xref: /linux/fs/bcachefs/btree_key_cache.c (revision 0b0e9cdb3d1f8fda823b592b0667b4b0595e2ba7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14 
15 #include <linux/sched/mm.h>
16 
17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
18 {
19 	return id == BTREE_ID_subvolumes;
20 }
21 
22 static struct kmem_cache *bch2_key_cache;
23 
24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25 				       const void *obj)
26 {
27 	const struct bkey_cached *ck = obj;
28 	const struct bkey_cached_key *key = arg->key;
29 
30 	return ck->key.btree_id != key->btree_id ||
31 		!bpos_eq(ck->key.pos, key->pos);
32 }
33 
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35 	.head_offset		= offsetof(struct bkey_cached, hash),
36 	.key_offset		= offsetof(struct bkey_cached, key),
37 	.key_len		= sizeof(struct bkey_cached_key),
38 	.obj_cmpfn		= bch2_btree_key_cache_cmp_fn,
39 	.automatic_shrinking	= true,
40 };
41 
42 static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
43 					 struct bkey_cached *ck,
44 					 enum btree_node_locked_type lock_held)
45 {
46 	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
47 	path->l[0].b		= (void *) ck;
48 	mark_btree_node_locked(trans, path, 0, lock_held);
49 }
50 
51 __flatten
52 inline struct bkey_cached *
53 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
54 {
55 	struct bkey_cached_key key = {
56 		.btree_id	= btree_id,
57 		.pos		= pos,
58 	};
59 
60 	return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
61 				      bch2_btree_key_cache_params);
62 }
63 
64 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
65 {
66 	if (!six_trylock_intent(&ck->c.lock))
67 		return false;
68 
69 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
70 		six_unlock_intent(&ck->c.lock);
71 		return false;
72 	}
73 
74 	if (!six_trylock_write(&ck->c.lock)) {
75 		six_unlock_intent(&ck->c.lock);
76 		return false;
77 	}
78 
79 	return true;
80 }
81 
82 static void bkey_cached_evict(struct btree_key_cache *c,
83 			      struct bkey_cached *ck)
84 {
85 	BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
86 				      bch2_btree_key_cache_params));
87 	memset(&ck->key, ~0, sizeof(ck->key));
88 
89 	atomic_long_dec(&c->nr_keys);
90 }
91 
92 static void bkey_cached_free(struct btree_key_cache *bc,
93 			     struct bkey_cached *ck)
94 {
95 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
96 
97 	BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
98 
99 	ck->btree_trans_barrier_seq =
100 		start_poll_synchronize_srcu(&c->btree_trans_barrier);
101 
102 	if (ck->c.lock.readers) {
103 		list_move_tail(&ck->list, &bc->freed_pcpu);
104 		bc->nr_freed_pcpu++;
105 	} else {
106 		list_move_tail(&ck->list, &bc->freed_nonpcpu);
107 		bc->nr_freed_nonpcpu++;
108 	}
109 	atomic_long_inc(&bc->nr_freed);
110 
111 	kfree(ck->k);
112 	ck->k		= NULL;
113 	ck->u64s	= 0;
114 
115 	six_unlock_write(&ck->c.lock);
116 	six_unlock_intent(&ck->c.lock);
117 }
118 
119 #ifdef __KERNEL__
120 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
121 						   struct bkey_cached *ck)
122 {
123 	struct bkey_cached *pos;
124 
125 	bc->nr_freed_nonpcpu++;
126 
127 	list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
128 		if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
129 				 pos->btree_trans_barrier_seq)) {
130 			list_move(&ck->list, &pos->list);
131 			return;
132 		}
133 	}
134 
135 	list_move(&ck->list, &bc->freed_nonpcpu);
136 }
137 #endif
138 
139 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
140 					 struct bkey_cached *ck)
141 {
142 	BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
143 
144 	if (!ck->c.lock.readers) {
145 #ifdef __KERNEL__
146 		struct btree_key_cache_freelist *f;
147 		bool freed = false;
148 
149 		preempt_disable();
150 		f = this_cpu_ptr(bc->pcpu_freed);
151 
152 		if (f->nr < ARRAY_SIZE(f->objs)) {
153 			f->objs[f->nr++] = ck;
154 			freed = true;
155 		}
156 		preempt_enable();
157 
158 		if (!freed) {
159 			mutex_lock(&bc->lock);
160 			preempt_disable();
161 			f = this_cpu_ptr(bc->pcpu_freed);
162 
163 			while (f->nr > ARRAY_SIZE(f->objs) / 2) {
164 				struct bkey_cached *ck2 = f->objs[--f->nr];
165 
166 				__bkey_cached_move_to_freelist_ordered(bc, ck2);
167 			}
168 			preempt_enable();
169 
170 			__bkey_cached_move_to_freelist_ordered(bc, ck);
171 			mutex_unlock(&bc->lock);
172 		}
173 #else
174 		mutex_lock(&bc->lock);
175 		list_move_tail(&ck->list, &bc->freed_nonpcpu);
176 		bc->nr_freed_nonpcpu++;
177 		mutex_unlock(&bc->lock);
178 #endif
179 	} else {
180 		mutex_lock(&bc->lock);
181 		list_move_tail(&ck->list, &bc->freed_pcpu);
182 		bc->nr_freed_pcpu++;
183 		mutex_unlock(&bc->lock);
184 	}
185 }
186 
187 static void bkey_cached_free_fast(struct btree_key_cache *bc,
188 				  struct bkey_cached *ck)
189 {
190 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
191 
192 	ck->btree_trans_barrier_seq =
193 		start_poll_synchronize_srcu(&c->btree_trans_barrier);
194 
195 	list_del_init(&ck->list);
196 	atomic_long_inc(&bc->nr_freed);
197 
198 	kfree(ck->k);
199 	ck->k		= NULL;
200 	ck->u64s	= 0;
201 
202 	bkey_cached_move_to_freelist(bc, ck);
203 
204 	six_unlock_write(&ck->c.lock);
205 	six_unlock_intent(&ck->c.lock);
206 }
207 
208 static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
209 {
210 	struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
211 	if (unlikely(!ck))
212 		return NULL;
213 	ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
214 	if (unlikely(!ck->k)) {
215 		kmem_cache_free(bch2_key_cache, ck);
216 		return NULL;
217 	}
218 	ck->u64s = key_u64s;
219 	return ck;
220 }
221 
222 static struct bkey_cached *
223 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
224 {
225 	struct bch_fs *c = trans->c;
226 	struct btree_key_cache *bc = &c->btree_key_cache;
227 	struct bkey_cached *ck = NULL;
228 	bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
229 	int ret;
230 
231 	if (!pcpu_readers) {
232 #ifdef __KERNEL__
233 		struct btree_key_cache_freelist *f;
234 
235 		preempt_disable();
236 		f = this_cpu_ptr(bc->pcpu_freed);
237 		if (f->nr)
238 			ck = f->objs[--f->nr];
239 		preempt_enable();
240 
241 		if (!ck) {
242 			mutex_lock(&bc->lock);
243 			preempt_disable();
244 			f = this_cpu_ptr(bc->pcpu_freed);
245 
246 			while (!list_empty(&bc->freed_nonpcpu) &&
247 			       f->nr < ARRAY_SIZE(f->objs) / 2) {
248 				ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
249 				list_del_init(&ck->list);
250 				bc->nr_freed_nonpcpu--;
251 				f->objs[f->nr++] = ck;
252 			}
253 
254 			ck = f->nr ? f->objs[--f->nr] : NULL;
255 			preempt_enable();
256 			mutex_unlock(&bc->lock);
257 		}
258 #else
259 		mutex_lock(&bc->lock);
260 		if (!list_empty(&bc->freed_nonpcpu)) {
261 			ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
262 			list_del_init(&ck->list);
263 			bc->nr_freed_nonpcpu--;
264 		}
265 		mutex_unlock(&bc->lock);
266 #endif
267 	} else {
268 		mutex_lock(&bc->lock);
269 		if (!list_empty(&bc->freed_pcpu)) {
270 			ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
271 			list_del_init(&ck->list);
272 			bc->nr_freed_pcpu--;
273 		}
274 		mutex_unlock(&bc->lock);
275 	}
276 
277 	if (ck) {
278 		ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
279 		if (unlikely(ret)) {
280 			bkey_cached_move_to_freelist(bc, ck);
281 			return ERR_PTR(ret);
282 		}
283 
284 		btree_path_cached_set(trans, path, ck, BTREE_NODE_INTENT_LOCKED);
285 
286 		ret = bch2_btree_node_lock_write(trans, path, &ck->c);
287 		if (unlikely(ret)) {
288 			btree_node_unlock(trans, path, 0);
289 			bkey_cached_move_to_freelist(bc, ck);
290 			return ERR_PTR(ret);
291 		}
292 
293 		return ck;
294 	}
295 
296 	ck = allocate_dropping_locks(trans, ret,
297 				     __bkey_cached_alloc(key_u64s, _gfp));
298 	if (ret) {
299 		if (ck)
300 			kfree(ck->k);
301 		kmem_cache_free(bch2_key_cache, ck);
302 		return ERR_PTR(ret);
303 	}
304 
305 	if (!ck)
306 		return NULL;
307 
308 	INIT_LIST_HEAD(&ck->list);
309 	bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
310 
311 	ck->c.cached = true;
312 	BUG_ON(!six_trylock_intent(&ck->c.lock));
313 	BUG_ON(!six_trylock_write(&ck->c.lock));
314 	return ck;
315 }
316 
317 static struct bkey_cached *
318 bkey_cached_reuse(struct btree_key_cache *c)
319 {
320 	struct bucket_table *tbl;
321 	struct rhash_head *pos;
322 	struct bkey_cached *ck;
323 	unsigned i;
324 
325 	mutex_lock(&c->lock);
326 	rcu_read_lock();
327 	tbl = rht_dereference_rcu(c->table.tbl, &c->table);
328 	for (i = 0; i < tbl->size; i++)
329 		rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
330 			if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
331 			    bkey_cached_lock_for_evict(ck)) {
332 				bkey_cached_evict(c, ck);
333 				goto out;
334 			}
335 		}
336 	ck = NULL;
337 out:
338 	rcu_read_unlock();
339 	mutex_unlock(&c->lock);
340 	return ck;
341 }
342 
343 static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path,
344 				  struct bkey_s_c k)
345 {
346 	struct bch_fs *c = trans->c;
347 	struct btree_key_cache *bc = &c->btree_key_cache;
348 
349 	/*
350 	 * bch2_varint_decode can read past the end of the buffer by at
351 	 * most 7 bytes (it won't be used):
352 	 */
353 	unsigned key_u64s = k.k->u64s + 1;
354 
355 	/*
356 	 * Allocate some extra space so that the transaction commit path is less
357 	 * likely to have to reallocate, since that requires a transaction
358 	 * restart:
359 	 */
360 	key_u64s = min(256U, (key_u64s * 3) / 2);
361 	key_u64s = roundup_pow_of_two(key_u64s);
362 
363 	struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s);
364 	int ret = PTR_ERR_OR_ZERO(ck);
365 	if (ret)
366 		return ret;
367 
368 	if (unlikely(!ck)) {
369 		ck = bkey_cached_reuse(bc);
370 		if (unlikely(!ck)) {
371 			bch_err(c, "error allocating memory for key cache item, btree %s",
372 				bch2_btree_id_str(path->btree_id));
373 			return -BCH_ERR_ENOMEM_btree_key_cache_create;
374 		}
375 	}
376 
377 	ck->c.level		= 0;
378 	ck->c.btree_id		= path->btree_id;
379 	ck->key.btree_id	= path->btree_id;
380 	ck->key.pos		= path->pos;
381 	ck->flags		= 1U << BKEY_CACHED_ACCESSED;
382 
383 	if (unlikely(key_u64s > ck->u64s)) {
384 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
385 
386 		struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
387 				kmalloc(key_u64s * sizeof(u64), _gfp));
388 		if (unlikely(!new_k)) {
389 			bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
390 				bch2_btree_id_str(ck->key.btree_id), key_u64s);
391 			ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
392 		} else if (ret) {
393 			kfree(new_k);
394 			goto err;
395 		}
396 
397 		kfree(ck->k);
398 		ck->k = new_k;
399 		ck->u64s = key_u64s;
400 	}
401 
402 	bkey_reassemble(ck->k, k);
403 
404 	ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
405 	if (unlikely(ret)) /* raced with another fill? */
406 		goto err;
407 
408 	atomic_long_inc(&bc->nr_keys);
409 	six_unlock_write(&ck->c.lock);
410 
411 	enum six_lock_type lock_want = __btree_lock_want(path, 0);
412 	if (lock_want == SIX_LOCK_read)
413 		six_lock_downgrade(&ck->c.lock);
414 	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
415 	path->uptodate = BTREE_ITER_UPTODATE;
416 	return 0;
417 err:
418 	bkey_cached_free_fast(bc, ck);
419 	mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
420 
421 	return ret;
422 }
423 
424 static noinline int btree_key_cache_fill(struct btree_trans *trans,
425 					 struct btree_path *ck_path,
426 					 unsigned flags)
427 {
428 	if (flags & BTREE_ITER_cached_nofill) {
429 		ck_path->uptodate = BTREE_ITER_UPTODATE;
430 		return 0;
431 	}
432 
433 	struct bch_fs *c = trans->c;
434 	struct btree_iter iter;
435 	struct bkey_s_c k;
436 	int ret;
437 
438 	bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
439 			     BTREE_ITER_key_cache_fill|
440 			     BTREE_ITER_cached_nofill);
441 	iter.flags &= ~BTREE_ITER_with_journal;
442 	k = bch2_btree_iter_peek_slot(&iter);
443 	ret = bkey_err(k);
444 	if (ret)
445 		goto err;
446 
447 	/* Recheck after btree lookup, before allocating: */
448 	ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
449 	if (unlikely(ret))
450 		goto out;
451 
452 	ret = btree_key_cache_create(trans, ck_path, k);
453 	if (ret)
454 		goto err;
455 out:
456 	/* We're not likely to need this iterator again: */
457 	bch2_set_btree_iter_dontneed(&iter);
458 err:
459 	bch2_trans_iter_exit(trans, &iter);
460 	return ret;
461 }
462 
463 static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
464 						  struct btree_path *path)
465 {
466 	struct bch_fs *c = trans->c;
467 	struct bkey_cached *ck;
468 retry:
469 	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
470 	if (!ck)
471 		return -ENOENT;
472 
473 	enum six_lock_type lock_want = __btree_lock_want(path, 0);
474 
475 	int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
476 	if (ret)
477 		return ret;
478 
479 	if (ck->key.btree_id != path->btree_id ||
480 	    !bpos_eq(ck->key.pos, path->pos)) {
481 		six_unlock_type(&ck->c.lock, lock_want);
482 		goto retry;
483 	}
484 
485 	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
486 		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
487 
488 	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
489 	path->uptodate = BTREE_ITER_UPTODATE;
490 	return 0;
491 }
492 
493 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
494 				    unsigned flags)
495 {
496 	EBUG_ON(path->level);
497 
498 	path->l[1].b = NULL;
499 
500 	if (bch2_btree_node_relock_notrace(trans, path, 0)) {
501 		path->uptodate = BTREE_ITER_UPTODATE;
502 		return 0;
503 	}
504 
505 	int ret;
506 	do {
507 		ret = btree_path_traverse_cached_fast(trans, path);
508 		if (unlikely(ret == -ENOENT))
509 			ret = btree_key_cache_fill(trans, path, flags);
510 	} while (ret == -EEXIST);
511 
512 	if (unlikely(ret)) {
513 		path->uptodate = BTREE_ITER_NEED_TRAVERSE;
514 		if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
515 			btree_node_unlock(trans, path, 0);
516 			path->l[0].b = ERR_PTR(ret);
517 		}
518 	}
519 	return ret;
520 }
521 
522 static int btree_key_cache_flush_pos(struct btree_trans *trans,
523 				     struct bkey_cached_key key,
524 				     u64 journal_seq,
525 				     unsigned commit_flags,
526 				     bool evict)
527 {
528 	struct bch_fs *c = trans->c;
529 	struct journal *j = &c->journal;
530 	struct btree_iter c_iter, b_iter;
531 	struct bkey_cached *ck = NULL;
532 	int ret;
533 
534 	bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
535 			     BTREE_ITER_slots|
536 			     BTREE_ITER_intent|
537 			     BTREE_ITER_all_snapshots);
538 	bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
539 			     BTREE_ITER_cached|
540 			     BTREE_ITER_intent);
541 	b_iter.flags &= ~BTREE_ITER_with_key_cache;
542 
543 	ret = bch2_btree_iter_traverse(&c_iter);
544 	if (ret)
545 		goto out;
546 
547 	ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
548 	if (!ck)
549 		goto out;
550 
551 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
552 		if (evict)
553 			goto evict;
554 		goto out;
555 	}
556 
557 	if (journal_seq && ck->journal.seq != journal_seq)
558 		goto out;
559 
560 	trans->journal_res.seq = ck->journal.seq;
561 
562 	/*
563 	 * If we're at the end of the journal, we really want to free up space
564 	 * in the journal right away - we don't want to pin that old journal
565 	 * sequence number with a new btree node write, we want to re-journal
566 	 * the update
567 	 */
568 	if (ck->journal.seq == journal_last_seq(j))
569 		commit_flags |= BCH_WATERMARK_reclaim;
570 
571 	if (ck->journal.seq != journal_last_seq(j) ||
572 	    !test_bit(JOURNAL_space_low, &c->journal.flags))
573 		commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
574 
575 	ret   = bch2_btree_iter_traverse(&b_iter) ?:
576 		bch2_trans_update(trans, &b_iter, ck->k,
577 				  BTREE_UPDATE_key_cache_reclaim|
578 				  BTREE_UPDATE_internal_snapshot_node|
579 				  BTREE_TRIGGER_norun) ?:
580 		bch2_trans_commit(trans, NULL, NULL,
581 				  BCH_TRANS_COMMIT_no_check_rw|
582 				  BCH_TRANS_COMMIT_no_enospc|
583 				  commit_flags);
584 
585 	bch2_fs_fatal_err_on(ret &&
586 			     !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
587 			     !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
588 			     !bch2_journal_error(j), c,
589 			     "flushing key cache: %s", bch2_err_str(ret));
590 	if (ret)
591 		goto out;
592 
593 	bch2_journal_pin_drop(j, &ck->journal);
594 
595 	struct btree_path *path = btree_iter_path(trans, &c_iter);
596 	BUG_ON(!btree_node_locked(path, 0));
597 
598 	if (!evict) {
599 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
600 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
601 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
602 		}
603 	} else {
604 		struct btree_path *path2;
605 		unsigned i;
606 evict:
607 		trans_for_each_path(trans, path2, i)
608 			if (path2 != path)
609 				__bch2_btree_path_unlock(trans, path2);
610 
611 		bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
612 
613 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
614 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
615 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
616 		}
617 
618 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
619 		bkey_cached_evict(&c->btree_key_cache, ck);
620 		bkey_cached_free_fast(&c->btree_key_cache, ck);
621 	}
622 out:
623 	bch2_trans_iter_exit(trans, &b_iter);
624 	bch2_trans_iter_exit(trans, &c_iter);
625 	return ret;
626 }
627 
628 int bch2_btree_key_cache_journal_flush(struct journal *j,
629 				struct journal_entry_pin *pin, u64 seq)
630 {
631 	struct bch_fs *c = container_of(j, struct bch_fs, journal);
632 	struct bkey_cached *ck =
633 		container_of(pin, struct bkey_cached, journal);
634 	struct bkey_cached_key key;
635 	struct btree_trans *trans = bch2_trans_get(c);
636 	int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
637 	int ret = 0;
638 
639 	btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
640 	key = ck->key;
641 
642 	if (ck->journal.seq != seq ||
643 	    !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
644 		six_unlock_read(&ck->c.lock);
645 		goto unlock;
646 	}
647 
648 	if (ck->seq != seq) {
649 		bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
650 					bch2_btree_key_cache_journal_flush);
651 		six_unlock_read(&ck->c.lock);
652 		goto unlock;
653 	}
654 	six_unlock_read(&ck->c.lock);
655 
656 	ret = lockrestart_do(trans,
657 		btree_key_cache_flush_pos(trans, key, seq,
658 				BCH_TRANS_COMMIT_journal_reclaim, false));
659 unlock:
660 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
661 
662 	bch2_trans_put(trans);
663 	return ret;
664 }
665 
666 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
667 				  unsigned flags,
668 				  struct btree_insert_entry *insert_entry)
669 {
670 	struct bch_fs *c = trans->c;
671 	struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
672 	struct bkey_i *insert = insert_entry->k;
673 	bool kick_reclaim = false;
674 
675 	BUG_ON(insert->k.u64s > ck->u64s);
676 
677 	bkey_copy(ck->k, insert);
678 
679 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
680 		EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
681 		set_bit(BKEY_CACHED_DIRTY, &ck->flags);
682 		atomic_long_inc(&c->btree_key_cache.nr_dirty);
683 
684 		if (bch2_nr_btree_keys_need_flush(c))
685 			kick_reclaim = true;
686 	}
687 
688 	/*
689 	 * To minimize lock contention, we only add the journal pin here and
690 	 * defer pin updates to the flush callback via ->seq. Be careful not to
691 	 * update ->seq on nojournal commits because we don't want to update the
692 	 * pin to a seq that doesn't include journal updates on disk. Otherwise
693 	 * we risk losing the update after a crash.
694 	 *
695 	 * The only exception is if the pin is not active in the first place. We
696 	 * have to add the pin because journal reclaim drives key cache
697 	 * flushing. The flush callback will not proceed unless ->seq matches
698 	 * the latest pin, so make sure it starts with a consistent value.
699 	 */
700 	if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
701 	    !journal_pin_active(&ck->journal)) {
702 		ck->seq = trans->journal_res.seq;
703 	}
704 	bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
705 			     &ck->journal, bch2_btree_key_cache_journal_flush);
706 
707 	if (kick_reclaim)
708 		journal_reclaim_kick(&c->journal);
709 	return true;
710 }
711 
712 void bch2_btree_key_cache_drop(struct btree_trans *trans,
713 			       struct btree_path *path)
714 {
715 	struct bch_fs *c = trans->c;
716 	struct btree_key_cache *bc = &c->btree_key_cache;
717 	struct bkey_cached *ck = (void *) path->l[0].b;
718 
719 	/*
720 	 * We just did an update to the btree, bypassing the key cache: the key
721 	 * cache key is now stale and must be dropped, even if dirty:
722 	 */
723 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
724 		clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
725 		atomic_long_dec(&c->btree_key_cache.nr_dirty);
726 		bch2_journal_pin_drop(&c->journal, &ck->journal);
727 	}
728 
729 	bkey_cached_evict(bc, ck);
730 	bkey_cached_free_fast(bc, ck);
731 
732 	mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
733 	btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
734 }
735 
736 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
737 					   struct shrink_control *sc)
738 {
739 	struct bch_fs *c = shrink->private_data;
740 	struct btree_key_cache *bc = &c->btree_key_cache;
741 	struct bucket_table *tbl;
742 	struct bkey_cached *ck, *t;
743 	size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
744 	unsigned start, flags;
745 	int srcu_idx;
746 
747 	mutex_lock(&bc->lock);
748 	bc->requested_to_free += sc->nr_to_scan;
749 
750 	srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
751 	flags = memalloc_nofs_save();
752 
753 	/*
754 	 * Newest freed entries are at the end of the list - once we hit one
755 	 * that's too new to be freed, we can bail out:
756 	 */
757 	list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
758 		if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
759 						 ck->btree_trans_barrier_seq))
760 			break;
761 
762 		list_del(&ck->list);
763 		six_lock_exit(&ck->c.lock);
764 		kmem_cache_free(bch2_key_cache, ck);
765 		atomic_long_dec(&bc->nr_freed);
766 		bc->nr_freed_nonpcpu--;
767 		bc->freed++;
768 	}
769 
770 	list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
771 		if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
772 						 ck->btree_trans_barrier_seq))
773 			break;
774 
775 		list_del(&ck->list);
776 		six_lock_exit(&ck->c.lock);
777 		kmem_cache_free(bch2_key_cache, ck);
778 		atomic_long_dec(&bc->nr_freed);
779 		bc->nr_freed_pcpu--;
780 		bc->freed++;
781 	}
782 
783 	rcu_read_lock();
784 	tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
785 	if (bc->shrink_iter >= tbl->size)
786 		bc->shrink_iter = 0;
787 	start = bc->shrink_iter;
788 
789 	do {
790 		struct rhash_head *pos, *next;
791 
792 		pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
793 
794 		while (!rht_is_a_nulls(pos)) {
795 			next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
796 			ck = container_of(pos, struct bkey_cached, hash);
797 
798 			if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
799 				bc->skipped_dirty++;
800 			} else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
801 				clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
802 				bc->skipped_accessed++;
803 			} else if (!bkey_cached_lock_for_evict(ck)) {
804 				bc->skipped_lock_fail++;
805 			} else {
806 				bkey_cached_evict(bc, ck);
807 				bkey_cached_free(bc, ck);
808 				bc->moved_to_freelist++;
809 				freed++;
810 			}
811 
812 			scanned++;
813 			if (scanned >= nr)
814 				break;
815 
816 			pos = next;
817 		}
818 
819 		bc->shrink_iter++;
820 		if (bc->shrink_iter >= tbl->size)
821 			bc->shrink_iter = 0;
822 	} while (scanned < nr && bc->shrink_iter != start);
823 
824 	rcu_read_unlock();
825 	memalloc_nofs_restore(flags);
826 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
827 	mutex_unlock(&bc->lock);
828 
829 	return freed;
830 }
831 
832 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
833 					    struct shrink_control *sc)
834 {
835 	struct bch_fs *c = shrink->private_data;
836 	struct btree_key_cache *bc = &c->btree_key_cache;
837 	long nr = atomic_long_read(&bc->nr_keys) -
838 		atomic_long_read(&bc->nr_dirty);
839 
840 	/*
841 	 * Avoid hammering our shrinker too much if it's nearly empty - the
842 	 * shrinker code doesn't take into account how big our cache is, if it's
843 	 * mostly empty but the system is under memory pressure it causes nasty
844 	 * lock contention:
845 	 */
846 	nr -= 128;
847 
848 	return max(0L, nr);
849 }
850 
851 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
852 {
853 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
854 	struct bucket_table *tbl;
855 	struct bkey_cached *ck, *n;
856 	struct rhash_head *pos;
857 	LIST_HEAD(items);
858 	unsigned i;
859 #ifdef __KERNEL__
860 	int cpu;
861 #endif
862 
863 	shrinker_free(bc->shrink);
864 
865 	mutex_lock(&bc->lock);
866 
867 	/*
868 	 * The loop is needed to guard against racing with rehash:
869 	 */
870 	while (atomic_long_read(&bc->nr_keys)) {
871 		rcu_read_lock();
872 		tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
873 		if (tbl)
874 			for (i = 0; i < tbl->size; i++)
875 				rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
876 					bkey_cached_evict(bc, ck);
877 					list_add(&ck->list, &items);
878 				}
879 		rcu_read_unlock();
880 	}
881 
882 #ifdef __KERNEL__
883 	if (bc->pcpu_freed) {
884 		for_each_possible_cpu(cpu) {
885 			struct btree_key_cache_freelist *f =
886 				per_cpu_ptr(bc->pcpu_freed, cpu);
887 
888 			for (i = 0; i < f->nr; i++) {
889 				ck = f->objs[i];
890 				list_add(&ck->list, &items);
891 			}
892 		}
893 	}
894 #endif
895 
896 	BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
897 	BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
898 
899 	list_splice(&bc->freed_pcpu,	&items);
900 	list_splice(&bc->freed_nonpcpu,	&items);
901 
902 	mutex_unlock(&bc->lock);
903 
904 	list_for_each_entry_safe(ck, n, &items, list) {
905 		cond_resched();
906 
907 		list_del(&ck->list);
908 		kfree(ck->k);
909 		six_lock_exit(&ck->c.lock);
910 		kmem_cache_free(bch2_key_cache, ck);
911 	}
912 
913 	if (atomic_long_read(&bc->nr_dirty) &&
914 	    !bch2_journal_error(&c->journal) &&
915 	    test_bit(BCH_FS_was_rw, &c->flags))
916 		panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
917 		      atomic_long_read(&bc->nr_dirty));
918 
919 	if (atomic_long_read(&bc->nr_keys))
920 		panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
921 		      atomic_long_read(&bc->nr_keys));
922 
923 	if (bc->table_init_done)
924 		rhashtable_destroy(&bc->table);
925 
926 	free_percpu(bc->pcpu_freed);
927 }
928 
929 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
930 {
931 	mutex_init(&c->lock);
932 	INIT_LIST_HEAD(&c->freed_pcpu);
933 	INIT_LIST_HEAD(&c->freed_nonpcpu);
934 }
935 
936 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
937 {
938 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
939 	struct shrinker *shrink;
940 
941 #ifdef __KERNEL__
942 	bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
943 	if (!bc->pcpu_freed)
944 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
945 #endif
946 
947 	if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
948 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
949 
950 	bc->table_init_done = true;
951 
952 	shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
953 	if (!shrink)
954 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
955 	bc->shrink = shrink;
956 	shrink->count_objects	= bch2_btree_key_cache_count;
957 	shrink->scan_objects	= bch2_btree_key_cache_scan;
958 	shrink->batch		= 1 << 14;
959 	shrink->seeks		= 0;
960 	shrink->private_data	= c;
961 	shrinker_register(shrink);
962 	return 0;
963 }
964 
965 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
966 {
967 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
968 
969 	printbuf_tabstop_push(out, 24);
970 	printbuf_tabstop_push(out, 12);
971 
972 	unsigned flags = memalloc_nofs_save();
973 	mutex_lock(&bc->lock);
974 	prt_printf(out, "keys:\t%lu\r\n",		atomic_long_read(&bc->nr_keys));
975 	prt_printf(out, "dirty:\t%lu\r\n",		atomic_long_read(&bc->nr_dirty));
976 	prt_printf(out, "freelist:\t%lu\r\n",		atomic_long_read(&bc->nr_freed));
977 	prt_printf(out, "nonpcpu freelist:\t%zu\r\n",	bc->nr_freed_nonpcpu);
978 	prt_printf(out, "pcpu freelist:\t%zu\r\n",	bc->nr_freed_pcpu);
979 
980 	prt_printf(out, "\nshrinker:\n");
981 	prt_printf(out, "requested_to_free:\t%lu\r\n",	bc->requested_to_free);
982 	prt_printf(out, "freed:\t%lu\r\n",		bc->freed);
983 	prt_printf(out, "moved_to_freelist:\t%lu\r\n",	bc->moved_to_freelist);
984 	prt_printf(out, "skipped_dirty:\t%lu\r\n",	bc->skipped_dirty);
985 	prt_printf(out, "skipped_accessed:\t%lu\r\n",	bc->skipped_accessed);
986 	prt_printf(out, "skipped_lock_fail:\t%lu\r\n",	bc->skipped_lock_fail);
987 
988 	prt_printf(out, "srcu seq:\t%lu\r\n",		get_state_synchronize_srcu(&c->btree_trans_barrier));
989 
990 	struct bkey_cached *ck;
991 	unsigned iter = 0;
992 	list_for_each_entry(ck, &bc->freed_nonpcpu, list) {
993 		prt_printf(out, "freed_nonpcpu:\t%lu\r\n", ck->btree_trans_barrier_seq);
994 		if (++iter > 10)
995 			break;
996 	}
997 
998 	iter = 0;
999 	list_for_each_entry(ck, &bc->freed_pcpu, list) {
1000 		prt_printf(out, "freed_pcpu:\t%lu\r\n", ck->btree_trans_barrier_seq);
1001 		if (++iter > 10)
1002 			break;
1003 	}
1004 	mutex_unlock(&bc->lock);
1005 	memalloc_flags_restore(flags);
1006 }
1007 
1008 void bch2_btree_key_cache_exit(void)
1009 {
1010 	kmem_cache_destroy(bch2_key_cache);
1011 }
1012 
1013 int __init bch2_btree_key_cache_init(void)
1014 {
1015 	bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1016 	if (!bch2_key_cache)
1017 		return -ENOMEM;
1018 
1019 	return 0;
1020 }
1021