xref: /linux/fs/bcachefs/btree_update.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_update.h"
5 #include "btree_iter.h"
6 #include "btree_journal_iter.h"
7 #include "btree_locking.h"
8 #include "buckets.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12 #include "extents.h"
13 #include "keylist.h"
14 #include "snapshot.h"
15 #include "trace.h"
16 
17 static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
18 					 const struct btree_insert_entry *r)
19 {
20 	return   cmp_int(l->btree_id,	r->btree_id) ?:
21 		 cmp_int(l->cached,	r->cached) ?:
22 		 -cmp_int(l->level,	r->level) ?:
23 		 bpos_cmp(l->k->k.p,	r->k->k.p);
24 }
25 
26 static int __must_check
27 bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t,
28 			  struct bkey_i *, enum btree_update_flags,
29 			  unsigned long ip);
30 
31 static noinline int extent_front_merge(struct btree_trans *trans,
32 				       struct btree_iter *iter,
33 				       struct bkey_s_c k,
34 				       struct bkey_i **insert,
35 				       enum btree_update_flags flags)
36 {
37 	struct bch_fs *c = trans->c;
38 	struct bkey_i *update;
39 	int ret;
40 
41 	update = bch2_bkey_make_mut_noupdate(trans, k);
42 	ret = PTR_ERR_OR_ZERO(update);
43 	if (ret)
44 		return ret;
45 
46 	if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
47 		return 0;
48 
49 	ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?:
50 		bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p);
51 	if (ret < 0)
52 		return ret;
53 	if (ret)
54 		return 0;
55 
56 	ret = bch2_btree_delete_at(trans, iter, flags);
57 	if (ret)
58 		return ret;
59 
60 	*insert = update;
61 	return 0;
62 }
63 
64 static noinline int extent_back_merge(struct btree_trans *trans,
65 				      struct btree_iter *iter,
66 				      struct bkey_i *insert,
67 				      struct bkey_s_c k)
68 {
69 	struct bch_fs *c = trans->c;
70 	int ret;
71 
72 	ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?:
73 		bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p);
74 	if (ret < 0)
75 		return ret;
76 	if (ret)
77 		return 0;
78 
79 	bch2_bkey_merge(c, bkey_i_to_s(insert), k);
80 	return 0;
81 }
82 
83 /*
84  * When deleting, check if we need to emit a whiteout (because we're overwriting
85  * something in an ancestor snapshot)
86  */
87 static int need_whiteout_for_snapshot(struct btree_trans *trans,
88 				      enum btree_id btree_id, struct bpos pos)
89 {
90 	struct btree_iter iter;
91 	struct bkey_s_c k;
92 	u32 snapshot = pos.snapshot;
93 	int ret;
94 
95 	if (!bch2_snapshot_parent(trans->c, pos.snapshot))
96 		return 0;
97 
98 	pos.snapshot++;
99 
100 	for_each_btree_key_norestart(trans, iter, btree_id, pos,
101 			   BTREE_ITER_ALL_SNAPSHOTS|
102 			   BTREE_ITER_NOPRESERVE, k, ret) {
103 		if (!bkey_eq(k.k->p, pos))
104 			break;
105 
106 		if (bch2_snapshot_is_ancestor(trans->c, snapshot,
107 					      k.k->p.snapshot)) {
108 			ret = !bkey_whiteout(k.k);
109 			break;
110 		}
111 	}
112 	bch2_trans_iter_exit(trans, &iter);
113 
114 	return ret;
115 }
116 
117 int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
118 				   enum btree_id id,
119 				   struct bpos old_pos,
120 				   struct bpos new_pos)
121 {
122 	struct bch_fs *c = trans->c;
123 	struct btree_iter old_iter, new_iter = { NULL };
124 	struct bkey_s_c old_k, new_k;
125 	snapshot_id_list s;
126 	struct bkey_i *update;
127 	int ret = 0;
128 
129 	if (!bch2_snapshot_has_children(c, old_pos.snapshot))
130 		return 0;
131 
132 	darray_init(&s);
133 
134 	bch2_trans_iter_init(trans, &old_iter, id, old_pos,
135 			     BTREE_ITER_NOT_EXTENTS|
136 			     BTREE_ITER_ALL_SNAPSHOTS);
137 	while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
138 	       !(ret = bkey_err(old_k)) &&
139 	       bkey_eq(old_pos, old_k.k->p)) {
140 		struct bpos whiteout_pos =
141 			SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);;
142 
143 		if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
144 		    snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
145 			continue;
146 
147 		new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
148 					   BTREE_ITER_NOT_EXTENTS|
149 					   BTREE_ITER_INTENT);
150 		ret = bkey_err(new_k);
151 		if (ret)
152 			break;
153 
154 		if (new_k.k->type == KEY_TYPE_deleted) {
155 			update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
156 			ret = PTR_ERR_OR_ZERO(update);
157 			if (ret)
158 				break;
159 
160 			bkey_init(&update->k);
161 			update->k.p		= whiteout_pos;
162 			update->k.type		= KEY_TYPE_whiteout;
163 
164 			ret = bch2_trans_update(trans, &new_iter, update,
165 						BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
166 		}
167 		bch2_trans_iter_exit(trans, &new_iter);
168 
169 		ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
170 		if (ret)
171 			break;
172 	}
173 	bch2_trans_iter_exit(trans, &new_iter);
174 	bch2_trans_iter_exit(trans, &old_iter);
175 	darray_exit(&s);
176 
177 	return ret;
178 }
179 
180 int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
181 				       struct btree_iter *iter,
182 				       enum btree_update_flags flags,
183 				       struct bkey_s_c old,
184 				       struct bkey_s_c new)
185 {
186 	enum btree_id btree_id = iter->btree_id;
187 	struct bkey_i *update;
188 	struct bpos new_start = bkey_start_pos(new.k);
189 	unsigned front_split = bkey_lt(bkey_start_pos(old.k), new_start);
190 	unsigned back_split  = bkey_gt(old.k->p, new.k->p);
191 	unsigned middle_split = (front_split || back_split) &&
192 		old.k->p.snapshot != new.k->p.snapshot;
193 	unsigned nr_splits = front_split + back_split + middle_split;
194 	int ret = 0, compressed_sectors;
195 
196 	/*
197 	 * If we're going to be splitting a compressed extent, note it
198 	 * so that __bch2_trans_commit() can increase our disk
199 	 * reservation:
200 	 */
201 	if (nr_splits > 1 &&
202 	    (compressed_sectors = bch2_bkey_sectors_compressed(old)))
203 		trans->extra_disk_res += compressed_sectors * (nr_splits - 1);
204 
205 	if (front_split) {
206 		update = bch2_bkey_make_mut_noupdate(trans, old);
207 		if ((ret = PTR_ERR_OR_ZERO(update)))
208 			return ret;
209 
210 		bch2_cut_back(new_start, update);
211 
212 		ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
213 					old.k->p, update->k.p) ?:
214 			bch2_btree_insert_nonextent(trans, btree_id, update,
215 					BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
216 		if (ret)
217 			return ret;
218 	}
219 
220 	/* If we're overwriting in a different snapshot - middle split: */
221 	if (middle_split) {
222 		update = bch2_bkey_make_mut_noupdate(trans, old);
223 		if ((ret = PTR_ERR_OR_ZERO(update)))
224 			return ret;
225 
226 		bch2_cut_front(new_start, update);
227 		bch2_cut_back(new.k->p, update);
228 
229 		ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
230 					old.k->p, update->k.p) ?:
231 			bch2_btree_insert_nonextent(trans, btree_id, update,
232 					  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
233 		if (ret)
234 			return ret;
235 	}
236 
237 	if (bkey_le(old.k->p, new.k->p)) {
238 		update = bch2_trans_kmalloc(trans, sizeof(*update));
239 		if ((ret = PTR_ERR_OR_ZERO(update)))
240 			return ret;
241 
242 		bkey_init(&update->k);
243 		update->k.p = old.k->p;
244 		update->k.p.snapshot = new.k->p.snapshot;
245 
246 		if (new.k->p.snapshot != old.k->p.snapshot) {
247 			update->k.type = KEY_TYPE_whiteout;
248 		} else if (btree_type_has_snapshots(btree_id)) {
249 			ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
250 			if (ret < 0)
251 				return ret;
252 			if (ret)
253 				update->k.type = KEY_TYPE_whiteout;
254 		}
255 
256 		ret = bch2_btree_insert_nonextent(trans, btree_id, update,
257 					  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
258 		if (ret)
259 			return ret;
260 	}
261 
262 	if (back_split) {
263 		update = bch2_bkey_make_mut_noupdate(trans, old);
264 		if ((ret = PTR_ERR_OR_ZERO(update)))
265 			return ret;
266 
267 		bch2_cut_front(new.k->p, update);
268 
269 		ret = bch2_trans_update_by_path(trans, iter->path, update,
270 					  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
271 					  flags, _RET_IP_);
272 		if (ret)
273 			return ret;
274 	}
275 
276 	return 0;
277 }
278 
279 static int bch2_trans_update_extent(struct btree_trans *trans,
280 				    struct btree_iter *orig_iter,
281 				    struct bkey_i *insert,
282 				    enum btree_update_flags flags)
283 {
284 	struct btree_iter iter;
285 	struct bkey_s_c k;
286 	enum btree_id btree_id = orig_iter->btree_id;
287 	int ret = 0;
288 
289 	bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
290 			     BTREE_ITER_INTENT|
291 			     BTREE_ITER_WITH_UPDATES|
292 			     BTREE_ITER_NOT_EXTENTS);
293 	k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
294 	if ((ret = bkey_err(k)))
295 		goto err;
296 	if (!k.k)
297 		goto out;
298 
299 	if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
300 		if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
301 			ret = extent_front_merge(trans, &iter, k, &insert, flags);
302 			if (ret)
303 				goto err;
304 		}
305 
306 		goto next;
307 	}
308 
309 	while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
310 		bool done = bkey_lt(insert->k.p, k.k->p);
311 
312 		ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
313 		if (ret)
314 			goto err;
315 
316 		if (done)
317 			goto out;
318 next:
319 		bch2_btree_iter_advance(&iter);
320 		k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
321 		if ((ret = bkey_err(k)))
322 			goto err;
323 		if (!k.k)
324 			goto out;
325 	}
326 
327 	if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
328 		ret = extent_back_merge(trans, &iter, insert, k);
329 		if (ret)
330 			goto err;
331 	}
332 out:
333 	if (!bkey_deleted(&insert->k))
334 		ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
335 err:
336 	bch2_trans_iter_exit(trans, &iter);
337 
338 	return ret;
339 }
340 
341 static noinline int flush_new_cached_update(struct btree_trans *trans,
342 					    struct btree_insert_entry *i,
343 					    enum btree_update_flags flags,
344 					    unsigned long ip)
345 {
346 	struct bkey k;
347 	int ret;
348 
349 	btree_path_idx_t path_idx =
350 		bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0,
351 			      BTREE_ITER_INTENT, _THIS_IP_);
352 	ret = bch2_btree_path_traverse(trans, path_idx, 0);
353 	if (ret)
354 		goto out;
355 
356 	struct btree_path *btree_path = trans->paths + path_idx;
357 
358 	/*
359 	 * The old key in the insert entry might actually refer to an existing
360 	 * key in the btree that has been deleted from cache and not yet
361 	 * flushed. Check for this and skip the flush so we don't run triggers
362 	 * against a stale key.
363 	 */
364 	bch2_btree_path_peek_slot_exact(btree_path, &k);
365 	if (!bkey_deleted(&k))
366 		goto out;
367 
368 	i->key_cache_already_flushed = true;
369 	i->flags |= BTREE_TRIGGER_NORUN;
370 
371 	btree_path_set_should_be_locked(btree_path);
372 	ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip);
373 out:
374 	bch2_path_put(trans, path_idx, true);
375 	return ret;
376 }
377 
378 static int __must_check
379 bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx,
380 			  struct bkey_i *k, enum btree_update_flags flags,
381 			  unsigned long ip)
382 {
383 	struct bch_fs *c = trans->c;
384 	struct btree_insert_entry *i, n;
385 	int cmp;
386 
387 	struct btree_path *path = trans->paths + path_idx;
388 	EBUG_ON(!path->should_be_locked);
389 	EBUG_ON(trans->nr_updates >= trans->nr_paths);
390 	EBUG_ON(!bpos_eq(k->k.p, path->pos));
391 
392 	n = (struct btree_insert_entry) {
393 		.flags		= flags,
394 		.bkey_type	= __btree_node_type(path->level, path->btree_id),
395 		.btree_id	= path->btree_id,
396 		.level		= path->level,
397 		.cached		= path->cached,
398 		.path		= path_idx,
399 		.k		= k,
400 		.ip_allocated	= ip,
401 	};
402 
403 #ifdef CONFIG_BCACHEFS_DEBUG
404 	trans_for_each_update(trans, i)
405 		BUG_ON(i != trans->updates &&
406 		       btree_insert_entry_cmp(i - 1, i) >= 0);
407 #endif
408 
409 	/*
410 	 * Pending updates are kept sorted: first, find position of new update,
411 	 * then delete/trim any updates the new update overwrites:
412 	 */
413 	for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) {
414 		cmp = btree_insert_entry_cmp(&n, i);
415 		if (cmp <= 0)
416 			break;
417 	}
418 
419 	if (!cmp && i < trans->updates + trans->nr_updates) {
420 		EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
421 
422 		bch2_path_put(trans, i->path, true);
423 		i->flags	= n.flags;
424 		i->cached	= n.cached;
425 		i->k		= n.k;
426 		i->path		= n.path;
427 		i->ip_allocated	= n.ip_allocated;
428 	} else {
429 		array_insert_item(trans->updates, trans->nr_updates,
430 				  i - trans->updates, n);
431 
432 		i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
433 		i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
434 
435 		if (unlikely(trans->journal_replay_not_finished)) {
436 			struct bkey_i *j_k =
437 				bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
438 
439 			if (j_k) {
440 				i->old_k = j_k->k;
441 				i->old_v = &j_k->v;
442 			}
443 		}
444 	}
445 
446 	__btree_path_get(trans->paths + i->path, true);
447 
448 	/*
449 	 * If a key is present in the key cache, it must also exist in the
450 	 * btree - this is necessary for cache coherency. When iterating over
451 	 * a btree that's cached in the key cache, the btree iter code checks
452 	 * the key cache - but the key has to exist in the btree for that to
453 	 * work:
454 	 */
455 	if (path->cached && !i->old_btree_u64s)
456 		return flush_new_cached_update(trans, i, flags, ip);
457 
458 	return 0;
459 }
460 
461 static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans,
462 						    struct btree_iter *iter,
463 						    struct btree_path *path)
464 {
465 	struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter);
466 
467 	if (!key_cache_path ||
468 	    !key_cache_path->should_be_locked ||
469 	    !bpos_eq(key_cache_path->pos, iter->pos)) {
470 		struct bkey_cached *ck;
471 		int ret;
472 
473 		if (!iter->key_cache_path)
474 			iter->key_cache_path =
475 				bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
476 					      BTREE_ITER_INTENT|
477 					      BTREE_ITER_CACHED, _THIS_IP_);
478 
479 		iter->key_cache_path =
480 			bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
481 						iter->flags & BTREE_ITER_INTENT,
482 						_THIS_IP_);
483 
484 		ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_CACHED);
485 		if (unlikely(ret))
486 			return ret;
487 
488 		ck = (void *) trans->paths[iter->key_cache_path].l[0].b;
489 
490 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
491 			trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
492 			return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
493 		}
494 
495 		btree_path_set_should_be_locked(trans->paths + iter->key_cache_path);
496 	}
497 
498 	return 0;
499 }
500 
501 int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
502 				   struct bkey_i *k, enum btree_update_flags flags)
503 {
504 	btree_path_idx_t path_idx = iter->update_path ?: iter->path;
505 	int ret;
506 
507 	if (iter->flags & BTREE_ITER_IS_EXTENTS)
508 		return bch2_trans_update_extent(trans, iter, k, flags);
509 
510 	if (bkey_deleted(&k->k) &&
511 	    !(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
512 	    (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) {
513 		ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
514 		if (unlikely(ret < 0))
515 			return ret;
516 
517 		if (ret)
518 			k->k.type = KEY_TYPE_whiteout;
519 	}
520 
521 	/*
522 	 * Ensure that updates to cached btrees go to the key cache:
523 	 */
524 	struct btree_path *path = trans->paths + path_idx;
525 	if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
526 	    !path->cached &&
527 	    !path->level &&
528 	    btree_id_cached(trans->c, path->btree_id)) {
529 		ret = bch2_trans_update_get_key_cache(trans, iter, path);
530 		if (ret)
531 			return ret;
532 
533 		path_idx = iter->key_cache_path;
534 	}
535 
536 	return bch2_trans_update_by_path(trans, path_idx, k, flags, _RET_IP_);
537 }
538 
539 int bch2_btree_insert_clone_trans(struct btree_trans *trans,
540 				  enum btree_id btree,
541 				  struct bkey_i *k)
542 {
543 	struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k));
544 	int ret = PTR_ERR_OR_ZERO(n);
545 	if (ret)
546 		return ret;
547 
548 	bkey_copy(n, k);
549 	return bch2_btree_insert_trans(trans, btree, n, 0);
550 }
551 
552 struct jset_entry *__bch2_trans_jset_entry_alloc(struct btree_trans *trans, unsigned u64s)
553 {
554 	unsigned new_top = trans->journal_entries_u64s + u64s;
555 	unsigned old_size = trans->journal_entries_size;
556 
557 	if (new_top > trans->journal_entries_size) {
558 		trans->journal_entries_size = roundup_pow_of_two(new_top);
559 
560 		btree_trans_stats(trans)->journal_entries_size = trans->journal_entries_size;
561 	}
562 
563 	struct jset_entry *n =
564 		bch2_trans_kmalloc_nomemzero(trans,
565 				trans->journal_entries_size * sizeof(u64));
566 	if (IS_ERR(n))
567 		return ERR_CAST(n);
568 
569 	if (trans->journal_entries)
570 		memcpy(n, trans->journal_entries, old_size * sizeof(u64));
571 	trans->journal_entries = n;
572 
573 	struct jset_entry *e = btree_trans_journal_entries_top(trans);
574 	trans->journal_entries_u64s = new_top;
575 	return e;
576 }
577 
578 int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
579 			     enum btree_id btree, struct bpos end)
580 {
581 	struct bkey_s_c k;
582 	int ret = 0;
583 
584 	bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_INTENT);
585 	k = bch2_btree_iter_prev(iter);
586 	ret = bkey_err(k);
587 	if (ret)
588 		goto err;
589 
590 	bch2_btree_iter_advance(iter);
591 	k = bch2_btree_iter_peek_slot(iter);
592 	ret = bkey_err(k);
593 	if (ret)
594 		goto err;
595 
596 	BUG_ON(k.k->type != KEY_TYPE_deleted);
597 
598 	if (bkey_gt(k.k->p, end)) {
599 		ret = -BCH_ERR_ENOSPC_btree_slot;
600 		goto err;
601 	}
602 
603 	return 0;
604 err:
605 	bch2_trans_iter_exit(trans, iter);
606 	return ret;
607 }
608 
609 void bch2_trans_commit_hook(struct btree_trans *trans,
610 			    struct btree_trans_commit_hook *h)
611 {
612 	h->next = trans->hooks;
613 	trans->hooks = h;
614 }
615 
616 int bch2_btree_insert_nonextent(struct btree_trans *trans,
617 				enum btree_id btree, struct bkey_i *k,
618 				enum btree_update_flags flags)
619 {
620 	struct btree_iter iter;
621 	int ret;
622 
623 	bch2_trans_iter_init(trans, &iter, btree, k->k.p,
624 			     BTREE_ITER_CACHED|
625 			     BTREE_ITER_NOT_EXTENTS|
626 			     BTREE_ITER_INTENT);
627 	ret   = bch2_btree_iter_traverse(&iter) ?:
628 		bch2_trans_update(trans, &iter, k, flags);
629 	bch2_trans_iter_exit(trans, &iter);
630 	return ret;
631 }
632 
633 int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id,
634 			    struct bkey_i *k, enum btree_update_flags flags)
635 {
636 	struct btree_iter iter;
637 	int ret;
638 
639 	bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
640 			     BTREE_ITER_CACHED|
641 			     BTREE_ITER_INTENT);
642 	ret   = bch2_btree_iter_traverse(&iter) ?:
643 		bch2_trans_update(trans, &iter, k, flags);
644 	bch2_trans_iter_exit(trans, &iter);
645 	return ret;
646 }
647 
648 /**
649  * bch2_btree_insert - insert keys into the extent btree
650  * @c:			pointer to struct bch_fs
651  * @id:			btree to insert into
652  * @k:			key to insert
653  * @disk_res:		must be non-NULL whenever inserting or potentially
654  *			splitting data extents
655  * @flags:		transaction commit flags
656  *
657  * Returns:		0 on success, error code on failure
658  */
659 int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k,
660 		      struct disk_reservation *disk_res, int flags)
661 {
662 	return bch2_trans_do(c, disk_res, NULL, flags,
663 			     bch2_btree_insert_trans(trans, id, k, 0));
664 }
665 
666 int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
667 				unsigned len, unsigned update_flags)
668 {
669 	struct bkey_i *k;
670 
671 	k = bch2_trans_kmalloc(trans, sizeof(*k));
672 	if (IS_ERR(k))
673 		return PTR_ERR(k);
674 
675 	bkey_init(&k->k);
676 	k->k.p = iter->pos;
677 	bch2_key_resize(&k->k, len);
678 	return bch2_trans_update(trans, iter, k, update_flags);
679 }
680 
681 int bch2_btree_delete_at(struct btree_trans *trans,
682 			 struct btree_iter *iter, unsigned update_flags)
683 {
684 	return bch2_btree_delete_extent_at(trans, iter, 0, update_flags);
685 }
686 
687 int bch2_btree_delete(struct btree_trans *trans,
688 		      enum btree_id btree, struct bpos pos,
689 		      unsigned update_flags)
690 {
691 	struct btree_iter iter;
692 	int ret;
693 
694 	bch2_trans_iter_init(trans, &iter, btree, pos,
695 			     BTREE_ITER_CACHED|
696 			     BTREE_ITER_INTENT);
697 	ret   = bch2_btree_iter_traverse(&iter) ?:
698 		bch2_btree_delete_at(trans, &iter, update_flags);
699 	bch2_trans_iter_exit(trans, &iter);
700 
701 	return ret;
702 }
703 
704 int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
705 				  struct bpos start, struct bpos end,
706 				  unsigned update_flags,
707 				  u64 *journal_seq)
708 {
709 	u32 restart_count = trans->restart_count;
710 	struct btree_iter iter;
711 	struct bkey_s_c k;
712 	int ret = 0;
713 
714 	bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_INTENT);
715 	while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) {
716 		struct disk_reservation disk_res =
717 			bch2_disk_reservation_init(trans->c, 0);
718 		struct bkey_i delete;
719 
720 		ret = bkey_err(k);
721 		if (ret)
722 			goto err;
723 
724 		bkey_init(&delete.k);
725 
726 		/*
727 		 * This could probably be more efficient for extents:
728 		 */
729 
730 		/*
731 		 * For extents, iter.pos won't necessarily be the same as
732 		 * bkey_start_pos(k.k) (for non extents they always will be the
733 		 * same). It's important that we delete starting from iter.pos
734 		 * because the range we want to delete could start in the middle
735 		 * of k.
736 		 *
737 		 * (bch2_btree_iter_peek() does guarantee that iter.pos >=
738 		 * bkey_start_pos(k.k)).
739 		 */
740 		delete.k.p = iter.pos;
741 
742 		if (iter.flags & BTREE_ITER_IS_EXTENTS)
743 			bch2_key_resize(&delete.k,
744 					bpos_min(end, k.k->p).offset -
745 					iter.pos.offset);
746 
747 		ret   = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
748 			bch2_trans_commit(trans, &disk_res, journal_seq,
749 					  BCH_TRANS_COMMIT_no_enospc);
750 		bch2_disk_reservation_put(trans->c, &disk_res);
751 err:
752 		/*
753 		 * the bch2_trans_begin() call is in a weird place because we
754 		 * need to call it after every transaction commit, to avoid path
755 		 * overflow, but don't want to call it if the delete operation
756 		 * is a no-op and we have no work to do:
757 		 */
758 		bch2_trans_begin(trans);
759 
760 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
761 			ret = 0;
762 		if (ret)
763 			break;
764 	}
765 	bch2_trans_iter_exit(trans, &iter);
766 
767 	return ret ?: trans_was_restarted(trans, restart_count);
768 }
769 
770 /*
771  * bch_btree_delete_range - delete everything within a given range
772  *
773  * Range is a half open interval - [start, end)
774  */
775 int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
776 			    struct bpos start, struct bpos end,
777 			    unsigned update_flags,
778 			    u64 *journal_seq)
779 {
780 	int ret = bch2_trans_run(c,
781 			bch2_btree_delete_range_trans(trans, id, start, end,
782 						      update_flags, journal_seq));
783 	if (ret == -BCH_ERR_transaction_restart_nested)
784 		ret = 0;
785 	return ret;
786 }
787 
788 int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
789 		       struct bpos pos, bool set)
790 {
791 	struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
792 	int ret = PTR_ERR_OR_ZERO(k);
793 	if (ret)
794 		return ret;
795 
796 	bkey_init(&k->k);
797 	k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
798 	k->k.p = pos;
799 
800 	struct btree_iter iter;
801 	bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_INTENT);
802 
803 	ret   = bch2_btree_iter_traverse(&iter) ?:
804 		bch2_trans_update(trans, &iter, k, 0);
805 	bch2_trans_iter_exit(trans, &iter);
806 	return ret;
807 }
808 
809 int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree,
810 				struct bpos pos, bool set)
811 {
812 	struct bkey_i k;
813 
814 	bkey_init(&k.k);
815 	k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
816 	k.k.p = pos;
817 
818 	return bch2_trans_update_buffered(trans, btree, &k);
819 }
820 
821 static int __bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf, unsigned u64s)
822 {
823 	struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(u64s));
824 	int ret = PTR_ERR_OR_ZERO(e);
825 	if (ret)
826 		return ret;
827 
828 	struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry);
829 	journal_entry_init(e, BCH_JSET_ENTRY_log, 0, 1, u64s);
830 	memcpy(l->d, buf->buf, buf->pos);
831 	return 0;
832 }
833 
834 __printf(3, 0)
835 static int
836 __bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
837 		  va_list args)
838 {
839 	struct printbuf buf = PRINTBUF;
840 	prt_vprintf(&buf, fmt, args);
841 
842 	unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
843 	prt_chars(&buf, '\0', u64s * sizeof(u64) - buf.pos);
844 
845 	int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
846 	if (ret)
847 		goto err;
848 
849 	if (!test_bit(JOURNAL_STARTED, &c->journal.flags)) {
850 		ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s));
851 		if (ret)
852 			goto err;
853 
854 		struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries);
855 		journal_entry_init(&l->entry, BCH_JSET_ENTRY_log, 0, 1, u64s);
856 		memcpy(l->d, buf.buf, buf.pos);
857 		c->journal.early_journal_entries.nr += jset_u64s(u64s);
858 	} else {
859 		ret = bch2_trans_do(c, NULL, NULL,
860 			BCH_TRANS_COMMIT_lazy_rw|commit_flags,
861 			__bch2_trans_log_msg(trans, &buf, u64s));
862 	}
863 err:
864 	printbuf_exit(&buf);
865 	return ret;
866 }
867 
868 __printf(2, 3)
869 int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
870 {
871 	va_list args;
872 	int ret;
873 
874 	va_start(args, fmt);
875 	ret = __bch2_fs_log_msg(c, 0, fmt, args);
876 	va_end(args);
877 	return ret;
878 }
879 
880 /*
881  * Use for logging messages during recovery to enable reserved space and avoid
882  * blocking.
883  */
884 __printf(2, 3)
885 int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
886 {
887 	va_list args;
888 	int ret;
889 
890 	va_start(args, fmt);
891 	ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
892 	va_end(args);
893 	return ret;
894 }
895