1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "btree_cache.h" 5 #include "btree_io.h" 6 #include "btree_journal_iter.h" 7 #include "btree_node_scan.h" 8 #include "btree_update_interior.h" 9 #include "buckets.h" 10 #include "error.h" 11 #include "journal_io.h" 12 #include "recovery_passes.h" 13 14 #include <linux/kthread.h> 15 #include <linux/sort.h> 16 17 struct find_btree_nodes_worker { 18 struct closure *cl; 19 struct find_btree_nodes *f; 20 struct bch_dev *ca; 21 }; 22 23 static void found_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct found_btree_node *n) 24 { 25 prt_printf(out, "%s l=%u seq=%u journal_seq=%llu cookie=%llx ", 26 bch2_btree_id_str(n->btree_id), n->level, n->seq, 27 n->journal_seq, n->cookie); 28 bch2_bpos_to_text(out, n->min_key); 29 prt_str(out, "-"); 30 bch2_bpos_to_text(out, n->max_key); 31 32 if (n->range_updated) 33 prt_str(out, " range updated"); 34 if (n->overwritten) 35 prt_str(out, " overwritten"); 36 37 for (unsigned i = 0; i < n->nr_ptrs; i++) { 38 prt_char(out, ' '); 39 bch2_extent_ptr_to_text(out, c, n->ptrs + i); 40 } 41 } 42 43 static void found_btree_nodes_to_text(struct printbuf *out, struct bch_fs *c, found_btree_nodes nodes) 44 { 45 printbuf_indent_add(out, 2); 46 darray_for_each(nodes, i) { 47 found_btree_node_to_text(out, c, i); 48 prt_newline(out); 49 } 50 printbuf_indent_sub(out, 2); 51 } 52 53 static void found_btree_node_to_key(struct bkey_i *k, const struct found_btree_node *f) 54 { 55 struct bkey_i_btree_ptr_v2 *bp = bkey_btree_ptr_v2_init(k); 56 57 set_bkey_val_u64s(&bp->k, sizeof(struct bch_btree_ptr_v2) / sizeof(u64) + f->nr_ptrs); 58 bp->k.p = f->max_key; 59 bp->v.seq = cpu_to_le64(f->cookie); 60 bp->v.sectors_written = 0; 61 bp->v.flags = 0; 62 bp->v.sectors_written = cpu_to_le16(f->sectors_written); 63 bp->v.min_key = f->min_key; 64 SET_BTREE_PTR_RANGE_UPDATED(&bp->v, f->range_updated); 65 memcpy(bp->v.start, f->ptrs, sizeof(struct bch_extent_ptr) * f->nr_ptrs); 66 } 67 68 static inline u64 bkey_journal_seq(struct bkey_s_c k) 69 { 70 switch (k.k->type) { 71 case KEY_TYPE_inode_v3: 72 return le64_to_cpu(bkey_s_c_to_inode_v3(k).v->bi_journal_seq); 73 default: 74 return 0; 75 } 76 } 77 78 static bool found_btree_node_is_readable(struct btree_trans *trans, 79 struct found_btree_node *f) 80 { 81 struct { __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX); } tmp; 82 83 found_btree_node_to_key(&tmp.k, f); 84 85 struct btree *b = bch2_btree_node_get_noiter(trans, &tmp.k, f->btree_id, f->level, false); 86 bool ret = !IS_ERR_OR_NULL(b); 87 if (!ret) 88 return ret; 89 90 f->sectors_written = b->written; 91 f->journal_seq = le64_to_cpu(b->data->keys.journal_seq); 92 93 struct bkey_s_c k; 94 struct bkey unpacked; 95 struct btree_node_iter iter; 96 for_each_btree_node_key_unpack(b, k, &iter, &unpacked) 97 f->journal_seq = max(f->journal_seq, bkey_journal_seq(k)); 98 99 six_unlock_read(&b->c.lock); 100 101 /* 102 * We might update this node's range; if that happens, we need the node 103 * to be re-read so the read path can trim keys that are no longer in 104 * this node 105 */ 106 if (b != btree_node_root(trans->c, b)) 107 bch2_btree_node_evict(trans, &tmp.k); 108 return ret; 109 } 110 111 static int found_btree_node_cmp_cookie(const void *_l, const void *_r) 112 { 113 const struct found_btree_node *l = _l; 114 const struct found_btree_node *r = _r; 115 116 return cmp_int(l->btree_id, r->btree_id) ?: 117 cmp_int(l->level, r->level) ?: 118 cmp_int(l->cookie, r->cookie); 119 } 120 121 /* 122 * Given two found btree nodes, if their sequence numbers are equal, take the 123 * one that's readable: 124 */ 125 static int found_btree_node_cmp_time(const struct found_btree_node *l, 126 const struct found_btree_node *r) 127 { 128 return cmp_int(l->seq, r->seq) ?: 129 cmp_int(l->journal_seq, r->journal_seq); 130 } 131 132 static int found_btree_node_cmp_pos(const void *_l, const void *_r) 133 { 134 const struct found_btree_node *l = _l; 135 const struct found_btree_node *r = _r; 136 137 return cmp_int(l->btree_id, r->btree_id) ?: 138 -cmp_int(l->level, r->level) ?: 139 bpos_cmp(l->min_key, r->min_key) ?: 140 -found_btree_node_cmp_time(l, r); 141 } 142 143 static void try_read_btree_node(struct find_btree_nodes *f, struct bch_dev *ca, 144 struct bio *bio, struct btree_node *bn, u64 offset) 145 { 146 struct bch_fs *c = container_of(f, struct bch_fs, found_btree_nodes); 147 148 bio_reset(bio, ca->disk_sb.bdev, REQ_OP_READ); 149 bio->bi_iter.bi_sector = offset; 150 bch2_bio_map(bio, bn, PAGE_SIZE); 151 152 submit_bio_wait(bio); 153 if (bch2_dev_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_read, 154 "IO error in try_read_btree_node() at %llu: %s", 155 offset, bch2_blk_status_to_str(bio->bi_status))) 156 return; 157 158 if (le64_to_cpu(bn->magic) != bset_magic(c)) 159 return; 160 161 if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(&bn->keys))) { 162 struct nonce nonce = btree_nonce(&bn->keys, 0); 163 unsigned bytes = (void *) &bn->keys - (void *) &bn->flags; 164 165 bch2_encrypt(c, BSET_CSUM_TYPE(&bn->keys), nonce, &bn->flags, bytes); 166 } 167 168 if (btree_id_is_alloc(BTREE_NODE_ID(bn))) 169 return; 170 171 if (BTREE_NODE_LEVEL(bn) >= BTREE_MAX_DEPTH) 172 return; 173 174 if (BTREE_NODE_ID(bn) >= BTREE_ID_NR_MAX) 175 return; 176 177 rcu_read_lock(); 178 struct found_btree_node n = { 179 .btree_id = BTREE_NODE_ID(bn), 180 .level = BTREE_NODE_LEVEL(bn), 181 .seq = BTREE_NODE_SEQ(bn), 182 .cookie = le64_to_cpu(bn->keys.seq), 183 .min_key = bn->min_key, 184 .max_key = bn->max_key, 185 .nr_ptrs = 1, 186 .ptrs[0].type = 1 << BCH_EXTENT_ENTRY_ptr, 187 .ptrs[0].offset = offset, 188 .ptrs[0].dev = ca->dev_idx, 189 .ptrs[0].gen = *bucket_gen(ca, sector_to_bucket(ca, offset)), 190 }; 191 rcu_read_unlock(); 192 193 if (bch2_trans_run(c, found_btree_node_is_readable(trans, &n))) { 194 mutex_lock(&f->lock); 195 if (BSET_BIG_ENDIAN(&bn->keys) != CPU_BIG_ENDIAN) { 196 bch_err(c, "try_read_btree_node() can't handle endian conversion"); 197 f->ret = -EINVAL; 198 goto unlock; 199 } 200 201 if (darray_push(&f->nodes, n)) 202 f->ret = -ENOMEM; 203 unlock: 204 mutex_unlock(&f->lock); 205 } 206 } 207 208 static int read_btree_nodes_worker(void *p) 209 { 210 struct find_btree_nodes_worker *w = p; 211 struct bch_fs *c = container_of(w->f, struct bch_fs, found_btree_nodes); 212 struct bch_dev *ca = w->ca; 213 void *buf = (void *) __get_free_page(GFP_KERNEL); 214 struct bio *bio = bio_alloc(NULL, 1, 0, GFP_KERNEL); 215 unsigned long last_print = jiffies; 216 217 if (!buf || !bio) { 218 bch_err(c, "read_btree_nodes_worker: error allocating bio/buf"); 219 w->f->ret = -ENOMEM; 220 goto err; 221 } 222 223 for (u64 bucket = ca->mi.first_bucket; bucket < ca->mi.nbuckets; bucket++) 224 for (unsigned bucket_offset = 0; 225 bucket_offset + btree_sectors(c) <= ca->mi.bucket_size; 226 bucket_offset += btree_sectors(c)) { 227 if (time_after(jiffies, last_print + HZ * 30)) { 228 u64 cur_sector = bucket * ca->mi.bucket_size + bucket_offset; 229 u64 end_sector = ca->mi.nbuckets * ca->mi.bucket_size; 230 231 bch_info(ca, "%s: %2u%% done", __func__, 232 (unsigned) div64_u64(cur_sector * 100, end_sector)); 233 last_print = jiffies; 234 } 235 236 u64 sector = bucket * ca->mi.bucket_size + bucket_offset; 237 238 if (c->sb.version_upgrade_complete >= bcachefs_metadata_version_mi_btree_bitmap && 239 !bch2_dev_btree_bitmap_marked_sectors(ca, sector, btree_sectors(c))) 240 continue; 241 242 try_read_btree_node(w->f, ca, bio, buf, sector); 243 } 244 err: 245 bio_put(bio); 246 free_page((unsigned long) buf); 247 percpu_ref_get(&ca->io_ref); 248 closure_put(w->cl); 249 kfree(w); 250 return 0; 251 } 252 253 static int read_btree_nodes(struct find_btree_nodes *f) 254 { 255 struct bch_fs *c = container_of(f, struct bch_fs, found_btree_nodes); 256 struct closure cl; 257 int ret = 0; 258 259 closure_init_stack(&cl); 260 261 for_each_online_member(c, ca) { 262 if (!(ca->mi.data_allowed & BIT(BCH_DATA_btree))) 263 continue; 264 265 struct find_btree_nodes_worker *w = kmalloc(sizeof(*w), GFP_KERNEL); 266 struct task_struct *t; 267 268 if (!w) { 269 percpu_ref_put(&ca->io_ref); 270 ret = -ENOMEM; 271 goto err; 272 } 273 274 percpu_ref_get(&ca->io_ref); 275 closure_get(&cl); 276 w->cl = &cl; 277 w->f = f; 278 w->ca = ca; 279 280 t = kthread_run(read_btree_nodes_worker, w, "read_btree_nodes/%s", ca->name); 281 ret = PTR_ERR_OR_ZERO(t); 282 if (ret) { 283 percpu_ref_put(&ca->io_ref); 284 closure_put(&cl); 285 f->ret = ret; 286 bch_err(c, "error starting kthread: %i", ret); 287 break; 288 } 289 } 290 err: 291 closure_sync(&cl); 292 return f->ret ?: ret; 293 } 294 295 static void bubble_up(struct found_btree_node *n, struct found_btree_node *end) 296 { 297 while (n + 1 < end && 298 found_btree_node_cmp_pos(n, n + 1) > 0) { 299 swap(n[0], n[1]); 300 n++; 301 } 302 } 303 304 static int handle_overwrites(struct bch_fs *c, 305 struct found_btree_node *start, 306 struct found_btree_node *end) 307 { 308 struct found_btree_node *n; 309 again: 310 for (n = start + 1; 311 n < end && 312 n->btree_id == start->btree_id && 313 n->level == start->level && 314 bpos_lt(n->min_key, start->max_key); 315 n++) { 316 int cmp = found_btree_node_cmp_time(start, n); 317 318 if (cmp > 0) { 319 if (bpos_cmp(start->max_key, n->max_key) >= 0) 320 n->overwritten = true; 321 else { 322 n->range_updated = true; 323 n->min_key = bpos_successor(start->max_key); 324 n->range_updated = true; 325 bubble_up(n, end); 326 goto again; 327 } 328 } else if (cmp < 0) { 329 BUG_ON(bpos_cmp(n->min_key, start->min_key) <= 0); 330 331 start->max_key = bpos_predecessor(n->min_key); 332 start->range_updated = true; 333 } else if (n->level) { 334 n->overwritten = true; 335 } else { 336 if (bpos_cmp(start->max_key, n->max_key) >= 0) 337 n->overwritten = true; 338 else { 339 n->range_updated = true; 340 n->min_key = bpos_successor(start->max_key); 341 n->range_updated = true; 342 bubble_up(n, end); 343 goto again; 344 } 345 } 346 } 347 348 return 0; 349 } 350 351 int bch2_scan_for_btree_nodes(struct bch_fs *c) 352 { 353 struct find_btree_nodes *f = &c->found_btree_nodes; 354 struct printbuf buf = PRINTBUF; 355 size_t dst; 356 int ret = 0; 357 358 if (f->nodes.nr) 359 return 0; 360 361 mutex_init(&f->lock); 362 363 ret = read_btree_nodes(f); 364 if (ret) 365 return ret; 366 367 if (!f->nodes.nr) { 368 bch_err(c, "%s: no btree nodes found", __func__); 369 ret = -EINVAL; 370 goto err; 371 } 372 373 if (0 && c->opts.verbose) { 374 printbuf_reset(&buf); 375 prt_printf(&buf, "%s: nodes found:\n", __func__); 376 found_btree_nodes_to_text(&buf, c, f->nodes); 377 bch2_print_string_as_lines(KERN_INFO, buf.buf); 378 } 379 380 sort(f->nodes.data, f->nodes.nr, sizeof(f->nodes.data[0]), found_btree_node_cmp_cookie, NULL); 381 382 dst = 0; 383 darray_for_each(f->nodes, i) { 384 struct found_btree_node *prev = dst ? f->nodes.data + dst - 1 : NULL; 385 386 if (prev && 387 prev->cookie == i->cookie) { 388 if (prev->nr_ptrs == ARRAY_SIZE(prev->ptrs)) { 389 bch_err(c, "%s: found too many replicas for btree node", __func__); 390 ret = -EINVAL; 391 goto err; 392 } 393 prev->ptrs[prev->nr_ptrs++] = i->ptrs[0]; 394 } else { 395 f->nodes.data[dst++] = *i; 396 } 397 } 398 f->nodes.nr = dst; 399 400 sort(f->nodes.data, f->nodes.nr, sizeof(f->nodes.data[0]), found_btree_node_cmp_pos, NULL); 401 402 if (0 && c->opts.verbose) { 403 printbuf_reset(&buf); 404 prt_printf(&buf, "%s: nodes after merging replicas:\n", __func__); 405 found_btree_nodes_to_text(&buf, c, f->nodes); 406 bch2_print_string_as_lines(KERN_INFO, buf.buf); 407 } 408 409 dst = 0; 410 darray_for_each(f->nodes, i) { 411 if (i->overwritten) 412 continue; 413 414 ret = handle_overwrites(c, i, &darray_top(f->nodes)); 415 if (ret) 416 goto err; 417 418 BUG_ON(i->overwritten); 419 f->nodes.data[dst++] = *i; 420 } 421 f->nodes.nr = dst; 422 423 if (c->opts.verbose) { 424 printbuf_reset(&buf); 425 prt_printf(&buf, "%s: nodes found after overwrites:\n", __func__); 426 found_btree_nodes_to_text(&buf, c, f->nodes); 427 bch2_print_string_as_lines(KERN_INFO, buf.buf); 428 } 429 430 eytzinger0_sort(f->nodes.data, f->nodes.nr, sizeof(f->nodes.data[0]), found_btree_node_cmp_pos, NULL); 431 err: 432 printbuf_exit(&buf); 433 return ret; 434 } 435 436 static int found_btree_node_range_start_cmp(const void *_l, const void *_r) 437 { 438 const struct found_btree_node *l = _l; 439 const struct found_btree_node *r = _r; 440 441 return cmp_int(l->btree_id, r->btree_id) ?: 442 -cmp_int(l->level, r->level) ?: 443 bpos_cmp(l->max_key, r->min_key); 444 } 445 446 #define for_each_found_btree_node_in_range(_f, _search, _idx) \ 447 for (size_t _idx = eytzinger0_find_gt((_f)->nodes.data, (_f)->nodes.nr, \ 448 sizeof((_f)->nodes.data[0]), \ 449 found_btree_node_range_start_cmp, &search); \ 450 _idx < (_f)->nodes.nr && \ 451 (_f)->nodes.data[_idx].btree_id == _search.btree_id && \ 452 (_f)->nodes.data[_idx].level == _search.level && \ 453 bpos_lt((_f)->nodes.data[_idx].min_key, _search.max_key); \ 454 _idx = eytzinger0_next(_idx, (_f)->nodes.nr)) 455 456 bool bch2_btree_node_is_stale(struct bch_fs *c, struct btree *b) 457 { 458 struct find_btree_nodes *f = &c->found_btree_nodes; 459 460 struct found_btree_node search = { 461 .btree_id = b->c.btree_id, 462 .level = b->c.level, 463 .min_key = b->data->min_key, 464 .max_key = b->key.k.p, 465 }; 466 467 for_each_found_btree_node_in_range(f, search, idx) 468 if (f->nodes.data[idx].seq > BTREE_NODE_SEQ(b->data)) 469 return true; 470 return false; 471 } 472 473 bool bch2_btree_has_scanned_nodes(struct bch_fs *c, enum btree_id btree) 474 { 475 struct found_btree_node search = { 476 .btree_id = btree, 477 .level = 0, 478 .min_key = POS_MIN, 479 .max_key = SPOS_MAX, 480 }; 481 482 for_each_found_btree_node_in_range(&c->found_btree_nodes, search, idx) 483 return true; 484 return false; 485 } 486 487 int bch2_get_scanned_nodes(struct bch_fs *c, enum btree_id btree, 488 unsigned level, struct bpos node_min, struct bpos node_max) 489 { 490 if (btree_id_is_alloc(btree)) 491 return 0; 492 493 struct find_btree_nodes *f = &c->found_btree_nodes; 494 495 int ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_scan_for_btree_nodes); 496 if (ret) 497 return ret; 498 499 if (c->opts.verbose) { 500 struct printbuf buf = PRINTBUF; 501 502 prt_printf(&buf, "recovering %s l=%u ", bch2_btree_id_str(btree), level); 503 bch2_bpos_to_text(&buf, node_min); 504 prt_str(&buf, " - "); 505 bch2_bpos_to_text(&buf, node_max); 506 507 bch_info(c, "%s(): %s", __func__, buf.buf); 508 printbuf_exit(&buf); 509 } 510 511 struct found_btree_node search = { 512 .btree_id = btree, 513 .level = level, 514 .min_key = node_min, 515 .max_key = node_max, 516 }; 517 518 for_each_found_btree_node_in_range(f, search, idx) { 519 struct found_btree_node n = f->nodes.data[idx]; 520 521 n.range_updated |= bpos_lt(n.min_key, node_min); 522 n.min_key = bpos_max(n.min_key, node_min); 523 524 n.range_updated |= bpos_gt(n.max_key, node_max); 525 n.max_key = bpos_min(n.max_key, node_max); 526 527 struct { __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX); } tmp; 528 529 found_btree_node_to_key(&tmp.k, &n); 530 531 struct printbuf buf = PRINTBUF; 532 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&tmp.k)); 533 bch_verbose(c, "%s(): recovering %s", __func__, buf.buf); 534 printbuf_exit(&buf); 535 536 BUG_ON(bch2_bkey_validate(c, bkey_i_to_s_c(&tmp.k), BKEY_TYPE_btree, 0)); 537 538 ret = bch2_journal_key_insert(c, btree, level + 1, &tmp.k); 539 if (ret) 540 return ret; 541 } 542 543 return 0; 544 } 545 546 void bch2_find_btree_nodes_exit(struct find_btree_nodes *f) 547 { 548 darray_exit(&f->nodes); 549 } 550