xref: /linux/fs/bcachefs/btree_key_cache.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14 
15 #include <linux/sched/mm.h>
16 
17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
18 {
19 	return id == BTREE_ID_subvolumes;
20 }
21 
22 static struct kmem_cache *bch2_key_cache;
23 
24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25 				       const void *obj)
26 {
27 	const struct bkey_cached *ck = obj;
28 	const struct bkey_cached_key *key = arg->key;
29 
30 	return ck->key.btree_id != key->btree_id ||
31 		!bpos_eq(ck->key.pos, key->pos);
32 }
33 
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35 	.head_offset		= offsetof(struct bkey_cached, hash),
36 	.key_offset		= offsetof(struct bkey_cached, key),
37 	.key_len		= sizeof(struct bkey_cached_key),
38 	.obj_cmpfn		= bch2_btree_key_cache_cmp_fn,
39 	.automatic_shrinking	= true,
40 };
41 
42 static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
43 					 struct bkey_cached *ck,
44 					 enum btree_node_locked_type lock_held)
45 {
46 	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
47 	path->l[0].b		= (void *) ck;
48 	mark_btree_node_locked(trans, path, 0, lock_held);
49 }
50 
51 __flatten
52 inline struct bkey_cached *
53 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
54 {
55 	struct bkey_cached_key key = {
56 		.btree_id	= btree_id,
57 		.pos		= pos,
58 	};
59 
60 	return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
61 				      bch2_btree_key_cache_params);
62 }
63 
64 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
65 {
66 	if (!six_trylock_intent(&ck->c.lock))
67 		return false;
68 
69 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
70 		six_unlock_intent(&ck->c.lock);
71 		return false;
72 	}
73 
74 	if (!six_trylock_write(&ck->c.lock)) {
75 		six_unlock_intent(&ck->c.lock);
76 		return false;
77 	}
78 
79 	return true;
80 }
81 
82 static bool bkey_cached_evict(struct btree_key_cache *c,
83 			      struct bkey_cached *ck)
84 {
85 	bool ret = !rhashtable_remove_fast(&c->table, &ck->hash,
86 				      bch2_btree_key_cache_params);
87 	if (ret) {
88 		memset(&ck->key, ~0, sizeof(ck->key));
89 		atomic_long_dec(&c->nr_keys);
90 	}
91 
92 	return ret;
93 }
94 
95 static void __bkey_cached_free(struct rcu_pending *pending, struct rcu_head *rcu)
96 {
97 	struct bch_fs *c = container_of(pending->srcu, struct bch_fs, btree_trans_barrier);
98 	struct bkey_cached *ck = container_of(rcu, struct bkey_cached, rcu);
99 
100 	this_cpu_dec(*c->btree_key_cache.nr_pending);
101 	kmem_cache_free(bch2_key_cache, ck);
102 }
103 
104 static void bkey_cached_free(struct btree_key_cache *bc,
105 			     struct bkey_cached *ck)
106 {
107 	kfree(ck->k);
108 	ck->k		= NULL;
109 	ck->u64s	= 0;
110 
111 	six_unlock_write(&ck->c.lock);
112 	six_unlock_intent(&ck->c.lock);
113 
114 	bool pcpu_readers = ck->c.lock.readers != NULL;
115 	rcu_pending_enqueue(&bc->pending[pcpu_readers], &ck->rcu);
116 	this_cpu_inc(*bc->nr_pending);
117 }
118 
119 static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
120 {
121 	gfp |= __GFP_ACCOUNT|__GFP_RECLAIMABLE;
122 
123 	struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
124 	if (unlikely(!ck))
125 		return NULL;
126 	ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
127 	if (unlikely(!ck->k)) {
128 		kmem_cache_free(bch2_key_cache, ck);
129 		return NULL;
130 	}
131 	ck->u64s = key_u64s;
132 	return ck;
133 }
134 
135 static struct bkey_cached *
136 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
137 {
138 	struct bch_fs *c = trans->c;
139 	struct btree_key_cache *bc = &c->btree_key_cache;
140 	bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
141 	int ret;
142 
143 	struct bkey_cached *ck = container_of_or_null(
144 				rcu_pending_dequeue(&bc->pending[pcpu_readers]),
145 				struct bkey_cached, rcu);
146 	if (ck)
147 		goto lock;
148 
149 	ck = allocate_dropping_locks(trans, ret,
150 				     __bkey_cached_alloc(key_u64s, _gfp));
151 	if (ret) {
152 		if (ck)
153 			kfree(ck->k);
154 		kmem_cache_free(bch2_key_cache, ck);
155 		return ERR_PTR(ret);
156 	}
157 
158 	if (ck) {
159 		bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
160 		ck->c.cached = true;
161 		goto lock;
162 	}
163 
164 	ck = container_of_or_null(rcu_pending_dequeue_from_all(&bc->pending[pcpu_readers]),
165 				  struct bkey_cached, rcu);
166 	if (ck)
167 		goto lock;
168 lock:
169 	six_lock_intent(&ck->c.lock, NULL, NULL);
170 	six_lock_write(&ck->c.lock, NULL, NULL);
171 	return ck;
172 }
173 
174 static struct bkey_cached *
175 bkey_cached_reuse(struct btree_key_cache *c)
176 {
177 	struct bucket_table *tbl;
178 	struct rhash_head *pos;
179 	struct bkey_cached *ck;
180 	unsigned i;
181 
182 	rcu_read_lock();
183 	tbl = rht_dereference_rcu(c->table.tbl, &c->table);
184 	for (i = 0; i < tbl->size; i++)
185 		rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
186 			if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
187 			    bkey_cached_lock_for_evict(ck)) {
188 				if (bkey_cached_evict(c, ck))
189 					goto out;
190 				six_unlock_write(&ck->c.lock);
191 				six_unlock_intent(&ck->c.lock);
192 			}
193 		}
194 	ck = NULL;
195 out:
196 	rcu_read_unlock();
197 	return ck;
198 }
199 
200 static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path,
201 				  struct bkey_s_c k)
202 {
203 	struct bch_fs *c = trans->c;
204 	struct btree_key_cache *bc = &c->btree_key_cache;
205 
206 	/*
207 	 * bch2_varint_decode can read past the end of the buffer by at
208 	 * most 7 bytes (it won't be used):
209 	 */
210 	unsigned key_u64s = k.k->u64s + 1;
211 
212 	/*
213 	 * Allocate some extra space so that the transaction commit path is less
214 	 * likely to have to reallocate, since that requires a transaction
215 	 * restart:
216 	 */
217 	key_u64s = min(256U, (key_u64s * 3) / 2);
218 	key_u64s = roundup_pow_of_two(key_u64s);
219 
220 	struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s);
221 	int ret = PTR_ERR_OR_ZERO(ck);
222 	if (ret)
223 		return ret;
224 
225 	if (unlikely(!ck)) {
226 		ck = bkey_cached_reuse(bc);
227 		if (unlikely(!ck)) {
228 			bch_err(c, "error allocating memory for key cache item, btree %s",
229 				bch2_btree_id_str(path->btree_id));
230 			return -BCH_ERR_ENOMEM_btree_key_cache_create;
231 		}
232 	}
233 
234 	ck->c.level		= 0;
235 	ck->c.btree_id		= path->btree_id;
236 	ck->key.btree_id	= path->btree_id;
237 	ck->key.pos		= path->pos;
238 	ck->flags		= 1U << BKEY_CACHED_ACCESSED;
239 
240 	if (unlikely(key_u64s > ck->u64s)) {
241 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
242 
243 		struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
244 				kmalloc(key_u64s * sizeof(u64), _gfp));
245 		if (unlikely(!new_k)) {
246 			bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
247 				bch2_btree_id_str(ck->key.btree_id), key_u64s);
248 			ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
249 		} else if (ret) {
250 			kfree(new_k);
251 			goto err;
252 		}
253 
254 		kfree(ck->k);
255 		ck->k = new_k;
256 		ck->u64s = key_u64s;
257 	}
258 
259 	bkey_reassemble(ck->k, k);
260 
261 	ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
262 	if (unlikely(ret)) /* raced with another fill? */
263 		goto err;
264 
265 	atomic_long_inc(&bc->nr_keys);
266 	six_unlock_write(&ck->c.lock);
267 
268 	enum six_lock_type lock_want = __btree_lock_want(path, 0);
269 	if (lock_want == SIX_LOCK_read)
270 		six_lock_downgrade(&ck->c.lock);
271 	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
272 	path->uptodate = BTREE_ITER_UPTODATE;
273 	return 0;
274 err:
275 	bkey_cached_free(bc, ck);
276 	mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
277 
278 	return ret;
279 }
280 
281 static noinline int btree_key_cache_fill(struct btree_trans *trans,
282 					 struct btree_path *ck_path,
283 					 unsigned flags)
284 {
285 	if (flags & BTREE_ITER_cached_nofill) {
286 		ck_path->uptodate = BTREE_ITER_UPTODATE;
287 		return 0;
288 	}
289 
290 	struct bch_fs *c = trans->c;
291 	struct btree_iter iter;
292 	struct bkey_s_c k;
293 	int ret;
294 
295 	bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
296 			     BTREE_ITER_key_cache_fill|
297 			     BTREE_ITER_cached_nofill);
298 	iter.flags &= ~BTREE_ITER_with_journal;
299 	k = bch2_btree_iter_peek_slot(&iter);
300 	ret = bkey_err(k);
301 	if (ret)
302 		goto err;
303 
304 	/* Recheck after btree lookup, before allocating: */
305 	ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
306 	if (unlikely(ret))
307 		goto out;
308 
309 	ret = btree_key_cache_create(trans, ck_path, k);
310 	if (ret)
311 		goto err;
312 out:
313 	/* We're not likely to need this iterator again: */
314 	bch2_set_btree_iter_dontneed(&iter);
315 err:
316 	bch2_trans_iter_exit(trans, &iter);
317 	return ret;
318 }
319 
320 static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
321 						  struct btree_path *path)
322 {
323 	struct bch_fs *c = trans->c;
324 	struct bkey_cached *ck;
325 retry:
326 	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
327 	if (!ck)
328 		return -ENOENT;
329 
330 	enum six_lock_type lock_want = __btree_lock_want(path, 0);
331 
332 	int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
333 	if (ret)
334 		return ret;
335 
336 	if (ck->key.btree_id != path->btree_id ||
337 	    !bpos_eq(ck->key.pos, path->pos)) {
338 		six_unlock_type(&ck->c.lock, lock_want);
339 		goto retry;
340 	}
341 
342 	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
343 		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
344 
345 	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
346 	path->uptodate = BTREE_ITER_UPTODATE;
347 	return 0;
348 }
349 
350 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
351 				    unsigned flags)
352 {
353 	EBUG_ON(path->level);
354 
355 	path->l[1].b = NULL;
356 
357 	int ret;
358 	do {
359 		ret = btree_path_traverse_cached_fast(trans, path);
360 		if (unlikely(ret == -ENOENT))
361 			ret = btree_key_cache_fill(trans, path, flags);
362 	} while (ret == -EEXIST);
363 
364 	if (unlikely(ret)) {
365 		path->uptodate = BTREE_ITER_NEED_TRAVERSE;
366 		if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
367 			btree_node_unlock(trans, path, 0);
368 			path->l[0].b = ERR_PTR(ret);
369 		}
370 	}
371 	return ret;
372 }
373 
374 static int btree_key_cache_flush_pos(struct btree_trans *trans,
375 				     struct bkey_cached_key key,
376 				     u64 journal_seq,
377 				     unsigned commit_flags,
378 				     bool evict)
379 {
380 	struct bch_fs *c = trans->c;
381 	struct journal *j = &c->journal;
382 	struct btree_iter c_iter, b_iter;
383 	struct bkey_cached *ck = NULL;
384 	int ret;
385 
386 	bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
387 			     BTREE_ITER_slots|
388 			     BTREE_ITER_intent|
389 			     BTREE_ITER_all_snapshots);
390 	bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
391 			     BTREE_ITER_cached|
392 			     BTREE_ITER_intent);
393 	b_iter.flags &= ~BTREE_ITER_with_key_cache;
394 
395 	ret = bch2_btree_iter_traverse(&c_iter);
396 	if (ret)
397 		goto out;
398 
399 	ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
400 	if (!ck)
401 		goto out;
402 
403 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
404 		if (evict)
405 			goto evict;
406 		goto out;
407 	}
408 
409 	if (journal_seq && ck->journal.seq != journal_seq)
410 		goto out;
411 
412 	trans->journal_res.seq = ck->journal.seq;
413 
414 	/*
415 	 * If we're at the end of the journal, we really want to free up space
416 	 * in the journal right away - we don't want to pin that old journal
417 	 * sequence number with a new btree node write, we want to re-journal
418 	 * the update
419 	 */
420 	if (ck->journal.seq == journal_last_seq(j))
421 		commit_flags |= BCH_WATERMARK_reclaim;
422 
423 	if (ck->journal.seq != journal_last_seq(j) ||
424 	    !test_bit(JOURNAL_space_low, &c->journal.flags))
425 		commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
426 
427 	ret   = bch2_btree_iter_traverse(&b_iter) ?:
428 		bch2_trans_update(trans, &b_iter, ck->k,
429 				  BTREE_UPDATE_key_cache_reclaim|
430 				  BTREE_UPDATE_internal_snapshot_node|
431 				  BTREE_TRIGGER_norun) ?:
432 		bch2_trans_commit(trans, NULL, NULL,
433 				  BCH_TRANS_COMMIT_no_check_rw|
434 				  BCH_TRANS_COMMIT_no_enospc|
435 				  commit_flags);
436 
437 	bch2_fs_fatal_err_on(ret &&
438 			     !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
439 			     !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
440 			     !bch2_journal_error(j), c,
441 			     "flushing key cache: %s", bch2_err_str(ret));
442 	if (ret)
443 		goto out;
444 
445 	bch2_journal_pin_drop(j, &ck->journal);
446 
447 	struct btree_path *path = btree_iter_path(trans, &c_iter);
448 	BUG_ON(!btree_node_locked(path, 0));
449 
450 	if (!evict) {
451 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
452 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
453 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
454 		}
455 	} else {
456 		struct btree_path *path2;
457 		unsigned i;
458 evict:
459 		trans_for_each_path(trans, path2, i)
460 			if (path2 != path)
461 				__bch2_btree_path_unlock(trans, path2);
462 
463 		bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
464 
465 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
466 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
467 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
468 		}
469 
470 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
471 		if (bkey_cached_evict(&c->btree_key_cache, ck)) {
472 			bkey_cached_free(&c->btree_key_cache, ck);
473 		} else {
474 			six_unlock_write(&ck->c.lock);
475 			six_unlock_intent(&ck->c.lock);
476 		}
477 	}
478 out:
479 	bch2_trans_iter_exit(trans, &b_iter);
480 	bch2_trans_iter_exit(trans, &c_iter);
481 	return ret;
482 }
483 
484 int bch2_btree_key_cache_journal_flush(struct journal *j,
485 				struct journal_entry_pin *pin, u64 seq)
486 {
487 	struct bch_fs *c = container_of(j, struct bch_fs, journal);
488 	struct bkey_cached *ck =
489 		container_of(pin, struct bkey_cached, journal);
490 	struct bkey_cached_key key;
491 	struct btree_trans *trans = bch2_trans_get(c);
492 	int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
493 	int ret = 0;
494 
495 	btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
496 	key = ck->key;
497 
498 	if (ck->journal.seq != seq ||
499 	    !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
500 		six_unlock_read(&ck->c.lock);
501 		goto unlock;
502 	}
503 
504 	if (ck->seq != seq) {
505 		bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
506 					bch2_btree_key_cache_journal_flush);
507 		six_unlock_read(&ck->c.lock);
508 		goto unlock;
509 	}
510 	six_unlock_read(&ck->c.lock);
511 
512 	ret = lockrestart_do(trans,
513 		btree_key_cache_flush_pos(trans, key, seq,
514 				BCH_TRANS_COMMIT_journal_reclaim, false));
515 unlock:
516 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
517 
518 	bch2_trans_put(trans);
519 	return ret;
520 }
521 
522 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
523 				  unsigned flags,
524 				  struct btree_insert_entry *insert_entry)
525 {
526 	struct bch_fs *c = trans->c;
527 	struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
528 	struct bkey_i *insert = insert_entry->k;
529 	bool kick_reclaim = false;
530 
531 	BUG_ON(insert->k.u64s > ck->u64s);
532 
533 	bkey_copy(ck->k, insert);
534 
535 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
536 		EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
537 		set_bit(BKEY_CACHED_DIRTY, &ck->flags);
538 		atomic_long_inc(&c->btree_key_cache.nr_dirty);
539 
540 		if (bch2_nr_btree_keys_need_flush(c))
541 			kick_reclaim = true;
542 	}
543 
544 	/*
545 	 * To minimize lock contention, we only add the journal pin here and
546 	 * defer pin updates to the flush callback via ->seq. Be careful not to
547 	 * update ->seq on nojournal commits because we don't want to update the
548 	 * pin to a seq that doesn't include journal updates on disk. Otherwise
549 	 * we risk losing the update after a crash.
550 	 *
551 	 * The only exception is if the pin is not active in the first place. We
552 	 * have to add the pin because journal reclaim drives key cache
553 	 * flushing. The flush callback will not proceed unless ->seq matches
554 	 * the latest pin, so make sure it starts with a consistent value.
555 	 */
556 	if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
557 	    !journal_pin_active(&ck->journal)) {
558 		ck->seq = trans->journal_res.seq;
559 	}
560 	bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
561 			     &ck->journal, bch2_btree_key_cache_journal_flush);
562 
563 	if (kick_reclaim)
564 		journal_reclaim_kick(&c->journal);
565 	return true;
566 }
567 
568 void bch2_btree_key_cache_drop(struct btree_trans *trans,
569 			       struct btree_path *path)
570 {
571 	struct bch_fs *c = trans->c;
572 	struct btree_key_cache *bc = &c->btree_key_cache;
573 	struct bkey_cached *ck = (void *) path->l[0].b;
574 
575 	/*
576 	 * We just did an update to the btree, bypassing the key cache: the key
577 	 * cache key is now stale and must be dropped, even if dirty:
578 	 */
579 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
580 		clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
581 		atomic_long_dec(&c->btree_key_cache.nr_dirty);
582 		bch2_journal_pin_drop(&c->journal, &ck->journal);
583 	}
584 
585 	bkey_cached_evict(bc, ck);
586 	bkey_cached_free(bc, ck);
587 
588 	mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
589 	btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
590 	path->should_be_locked = false;
591 }
592 
593 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
594 					   struct shrink_control *sc)
595 {
596 	struct bch_fs *c = shrink->private_data;
597 	struct btree_key_cache *bc = &c->btree_key_cache;
598 	struct bucket_table *tbl;
599 	struct bkey_cached *ck;
600 	size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
601 	unsigned iter, start;
602 	int srcu_idx;
603 
604 	srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
605 	rcu_read_lock();
606 
607 	tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
608 
609 	/*
610 	 * Scanning is expensive while a rehash is in progress - most elements
611 	 * will be on the new hashtable, if it's in progress
612 	 *
613 	 * A rehash could still start while we're scanning - that's ok, we'll
614 	 * still see most elements.
615 	 */
616 	if (unlikely(tbl->nest)) {
617 		rcu_read_unlock();
618 		srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
619 		return SHRINK_STOP;
620 	}
621 
622 	iter = bc->shrink_iter;
623 	if (iter >= tbl->size)
624 		iter = 0;
625 	start = iter;
626 
627 	do {
628 		struct rhash_head *pos, *next;
629 
630 		pos = rht_ptr_rcu(&tbl->buckets[iter]);
631 
632 		while (!rht_is_a_nulls(pos)) {
633 			next = rht_dereference_bucket_rcu(pos->next, tbl, iter);
634 			ck = container_of(pos, struct bkey_cached, hash);
635 
636 			if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
637 				bc->skipped_dirty++;
638 			} else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
639 				clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
640 				bc->skipped_accessed++;
641 			} else if (!bkey_cached_lock_for_evict(ck)) {
642 				bc->skipped_lock_fail++;
643 			} else if (bkey_cached_evict(bc, ck)) {
644 				bkey_cached_free(bc, ck);
645 				bc->freed++;
646 				freed++;
647 			} else {
648 				six_unlock_write(&ck->c.lock);
649 				six_unlock_intent(&ck->c.lock);
650 			}
651 
652 			scanned++;
653 			if (scanned >= nr)
654 				goto out;
655 
656 			pos = next;
657 		}
658 
659 		iter++;
660 		if (iter >= tbl->size)
661 			iter = 0;
662 	} while (scanned < nr && iter != start);
663 out:
664 	bc->shrink_iter = iter;
665 
666 	rcu_read_unlock();
667 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
668 
669 	return freed;
670 }
671 
672 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
673 					    struct shrink_control *sc)
674 {
675 	struct bch_fs *c = shrink->private_data;
676 	struct btree_key_cache *bc = &c->btree_key_cache;
677 	long nr = atomic_long_read(&bc->nr_keys) -
678 		atomic_long_read(&bc->nr_dirty);
679 
680 	/*
681 	 * Avoid hammering our shrinker too much if it's nearly empty - the
682 	 * shrinker code doesn't take into account how big our cache is, if it's
683 	 * mostly empty but the system is under memory pressure it causes nasty
684 	 * lock contention:
685 	 */
686 	nr -= 128;
687 
688 	return max(0L, nr);
689 }
690 
691 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
692 {
693 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
694 	struct bucket_table *tbl;
695 	struct bkey_cached *ck;
696 	struct rhash_head *pos;
697 	LIST_HEAD(items);
698 	unsigned i;
699 
700 	shrinker_free(bc->shrink);
701 
702 	/*
703 	 * The loop is needed to guard against racing with rehash:
704 	 */
705 	while (atomic_long_read(&bc->nr_keys)) {
706 		rcu_read_lock();
707 		tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
708 		if (tbl) {
709 			if (tbl->nest) {
710 				/* wait for in progress rehash */
711 				rcu_read_unlock();
712 				mutex_lock(&bc->table.mutex);
713 				mutex_unlock(&bc->table.mutex);
714 				rcu_read_lock();
715 				continue;
716 			}
717 			for (i = 0; i < tbl->size; i++)
718 				while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
719 					ck = container_of(pos, struct bkey_cached, hash);
720 					BUG_ON(!bkey_cached_evict(bc, ck));
721 					kfree(ck->k);
722 					kmem_cache_free(bch2_key_cache, ck);
723 				}
724 		}
725 		rcu_read_unlock();
726 	}
727 
728 	if (atomic_long_read(&bc->nr_dirty) &&
729 	    !bch2_journal_error(&c->journal) &&
730 	    test_bit(BCH_FS_was_rw, &c->flags))
731 		panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
732 		      atomic_long_read(&bc->nr_dirty));
733 
734 	if (atomic_long_read(&bc->nr_keys))
735 		panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
736 		      atomic_long_read(&bc->nr_keys));
737 
738 	if (bc->table_init_done)
739 		rhashtable_destroy(&bc->table);
740 
741 	rcu_pending_exit(&bc->pending[0]);
742 	rcu_pending_exit(&bc->pending[1]);
743 
744 	free_percpu(bc->nr_pending);
745 }
746 
747 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
748 {
749 }
750 
751 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
752 {
753 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
754 	struct shrinker *shrink;
755 
756 	bc->nr_pending = alloc_percpu(size_t);
757 	if (!bc->nr_pending)
758 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
759 
760 	if (rcu_pending_init(&bc->pending[0], &c->btree_trans_barrier, __bkey_cached_free) ||
761 	    rcu_pending_init(&bc->pending[1], &c->btree_trans_barrier, __bkey_cached_free))
762 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
763 
764 	if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
765 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
766 
767 	bc->table_init_done = true;
768 
769 	shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
770 	if (!shrink)
771 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
772 	bc->shrink = shrink;
773 	shrink->count_objects	= bch2_btree_key_cache_count;
774 	shrink->scan_objects	= bch2_btree_key_cache_scan;
775 	shrink->batch		= 1 << 14;
776 	shrink->seeks		= 0;
777 	shrink->private_data	= c;
778 	shrinker_register(shrink);
779 	return 0;
780 }
781 
782 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
783 {
784 	printbuf_tabstop_push(out, 24);
785 	printbuf_tabstop_push(out, 12);
786 
787 	prt_printf(out, "keys:\t%lu\r\n",		atomic_long_read(&bc->nr_keys));
788 	prt_printf(out, "dirty:\t%lu\r\n",		atomic_long_read(&bc->nr_dirty));
789 	prt_printf(out, "table size:\t%u\r\n",		bc->table.tbl->size);
790 	prt_newline(out);
791 	prt_printf(out, "shrinker:\n");
792 	prt_printf(out, "requested_to_free:\t%lu\r\n",	bc->requested_to_free);
793 	prt_printf(out, "freed:\t%lu\r\n",		bc->freed);
794 	prt_printf(out, "skipped_dirty:\t%lu\r\n",	bc->skipped_dirty);
795 	prt_printf(out, "skipped_accessed:\t%lu\r\n",	bc->skipped_accessed);
796 	prt_printf(out, "skipped_lock_fail:\t%lu\r\n",	bc->skipped_lock_fail);
797 	prt_newline(out);
798 	prt_printf(out, "pending:\t%zu\r\n",		per_cpu_sum(bc->nr_pending));
799 }
800 
801 void bch2_btree_key_cache_exit(void)
802 {
803 	kmem_cache_destroy(bch2_key_cache);
804 }
805 
806 int __init bch2_btree_key_cache_init(void)
807 {
808 	bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
809 	if (!bch2_key_cache)
810 		return -ENOMEM;
811 
812 	return 0;
813 }
814