xref: /linux/fs/bcachefs/btree_key_cache.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14 
15 #include <linux/sched/mm.h>
16 
17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
18 {
19 	return id == BTREE_ID_subvolumes;
20 }
21 
22 static struct kmem_cache *bch2_key_cache;
23 
24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25 				       const void *obj)
26 {
27 	const struct bkey_cached *ck = obj;
28 	const struct bkey_cached_key *key = arg->key;
29 
30 	return ck->key.btree_id != key->btree_id ||
31 		!bpos_eq(ck->key.pos, key->pos);
32 }
33 
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35 	.head_offset		= offsetof(struct bkey_cached, hash),
36 	.key_offset		= offsetof(struct bkey_cached, key),
37 	.key_len		= sizeof(struct bkey_cached_key),
38 	.obj_cmpfn		= bch2_btree_key_cache_cmp_fn,
39 	.automatic_shrinking	= true,
40 };
41 
42 static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
43 					 struct bkey_cached *ck,
44 					 enum btree_node_locked_type lock_held)
45 {
46 	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
47 	path->l[0].b		= (void *) ck;
48 	mark_btree_node_locked(trans, path, 0, lock_held);
49 }
50 
51 __flatten
52 inline struct bkey_cached *
53 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
54 {
55 	struct bkey_cached_key key = {
56 		.btree_id	= btree_id,
57 		.pos		= pos,
58 	};
59 
60 	return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
61 				      bch2_btree_key_cache_params);
62 }
63 
64 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
65 {
66 	if (!six_trylock_intent(&ck->c.lock))
67 		return false;
68 
69 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
70 		six_unlock_intent(&ck->c.lock);
71 		return false;
72 	}
73 
74 	if (!six_trylock_write(&ck->c.lock)) {
75 		six_unlock_intent(&ck->c.lock);
76 		return false;
77 	}
78 
79 	return true;
80 }
81 
82 static void bkey_cached_evict(struct btree_key_cache *c,
83 			      struct bkey_cached *ck)
84 {
85 	BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
86 				      bch2_btree_key_cache_params));
87 	memset(&ck->key, ~0, sizeof(ck->key));
88 
89 	atomic_long_dec(&c->nr_keys);
90 }
91 
92 static void bkey_cached_free(struct btree_key_cache *bc,
93 			     struct bkey_cached *ck)
94 {
95 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
96 
97 	BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
98 
99 	ck->btree_trans_barrier_seq =
100 		start_poll_synchronize_srcu(&c->btree_trans_barrier);
101 
102 	if (ck->c.lock.readers) {
103 		list_move_tail(&ck->list, &bc->freed_pcpu);
104 		bc->nr_freed_pcpu++;
105 	} else {
106 		list_move_tail(&ck->list, &bc->freed_nonpcpu);
107 		bc->nr_freed_nonpcpu++;
108 	}
109 	atomic_long_inc(&bc->nr_freed);
110 
111 	kfree(ck->k);
112 	ck->k		= NULL;
113 	ck->u64s	= 0;
114 
115 	six_unlock_write(&ck->c.lock);
116 	six_unlock_intent(&ck->c.lock);
117 }
118 
119 #ifdef __KERNEL__
120 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
121 						   struct bkey_cached *ck)
122 {
123 	struct bkey_cached *pos;
124 
125 	bc->nr_freed_nonpcpu++;
126 
127 	list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
128 		if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
129 				 pos->btree_trans_barrier_seq)) {
130 			list_move(&ck->list, &pos->list);
131 			return;
132 		}
133 	}
134 
135 	list_move(&ck->list, &bc->freed_nonpcpu);
136 }
137 #endif
138 
139 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
140 					 struct bkey_cached *ck)
141 {
142 	BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
143 
144 	if (!ck->c.lock.readers) {
145 #ifdef __KERNEL__
146 		struct btree_key_cache_freelist *f;
147 		bool freed = false;
148 
149 		preempt_disable();
150 		f = this_cpu_ptr(bc->pcpu_freed);
151 
152 		if (f->nr < ARRAY_SIZE(f->objs)) {
153 			f->objs[f->nr++] = ck;
154 			freed = true;
155 		}
156 		preempt_enable();
157 
158 		if (!freed) {
159 			mutex_lock(&bc->lock);
160 			preempt_disable();
161 			f = this_cpu_ptr(bc->pcpu_freed);
162 
163 			while (f->nr > ARRAY_SIZE(f->objs) / 2) {
164 				struct bkey_cached *ck2 = f->objs[--f->nr];
165 
166 				__bkey_cached_move_to_freelist_ordered(bc, ck2);
167 			}
168 			preempt_enable();
169 
170 			__bkey_cached_move_to_freelist_ordered(bc, ck);
171 			mutex_unlock(&bc->lock);
172 		}
173 #else
174 		mutex_lock(&bc->lock);
175 		list_move_tail(&ck->list, &bc->freed_nonpcpu);
176 		bc->nr_freed_nonpcpu++;
177 		mutex_unlock(&bc->lock);
178 #endif
179 	} else {
180 		mutex_lock(&bc->lock);
181 		list_move_tail(&ck->list, &bc->freed_pcpu);
182 		bc->nr_freed_pcpu++;
183 		mutex_unlock(&bc->lock);
184 	}
185 }
186 
187 static void bkey_cached_free_fast(struct btree_key_cache *bc,
188 				  struct bkey_cached *ck)
189 {
190 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
191 
192 	ck->btree_trans_barrier_seq =
193 		start_poll_synchronize_srcu(&c->btree_trans_barrier);
194 
195 	list_del_init(&ck->list);
196 	atomic_long_inc(&bc->nr_freed);
197 
198 	kfree(ck->k);
199 	ck->k		= NULL;
200 	ck->u64s	= 0;
201 
202 	bkey_cached_move_to_freelist(bc, ck);
203 
204 	six_unlock_write(&ck->c.lock);
205 	six_unlock_intent(&ck->c.lock);
206 }
207 
208 static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
209 {
210 	struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
211 	if (unlikely(!ck))
212 		return NULL;
213 	ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
214 	if (unlikely(!ck->k)) {
215 		kmem_cache_free(bch2_key_cache, ck);
216 		return NULL;
217 	}
218 	ck->u64s = key_u64s;
219 	return ck;
220 }
221 
222 static struct bkey_cached *
223 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
224 {
225 	struct bch_fs *c = trans->c;
226 	struct btree_key_cache *bc = &c->btree_key_cache;
227 	struct bkey_cached *ck = NULL;
228 	bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
229 	int ret;
230 
231 	if (!pcpu_readers) {
232 #ifdef __KERNEL__
233 		struct btree_key_cache_freelist *f;
234 
235 		preempt_disable();
236 		f = this_cpu_ptr(bc->pcpu_freed);
237 		if (f->nr)
238 			ck = f->objs[--f->nr];
239 		preempt_enable();
240 
241 		if (!ck) {
242 			mutex_lock(&bc->lock);
243 			preempt_disable();
244 			f = this_cpu_ptr(bc->pcpu_freed);
245 
246 			while (!list_empty(&bc->freed_nonpcpu) &&
247 			       f->nr < ARRAY_SIZE(f->objs) / 2) {
248 				ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
249 				list_del_init(&ck->list);
250 				bc->nr_freed_nonpcpu--;
251 				f->objs[f->nr++] = ck;
252 			}
253 
254 			ck = f->nr ? f->objs[--f->nr] : NULL;
255 			preempt_enable();
256 			mutex_unlock(&bc->lock);
257 		}
258 #else
259 		mutex_lock(&bc->lock);
260 		if (!list_empty(&bc->freed_nonpcpu)) {
261 			ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
262 			list_del_init(&ck->list);
263 			bc->nr_freed_nonpcpu--;
264 		}
265 		mutex_unlock(&bc->lock);
266 #endif
267 	} else {
268 		mutex_lock(&bc->lock);
269 		if (!list_empty(&bc->freed_pcpu)) {
270 			ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
271 			list_del_init(&ck->list);
272 			bc->nr_freed_pcpu--;
273 		}
274 		mutex_unlock(&bc->lock);
275 	}
276 
277 	if (ck) {
278 		ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
279 		if (unlikely(ret)) {
280 			bkey_cached_move_to_freelist(bc, ck);
281 			return ERR_PTR(ret);
282 		}
283 
284 		btree_path_cached_set(trans, path, ck, BTREE_NODE_INTENT_LOCKED);
285 
286 		ret = bch2_btree_node_lock_write(trans, path, &ck->c);
287 		if (unlikely(ret)) {
288 			btree_node_unlock(trans, path, 0);
289 			bkey_cached_move_to_freelist(bc, ck);
290 			return ERR_PTR(ret);
291 		}
292 
293 		return ck;
294 	}
295 
296 	ck = allocate_dropping_locks(trans, ret,
297 				     __bkey_cached_alloc(key_u64s, _gfp));
298 	if (ret) {
299 		if (ck)
300 			kfree(ck->k);
301 		kmem_cache_free(bch2_key_cache, ck);
302 		return ERR_PTR(ret);
303 	}
304 
305 	if (!ck)
306 		return NULL;
307 
308 	INIT_LIST_HEAD(&ck->list);
309 	bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
310 
311 	ck->c.cached = true;
312 	BUG_ON(!six_trylock_intent(&ck->c.lock));
313 	BUG_ON(!six_trylock_write(&ck->c.lock));
314 	return ck;
315 }
316 
317 static struct bkey_cached *
318 bkey_cached_reuse(struct btree_key_cache *c)
319 {
320 	struct bucket_table *tbl;
321 	struct rhash_head *pos;
322 	struct bkey_cached *ck;
323 	unsigned i;
324 
325 	mutex_lock(&c->lock);
326 	rcu_read_lock();
327 	tbl = rht_dereference_rcu(c->table.tbl, &c->table);
328 	for (i = 0; i < tbl->size; i++)
329 		rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
330 			if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
331 			    bkey_cached_lock_for_evict(ck)) {
332 				bkey_cached_evict(c, ck);
333 				goto out;
334 			}
335 		}
336 	ck = NULL;
337 out:
338 	rcu_read_unlock();
339 	mutex_unlock(&c->lock);
340 	return ck;
341 }
342 
343 static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path,
344 				  struct bkey_s_c k)
345 {
346 	struct bch_fs *c = trans->c;
347 	struct btree_key_cache *bc = &c->btree_key_cache;
348 
349 	/*
350 	 * bch2_varint_decode can read past the end of the buffer by at
351 	 * most 7 bytes (it won't be used):
352 	 */
353 	unsigned key_u64s = k.k->u64s + 1;
354 
355 	/*
356 	 * Allocate some extra space so that the transaction commit path is less
357 	 * likely to have to reallocate, since that requires a transaction
358 	 * restart:
359 	 */
360 	key_u64s = min(256U, (key_u64s * 3) / 2);
361 	key_u64s = roundup_pow_of_two(key_u64s);
362 
363 	struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s);
364 	int ret = PTR_ERR_OR_ZERO(ck);
365 	if (ret)
366 		return ret;
367 
368 	if (unlikely(!ck)) {
369 		ck = bkey_cached_reuse(bc);
370 		if (unlikely(!ck)) {
371 			bch_err(c, "error allocating memory for key cache item, btree %s",
372 				bch2_btree_id_str(path->btree_id));
373 			return -BCH_ERR_ENOMEM_btree_key_cache_create;
374 		}
375 	}
376 
377 	ck->c.level		= 0;
378 	ck->c.btree_id		= path->btree_id;
379 	ck->key.btree_id	= path->btree_id;
380 	ck->key.pos		= path->pos;
381 	ck->flags		= 1U << BKEY_CACHED_ACCESSED;
382 
383 	if (unlikely(key_u64s > ck->u64s)) {
384 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
385 
386 		struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
387 				kmalloc(key_u64s * sizeof(u64), _gfp));
388 		if (unlikely(!new_k)) {
389 			bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
390 				bch2_btree_id_str(ck->key.btree_id), key_u64s);
391 			ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
392 		} else if (ret) {
393 			kfree(new_k);
394 			goto err;
395 		}
396 
397 		kfree(ck->k);
398 		ck->k = new_k;
399 		ck->u64s = key_u64s;
400 	}
401 
402 	bkey_reassemble(ck->k, k);
403 
404 	ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
405 	if (unlikely(ret)) /* raced with another fill? */
406 		goto err;
407 
408 	atomic_long_inc(&bc->nr_keys);
409 	six_unlock_write(&ck->c.lock);
410 
411 	enum six_lock_type lock_want = __btree_lock_want(path, 0);
412 	if (lock_want == SIX_LOCK_read)
413 		six_lock_downgrade(&ck->c.lock);
414 	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
415 	path->uptodate = BTREE_ITER_UPTODATE;
416 	return 0;
417 err:
418 	bkey_cached_free_fast(bc, ck);
419 	mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
420 
421 	return ret;
422 }
423 
424 static noinline int btree_key_cache_fill(struct btree_trans *trans,
425 					 struct btree_path *ck_path,
426 					 unsigned flags)
427 {
428 	if (flags & BTREE_ITER_cached_nofill) {
429 		ck_path->uptodate = BTREE_ITER_UPTODATE;
430 		return 0;
431 	}
432 
433 	struct bch_fs *c = trans->c;
434 	struct btree_iter iter;
435 	struct bkey_s_c k;
436 	int ret;
437 
438 	bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
439 			     BTREE_ITER_key_cache_fill|
440 			     BTREE_ITER_cached_nofill);
441 	iter.flags &= ~BTREE_ITER_with_journal;
442 	k = bch2_btree_iter_peek_slot(&iter);
443 	ret = bkey_err(k);
444 	if (ret)
445 		goto err;
446 
447 	/* Recheck after btree lookup, before allocating: */
448 	ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
449 	if (unlikely(ret))
450 		goto out;
451 
452 	ret = btree_key_cache_create(trans, ck_path, k);
453 	if (ret)
454 		goto err;
455 out:
456 	/* We're not likely to need this iterator again: */
457 	bch2_set_btree_iter_dontneed(&iter);
458 err:
459 	bch2_trans_iter_exit(trans, &iter);
460 	return ret;
461 }
462 
463 static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
464 						  struct btree_path *path)
465 {
466 	struct bch_fs *c = trans->c;
467 	struct bkey_cached *ck;
468 retry:
469 	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
470 	if (!ck)
471 		return -ENOENT;
472 
473 	enum six_lock_type lock_want = __btree_lock_want(path, 0);
474 
475 	int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
476 	if (ret)
477 		return ret;
478 
479 	if (ck->key.btree_id != path->btree_id ||
480 	    !bpos_eq(ck->key.pos, path->pos)) {
481 		six_unlock_type(&ck->c.lock, lock_want);
482 		goto retry;
483 	}
484 
485 	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
486 		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
487 
488 	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
489 	path->uptodate = BTREE_ITER_UPTODATE;
490 	return 0;
491 }
492 
493 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
494 				    unsigned flags)
495 {
496 	EBUG_ON(path->level);
497 
498 	path->l[1].b = NULL;
499 
500 	int ret;
501 	do {
502 		ret = btree_path_traverse_cached_fast(trans, path);
503 		if (unlikely(ret == -ENOENT))
504 			ret = btree_key_cache_fill(trans, path, flags);
505 	} while (ret == -EEXIST);
506 
507 	if (unlikely(ret)) {
508 		path->uptodate = BTREE_ITER_NEED_TRAVERSE;
509 		if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
510 			btree_node_unlock(trans, path, 0);
511 			path->l[0].b = ERR_PTR(ret);
512 		}
513 	}
514 	return ret;
515 }
516 
517 static int btree_key_cache_flush_pos(struct btree_trans *trans,
518 				     struct bkey_cached_key key,
519 				     u64 journal_seq,
520 				     unsigned commit_flags,
521 				     bool evict)
522 {
523 	struct bch_fs *c = trans->c;
524 	struct journal *j = &c->journal;
525 	struct btree_iter c_iter, b_iter;
526 	struct bkey_cached *ck = NULL;
527 	int ret;
528 
529 	bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
530 			     BTREE_ITER_slots|
531 			     BTREE_ITER_intent|
532 			     BTREE_ITER_all_snapshots);
533 	bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
534 			     BTREE_ITER_cached|
535 			     BTREE_ITER_intent);
536 	b_iter.flags &= ~BTREE_ITER_with_key_cache;
537 
538 	ret = bch2_btree_iter_traverse(&c_iter);
539 	if (ret)
540 		goto out;
541 
542 	ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
543 	if (!ck)
544 		goto out;
545 
546 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
547 		if (evict)
548 			goto evict;
549 		goto out;
550 	}
551 
552 	if (journal_seq && ck->journal.seq != journal_seq)
553 		goto out;
554 
555 	trans->journal_res.seq = ck->journal.seq;
556 
557 	/*
558 	 * If we're at the end of the journal, we really want to free up space
559 	 * in the journal right away - we don't want to pin that old journal
560 	 * sequence number with a new btree node write, we want to re-journal
561 	 * the update
562 	 */
563 	if (ck->journal.seq == journal_last_seq(j))
564 		commit_flags |= BCH_WATERMARK_reclaim;
565 
566 	if (ck->journal.seq != journal_last_seq(j) ||
567 	    !test_bit(JOURNAL_space_low, &c->journal.flags))
568 		commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
569 
570 	ret   = bch2_btree_iter_traverse(&b_iter) ?:
571 		bch2_trans_update(trans, &b_iter, ck->k,
572 				  BTREE_UPDATE_key_cache_reclaim|
573 				  BTREE_UPDATE_internal_snapshot_node|
574 				  BTREE_TRIGGER_norun) ?:
575 		bch2_trans_commit(trans, NULL, NULL,
576 				  BCH_TRANS_COMMIT_no_check_rw|
577 				  BCH_TRANS_COMMIT_no_enospc|
578 				  commit_flags);
579 
580 	bch2_fs_fatal_err_on(ret &&
581 			     !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
582 			     !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
583 			     !bch2_journal_error(j), c,
584 			     "flushing key cache: %s", bch2_err_str(ret));
585 	if (ret)
586 		goto out;
587 
588 	bch2_journal_pin_drop(j, &ck->journal);
589 
590 	struct btree_path *path = btree_iter_path(trans, &c_iter);
591 	BUG_ON(!btree_node_locked(path, 0));
592 
593 	if (!evict) {
594 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
595 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
596 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
597 		}
598 	} else {
599 		struct btree_path *path2;
600 		unsigned i;
601 evict:
602 		trans_for_each_path(trans, path2, i)
603 			if (path2 != path)
604 				__bch2_btree_path_unlock(trans, path2);
605 
606 		bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
607 
608 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
609 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
610 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
611 		}
612 
613 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
614 		bkey_cached_evict(&c->btree_key_cache, ck);
615 		bkey_cached_free_fast(&c->btree_key_cache, ck);
616 	}
617 out:
618 	bch2_trans_iter_exit(trans, &b_iter);
619 	bch2_trans_iter_exit(trans, &c_iter);
620 	return ret;
621 }
622 
623 int bch2_btree_key_cache_journal_flush(struct journal *j,
624 				struct journal_entry_pin *pin, u64 seq)
625 {
626 	struct bch_fs *c = container_of(j, struct bch_fs, journal);
627 	struct bkey_cached *ck =
628 		container_of(pin, struct bkey_cached, journal);
629 	struct bkey_cached_key key;
630 	struct btree_trans *trans = bch2_trans_get(c);
631 	int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
632 	int ret = 0;
633 
634 	btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
635 	key = ck->key;
636 
637 	if (ck->journal.seq != seq ||
638 	    !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
639 		six_unlock_read(&ck->c.lock);
640 		goto unlock;
641 	}
642 
643 	if (ck->seq != seq) {
644 		bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
645 					bch2_btree_key_cache_journal_flush);
646 		six_unlock_read(&ck->c.lock);
647 		goto unlock;
648 	}
649 	six_unlock_read(&ck->c.lock);
650 
651 	ret = lockrestart_do(trans,
652 		btree_key_cache_flush_pos(trans, key, seq,
653 				BCH_TRANS_COMMIT_journal_reclaim, false));
654 unlock:
655 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
656 
657 	bch2_trans_put(trans);
658 	return ret;
659 }
660 
661 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
662 				  unsigned flags,
663 				  struct btree_insert_entry *insert_entry)
664 {
665 	struct bch_fs *c = trans->c;
666 	struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
667 	struct bkey_i *insert = insert_entry->k;
668 	bool kick_reclaim = false;
669 
670 	BUG_ON(insert->k.u64s > ck->u64s);
671 
672 	bkey_copy(ck->k, insert);
673 
674 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
675 		EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
676 		set_bit(BKEY_CACHED_DIRTY, &ck->flags);
677 		atomic_long_inc(&c->btree_key_cache.nr_dirty);
678 
679 		if (bch2_nr_btree_keys_need_flush(c))
680 			kick_reclaim = true;
681 	}
682 
683 	/*
684 	 * To minimize lock contention, we only add the journal pin here and
685 	 * defer pin updates to the flush callback via ->seq. Be careful not to
686 	 * update ->seq on nojournal commits because we don't want to update the
687 	 * pin to a seq that doesn't include journal updates on disk. Otherwise
688 	 * we risk losing the update after a crash.
689 	 *
690 	 * The only exception is if the pin is not active in the first place. We
691 	 * have to add the pin because journal reclaim drives key cache
692 	 * flushing. The flush callback will not proceed unless ->seq matches
693 	 * the latest pin, so make sure it starts with a consistent value.
694 	 */
695 	if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
696 	    !journal_pin_active(&ck->journal)) {
697 		ck->seq = trans->journal_res.seq;
698 	}
699 	bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
700 			     &ck->journal, bch2_btree_key_cache_journal_flush);
701 
702 	if (kick_reclaim)
703 		journal_reclaim_kick(&c->journal);
704 	return true;
705 }
706 
707 void bch2_btree_key_cache_drop(struct btree_trans *trans,
708 			       struct btree_path *path)
709 {
710 	struct bch_fs *c = trans->c;
711 	struct btree_key_cache *bc = &c->btree_key_cache;
712 	struct bkey_cached *ck = (void *) path->l[0].b;
713 
714 	/*
715 	 * We just did an update to the btree, bypassing the key cache: the key
716 	 * cache key is now stale and must be dropped, even if dirty:
717 	 */
718 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
719 		clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
720 		atomic_long_dec(&c->btree_key_cache.nr_dirty);
721 		bch2_journal_pin_drop(&c->journal, &ck->journal);
722 	}
723 
724 	bkey_cached_evict(bc, ck);
725 	bkey_cached_free_fast(bc, ck);
726 
727 	mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
728 	btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
729 	path->should_be_locked = false;
730 }
731 
732 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
733 					   struct shrink_control *sc)
734 {
735 	struct bch_fs *c = shrink->private_data;
736 	struct btree_key_cache *bc = &c->btree_key_cache;
737 	struct bucket_table *tbl;
738 	struct bkey_cached *ck, *t;
739 	size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
740 	unsigned start, flags;
741 	int srcu_idx;
742 
743 	mutex_lock(&bc->lock);
744 	bc->requested_to_free += sc->nr_to_scan;
745 
746 	srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
747 	flags = memalloc_nofs_save();
748 
749 	/*
750 	 * Newest freed entries are at the end of the list - once we hit one
751 	 * that's too new to be freed, we can bail out:
752 	 */
753 	list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
754 		if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
755 						 ck->btree_trans_barrier_seq))
756 			break;
757 
758 		list_del(&ck->list);
759 		six_lock_exit(&ck->c.lock);
760 		kmem_cache_free(bch2_key_cache, ck);
761 		atomic_long_dec(&bc->nr_freed);
762 		bc->nr_freed_nonpcpu--;
763 		bc->freed++;
764 	}
765 
766 	list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
767 		if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
768 						 ck->btree_trans_barrier_seq))
769 			break;
770 
771 		list_del(&ck->list);
772 		six_lock_exit(&ck->c.lock);
773 		kmem_cache_free(bch2_key_cache, ck);
774 		atomic_long_dec(&bc->nr_freed);
775 		bc->nr_freed_pcpu--;
776 		bc->freed++;
777 	}
778 
779 	rcu_read_lock();
780 	tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
781 
782 	/*
783 	 * Scanning is expensive while a rehash is in progress - most elements
784 	 * will be on the new hashtable, if it's in progress
785 	 *
786 	 * A rehash could still start while we're scanning - that's ok, we'll
787 	 * still see most elements.
788 	 */
789 	if (unlikely(tbl->nest)) {
790 		rcu_read_unlock();
791 		srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
792 		return SHRINK_STOP;
793 	}
794 
795 	if (bc->shrink_iter >= tbl->size)
796 		bc->shrink_iter = 0;
797 	start = bc->shrink_iter;
798 
799 	do {
800 		struct rhash_head *pos, *next;
801 
802 		pos = rht_ptr_rcu(&tbl->buckets[bc->shrink_iter]);
803 
804 		while (!rht_is_a_nulls(pos)) {
805 			next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
806 			ck = container_of(pos, struct bkey_cached, hash);
807 
808 			if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
809 				bc->skipped_dirty++;
810 			} else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
811 				clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
812 				bc->skipped_accessed++;
813 			} else if (!bkey_cached_lock_for_evict(ck)) {
814 				bc->skipped_lock_fail++;
815 			} else {
816 				bkey_cached_evict(bc, ck);
817 				bkey_cached_free(bc, ck);
818 				bc->moved_to_freelist++;
819 				freed++;
820 			}
821 
822 			scanned++;
823 			if (scanned >= nr)
824 				break;
825 
826 			pos = next;
827 		}
828 
829 		bc->shrink_iter++;
830 		if (bc->shrink_iter >= tbl->size)
831 			bc->shrink_iter = 0;
832 	} while (scanned < nr && bc->shrink_iter != start);
833 
834 	rcu_read_unlock();
835 	memalloc_nofs_restore(flags);
836 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
837 	mutex_unlock(&bc->lock);
838 
839 	return freed;
840 }
841 
842 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
843 					    struct shrink_control *sc)
844 {
845 	struct bch_fs *c = shrink->private_data;
846 	struct btree_key_cache *bc = &c->btree_key_cache;
847 	long nr = atomic_long_read(&bc->nr_keys) -
848 		atomic_long_read(&bc->nr_dirty);
849 
850 	/*
851 	 * Avoid hammering our shrinker too much if it's nearly empty - the
852 	 * shrinker code doesn't take into account how big our cache is, if it's
853 	 * mostly empty but the system is under memory pressure it causes nasty
854 	 * lock contention:
855 	 */
856 	nr -= 128;
857 
858 	return max(0L, nr);
859 }
860 
861 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
862 {
863 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
864 	struct bucket_table *tbl;
865 	struct bkey_cached *ck, *n;
866 	struct rhash_head *pos;
867 	LIST_HEAD(items);
868 	unsigned i;
869 #ifdef __KERNEL__
870 	int cpu;
871 #endif
872 
873 	shrinker_free(bc->shrink);
874 
875 	mutex_lock(&bc->lock);
876 
877 	/*
878 	 * The loop is needed to guard against racing with rehash:
879 	 */
880 	while (atomic_long_read(&bc->nr_keys)) {
881 		rcu_read_lock();
882 		tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
883 		if (tbl) {
884 			if (tbl->nest) {
885 				/* wait for in progress rehash */
886 				rcu_read_unlock();
887 				mutex_lock(&bc->table.mutex);
888 				mutex_unlock(&bc->table.mutex);
889 				rcu_read_lock();
890 				continue;
891 			}
892 			for (i = 0; i < tbl->size; i++)
893 				while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
894 					ck = container_of(pos, struct bkey_cached, hash);
895 					bkey_cached_evict(bc, ck);
896 					list_add(&ck->list, &items);
897 				}
898 		}
899 		rcu_read_unlock();
900 	}
901 
902 #ifdef __KERNEL__
903 	if (bc->pcpu_freed) {
904 		for_each_possible_cpu(cpu) {
905 			struct btree_key_cache_freelist *f =
906 				per_cpu_ptr(bc->pcpu_freed, cpu);
907 
908 			for (i = 0; i < f->nr; i++) {
909 				ck = f->objs[i];
910 				list_add(&ck->list, &items);
911 			}
912 		}
913 	}
914 #endif
915 
916 	BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
917 	BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
918 
919 	list_splice(&bc->freed_pcpu,	&items);
920 	list_splice(&bc->freed_nonpcpu,	&items);
921 
922 	mutex_unlock(&bc->lock);
923 
924 	list_for_each_entry_safe(ck, n, &items, list) {
925 		cond_resched();
926 
927 		list_del(&ck->list);
928 		kfree(ck->k);
929 		six_lock_exit(&ck->c.lock);
930 		kmem_cache_free(bch2_key_cache, ck);
931 	}
932 
933 	if (atomic_long_read(&bc->nr_dirty) &&
934 	    !bch2_journal_error(&c->journal) &&
935 	    test_bit(BCH_FS_was_rw, &c->flags))
936 		panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
937 		      atomic_long_read(&bc->nr_dirty));
938 
939 	if (atomic_long_read(&bc->nr_keys))
940 		panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
941 		      atomic_long_read(&bc->nr_keys));
942 
943 	if (bc->table_init_done)
944 		rhashtable_destroy(&bc->table);
945 
946 	free_percpu(bc->pcpu_freed);
947 }
948 
949 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
950 {
951 	mutex_init(&c->lock);
952 	INIT_LIST_HEAD(&c->freed_pcpu);
953 	INIT_LIST_HEAD(&c->freed_nonpcpu);
954 }
955 
956 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
957 {
958 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
959 	struct shrinker *shrink;
960 
961 #ifdef __KERNEL__
962 	bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
963 	if (!bc->pcpu_freed)
964 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
965 #endif
966 
967 	if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
968 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
969 
970 	bc->table_init_done = true;
971 
972 	shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
973 	if (!shrink)
974 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
975 	bc->shrink = shrink;
976 	shrink->count_objects	= bch2_btree_key_cache_count;
977 	shrink->scan_objects	= bch2_btree_key_cache_scan;
978 	shrink->batch		= 1 << 14;
979 	shrink->seeks		= 0;
980 	shrink->private_data	= c;
981 	shrinker_register(shrink);
982 	return 0;
983 }
984 
985 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
986 {
987 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
988 
989 	printbuf_tabstop_push(out, 24);
990 	printbuf_tabstop_push(out, 12);
991 
992 	unsigned flags = memalloc_nofs_save();
993 	mutex_lock(&bc->lock);
994 	prt_printf(out, "keys:\t%lu\r\n",		atomic_long_read(&bc->nr_keys));
995 	prt_printf(out, "dirty:\t%lu\r\n",		atomic_long_read(&bc->nr_dirty));
996 	prt_printf(out, "freelist:\t%lu\r\n",		atomic_long_read(&bc->nr_freed));
997 	prt_printf(out, "nonpcpu freelist:\t%zu\r\n",	bc->nr_freed_nonpcpu);
998 	prt_printf(out, "pcpu freelist:\t%zu\r\n",	bc->nr_freed_pcpu);
999 
1000 	prt_printf(out, "\nshrinker:\n");
1001 	prt_printf(out, "requested_to_free:\t%lu\r\n",	bc->requested_to_free);
1002 	prt_printf(out, "freed:\t%lu\r\n",		bc->freed);
1003 	prt_printf(out, "moved_to_freelist:\t%lu\r\n",	bc->moved_to_freelist);
1004 	prt_printf(out, "skipped_dirty:\t%lu\r\n",	bc->skipped_dirty);
1005 	prt_printf(out, "skipped_accessed:\t%lu\r\n",	bc->skipped_accessed);
1006 	prt_printf(out, "skipped_lock_fail:\t%lu\r\n",	bc->skipped_lock_fail);
1007 
1008 	prt_printf(out, "srcu seq:\t%lu\r\n",		get_state_synchronize_srcu(&c->btree_trans_barrier));
1009 
1010 	struct bkey_cached *ck;
1011 	unsigned iter = 0;
1012 	list_for_each_entry(ck, &bc->freed_nonpcpu, list) {
1013 		prt_printf(out, "freed_nonpcpu:\t%lu\r\n", ck->btree_trans_barrier_seq);
1014 		if (++iter > 10)
1015 			break;
1016 	}
1017 
1018 	iter = 0;
1019 	list_for_each_entry(ck, &bc->freed_pcpu, list) {
1020 		prt_printf(out, "freed_pcpu:\t%lu\r\n", ck->btree_trans_barrier_seq);
1021 		if (++iter > 10)
1022 			break;
1023 	}
1024 	mutex_unlock(&bc->lock);
1025 	memalloc_flags_restore(flags);
1026 }
1027 
1028 void bch2_btree_key_cache_exit(void)
1029 {
1030 	kmem_cache_destroy(bch2_key_cache);
1031 }
1032 
1033 int __init bch2_btree_key_cache_init(void)
1034 {
1035 	bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1036 	if (!bch2_key_cache)
1037 		return -ENOMEM;
1038 
1039 	return 0;
1040 }
1041