *n[2]; 1600 1601 trace_and_count(c, btree_node_split, trans, b); 1602 1603 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); 1604 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); 1605 1606 __btree_split_node(as, trans, b, n); 1607 1608 if (keys) { 1609 btree_split_insert_keys(as, trans, path, n1, keys); 1610 btree_split_insert_keys(as, trans, path, n2, keys); 1611 BUG_ON(!bch2_keylist_empty(keys)); 1612 } 1613 1614 bch2_btree_build_aux_trees(n2); 1615 bch2_btree_build_aux_trees(n1); 1616 1617 bch2_btree_update_add_new_node(as, n1); 1618 bch2_btree_update_add_new_node(as, n2); 1619 six_unlock_write(&n2->c.lock); 1620 six_unlock_write(&n1->c.lock); 1621 1622 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1623 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1624 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1625 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1626 1627 path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p); 1628 six_lock_increment(&n2->c.lock, SIX_LOCK_intent); 1629 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); 1630 bch2_btree_path_level_init(trans, trans->paths + path2, n2); 1631 1632 /* 1633 * Note that on recursive parent_keys == keys, so we 1634 * can't start adding new keys to parent_keys before emptying it 1635 * out (which we did with btree_split_insert_keys() above) 1636 */ 1637 bch2_keylist_add(&as->parent_keys, &n1->key); 1638 bch2_keylist_add(&as->parent_keys, &n2->key); 1639 1640 if (!parent) { 1641 /* Depth increases, make a new root */ 1642 n3 = __btree_root_alloc(as, trans, b->c.level + 1); 1643 1644 bch2_btree_update_add_new_node(as, n3); 1645 six_unlock_write(&n3->c.lock); 1646 1647 trans->paths[path2].locks_want++; 1648 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); 1649 six_lock_increment(&n3->c.lock, SIX_LOCK_intent); 1650 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); 1651 bch2_btree_path_level_init(trans, trans->paths + path2, n3); 1652 1653 n3->sib_u64s[0] = U16_MAX; 1654 n3->sib_u64s[1] = U16_MAX; 1655 1656 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); 1657 } 1658 } else { 1659 trace_and_count(c, btree_node_compact, trans, b); 1660 1661 n1 = bch2_btree_node_alloc_replacement(as, trans, b); 1662 1663 if (keys) { 1664 btree_split_insert_keys(as, trans, path, n1, keys); 1665 BUG_ON(!bch2_keylist_empty(keys)); 1666 } 1667 1668 bch2_btree_build_aux_trees(n1); 1669 bch2_btree_update_add_new_node(as, n1); 1670 six_unlock_write(&n1->c.lock); 1671 1672 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p); 1673 six_lock_increment(&n1->c.lock, SIX_LOCK_intent); 1674 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); 1675 bch2_btree_path_level_init(trans, trans->paths + path1, n1); 1676 1677 if (parent) 1678 bch2_keylist_add(&as->parent_keys, &n1->key); 1679 } 1680 1681 /* New nodes all written, now make them visible: */ 1682 1683 if (parent) { 1684 /* Split a non root node */ 1685 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 1686 } else if (n3) { 1687 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false); 1688 } else { 1689 /* Root filled up but didn't need to be split */ 1690 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false); 1691 } 1692 1693 if (ret) 1694 goto err; 1695 1696 if (n3) { 1697 bch2_btree_update_get_open_buckets(as, n3); 1698 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); 1699 } 1700 if (n2) { 1701 bch2_btree_update_get_open_buckets(as, n2); 1702 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); 1703 } 1704 bch2_btree_update_get_open_buckets(as, n1); 1705 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); 1706 1707 /* 1708 * The old node must be freed (in memory) _before_ unlocking the new 1709 * nodes - else another thread could re-acquire a read lock on the old 1710 * node after another thread has locked and updated the new node, thus 1711 * seeing stale data: 1712 */ 1713 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 1714 1715 if (n3) 1716 bch2_trans_node_add(trans, trans->paths + path, n3); 1717 if (n2) 1718 bch2_trans_node_add(trans, trans->paths + path2, n2); 1719 bch2_trans_node_add(trans, trans->paths + path1, n1); 1720 1721 if (n3) 1722 six_unlock_intent(&n3->c.lock); 1723 if (n2) 1724 six_unlock_intent(&n2->c.lock); 1725 six_unlock_intent(&n1->c.lock); 1726 out: 1727 if (path2) { 1728 __bch2_btree_path_unlock(trans, trans->paths + path2); 1729 bch2_path_put(trans, path2, true); 1730 } 1731 if (path1) { 1732 __bch2_btree_path_unlock(trans, trans->paths + path1); 1733 bch2_path_put(trans, path1, true); 1734 } 1735 1736 bch2_trans_verify_locks(trans); 1737 1738 bch2_time_stats_update(&c->times[n2 1739 ? BCH_TIME_btree_node_split 1740 : BCH_TIME_btree_node_compact], 1741 start_time); 1742 return ret; 1743 err: 1744 if (n3) 1745 bch2_btree_node_free_never_used(as, trans, n3); 1746 if (n2) 1747 bch2_btree_node_free_never_used(as, trans, n2); 1748 bch2_btree_node_free_never_used(as, trans, n1); 1749 goto out; 1750 } 1751 1752 /** 1753 * bch2_btree_insert_node - insert bkeys into a given btree node 1754 * 1755 * @as: btree_update object 1756 * @trans: btree_trans object 1757 * @path_idx: path that points to current node 1758 * @b: node to insert keys into 1759 * @keys: list of keys to insert 1760 * 1761 * Returns: 0 on success, typically transaction restart error on failure 1762 * 1763 * Inserts as many keys as it can into a given btree node, splitting it if full. 1764 * If a split occurred, this function will return early. This can only happen 1765 * for leaf nodes -- inserts into interior nodes have to be atomic. 1766 */ 1767 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, 1768 btree_path_idx_t path_idx, struct btree *b, 1769 struct keylist *keys) 1770 { 1771 struct bch_fs *c = as->c; 1772 struct btree_path *path = trans->paths + path_idx, *linked; 1773 unsigned i; 1774 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); 1775 int old_live_u64s = b->nr.live_u64s; 1776 int live_u64s_added, u64s_added; 1777 int ret; 1778 1779 lockdep_assert_held(&c->gc_lock); 1780 BUG_ON(!btree_node_intent_locked(path, b->c.level)); 1781 BUG_ON(!b->c.level); 1782 BUG_ON(!as || as->b); 1783 bch2_verify_keylist_sorted(keys); 1784 1785 ret = bch2_btree_node_lock_write(trans, path, &b->c); 1786 if (ret) 1787 return ret; 1788 1789 bch2_btree_node_prep_for_write(trans, path, b); 1790 1791 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { 1792 bch2_btree_node_unlock_write(trans, path, b); 1793 goto split; 1794 } 1795 1796 ret = bch2_btree_node_check_topology(trans, b); 1797 if (ret) { 1798 bch2_btree_node_unlock_write(trans, path, b); 1799 return ret; 1800 } 1801 1802 bch2_btree_insert_keys_interior(as, trans, path, b, 1803 path->l[b->c.level].iter, keys); 1804 1805 trans_for_each_path_with_node(trans, b, linked, i) 1806 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); 1807 1808 bch2_trans_verify_paths(trans); 1809 1810 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; 1811 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; 1812 1813 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) 1814 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); 1815 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) 1816 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); 1817 1818 if (u64s_added > live_u64s_added && 1819 bch2_maybe_compact_whiteouts(c, b)) 1820 bch2_trans_node_reinit_iter(trans, b); 1821 1822 btree_update_updated_node(as, b); 1823 bch2_btree_node_unlock_write(trans, path, b); 1824 1825 BUG_ON(bch2_btree_node_check_topology(trans, b)); 1826 return 0; 1827 split: 1828 /* 1829 * We could attempt to avoid the transaction restart, by calling 1830 * bch2_btree_path_upgrade() and allocating more nodes: 1831 */ 1832 if (b->c.level >= as->update_level_end) { 1833 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); 1834 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); 1835 } 1836 1837 return btree_split(as, trans, path_idx, b, keys); 1838 } 1839 1840 int bch2_btree_split_leaf(struct btree_trans *trans, 1841 btree_path_idx_t path, 1842 unsigned flags) 1843 { 1844 /* btree_split & merge may both cause paths array to be reallocated */ 1845 struct btree *b = path_l(trans->paths + path)->b; 1846 struct btree_update *as; 1847 unsigned l; 1848 int ret = 0; 1849 1850 as = bch2_btree_update_start(trans, trans->paths + path, 1851 trans->paths[path].level, 1852 true, flags); 1853 if (IS_ERR(as)) 1854 return PTR_ERR(as); 1855 1856 ret = btree_split(as, trans, path, b, NULL); 1857 if (ret) { 1858 bch2_btree_update_free(as, trans); 1859 return ret; 1860 } 1861 1862 bch2_btree_update_done(as, trans); 1863 1864 for (l = trans->paths[path].level + 1; 1865 btree_node_intent_locked(&trans->paths[path], l) && !ret; 1866 l++) 1867 ret = bch2_foreground_maybe_merge(trans, path, l, flags); 1868 1869 return ret; 1870 } 1871 1872 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans, 1873 btree_path_idx_t path_idx) 1874 { 1875 struct bch_fs *c = as->c; 1876 struct btree_path *path = trans->paths + path_idx; 1877 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b; 1878 1879 BUG_ON(!btree_node_locked(path, b->c.level)); 1880 1881 n = __btree_root_alloc(as, trans, b->c.level + 1); 1882 1883 bch2_btree_update_add_new_node(as, n); 1884 six_unlock_write(&n->c.lock); 1885 1886 path->locks_want++; 1887 BUG_ON(btree_node_locked(path, n->c.level)); 1888 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 1889 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED); 1890 bch2_btree_path_level_init(trans, path, n); 1891 1892 n->sib_u64s[0] = U16_MAX; 1893 n->sib_u64s[1] = U16_MAX; 1894 1895 bch2_keylist_add(&as->parent_keys, &b->key); 1896 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys); 1897 1898 int ret = bch2_btree_set_root(as, trans, path, n, true); 1899 BUG_ON(ret); 1900 1901 bch2_btree_update_get_open_buckets(as, n); 1902 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 1903 bch2_trans_node_add(trans, path, n); 1904 six_unlock_intent(&n->c.lock); 1905 1906 mutex_lock(&c->btree_cache.lock); 1907 list_add_tail(&b->list, &c->btree_cache.live); 1908 mutex_unlock(&c->btree_cache.lock); 1909 1910 bch2_trans_verify_locks(trans); 1911 } 1912 1913 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) 1914 { 1915 struct bch_fs *c = trans->c; 1916 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b; 1917 1918 if (btree_node_fake(b)) 1919 return bch2_btree_split_leaf(trans, path, flags); 1920 1921 struct btree_update *as = 1922 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags); 1923 if (IS_ERR(as)) 1924 return PTR_ERR(as); 1925 1926 __btree_increase_depth(as, trans, path); 1927 bch2_btree_update_done(as, trans); 1928 return 0; 1929 } 1930 1931 int __bch2_foreground_maybe_merge(struct btree_trans *trans, 1932 btree_path_idx_t path, 1933 unsigned level, 1934 unsigned flags, 1935 enum btree_node_sibling sib) 1936 { 1937 struct bch_fs *c = trans->c; 1938 struct btree_update *as; 1939 struct bkey_format_state new_s; 1940 struct bkey_format new_f; 1941 struct bkey_i delete; 1942 struct btree *b, *m, *n, *prev, *next, *parent; 1943 struct bpos sib_pos; 1944 size_t sib_u64s; 1945 enum btree_id btree = trans->paths[path].btree_id; 1946 btree_path_idx_t sib_path = 0, new_path = 0; 1947 u64 start_time = local_clock(); 1948 int ret = 0; 1949 1950 BUG_ON(!trans->paths[path].should_be_locked); 1951 BUG_ON(!btree_node_locked(&trans->paths[path], level)); 1952 1953 /* 1954 * Work around a deadlock caused by the btree write buffer not doing 1955 * merges and leaving tons of merges for us to do - we really don't need 1956 * to be doing merges at all from the interior update path, and if the 1957 * interior update path is generating too many new interior updates we 1958 * deadlock: 1959 */ 1960 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates) 1961 return 0; 1962 1963 flags &= ~BCH_WATERMARK_MASK; 1964 1965 b = trans->paths[path].l[level].b; 1966 1967 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || 1968 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { 1969 b->sib_u64s[sib] = U16_MAX; 1970 return 0; 1971 } 1972 1973 sib_pos = sib == btree_prev_sib 1974 ? bpos_predecessor(b->data->min_key) 1975 : bpos_successor(b->data->max_key); 1976 1977 sib_path = bch2_path_get(trans, btree, sib_pos, 1978 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); 1979 ret = bch2_btree_path_traverse(trans, sib_path, false); 1980 if (ret) 1981 goto err; 1982 1983 btree_path_set_should_be_locked(trans->paths + sib_path); 1984 1985 m = trans->paths[sib_path].l[level].b; 1986 1987 if (btree_node_parent(trans->paths + path, b) != 1988 btree_node_parent(trans->paths + sib_path, m)) { 1989 b->sib_u64s[sib] = U16_MAX; 1990 goto out; 1991 } 1992 1993 if (sib == btree_prev_sib) { 1994 prev = m; 1995 next = b; 1996 } else { 1997 prev = b; 1998 next = m; 1999 } 2000 2001 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { 2002 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; 2003 2004 bch2_bpos_to_text(&buf1, prev->data->max_key); 2005 bch2_bpos_to_text(&buf2, next->data->min_key); 2006 bch_err(c, 2007 "%s(): btree topology error:\n" 2008 " prev ends at %s\n" 2009 " next starts at %s", 2010 __func__, buf1.buf, buf2.buf); 2011 printbuf_exit(&buf1); 2012 printbuf_exit(&buf2); 2013 ret = bch2_topology_error(c); 2014 goto err; 2015 } 2016 2017 bch2_bkey_format_init(&new_s); 2018 bch2_bkey_format_add_pos(&new_s, prev->data->min_key); 2019 __bch2_btree_calc_format(&new_s, prev); 2020 __bch2_btree_calc_format(&new_s, next); 2021 bch2_bkey_format_add_pos(&new_s, next->data->max_key); 2022 new_f = bch2_bkey_format_done(&new_s); 2023 2024 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + 2025 btree_node_u64s_with_format(m->nr, &m->format, &new_f); 2026 2027 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { 2028 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2029 sib_u64s /= 2; 2030 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); 2031 } 2032 2033 sib_u64s = min(sib_u64s, btree_max_u64s(c)); 2034 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); 2035 b->sib_u64s[sib] = sib_u64s; 2036 2037 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) 2038 goto out; 2039 2040 parent = btree_node_parent(trans->paths + path, b); 2041 as = bch2_btree_update_start(trans, trans->paths + path, level, false, 2042 BCH_TRANS_COMMIT_no_enospc|flags); 2043 ret = PTR_ERR_OR_ZERO(as); 2044 if (ret) 2045 goto err; 2046 2047 trace_and_count(c, btree_node_merge, trans, b); 2048 2049 bch2_btree_interior_update_will_free_node(as, b); 2050 bch2_btree_interior_update_will_free_node(as, m); 2051 2052 n = bch2_btree_node_alloc(as, trans, b->c.level); 2053 2054 SET_BTREE_NODE_SEQ(n->data, 2055 max(BTREE_NODE_SEQ(b->data), 2056 BTREE_NODE_SEQ(m->data)) + 1); 2057 2058 btree_set_min(n, prev->data->min_key); 2059 btree_set_max(n, next->data->max_key); 2060 2061 n->data->format = new_f; 2062 btree_node_set_format(n, new_f); 2063 2064 bch2_btree_sort_into(c, n, prev); 2065 bch2_btree_sort_into(c, n, next); 2066 2067 bch2_btree_build_aux_trees(n); 2068 bch2_btree_update_add_new_node(as, n); 2069 six_unlock_write(&n->c.lock); 2070 2071 new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p); 2072 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2073 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2074 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2075 2076 bkey_init(&delete.k); 2077 delete.k.p = prev->key.k.p; 2078 bch2_keylist_add(&as->parent_keys, &delete); 2079 bch2_keylist_add(&as->parent_keys, &n->key); 2080 2081 bch2_trans_verify_paths(trans); 2082 2083 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); 2084 if (ret) 2085 goto err_free_update; 2086 2087 bch2_trans_verify_paths(trans); 2088 2089 bch2_btree_update_get_open_buckets(as, n); 2090 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2091 2092 bch2_btree_node_free_inmem(trans, trans->paths + path, b); 2093 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); 2094 2095 bch2_trans_node_add(trans, trans->paths + path, n); 2096 2097 bch2_trans_verify_paths(trans); 2098 2099 six_unlock_intent(&n->c.lock); 2100 2101 bch2_btree_update_done(as, trans); 2102 2103 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); 2104 out: 2105 err: 2106 if (new_path) 2107 bch2_path_put(trans, new_path, true); 2108 bch2_path_put(trans, sib_path, true); 2109 bch2_trans_verify_locks(trans); 2110 if (ret == -BCH_ERR_journal_reclaim_would_deadlock) 2111 ret = 0; 2112 if (!ret) 2113 ret = bch2_trans_relock(trans); 2114 return ret; 2115 err_free_update: 2116 bch2_btree_node_free_never_used(as, trans, n); 2117 bch2_btree_update_free(as, trans); 2118 goto out; 2119 } 2120 2121 int bch2_btree_node_rewrite(struct btree_trans *trans, 2122 struct btree_iter *iter, 2123 struct btree *b, 2124 unsigned flags) 2125 { 2126 struct bch_fs *c = trans->c; 2127 struct btree *n, *parent; 2128 struct btree_update *as; 2129 btree_path_idx_t new_path = 0; 2130 int ret; 2131 2132 flags |= BCH_TRANS_COMMIT_no_enospc; 2133 2134 struct btree_path *path = btree_iter_path(trans, iter); 2135 parent = btree_node_parent(path, b); 2136 as = bch2_btree_update_start(trans, path, b->c.level, false, flags); 2137 ret = PTR_ERR_OR_ZERO(as); 2138 if (ret) 2139 goto out; 2140 2141 bch2_btree_interior_update_will_free_node(as, b); 2142 2143 n = bch2_btree_node_alloc_replacement(as, trans, b); 2144 2145 bch2_btree_build_aux_trees(n); 2146 bch2_btree_update_add_new_node(as, n); 2147 six_unlock_write(&n->c.lock); 2148 2149 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); 2150 six_lock_increment(&n->c.lock, SIX_LOCK_intent); 2151 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); 2152 bch2_btree_path_level_init(trans, trans->paths + new_path, n); 2153 2154 trace_and_count(c, btree_node_rewrite, trans, b); 2155 2156 if (parent) { 2157 bch2_keylist_add(&as->parent_keys, &n->key); 2158 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys); 2159 } else { 2160 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false); 2161 } 2162 2163 if (ret) 2164 goto err; 2165 2166 bch2_btree_update_get_open_buckets(as, n); 2167 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); 2168 2169 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); 2170 2171 bch2_trans_node_add(trans, trans->paths + iter->path, n); 2172 six_unlock_intent(&n->c.lock); 2173 2174 bch2_btree_update_done(as, trans); 2175 out: 2176 if (new_path) 2177 bch2_path_put(trans, new_path, true); 2178 bch2_trans_downgrade(trans); 2179 return ret; 2180 err: 2181 bch2_btree_node_free_never_used(as, trans, n); 2182 bch2_btree_update_free(as, trans); 2183 goto out; 2184 } 2185 2186 struct async_btree_rewrite { 2187 struct bch_fs *c; 2188 struct work_struct work; 2189 struct list_head list; 2190 enum btree_id btree_id; 2191 unsigned level; 2192 struct bpos pos; 2193 __le64 seq; 2194 }; 2195 2196 static int async_btree_node_rewrite_trans(struct btree_trans *trans, 2197 struct async_btree_rewrite *a) 2198 { 2199 struct bch_fs *c = trans->c; 2200 struct btree_iter iter; 2201 struct btree *b; 2202 int ret; 2203 2204 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, 2205 BTREE_MAX_DEPTH, a->level, 0); 2206 b = bch2_btree_iter_peek_node(&iter); 2207 ret = PTR_ERR_OR_ZERO(b); 2208 if (ret) 2209 goto out; 2210 2211 if (!b || b->data->keys.seq != a->seq) { 2212 struct printbuf buf = PRINTBUF; 2213 2214 if (b) 2215 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); 2216 else 2217 prt_str(&buf, "(null"); 2218 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", 2219 __func__, a->seq, buf.buf); 2220 printbuf_exit(&buf); 2221 goto out; 2222 } 2223 2224 ret = bch2_btree_node_rewrite(trans, &iter, b, 0); 2225 out: 2226 bch2_trans_iter_exit(trans, &iter); 2227 2228 return ret; 2229 } 2230 2231 static void async_btree_node_rewrite_work(struct work_struct *work) 2232 { 2233 struct async_btree_rewrite *a = 2234 container_of(work, struct async_btree_rewrite, work); 2235 struct bch_fs *c = a->c; 2236 int ret; 2237 2238 ret = bch2_trans_do(c, NULL, NULL, 0, 2239 async_btree_node_rewrite_trans(trans, a)); 2240 bch_err_fn_ratelimited(c, ret); 2241 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); 2242 kfree(a); 2243 } 2244 2245 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) 2246 { 2247 struct async_btree_rewrite *a; 2248 int ret; 2249 2250 a = kmalloc(sizeof(*a), GFP_NOFS); 2251 if (!a) { 2252 bch_err(c, "%s: error allocating memory", __func__); 2253 return; 2254 } 2255 2256 a->c = c; 2257 a->btree_id = b->c.btree_id; 2258 a->level = b->c.level; 2259 a->pos = b->key.k.p; 2260 a->seq = b->data->keys.seq; 2261 INIT_WORK(&a->work, async_btree_node_rewrite_work); 2262 2263 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { 2264 mutex_lock(&c->pending_node_rewrites_lock); 2265 list_add(&a->list, &c->pending_node_rewrites); 2266 mutex_unlock(&c->pending_node_rewrites_lock); 2267 return; 2268 } 2269 2270 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { 2271 if (test_bit(BCH_FS_started, &c->flags)) { 2272 bch_err(c, "%s: error getting c->writes ref", __func__); 2273 kfree(a); 2274 return; 2275 } 2276 2277 ret = bch2_fs_read_write_early(c); 2278 bch_err_msg(c, ret, "going read-write"); 2279 if (ret) { 2280 kfree(a); 2281 return; 2282 } 2283 2284 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2285 } 2286 2287 queue_work(c->btree_node_rewrite_worker, &a->work); 2288 } 2289 2290 void bch2_do_pending_node_rewrites(struct bch_fs *c) 2291 { 2292 struct async_btree_rewrite *a, *n; 2293 2294 mutex_lock(&c->pending_node_rewrites_lock); 2295 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2296 list_del(&a->list); 2297 2298 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); 2299 queue_work(c->btree_node_rewrite_worker, &a->work); 2300 } 2301 mutex_unlock(&c->pending_node_rewrites_lock); 2302 } 2303 2304 void bch2_free_pending_node_rewrites(struct bch_fs *c) 2305 { 2306 struct async_btree_rewrite *a, *n; 2307 2308 mutex_lock(&c->pending_node_rewrites_lock); 2309 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { 2310 list_del(&a->list); 2311 2312 kfree(a); 2313 } 2314 mutex_unlock(&c->pending_node_rewrites_lock); 2315 } 2316 2317 static int __bch2_btree_node_update_key(struct btree_trans *trans, 2318 struct btree_iter *iter, 2319 struct btree *b, struct btree *new_hash, 2320 struct bkey_i *new_key, 2321 unsigned commit_flags, 2322 bool skip_triggers) 2323 { 2324 struct bch_fs *c = trans->c; 2325 struct btree_iter iter2 = { NULL }; 2326 struct btree *parent; 2327 int ret; 2328 2329 if (!skip_triggers) { 2330 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, 2331 bkey_i_to_s_c(&b->key), 2332 BTREE_TRIGGER_TRANSACTIONAL) ?: 2333 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, 2334 bkey_i_to_s(new_key), 2335 BTREE_TRIGGER_TRANSACTIONAL); 2336 if (ret) 2337 return ret; 2338 } 2339 2340 if (new_hash) { 2341 bkey_copy(&new_hash->key, new_key); 2342 ret = bch2_btree_node_hash_insert(&c->btree_cache, 2343 new_hash, b->c.level, b->c.btree_id); 2344 BUG_ON(ret); 2345 } 2346 2347 parent = btree_node_parent(btree_iter_path(trans, iter), b); 2348 if (parent) { 2349 bch2_trans_copy_iter(&iter2, iter); 2350 2351 iter2.path = bch2_btree_path_make_mut(trans, iter2.path, 2352 iter2.flags & BTREE_ITER_INTENT, 2353 _THIS_IP_); 2354 2355 struct btree_path *path2 = btree_iter_path(trans, &iter2); 2356 BUG_ON(path2->level != b->c.level); 2357 BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); 2358 2359 btree_path_set_level_up(trans, path2); 2360 2361 trans->paths_sorted = false; 2362 2363 ret = bch2_btree_iter_traverse(&iter2) ?: 2364 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); 2365 if (ret) 2366 goto err; 2367 } else { 2368 BUG_ON(btree_node_root(c, b) != b); 2369 2370 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, 2371 jset_u64s(new_key->k.u64s)); 2372 ret = PTR_ERR_OR_ZERO(e); 2373 if (ret) 2374 return ret; 2375 2376 journal_entry_set(e, 2377 BCH_JSET_ENTRY_btree_root, 2378 b->c.btree_id, b->c.level, 2379 new_key, new_key->k.u64s); 2380 } 2381 2382 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); 2383 if (ret) 2384 goto err; 2385 2386 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); 2387 2388 if (new_hash) { 2389 mutex_lock(&c->btree_cache.lock); 2390 bch2_btree_node_hash_remove(&c->btree_cache, new_hash); 2391 bch2_btree_node_hash_remove(&c->btree_cache, b); 2392 2393 bkey_copy(&b->key, new_key); 2394 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); 2395 BUG_ON(ret); 2396 mutex_unlock(&c->btree_cache.lock); 2397 } else { 2398 bkey_copy(&b->key, new_key); 2399 } 2400 2401 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); 2402 out: 2403 bch2_trans_iter_exit(trans, &iter2); 2404 return ret; 2405 err: 2406 if (new_hash) { 2407 mutex_lock(&c->btree_cache.lock); 2408 bch2_btree_node_hash_remove(&c->btree_cache, b); 2409 mutex_unlock(&c->btree_cache.lock); 2410 } 2411 goto out; 2412 } 2413 2414 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, 2415 struct btree *b, struct bkey_i *new_key, 2416 unsigned commit_flags, bool skip_triggers) 2417 { 2418 struct bch_fs *c = trans->c; 2419 struct btree *new_hash = NULL; 2420 struct btree_path *path = btree_iter_path(trans, iter); 2421 struct closure cl; 2422 int ret = 0; 2423 2424 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); 2425 if (ret) 2426 return ret; 2427 2428 closure_init_stack(&cl); 2429 2430 /* 2431 * check btree_ptr_hash_val() after @b is locked by 2432 * btree_iter_traverse(): 2433 */ 2434 if (btree_ptr_hash_val(new_key) != b->hash_val) { 2435 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2436 if (ret) { 2437 ret = drop_locks_do(trans, (closure_sync(&cl), 0)); 2438 if (ret) 2439 return ret; 2440 } 2441 2442 new_hash = bch2_btree_node_mem_alloc(trans, false); 2443 } 2444 2445 path->intent_ref++; 2446 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, 2447 commit_flags, skip_triggers); 2448 --path->intent_ref; 2449 2450 if (new_hash) { 2451 mutex_lock(&c->btree_cache.lock); 2452 list_move(&new_hash->list, &c->btree_cache.freeable); 2453 mutex_unlock(&c->btree_cache.lock); 2454 2455 six_unlock_write(&new_hash->c.lock); 2456 six_unlock_intent(&new_hash->c.lock); 2457 } 2458 closure_sync(&cl); 2459 bch2_btree_cache_cannibalize_unlock(trans); 2460 return ret; 2461 } 2462 2463 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, 2464 struct btree *b, struct bkey_i *new_key, 2465 unsigned commit_flags, bool skip_triggers) 2466 { 2467 struct btree_iter iter; 2468 int ret; 2469 2470 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, 2471 BTREE_MAX_DEPTH, b->c.level, 2472 BTREE_ITER_INTENT); 2473 ret = bch2_btree_iter_traverse(&iter); 2474 if (ret) 2475 goto out; 2476 2477 /* has node been freed? */ 2478 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { 2479 /* node has been freed: */ 2480 BUG_ON(!btree_node_dying(b)); 2481 goto out; 2482 } 2483 2484 BUG_ON(!btree_node_hashed(b)); 2485 2486 struct bch_extent_ptr *ptr; 2487 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, 2488 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); 2489 2490 ret = bch2_btree_node_update_key(trans, &iter, b, new_key, 2491 commit_flags, skip_triggers); 2492 out: 2493 bch2_trans_iter_exit(trans, &iter); 2494 return ret; 2495 } 2496 2497 /* Init code: */ 2498 2499 /* 2500 * Only for filesystem bringup, when first reading the btree roots or allocating 2501 * btree roots when initializing a new filesystem: 2502 */ 2503 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) 2504 { 2505 BUG_ON(btree_node_root(c, b)); 2506 2507 bch2_btree_set_root_inmem(c, b); 2508 } 2509 2510 static int __bch2_btree_root_alloc_fake(struct btree_trans *trans, enum btree_id id, unsigned level) 2511 { 2512 struct bch_fs *c = trans->c; 2513 struct closure cl; 2514 struct btree *b; 2515 int ret; 2516 2517 closure_init_stack(&cl); 2518 2519 do { 2520 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 2521 closure_sync(&cl); 2522 } while (ret); 2523 2524 b = bch2_btree_node_mem_alloc(trans, false); 2525 bch2_btree_cache_cannibalize_unlock(trans); 2526 2527 set_btree_node_fake(b); 2528 set_btree_node_need_rewrite(b); 2529 b->c.level = level; 2530 b->c.btree_id = id; 2531 2532 bkey_btree_ptr_init(&b->key); 2533 b->key.k.p = SPOS_MAX; 2534 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; 2535 2536 bch2_bset_init_first(b, &b->data->keys); 2537 bch2_btree_build_aux_trees(b); 2538 2539 b->data->flags = 0; 2540 btree_set_min(b, POS_MIN); 2541 btree_set_max(b, SPOS_MAX); 2542 b->data->format = bch2_btree_calc_format(b); 2543 btree_node_set_format(b, b->data->format); 2544 2545 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, 2546 b->c.level, b->c.btree_id); 2547 BUG_ON(ret); 2548 2549 bch2_btree_set_root_inmem(c, b); 2550 2551 six_unlock_write(&b->c.lock); 2552 six_unlock_intent(&b->c.lock); 2553 return 0; 2554 } 2555 2556 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level) 2557 { 2558 bch2_trans_run(c, __bch2_btree_root_alloc_fake(trans, id, level)); 2559 } 2560 2561 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as) 2562 { 2563 prt_printf(out, "%ps: btree=%s l=%u-%u watermark=%s mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n", 2564 (void *) as->ip_started, 2565 bch2_btree_id_str(as->btree_id), 2566 as->update_level_start, 2567 as->update_level_end, 2568 bch2_watermarks[as->watermark], 2569 bch2_btree_update_modes[as->mode], 2570 as->nodes_written, 2571 closure_nr_remaining(&as->cl), 2572 as->journal.seq); 2573 } 2574 2575 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) 2576 { 2577 struct btree_update *as; 2578 2579 mutex_lock(&c->btree_interior_update_lock); 2580 list_for_each_entry(as, &c->btree_interior_update_list, list) 2581 bch2_btree_update_to_text(out, as); 2582 mutex_unlock(&c->btree_interior_update_lock); 2583 } 2584 2585 static bool bch2_btree_interior_updates_pending(struct bch_fs *c) 2586 { 2587 bool ret; 2588 2589 mutex_lock(&c->btree_interior_update_lock); 2590 ret = !list_empty(&c->btree_interior_update_list); 2591 mutex_unlock(&c->btree_interior_update_lock); 2592 2593 return ret; 2594 } 2595 2596 bool bch2_btree_interior_updates_flush(struct bch_fs *c) 2597 { 2598 bool ret = bch2_btree_interior_updates_pending(c); 2599 2600 if (ret) 2601 closure_wait_event(&c->btree_interior_update_wait, 2602 !bch2_btree_interior_updates_pending(c)); 2603 return ret; 2604 } 2605 2606 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) 2607 { 2608 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); 2609 2610 mutex_lock(&c->btree_root_lock); 2611 2612 r->level = entry->level; 2613 r->alive = true; 2614 bkey_copy(&r->key, (struct bkey_i *) entry->start); 2615 2616 mutex_unlock(&c->btree_root_lock); 2617 } 2618 2619 struct jset_entry * 2620 bch2_btree_roots_to_journal_entries(struct bch_fs *c, 2621 struct jset_entry *end, 2622 unsigned long skip) 2623 { 2624 unsigned i; 2625 2626 mutex_lock(&c->btree_root_lock); 2627 2628 for (i = 0; i < btree_id_nr_alive(c); i++) { 2629 struct btree_root *r = bch2_btree_id_root(c, i); 2630 2631 if (r->alive && !test_bit(i, &skip)) { 2632 journal_entry_set(end, BCH_JSET_ENTRY_btree_root, 2633 i, r->level, &r->key, r->key.k.u64s); 2634 end = vstruct_next(end); 2635 } 2636 } 2637 2638 mutex_unlock(&c->btree_root_lock); 2639 2640 return end; 2641 } 2642 2643 void bch2_fs_btree_interior_update_exit(struct bch_fs *c) 2644 { 2645 if (c->btree_node_rewrite_worker) 2646 destroy_workqueue(c->btree_node_rewrite_worker); 2647 if (c->btree_interior_update_worker) 2648 destroy_workqueue(c->btree_interior_update_worker); 2649 mempool_exit(&c->btree_interior_update_pool); 2650 } 2651 2652 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) 2653 { 2654 mutex_init(&c->btree_reserve_cache_lock); 2655 INIT_LIST_HEAD(&c->btree_interior_update_list); 2656 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); 2657 mutex_init(&c->btree_interior_update_lock); 2658 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); 2659 2660 INIT_LIST_HEAD(&c->pending_node_rewrites); 2661 mutex_init(&c->pending_node_rewrites_lock); 2662 } 2663 2664 int bch2_fs_btree_interior_update_init(struct bch_fs *c) 2665 { 2666 c->btree_interior_update_worker = 2667 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8); 2668 if (!c->btree_interior_update_worker) 2669 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2670 2671 c->btree_node_rewrite_worker = 2672 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND); 2673 if (!c->btree_node_rewrite_worker) 2674 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; 2675 2676 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, 2677 sizeof(struct btree_update))) 2678 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; 2679 2680 return 0; 2681 } 2682