xref: /linux/fs/bcachefs/btree_key_cache.c (revision 9d56c248e5030d17ea9cd132634e86fdf0622d0e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14 
15 #include <linux/sched/mm.h>
16 
17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
18 {
19 	return id == BTREE_ID_subvolumes;
20 }
21 
22 static struct kmem_cache *bch2_key_cache;
23 
24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25 				       const void *obj)
26 {
27 	const struct bkey_cached *ck = obj;
28 	const struct bkey_cached_key *key = arg->key;
29 
30 	return ck->key.btree_id != key->btree_id ||
31 		!bpos_eq(ck->key.pos, key->pos);
32 }
33 
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35 	.head_offset	= offsetof(struct bkey_cached, hash),
36 	.key_offset	= offsetof(struct bkey_cached, key),
37 	.key_len	= sizeof(struct bkey_cached_key),
38 	.obj_cmpfn	= bch2_btree_key_cache_cmp_fn,
39 };
40 
41 __flatten
42 inline struct bkey_cached *
43 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
44 {
45 	struct bkey_cached_key key = {
46 		.btree_id	= btree_id,
47 		.pos		= pos,
48 	};
49 
50 	return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
51 				      bch2_btree_key_cache_params);
52 }
53 
54 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
55 {
56 	if (!six_trylock_intent(&ck->c.lock))
57 		return false;
58 
59 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
60 		six_unlock_intent(&ck->c.lock);
61 		return false;
62 	}
63 
64 	if (!six_trylock_write(&ck->c.lock)) {
65 		six_unlock_intent(&ck->c.lock);
66 		return false;
67 	}
68 
69 	return true;
70 }
71 
72 static void bkey_cached_evict(struct btree_key_cache *c,
73 			      struct bkey_cached *ck)
74 {
75 	BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
76 				      bch2_btree_key_cache_params));
77 	memset(&ck->key, ~0, sizeof(ck->key));
78 
79 	atomic_long_dec(&c->nr_keys);
80 }
81 
82 static void bkey_cached_free(struct btree_key_cache *bc,
83 			     struct bkey_cached *ck)
84 {
85 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
86 
87 	BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
88 
89 	ck->btree_trans_barrier_seq =
90 		start_poll_synchronize_srcu(&c->btree_trans_barrier);
91 
92 	if (ck->c.lock.readers) {
93 		list_move_tail(&ck->list, &bc->freed_pcpu);
94 		bc->nr_freed_pcpu++;
95 	} else {
96 		list_move_tail(&ck->list, &bc->freed_nonpcpu);
97 		bc->nr_freed_nonpcpu++;
98 	}
99 	atomic_long_inc(&bc->nr_freed);
100 
101 	kfree(ck->k);
102 	ck->k		= NULL;
103 	ck->u64s	= 0;
104 
105 	six_unlock_write(&ck->c.lock);
106 	six_unlock_intent(&ck->c.lock);
107 }
108 
109 #ifdef __KERNEL__
110 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
111 						   struct bkey_cached *ck)
112 {
113 	struct bkey_cached *pos;
114 
115 	bc->nr_freed_nonpcpu++;
116 
117 	list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
118 		if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
119 				 pos->btree_trans_barrier_seq)) {
120 			list_move(&ck->list, &pos->list);
121 			return;
122 		}
123 	}
124 
125 	list_move(&ck->list, &bc->freed_nonpcpu);
126 }
127 #endif
128 
129 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
130 					 struct bkey_cached *ck)
131 {
132 	BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
133 
134 	if (!ck->c.lock.readers) {
135 #ifdef __KERNEL__
136 		struct btree_key_cache_freelist *f;
137 		bool freed = false;
138 
139 		preempt_disable();
140 		f = this_cpu_ptr(bc->pcpu_freed);
141 
142 		if (f->nr < ARRAY_SIZE(f->objs)) {
143 			f->objs[f->nr++] = ck;
144 			freed = true;
145 		}
146 		preempt_enable();
147 
148 		if (!freed) {
149 			mutex_lock(&bc->lock);
150 			preempt_disable();
151 			f = this_cpu_ptr(bc->pcpu_freed);
152 
153 			while (f->nr > ARRAY_SIZE(f->objs) / 2) {
154 				struct bkey_cached *ck2 = f->objs[--f->nr];
155 
156 				__bkey_cached_move_to_freelist_ordered(bc, ck2);
157 			}
158 			preempt_enable();
159 
160 			__bkey_cached_move_to_freelist_ordered(bc, ck);
161 			mutex_unlock(&bc->lock);
162 		}
163 #else
164 		mutex_lock(&bc->lock);
165 		list_move_tail(&ck->list, &bc->freed_nonpcpu);
166 		bc->nr_freed_nonpcpu++;
167 		mutex_unlock(&bc->lock);
168 #endif
169 	} else {
170 		mutex_lock(&bc->lock);
171 		list_move_tail(&ck->list, &bc->freed_pcpu);
172 		mutex_unlock(&bc->lock);
173 	}
174 }
175 
176 static void bkey_cached_free_fast(struct btree_key_cache *bc,
177 				  struct bkey_cached *ck)
178 {
179 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
180 
181 	ck->btree_trans_barrier_seq =
182 		start_poll_synchronize_srcu(&c->btree_trans_barrier);
183 
184 	list_del_init(&ck->list);
185 	atomic_long_inc(&bc->nr_freed);
186 
187 	kfree(ck->k);
188 	ck->k		= NULL;
189 	ck->u64s	= 0;
190 
191 	bkey_cached_move_to_freelist(bc, ck);
192 
193 	six_unlock_write(&ck->c.lock);
194 	six_unlock_intent(&ck->c.lock);
195 }
196 
197 static struct bkey_cached *
198 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path,
199 		  bool *was_new)
200 {
201 	struct bch_fs *c = trans->c;
202 	struct btree_key_cache *bc = &c->btree_key_cache;
203 	struct bkey_cached *ck = NULL;
204 	bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
205 	int ret;
206 
207 	if (!pcpu_readers) {
208 #ifdef __KERNEL__
209 		struct btree_key_cache_freelist *f;
210 
211 		preempt_disable();
212 		f = this_cpu_ptr(bc->pcpu_freed);
213 		if (f->nr)
214 			ck = f->objs[--f->nr];
215 		preempt_enable();
216 
217 		if (!ck) {
218 			mutex_lock(&bc->lock);
219 			preempt_disable();
220 			f = this_cpu_ptr(bc->pcpu_freed);
221 
222 			while (!list_empty(&bc->freed_nonpcpu) &&
223 			       f->nr < ARRAY_SIZE(f->objs) / 2) {
224 				ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
225 				list_del_init(&ck->list);
226 				bc->nr_freed_nonpcpu--;
227 				f->objs[f->nr++] = ck;
228 			}
229 
230 			ck = f->nr ? f->objs[--f->nr] : NULL;
231 			preempt_enable();
232 			mutex_unlock(&bc->lock);
233 		}
234 #else
235 		mutex_lock(&bc->lock);
236 		if (!list_empty(&bc->freed_nonpcpu)) {
237 			ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
238 			list_del_init(&ck->list);
239 			bc->nr_freed_nonpcpu--;
240 		}
241 		mutex_unlock(&bc->lock);
242 #endif
243 	} else {
244 		mutex_lock(&bc->lock);
245 		if (!list_empty(&bc->freed_pcpu)) {
246 			ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
247 			list_del_init(&ck->list);
248 		}
249 		mutex_unlock(&bc->lock);
250 	}
251 
252 	if (ck) {
253 		ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
254 		if (unlikely(ret)) {
255 			bkey_cached_move_to_freelist(bc, ck);
256 			return ERR_PTR(ret);
257 		}
258 
259 		path->l[0].b = (void *) ck;
260 		path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
261 		mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
262 
263 		ret = bch2_btree_node_lock_write(trans, path, &ck->c);
264 		if (unlikely(ret)) {
265 			btree_node_unlock(trans, path, 0);
266 			bkey_cached_move_to_freelist(bc, ck);
267 			return ERR_PTR(ret);
268 		}
269 
270 		return ck;
271 	}
272 
273 	ck = allocate_dropping_locks(trans, ret,
274 			kmem_cache_zalloc(bch2_key_cache, _gfp));
275 	if (ret) {
276 		kmem_cache_free(bch2_key_cache, ck);
277 		return ERR_PTR(ret);
278 	}
279 
280 	if (!ck)
281 		return NULL;
282 
283 	INIT_LIST_HEAD(&ck->list);
284 	bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
285 
286 	ck->c.cached = true;
287 	BUG_ON(!six_trylock_intent(&ck->c.lock));
288 	BUG_ON(!six_trylock_write(&ck->c.lock));
289 	*was_new = true;
290 	return ck;
291 }
292 
293 static struct bkey_cached *
294 bkey_cached_reuse(struct btree_key_cache *c)
295 {
296 	struct bucket_table *tbl;
297 	struct rhash_head *pos;
298 	struct bkey_cached *ck;
299 	unsigned i;
300 
301 	mutex_lock(&c->lock);
302 	rcu_read_lock();
303 	tbl = rht_dereference_rcu(c->table.tbl, &c->table);
304 	for (i = 0; i < tbl->size; i++)
305 		rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
306 			if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
307 			    bkey_cached_lock_for_evict(ck)) {
308 				bkey_cached_evict(c, ck);
309 				goto out;
310 			}
311 		}
312 	ck = NULL;
313 out:
314 	rcu_read_unlock();
315 	mutex_unlock(&c->lock);
316 	return ck;
317 }
318 
319 static struct bkey_cached *
320 btree_key_cache_create(struct btree_trans *trans, struct btree_path *path)
321 {
322 	struct bch_fs *c = trans->c;
323 	struct btree_key_cache *bc = &c->btree_key_cache;
324 	struct bkey_cached *ck;
325 	bool was_new = false;
326 
327 	ck = bkey_cached_alloc(trans, path, &was_new);
328 	if (IS_ERR(ck))
329 		return ck;
330 
331 	if (unlikely(!ck)) {
332 		ck = bkey_cached_reuse(bc);
333 		if (unlikely(!ck)) {
334 			bch_err(c, "error allocating memory for key cache item, btree %s",
335 				bch2_btree_id_str(path->btree_id));
336 			return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create);
337 		}
338 
339 		mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
340 	}
341 
342 	ck->c.level		= 0;
343 	ck->c.btree_id		= path->btree_id;
344 	ck->key.btree_id	= path->btree_id;
345 	ck->key.pos		= path->pos;
346 	ck->valid		= false;
347 	ck->flags		= 1U << BKEY_CACHED_ACCESSED;
348 
349 	if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
350 					  &ck->hash,
351 					  bch2_btree_key_cache_params))) {
352 		/* We raced with another fill: */
353 
354 		if (likely(was_new)) {
355 			six_unlock_write(&ck->c.lock);
356 			six_unlock_intent(&ck->c.lock);
357 			kfree(ck);
358 		} else {
359 			bkey_cached_free_fast(bc, ck);
360 		}
361 
362 		mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
363 		return NULL;
364 	}
365 
366 	atomic_long_inc(&bc->nr_keys);
367 
368 	six_unlock_write(&ck->c.lock);
369 
370 	return ck;
371 }
372 
373 static int btree_key_cache_fill(struct btree_trans *trans,
374 				struct btree_path *ck_path,
375 				struct bkey_cached *ck)
376 {
377 	struct btree_iter iter;
378 	struct bkey_s_c k;
379 	unsigned new_u64s = 0;
380 	struct bkey_i *new_k = NULL;
381 	int ret;
382 
383 	bch2_trans_iter_init(trans, &iter, ck->key.btree_id, ck->key.pos,
384 			     BTREE_ITER_KEY_CACHE_FILL|
385 			     BTREE_ITER_CACHED_NOFILL);
386 	iter.flags &= ~BTREE_ITER_WITH_JOURNAL;
387 	k = bch2_btree_iter_peek_slot(&iter);
388 	ret = bkey_err(k);
389 	if (ret)
390 		goto err;
391 
392 	if (!bch2_btree_node_relock(trans, ck_path, 0)) {
393 		trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
394 		ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
395 		goto err;
396 	}
397 
398 	/*
399 	 * bch2_varint_decode can read past the end of the buffer by at
400 	 * most 7 bytes (it won't be used):
401 	 */
402 	new_u64s = k.k->u64s + 1;
403 
404 	/*
405 	 * Allocate some extra space so that the transaction commit path is less
406 	 * likely to have to reallocate, since that requires a transaction
407 	 * restart:
408 	 */
409 	new_u64s = min(256U, (new_u64s * 3) / 2);
410 
411 	if (new_u64s > ck->u64s) {
412 		new_u64s = roundup_pow_of_two(new_u64s);
413 		new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN);
414 		if (!new_k) {
415 			bch2_trans_unlock(trans);
416 
417 			new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL);
418 			if (!new_k) {
419 				bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
420 					bch2_btree_id_str(ck->key.btree_id), new_u64s);
421 				ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
422 				goto err;
423 			}
424 
425 			if (!bch2_btree_node_relock(trans, ck_path, 0)) {
426 				kfree(new_k);
427 				trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
428 				ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
429 				goto err;
430 			}
431 
432 			ret = bch2_trans_relock(trans);
433 			if (ret) {
434 				kfree(new_k);
435 				goto err;
436 			}
437 		}
438 	}
439 
440 	ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c);
441 	if (ret) {
442 		kfree(new_k);
443 		goto err;
444 	}
445 
446 	if (new_k) {
447 		kfree(ck->k);
448 		ck->u64s = new_u64s;
449 		ck->k = new_k;
450 	}
451 
452 	bkey_reassemble(ck->k, k);
453 	ck->valid = true;
454 	bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
455 
456 	/* We're not likely to need this iterator again: */
457 	set_btree_iter_dontneed(&iter);
458 err:
459 	bch2_trans_iter_exit(trans, &iter);
460 	return ret;
461 }
462 
463 static noinline int
464 bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path,
465 					 unsigned flags)
466 {
467 	struct bch_fs *c = trans->c;
468 	struct bkey_cached *ck;
469 	int ret = 0;
470 
471 	BUG_ON(path->level);
472 
473 	path->l[1].b = NULL;
474 
475 	if (bch2_btree_node_relock_notrace(trans, path, 0)) {
476 		ck = (void *) path->l[0].b;
477 		goto fill;
478 	}
479 retry:
480 	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
481 	if (!ck) {
482 		ck = btree_key_cache_create(trans, path);
483 		ret = PTR_ERR_OR_ZERO(ck);
484 		if (ret)
485 			goto err;
486 		if (!ck)
487 			goto retry;
488 
489 		mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
490 		path->locks_want = 1;
491 	} else {
492 		enum six_lock_type lock_want = __btree_lock_want(path, 0);
493 
494 		ret = btree_node_lock(trans, path, (void *) ck, 0,
495 				      lock_want, _THIS_IP_);
496 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
497 			goto err;
498 
499 		BUG_ON(ret);
500 
501 		if (ck->key.btree_id != path->btree_id ||
502 		    !bpos_eq(ck->key.pos, path->pos)) {
503 			six_unlock_type(&ck->c.lock, lock_want);
504 			goto retry;
505 		}
506 
507 		mark_btree_node_locked(trans, path, 0,
508 				       (enum btree_node_locked_type) lock_want);
509 	}
510 
511 	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
512 	path->l[0].b		= (void *) ck;
513 fill:
514 	path->uptodate = BTREE_ITER_UPTODATE;
515 
516 	if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) {
517 		/*
518 		 * Using the underscore version because we haven't set
519 		 * path->uptodate yet:
520 		 */
521 		if (!path->locks_want &&
522 		    !__bch2_btree_path_upgrade(trans, path, 1, NULL)) {
523 			trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_);
524 			ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade);
525 			goto err;
526 		}
527 
528 		ret = btree_key_cache_fill(trans, path, ck);
529 		if (ret)
530 			goto err;
531 
532 		ret = bch2_btree_path_relock(trans, path, _THIS_IP_);
533 		if (ret)
534 			goto err;
535 
536 		path->uptodate = BTREE_ITER_UPTODATE;
537 	}
538 
539 	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
540 		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
541 
542 	BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
543 	BUG_ON(path->uptodate);
544 
545 	return ret;
546 err:
547 	path->uptodate = BTREE_ITER_NEED_TRAVERSE;
548 	if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
549 		btree_node_unlock(trans, path, 0);
550 		path->l[0].b = ERR_PTR(ret);
551 	}
552 	return ret;
553 }
554 
555 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
556 				    unsigned flags)
557 {
558 	struct bch_fs *c = trans->c;
559 	struct bkey_cached *ck;
560 	int ret = 0;
561 
562 	EBUG_ON(path->level);
563 
564 	path->l[1].b = NULL;
565 
566 	if (bch2_btree_node_relock_notrace(trans, path, 0)) {
567 		ck = (void *) path->l[0].b;
568 		goto fill;
569 	}
570 retry:
571 	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
572 	if (!ck) {
573 		return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
574 	} else {
575 		enum six_lock_type lock_want = __btree_lock_want(path, 0);
576 
577 		ret = btree_node_lock(trans, path, (void *) ck, 0,
578 				      lock_want, _THIS_IP_);
579 		EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart));
580 
581 		if (ret)
582 			return ret;
583 
584 		if (ck->key.btree_id != path->btree_id ||
585 		    !bpos_eq(ck->key.pos, path->pos)) {
586 			six_unlock_type(&ck->c.lock, lock_want);
587 			goto retry;
588 		}
589 
590 		mark_btree_node_locked(trans, path, 0,
591 				       (enum btree_node_locked_type) lock_want);
592 	}
593 
594 	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
595 	path->l[0].b		= (void *) ck;
596 fill:
597 	if (!ck->valid)
598 		return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
599 
600 	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
601 		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
602 
603 	path->uptodate = BTREE_ITER_UPTODATE;
604 	EBUG_ON(!ck->valid);
605 	EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
606 
607 	return ret;
608 }
609 
610 static int btree_key_cache_flush_pos(struct btree_trans *trans,
611 				     struct bkey_cached_key key,
612 				     u64 journal_seq,
613 				     unsigned commit_flags,
614 				     bool evict)
615 {
616 	struct bch_fs *c = trans->c;
617 	struct journal *j = &c->journal;
618 	struct btree_iter c_iter, b_iter;
619 	struct bkey_cached *ck = NULL;
620 	int ret;
621 
622 	bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
623 			     BTREE_ITER_SLOTS|
624 			     BTREE_ITER_INTENT|
625 			     BTREE_ITER_ALL_SNAPSHOTS);
626 	bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
627 			     BTREE_ITER_CACHED|
628 			     BTREE_ITER_INTENT);
629 	b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE;
630 
631 	ret = bch2_btree_iter_traverse(&c_iter);
632 	if (ret)
633 		goto out;
634 
635 	ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
636 	if (!ck)
637 		goto out;
638 
639 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
640 		if (evict)
641 			goto evict;
642 		goto out;
643 	}
644 
645 	BUG_ON(!ck->valid);
646 
647 	if (journal_seq && ck->journal.seq != journal_seq)
648 		goto out;
649 
650 	trans->journal_res.seq = ck->journal.seq;
651 
652 	/*
653 	 * If we're at the end of the journal, we really want to free up space
654 	 * in the journal right away - we don't want to pin that old journal
655 	 * sequence number with a new btree node write, we want to re-journal
656 	 * the update
657 	 */
658 	if (ck->journal.seq == journal_last_seq(j))
659 		commit_flags |= BCH_WATERMARK_reclaim;
660 
661 	if (ck->journal.seq != journal_last_seq(j) ||
662 	    j->watermark == BCH_WATERMARK_stripe)
663 		commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
664 
665 	ret   = bch2_btree_iter_traverse(&b_iter) ?:
666 		bch2_trans_update(trans, &b_iter, ck->k,
667 				  BTREE_UPDATE_KEY_CACHE_RECLAIM|
668 				  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
669 				  BTREE_TRIGGER_NORUN) ?:
670 		bch2_trans_commit(trans, NULL, NULL,
671 				  BCH_TRANS_COMMIT_no_check_rw|
672 				  BCH_TRANS_COMMIT_no_enospc|
673 				  commit_flags);
674 
675 	bch2_fs_fatal_err_on(ret &&
676 			     !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
677 			     !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
678 			     !bch2_journal_error(j), c,
679 			     "flushing key cache: %s", bch2_err_str(ret));
680 	if (ret)
681 		goto out;
682 
683 	bch2_journal_pin_drop(j, &ck->journal);
684 
685 	struct btree_path *path = btree_iter_path(trans, &c_iter);
686 	BUG_ON(!btree_node_locked(path, 0));
687 
688 	if (!evict) {
689 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
690 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
691 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
692 		}
693 	} else {
694 		struct btree_path *path2;
695 		unsigned i;
696 evict:
697 		trans_for_each_path(trans, path2, i)
698 			if (path2 != path)
699 				__bch2_btree_path_unlock(trans, path2);
700 
701 		bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
702 
703 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
704 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
705 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
706 		}
707 
708 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
709 		bkey_cached_evict(&c->btree_key_cache, ck);
710 		bkey_cached_free_fast(&c->btree_key_cache, ck);
711 	}
712 out:
713 	bch2_trans_iter_exit(trans, &b_iter);
714 	bch2_trans_iter_exit(trans, &c_iter);
715 	return ret;
716 }
717 
718 int bch2_btree_key_cache_journal_flush(struct journal *j,
719 				struct journal_entry_pin *pin, u64 seq)
720 {
721 	struct bch_fs *c = container_of(j, struct bch_fs, journal);
722 	struct bkey_cached *ck =
723 		container_of(pin, struct bkey_cached, journal);
724 	struct bkey_cached_key key;
725 	struct btree_trans *trans = bch2_trans_get(c);
726 	int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
727 	int ret = 0;
728 
729 	btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
730 	key = ck->key;
731 
732 	if (ck->journal.seq != seq ||
733 	    !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
734 		six_unlock_read(&ck->c.lock);
735 		goto unlock;
736 	}
737 
738 	if (ck->seq != seq) {
739 		bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
740 					bch2_btree_key_cache_journal_flush);
741 		six_unlock_read(&ck->c.lock);
742 		goto unlock;
743 	}
744 	six_unlock_read(&ck->c.lock);
745 
746 	ret = lockrestart_do(trans,
747 		btree_key_cache_flush_pos(trans, key, seq,
748 				BCH_TRANS_COMMIT_journal_reclaim, false));
749 unlock:
750 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
751 
752 	bch2_trans_put(trans);
753 	return ret;
754 }
755 
756 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
757 				  unsigned flags,
758 				  struct btree_insert_entry *insert_entry)
759 {
760 	struct bch_fs *c = trans->c;
761 	struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
762 	struct bkey_i *insert = insert_entry->k;
763 	bool kick_reclaim = false;
764 
765 	BUG_ON(insert->k.u64s > ck->u64s);
766 
767 	bkey_copy(ck->k, insert);
768 	ck->valid = true;
769 
770 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
771 		EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
772 		set_bit(BKEY_CACHED_DIRTY, &ck->flags);
773 		atomic_long_inc(&c->btree_key_cache.nr_dirty);
774 
775 		if (bch2_nr_btree_keys_need_flush(c))
776 			kick_reclaim = true;
777 	}
778 
779 	/*
780 	 * To minimize lock contention, we only add the journal pin here and
781 	 * defer pin updates to the flush callback via ->seq. Be careful not to
782 	 * update ->seq on nojournal commits because we don't want to update the
783 	 * pin to a seq that doesn't include journal updates on disk. Otherwise
784 	 * we risk losing the update after a crash.
785 	 *
786 	 * The only exception is if the pin is not active in the first place. We
787 	 * have to add the pin because journal reclaim drives key cache
788 	 * flushing. The flush callback will not proceed unless ->seq matches
789 	 * the latest pin, so make sure it starts with a consistent value.
790 	 */
791 	if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) ||
792 	    !journal_pin_active(&ck->journal)) {
793 		ck->seq = trans->journal_res.seq;
794 	}
795 	bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
796 			     &ck->journal, bch2_btree_key_cache_journal_flush);
797 
798 	if (kick_reclaim)
799 		journal_reclaim_kick(&c->journal);
800 	return true;
801 }
802 
803 void bch2_btree_key_cache_drop(struct btree_trans *trans,
804 			       struct btree_path *path)
805 {
806 	struct bch_fs *c = trans->c;
807 	struct bkey_cached *ck = (void *) path->l[0].b;
808 
809 	BUG_ON(!ck->valid);
810 
811 	/*
812 	 * We just did an update to the btree, bypassing the key cache: the key
813 	 * cache key is now stale and must be dropped, even if dirty:
814 	 */
815 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
816 		clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
817 		atomic_long_dec(&c->btree_key_cache.nr_dirty);
818 		bch2_journal_pin_drop(&c->journal, &ck->journal);
819 	}
820 
821 	ck->valid = false;
822 }
823 
824 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
825 					   struct shrink_control *sc)
826 {
827 	struct bch_fs *c = shrink->private_data;
828 	struct btree_key_cache *bc = &c->btree_key_cache;
829 	struct bucket_table *tbl;
830 	struct bkey_cached *ck, *t;
831 	size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
832 	unsigned start, flags;
833 	int srcu_idx;
834 
835 	mutex_lock(&bc->lock);
836 	srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
837 	flags = memalloc_nofs_save();
838 
839 	/*
840 	 * Newest freed entries are at the end of the list - once we hit one
841 	 * that's too new to be freed, we can bail out:
842 	 */
843 	scanned += bc->nr_freed_nonpcpu;
844 
845 	list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
846 		if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
847 						 ck->btree_trans_barrier_seq))
848 			break;
849 
850 		list_del(&ck->list);
851 		six_lock_exit(&ck->c.lock);
852 		kmem_cache_free(bch2_key_cache, ck);
853 		atomic_long_dec(&bc->nr_freed);
854 		freed++;
855 		bc->nr_freed_nonpcpu--;
856 	}
857 
858 	if (scanned >= nr)
859 		goto out;
860 
861 	scanned += bc->nr_freed_pcpu;
862 
863 	list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
864 		if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
865 						 ck->btree_trans_barrier_seq))
866 			break;
867 
868 		list_del(&ck->list);
869 		six_lock_exit(&ck->c.lock);
870 		kmem_cache_free(bch2_key_cache, ck);
871 		atomic_long_dec(&bc->nr_freed);
872 		freed++;
873 		bc->nr_freed_pcpu--;
874 	}
875 
876 	if (scanned >= nr)
877 		goto out;
878 
879 	rcu_read_lock();
880 	tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
881 	if (bc->shrink_iter >= tbl->size)
882 		bc->shrink_iter = 0;
883 	start = bc->shrink_iter;
884 
885 	do {
886 		struct rhash_head *pos, *next;
887 
888 		pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
889 
890 		while (!rht_is_a_nulls(pos)) {
891 			next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
892 			ck = container_of(pos, struct bkey_cached, hash);
893 
894 			if (test_bit(BKEY_CACHED_DIRTY, &ck->flags))
895 				goto next;
896 
897 			if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
898 				clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
899 			else if (bkey_cached_lock_for_evict(ck)) {
900 				bkey_cached_evict(bc, ck);
901 				bkey_cached_free(bc, ck);
902 			}
903 
904 			scanned++;
905 			if (scanned >= nr)
906 				break;
907 next:
908 			pos = next;
909 		}
910 
911 		bc->shrink_iter++;
912 		if (bc->shrink_iter >= tbl->size)
913 			bc->shrink_iter = 0;
914 	} while (scanned < nr && bc->shrink_iter != start);
915 
916 	rcu_read_unlock();
917 out:
918 	memalloc_nofs_restore(flags);
919 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
920 	mutex_unlock(&bc->lock);
921 
922 	return freed;
923 }
924 
925 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
926 					    struct shrink_control *sc)
927 {
928 	struct bch_fs *c = shrink->private_data;
929 	struct btree_key_cache *bc = &c->btree_key_cache;
930 	long nr = atomic_long_read(&bc->nr_keys) -
931 		atomic_long_read(&bc->nr_dirty);
932 
933 	return max(0L, nr);
934 }
935 
936 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
937 {
938 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
939 	struct bucket_table *tbl;
940 	struct bkey_cached *ck, *n;
941 	struct rhash_head *pos;
942 	LIST_HEAD(items);
943 	unsigned i;
944 #ifdef __KERNEL__
945 	int cpu;
946 #endif
947 
948 	shrinker_free(bc->shrink);
949 
950 	mutex_lock(&bc->lock);
951 
952 	/*
953 	 * The loop is needed to guard against racing with rehash:
954 	 */
955 	while (atomic_long_read(&bc->nr_keys)) {
956 		rcu_read_lock();
957 		tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
958 		if (tbl)
959 			for (i = 0; i < tbl->size; i++)
960 				rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
961 					bkey_cached_evict(bc, ck);
962 					list_add(&ck->list, &items);
963 				}
964 		rcu_read_unlock();
965 	}
966 
967 #ifdef __KERNEL__
968 	for_each_possible_cpu(cpu) {
969 		struct btree_key_cache_freelist *f =
970 			per_cpu_ptr(bc->pcpu_freed, cpu);
971 
972 		for (i = 0; i < f->nr; i++) {
973 			ck = f->objs[i];
974 			list_add(&ck->list, &items);
975 		}
976 	}
977 #endif
978 
979 	BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
980 	BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
981 
982 	list_splice(&bc->freed_pcpu,	&items);
983 	list_splice(&bc->freed_nonpcpu,	&items);
984 
985 	mutex_unlock(&bc->lock);
986 
987 	list_for_each_entry_safe(ck, n, &items, list) {
988 		cond_resched();
989 
990 		list_del(&ck->list);
991 		kfree(ck->k);
992 		six_lock_exit(&ck->c.lock);
993 		kmem_cache_free(bch2_key_cache, ck);
994 	}
995 
996 	if (atomic_long_read(&bc->nr_dirty) &&
997 	    !bch2_journal_error(&c->journal) &&
998 	    test_bit(BCH_FS_was_rw, &c->flags))
999 		panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
1000 		      atomic_long_read(&bc->nr_dirty));
1001 
1002 	if (atomic_long_read(&bc->nr_keys))
1003 		panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
1004 		      atomic_long_read(&bc->nr_keys));
1005 
1006 	if (bc->table_init_done)
1007 		rhashtable_destroy(&bc->table);
1008 
1009 	free_percpu(bc->pcpu_freed);
1010 }
1011 
1012 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
1013 {
1014 	mutex_init(&c->lock);
1015 	INIT_LIST_HEAD(&c->freed_pcpu);
1016 	INIT_LIST_HEAD(&c->freed_nonpcpu);
1017 }
1018 
1019 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
1020 {
1021 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
1022 	struct shrinker *shrink;
1023 
1024 #ifdef __KERNEL__
1025 	bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
1026 	if (!bc->pcpu_freed)
1027 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1028 #endif
1029 
1030 	if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
1031 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1032 
1033 	bc->table_init_done = true;
1034 
1035 	shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
1036 	if (!shrink)
1037 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1038 	bc->shrink = shrink;
1039 	shrink->seeks		= 0;
1040 	shrink->count_objects	= bch2_btree_key_cache_count;
1041 	shrink->scan_objects	= bch2_btree_key_cache_scan;
1042 	shrink->private_data	= c;
1043 	shrinker_register(shrink);
1044 	return 0;
1045 }
1046 
1047 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c)
1048 {
1049 	prt_printf(out, "nr_freed:\t%lu",	atomic_long_read(&c->nr_freed));
1050 	prt_newline(out);
1051 	prt_printf(out, "nr_keys:\t%lu",	atomic_long_read(&c->nr_keys));
1052 	prt_newline(out);
1053 	prt_printf(out, "nr_dirty:\t%lu",	atomic_long_read(&c->nr_dirty));
1054 	prt_newline(out);
1055 }
1056 
1057 void bch2_btree_key_cache_exit(void)
1058 {
1059 	kmem_cache_destroy(bch2_key_cache);
1060 }
1061 
1062 int __init bch2_btree_key_cache_init(void)
1063 {
1064 	bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1065 	if (!bch2_key_cache)
1066 		return -ENOMEM;
1067 
1068 	return 0;
1069 }
1070