1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "async_objs.h" 5 #include "bkey_buf.h" 6 #include "bkey_methods.h" 7 #include "bkey_sort.h" 8 #include "btree_cache.h" 9 #include "btree_io.h" 10 #include "btree_iter.h" 11 #include "btree_locking.h" 12 #include "btree_update.h" 13 #include "btree_update_interior.h" 14 #include "buckets.h" 15 #include "checksum.h" 16 #include "debug.h" 17 #include "enumerated_ref.h" 18 #include "error.h" 19 #include "extents.h" 20 #include "io_write.h" 21 #include "journal_reclaim.h" 22 #include "journal_seq_blacklist.h" 23 #include "recovery.h" 24 #include "super-io.h" 25 #include "trace.h" 26 27 #include <linux/sched/mm.h> 28 29 static void bch2_btree_node_header_to_text(struct printbuf *out, struct btree_node *bn) 30 { 31 bch2_btree_id_level_to_text(out, BTREE_NODE_ID(bn), BTREE_NODE_LEVEL(bn)); 32 prt_printf(out, " seq %llx %llu\n", bn->keys.seq, BTREE_NODE_SEQ(bn)); 33 prt_str(out, "min: "); 34 bch2_bpos_to_text(out, bn->min_key); 35 prt_newline(out); 36 prt_str(out, "max: "); 37 bch2_bpos_to_text(out, bn->max_key); 38 } 39 40 void bch2_btree_node_io_unlock(struct btree *b) 41 { 42 EBUG_ON(!btree_node_write_in_flight(b)); 43 44 clear_btree_node_write_in_flight_inner(b); 45 clear_btree_node_write_in_flight(b); 46 smp_mb__after_atomic(); 47 wake_up_bit(&b->flags, BTREE_NODE_write_in_flight); 48 } 49 50 void bch2_btree_node_io_lock(struct btree *b) 51 { 52 wait_on_bit_lock_io(&b->flags, BTREE_NODE_write_in_flight, 53 TASK_UNINTERRUPTIBLE); 54 } 55 56 void __bch2_btree_node_wait_on_read(struct btree *b) 57 { 58 wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight, 59 TASK_UNINTERRUPTIBLE); 60 } 61 62 void __bch2_btree_node_wait_on_write(struct btree *b) 63 { 64 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight, 65 TASK_UNINTERRUPTIBLE); 66 } 67 68 void bch2_btree_node_wait_on_read(struct btree *b) 69 { 70 wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight, 71 TASK_UNINTERRUPTIBLE); 72 } 73 74 void bch2_btree_node_wait_on_write(struct btree *b) 75 { 76 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight, 77 TASK_UNINTERRUPTIBLE); 78 } 79 80 static void verify_no_dups(struct btree *b, 81 struct bkey_packed *start, 82 struct bkey_packed *end) 83 { 84 #ifdef CONFIG_BCACHEFS_DEBUG 85 struct bkey_packed *k, *p; 86 87 if (start == end) 88 return; 89 90 for (p = start, k = bkey_p_next(start); 91 k != end; 92 p = k, k = bkey_p_next(k)) { 93 struct bkey l = bkey_unpack_key(b, p); 94 struct bkey r = bkey_unpack_key(b, k); 95 96 BUG_ON(bpos_ge(l.p, bkey_start_pos(&r))); 97 } 98 #endif 99 } 100 101 static void set_needs_whiteout(struct bset *i, int v) 102 { 103 struct bkey_packed *k; 104 105 for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) 106 k->needs_whiteout = v; 107 } 108 109 static void btree_bounce_free(struct bch_fs *c, size_t size, 110 bool used_mempool, void *p) 111 { 112 if (used_mempool) 113 mempool_free(p, &c->btree_bounce_pool); 114 else 115 kvfree(p); 116 } 117 118 static void *btree_bounce_alloc(struct bch_fs *c, size_t size, 119 bool *used_mempool) 120 { 121 unsigned flags = memalloc_nofs_save(); 122 void *p; 123 124 BUG_ON(size > c->opts.btree_node_size); 125 126 *used_mempool = false; 127 p = kvmalloc(size, __GFP_NOWARN|GFP_NOWAIT); 128 if (!p) { 129 *used_mempool = true; 130 p = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS); 131 } 132 memalloc_nofs_restore(flags); 133 return p; 134 } 135 136 static void sort_bkey_ptrs(const struct btree *bt, 137 struct bkey_packed **ptrs, unsigned nr) 138 { 139 unsigned n = nr, a = nr / 2, b, c, d; 140 141 if (!a) 142 return; 143 144 /* Heap sort: see lib/sort.c: */ 145 while (1) { 146 if (a) 147 a--; 148 else if (--n) 149 swap(ptrs[0], ptrs[n]); 150 else 151 break; 152 153 for (b = a; c = 2 * b + 1, (d = c + 1) < n;) 154 b = bch2_bkey_cmp_packed(bt, 155 ptrs[c], 156 ptrs[d]) >= 0 ? c : d; 157 if (d == n) 158 b = c; 159 160 while (b != a && 161 bch2_bkey_cmp_packed(bt, 162 ptrs[a], 163 ptrs[b]) >= 0) 164 b = (b - 1) / 2; 165 c = b; 166 while (b != a) { 167 b = (b - 1) / 2; 168 swap(ptrs[b], ptrs[c]); 169 } 170 } 171 } 172 173 static void bch2_sort_whiteouts(struct bch_fs *c, struct btree *b) 174 { 175 struct bkey_packed *new_whiteouts, **ptrs, **ptrs_end, *k; 176 bool used_mempool = false; 177 size_t bytes = b->whiteout_u64s * sizeof(u64); 178 179 if (!b->whiteout_u64s) 180 return; 181 182 new_whiteouts = btree_bounce_alloc(c, bytes, &used_mempool); 183 184 ptrs = ptrs_end = ((void *) new_whiteouts + bytes); 185 186 for (k = unwritten_whiteouts_start(b); 187 k != unwritten_whiteouts_end(b); 188 k = bkey_p_next(k)) 189 *--ptrs = k; 190 191 sort_bkey_ptrs(b, ptrs, ptrs_end - ptrs); 192 193 k = new_whiteouts; 194 195 while (ptrs != ptrs_end) { 196 bkey_p_copy(k, *ptrs); 197 k = bkey_p_next(k); 198 ptrs++; 199 } 200 201 verify_no_dups(b, new_whiteouts, 202 (void *) ((u64 *) new_whiteouts + b->whiteout_u64s)); 203 204 memcpy_u64s(unwritten_whiteouts_start(b), 205 new_whiteouts, b->whiteout_u64s); 206 207 btree_bounce_free(c, bytes, used_mempool, new_whiteouts); 208 } 209 210 static bool should_compact_bset(struct btree *b, struct bset_tree *t, 211 bool compacting, enum compact_mode mode) 212 { 213 if (!bset_dead_u64s(b, t)) 214 return false; 215 216 switch (mode) { 217 case COMPACT_LAZY: 218 return should_compact_bset_lazy(b, t) || 219 (compacting && !bset_written(b, bset(b, t))); 220 case COMPACT_ALL: 221 return true; 222 default: 223 BUG(); 224 } 225 } 226 227 static bool bch2_drop_whiteouts(struct btree *b, enum compact_mode mode) 228 { 229 bool ret = false; 230 231 for_each_bset(b, t) { 232 struct bset *i = bset(b, t); 233 struct bkey_packed *k, *n, *out, *start, *end; 234 struct btree_node_entry *src = NULL, *dst = NULL; 235 236 if (t != b->set && !bset_written(b, i)) { 237 src = container_of(i, struct btree_node_entry, keys); 238 dst = max(write_block(b), 239 (void *) btree_bkey_last(b, t - 1)); 240 } 241 242 if (src != dst) 243 ret = true; 244 245 if (!should_compact_bset(b, t, ret, mode)) { 246 if (src != dst) { 247 memmove(dst, src, sizeof(*src) + 248 le16_to_cpu(src->keys.u64s) * 249 sizeof(u64)); 250 i = &dst->keys; 251 set_btree_bset(b, t, i); 252 } 253 continue; 254 } 255 256 start = btree_bkey_first(b, t); 257 end = btree_bkey_last(b, t); 258 259 if (src != dst) { 260 memmove(dst, src, sizeof(*src)); 261 i = &dst->keys; 262 set_btree_bset(b, t, i); 263 } 264 265 out = i->start; 266 267 for (k = start; k != end; k = n) { 268 n = bkey_p_next(k); 269 270 if (!bkey_deleted(k)) { 271 bkey_p_copy(out, k); 272 out = bkey_p_next(out); 273 } else { 274 BUG_ON(k->needs_whiteout); 275 } 276 } 277 278 i->u64s = cpu_to_le16((u64 *) out - i->_data); 279 set_btree_bset_end(b, t); 280 bch2_bset_set_no_aux_tree(b, t); 281 ret = true; 282 } 283 284 bch2_verify_btree_nr_keys(b); 285 286 bch2_btree_build_aux_trees(b); 287 288 return ret; 289 } 290 291 bool bch2_compact_whiteouts(struct bch_fs *c, struct btree *b, 292 enum compact_mode mode) 293 { 294 return bch2_drop_whiteouts(b, mode); 295 } 296 297 static void btree_node_sort(struct bch_fs *c, struct btree *b, 298 unsigned start_idx, 299 unsigned end_idx) 300 { 301 struct btree_node *out; 302 struct sort_iter_stack sort_iter; 303 struct bset_tree *t; 304 struct bset *start_bset = bset(b, &b->set[start_idx]); 305 bool used_mempool = false; 306 u64 start_time, seq = 0; 307 unsigned i, u64s = 0, bytes, shift = end_idx - start_idx - 1; 308 bool sorting_entire_node = start_idx == 0 && 309 end_idx == b->nsets; 310 311 sort_iter_stack_init(&sort_iter, b); 312 313 for (t = b->set + start_idx; 314 t < b->set + end_idx; 315 t++) { 316 u64s += le16_to_cpu(bset(b, t)->u64s); 317 sort_iter_add(&sort_iter.iter, 318 btree_bkey_first(b, t), 319 btree_bkey_last(b, t)); 320 } 321 322 bytes = sorting_entire_node 323 ? btree_buf_bytes(b) 324 : __vstruct_bytes(struct btree_node, u64s); 325 326 out = btree_bounce_alloc(c, bytes, &used_mempool); 327 328 start_time = local_clock(); 329 330 u64s = bch2_sort_keys(out->keys.start, &sort_iter.iter); 331 332 out->keys.u64s = cpu_to_le16(u64s); 333 334 BUG_ON(vstruct_end(&out->keys) > (void *) out + bytes); 335 336 if (sorting_entire_node) 337 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], 338 start_time); 339 340 /* Make sure we preserve bset journal_seq: */ 341 for (t = b->set + start_idx; t < b->set + end_idx; t++) 342 seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq)); 343 start_bset->journal_seq = cpu_to_le64(seq); 344 345 if (sorting_entire_node) { 346 u64s = le16_to_cpu(out->keys.u64s); 347 348 BUG_ON(bytes != btree_buf_bytes(b)); 349 350 /* 351 * Our temporary buffer is the same size as the btree node's 352 * buffer, we can just swap buffers instead of doing a big 353 * memcpy() 354 */ 355 *out = *b->data; 356 out->keys.u64s = cpu_to_le16(u64s); 357 swap(out, b->data); 358 set_btree_bset(b, b->set, &b->data->keys); 359 } else { 360 start_bset->u64s = out->keys.u64s; 361 memcpy_u64s(start_bset->start, 362 out->keys.start, 363 le16_to_cpu(out->keys.u64s)); 364 } 365 366 for (i = start_idx + 1; i < end_idx; i++) 367 b->nr.bset_u64s[start_idx] += 368 b->nr.bset_u64s[i]; 369 370 b->nsets -= shift; 371 372 for (i = start_idx + 1; i < b->nsets; i++) { 373 b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift]; 374 b->set[i] = b->set[i + shift]; 375 } 376 377 for (i = b->nsets; i < MAX_BSETS; i++) 378 b->nr.bset_u64s[i] = 0; 379 380 set_btree_bset_end(b, &b->set[start_idx]); 381 bch2_bset_set_no_aux_tree(b, &b->set[start_idx]); 382 383 btree_bounce_free(c, bytes, used_mempool, out); 384 385 bch2_verify_btree_nr_keys(b); 386 } 387 388 void bch2_btree_sort_into(struct bch_fs *c, 389 struct btree *dst, 390 struct btree *src) 391 { 392 struct btree_nr_keys nr; 393 struct btree_node_iter src_iter; 394 u64 start_time = local_clock(); 395 396 BUG_ON(dst->nsets != 1); 397 398 bch2_bset_set_no_aux_tree(dst, dst->set); 399 400 bch2_btree_node_iter_init_from_start(&src_iter, src); 401 402 nr = bch2_sort_repack(btree_bset_first(dst), 403 src, &src_iter, 404 &dst->format, 405 true); 406 407 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], 408 start_time); 409 410 set_btree_bset_end(dst, dst->set); 411 412 dst->nr.live_u64s += nr.live_u64s; 413 dst->nr.bset_u64s[0] += nr.bset_u64s[0]; 414 dst->nr.packed_keys += nr.packed_keys; 415 dst->nr.unpacked_keys += nr.unpacked_keys; 416 417 bch2_verify_btree_nr_keys(dst); 418 } 419 420 /* 421 * We're about to add another bset to the btree node, so if there's currently 422 * too many bsets - sort some of them together: 423 */ 424 static bool btree_node_compact(struct bch_fs *c, struct btree *b) 425 { 426 unsigned unwritten_idx; 427 bool ret = false; 428 429 for (unwritten_idx = 0; 430 unwritten_idx < b->nsets; 431 unwritten_idx++) 432 if (!bset_written(b, bset(b, &b->set[unwritten_idx]))) 433 break; 434 435 if (b->nsets - unwritten_idx > 1) { 436 btree_node_sort(c, b, unwritten_idx, b->nsets); 437 ret = true; 438 } 439 440 if (unwritten_idx > 1) { 441 btree_node_sort(c, b, 0, unwritten_idx); 442 ret = true; 443 } 444 445 return ret; 446 } 447 448 void bch2_btree_build_aux_trees(struct btree *b) 449 { 450 for_each_bset(b, t) 451 bch2_bset_build_aux_tree(b, t, 452 !bset_written(b, bset(b, t)) && 453 t == bset_tree_last(b)); 454 } 455 456 /* 457 * If we have MAX_BSETS (3) bsets, should we sort them all down to just one? 458 * 459 * The first bset is going to be of similar order to the size of the node, the 460 * last bset is bounded by btree_write_set_buffer(), which is set to keep the 461 * memmove on insert from being too expensive: the middle bset should, ideally, 462 * be the geometric mean of the first and the last. 463 * 464 * Returns true if the middle bset is greater than that geometric mean: 465 */ 466 static inline bool should_compact_all(struct bch_fs *c, struct btree *b) 467 { 468 unsigned mid_u64s_bits = 469 (ilog2(btree_max_u64s(c)) + BTREE_WRITE_SET_U64s_BITS) / 2; 470 471 return bset_u64s(&b->set[1]) > 1U << mid_u64s_bits; 472 } 473 474 /* 475 * @bch_btree_init_next - initialize a new (unwritten) bset that can then be 476 * inserted into 477 * 478 * Safe to call if there already is an unwritten bset - will only add a new bset 479 * if @b doesn't already have one. 480 * 481 * Returns true if we sorted (i.e. invalidated iterators 482 */ 483 void bch2_btree_init_next(struct btree_trans *trans, struct btree *b) 484 { 485 struct bch_fs *c = trans->c; 486 struct btree_node_entry *bne; 487 bool reinit_iter = false; 488 489 EBUG_ON(!six_lock_counts(&b->c.lock).n[SIX_LOCK_write]); 490 BUG_ON(bset_written(b, bset(b, &b->set[1]))); 491 BUG_ON(btree_node_just_written(b)); 492 493 if (b->nsets == MAX_BSETS && 494 !btree_node_write_in_flight(b) && 495 should_compact_all(c, b)) { 496 bch2_btree_node_write_trans(trans, b, SIX_LOCK_write, 497 BTREE_WRITE_init_next_bset); 498 reinit_iter = true; 499 } 500 501 if (b->nsets == MAX_BSETS && 502 btree_node_compact(c, b)) 503 reinit_iter = true; 504 505 BUG_ON(b->nsets >= MAX_BSETS); 506 507 bne = want_new_bset(c, b); 508 if (bne) 509 bch2_bset_init_next(b, bne); 510 511 bch2_btree_build_aux_trees(b); 512 513 if (reinit_iter) 514 bch2_trans_node_reinit_iter(trans, b); 515 } 516 517 static void btree_err_msg(struct printbuf *out, struct bch_fs *c, 518 struct bch_dev *ca, 519 bool print_pos, 520 struct btree *b, struct bset *i, struct bkey_packed *k, 521 unsigned offset, int rw) 522 { 523 if (print_pos) { 524 prt_str(out, rw == READ 525 ? "error validating btree node " 526 : "corrupt btree node before write "); 527 prt_printf(out, "at btree "); 528 bch2_btree_pos_to_text(out, c, b); 529 prt_newline(out); 530 } 531 532 if (ca) 533 prt_printf(out, "%s ", ca->name); 534 535 prt_printf(out, "node offset %u/%u", 536 b->written, btree_ptr_sectors_written(bkey_i_to_s_c(&b->key))); 537 if (i) 538 prt_printf(out, " bset u64s %u", le16_to_cpu(i->u64s)); 539 if (k) 540 prt_printf(out, " bset byte offset %lu", 541 (unsigned long)(void *)k - 542 ((unsigned long)(void *)i & ~511UL)); 543 prt_str(out, ": "); 544 } 545 546 __printf(11, 12) 547 static int __btree_err(int ret, 548 struct bch_fs *c, 549 struct bch_dev *ca, 550 struct btree *b, 551 struct bset *i, 552 struct bkey_packed *k, 553 int rw, 554 enum bch_sb_error_id err_type, 555 struct bch_io_failures *failed, 556 struct printbuf *err_msg, 557 const char *fmt, ...) 558 { 559 if (c->recovery.curr_pass == BCH_RECOVERY_PASS_scan_for_btree_nodes) 560 return ret == -BCH_ERR_btree_node_read_err_fixable 561 ? bch_err_throw(c, fsck_fix) 562 : ret; 563 564 bool have_retry = false; 565 int ret2; 566 567 if (ca) { 568 bch2_mark_btree_validate_failure(failed, ca->dev_idx); 569 570 struct extent_ptr_decoded pick; 571 have_retry = !bch2_bkey_pick_read_device(c, 572 bkey_i_to_s_c(&b->key), 573 failed, &pick, -1); 574 } 575 576 if (!have_retry && ret == -BCH_ERR_btree_node_read_err_want_retry) 577 ret = bch_err_throw(c, btree_node_read_err_fixable); 578 if (!have_retry && ret == -BCH_ERR_btree_node_read_err_must_retry) 579 ret = bch_err_throw(c, btree_node_read_err_bad_node); 580 581 bch2_sb_error_count(c, err_type); 582 583 bool print_deferred = err_msg && 584 rw == READ && 585 !(test_bit(BCH_FS_in_fsck, &c->flags) && 586 c->opts.fix_errors == FSCK_FIX_ask); 587 588 struct printbuf out = PRINTBUF; 589 bch2_log_msg_start(c, &out); 590 591 if (!print_deferred) 592 err_msg = &out; 593 594 btree_err_msg(err_msg, c, ca, !print_deferred, b, i, k, b->written, rw); 595 596 va_list args; 597 va_start(args, fmt); 598 prt_vprintf(err_msg, fmt, args); 599 va_end(args); 600 601 if (print_deferred) { 602 prt_newline(err_msg); 603 604 switch (ret) { 605 case -BCH_ERR_btree_node_read_err_fixable: 606 ret2 = bch2_fsck_err_opt(c, FSCK_CAN_FIX, err_type); 607 if (!bch2_err_matches(ret2, BCH_ERR_fsck_fix) && 608 !bch2_err_matches(ret2, BCH_ERR_fsck_ignore)) { 609 ret = ret2; 610 goto fsck_err; 611 } 612 613 if (!have_retry) 614 ret = bch_err_throw(c, fsck_fix); 615 goto out; 616 case -BCH_ERR_btree_node_read_err_bad_node: 617 prt_str(&out, ", "); 618 ret = __bch2_topology_error(c, &out); 619 break; 620 } 621 622 goto out; 623 } 624 625 if (rw == WRITE) { 626 prt_str(&out, ", "); 627 ret = __bch2_inconsistent_error(c, &out) 628 ? -BCH_ERR_fsck_errors_not_fixed 629 : 0; 630 goto print; 631 } 632 633 switch (ret) { 634 case -BCH_ERR_btree_node_read_err_fixable: 635 ret2 = __bch2_fsck_err(c, NULL, FSCK_CAN_FIX, err_type, "%s", out.buf); 636 if (!bch2_err_matches(ret2, BCH_ERR_fsck_fix) && 637 !bch2_err_matches(ret2, BCH_ERR_fsck_ignore)) { 638 ret = ret2; 639 goto fsck_err; 640 } 641 642 if (!have_retry) 643 ret = bch_err_throw(c, fsck_fix); 644 goto out; 645 case -BCH_ERR_btree_node_read_err_bad_node: 646 prt_str(&out, ", "); 647 ret = __bch2_topology_error(c, &out); 648 break; 649 } 650 print: 651 bch2_print_str(c, KERN_ERR, out.buf); 652 out: 653 fsck_err: 654 printbuf_exit(&out); 655 return ret; 656 } 657 658 #define btree_err(type, c, ca, b, i, k, _err_type, msg, ...) \ 659 ({ \ 660 int _ret = __btree_err(type, c, ca, b, i, k, write, \ 661 BCH_FSCK_ERR_##_err_type, \ 662 failed, err_msg, \ 663 msg, ##__VA_ARGS__); \ 664 \ 665 if (!bch2_err_matches(_ret, BCH_ERR_fsck_fix)) { \ 666 ret = _ret; \ 667 goto fsck_err; \ 668 } \ 669 \ 670 true; \ 671 }) 672 673 #define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false) 674 675 /* 676 * When btree topology repair changes the start or end of a node, that might 677 * mean we have to drop keys that are no longer inside the node: 678 */ 679 __cold 680 void bch2_btree_node_drop_keys_outside_node(struct btree *b) 681 { 682 for_each_bset(b, t) { 683 struct bset *i = bset(b, t); 684 struct bkey_packed *k; 685 686 for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) 687 if (bkey_cmp_left_packed(b, k, &b->data->min_key) >= 0) 688 break; 689 690 if (k != i->start) { 691 unsigned shift = (u64 *) k - (u64 *) i->start; 692 693 memmove_u64s_down(i->start, k, 694 (u64 *) vstruct_end(i) - (u64 *) k); 695 i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - shift); 696 set_btree_bset_end(b, t); 697 } 698 699 for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) 700 if (bkey_cmp_left_packed(b, k, &b->data->max_key) > 0) 701 break; 702 703 if (k != vstruct_last(i)) { 704 i->u64s = cpu_to_le16((u64 *) k - (u64 *) i->start); 705 set_btree_bset_end(b, t); 706 } 707 } 708 709 /* 710 * Always rebuild search trees: eytzinger search tree nodes directly 711 * depend on the values of min/max key: 712 */ 713 bch2_bset_set_no_aux_tree(b, b->set); 714 bch2_btree_build_aux_trees(b); 715 b->nr = bch2_btree_node_count_keys(b); 716 717 struct bkey_s_c k; 718 struct bkey unpacked; 719 struct btree_node_iter iter; 720 for_each_btree_node_key_unpack(b, k, &iter, &unpacked) { 721 BUG_ON(bpos_lt(k.k->p, b->data->min_key)); 722 BUG_ON(bpos_gt(k.k->p, b->data->max_key)); 723 } 724 } 725 726 static int validate_bset(struct bch_fs *c, struct bch_dev *ca, 727 struct btree *b, struct bset *i, 728 unsigned offset, int write, 729 struct bch_io_failures *failed, 730 struct printbuf *err_msg) 731 { 732 unsigned version = le16_to_cpu(i->version); 733 struct printbuf buf1 = PRINTBUF; 734 struct printbuf buf2 = PRINTBUF; 735 int ret = 0; 736 737 btree_err_on(!bch2_version_compatible(version), 738 -BCH_ERR_btree_node_read_err_incompatible, 739 c, ca, b, i, NULL, 740 btree_node_unsupported_version, 741 "unsupported bset version %u.%u", 742 BCH_VERSION_MAJOR(version), 743 BCH_VERSION_MINOR(version)); 744 745 if (c->recovery.curr_pass != BCH_RECOVERY_PASS_scan_for_btree_nodes && 746 btree_err_on(version < c->sb.version_min, 747 -BCH_ERR_btree_node_read_err_fixable, 748 c, NULL, b, i, NULL, 749 btree_node_bset_older_than_sb_min, 750 "bset version %u older than superblock version_min %u", 751 version, c->sb.version_min)) { 752 if (bch2_version_compatible(version)) { 753 mutex_lock(&c->sb_lock); 754 c->disk_sb.sb->version_min = cpu_to_le16(version); 755 bch2_write_super(c); 756 mutex_unlock(&c->sb_lock); 757 } else { 758 /* We have no idea what's going on: */ 759 i->version = cpu_to_le16(c->sb.version); 760 } 761 } 762 763 if (btree_err_on(BCH_VERSION_MAJOR(version) > 764 BCH_VERSION_MAJOR(c->sb.version), 765 -BCH_ERR_btree_node_read_err_fixable, 766 c, NULL, b, i, NULL, 767 btree_node_bset_newer_than_sb, 768 "bset version %u newer than superblock version %u", 769 version, c->sb.version)) { 770 mutex_lock(&c->sb_lock); 771 c->disk_sb.sb->version = cpu_to_le16(version); 772 bch2_write_super(c); 773 mutex_unlock(&c->sb_lock); 774 } 775 776 btree_err_on(BSET_SEPARATE_WHITEOUTS(i), 777 -BCH_ERR_btree_node_read_err_incompatible, 778 c, ca, b, i, NULL, 779 btree_node_unsupported_version, 780 "BSET_SEPARATE_WHITEOUTS no longer supported"); 781 782 btree_err_on(offset && !i->u64s, 783 -BCH_ERR_btree_node_read_err_fixable, 784 c, ca, b, i, NULL, 785 bset_empty, 786 "empty bset"); 787 788 btree_err_on(BSET_OFFSET(i) && BSET_OFFSET(i) != offset, 789 -BCH_ERR_btree_node_read_err_want_retry, 790 c, ca, b, i, NULL, 791 bset_wrong_sector_offset, 792 "bset at wrong sector offset"); 793 794 if (!offset) { 795 struct btree_node *bn = 796 container_of(i, struct btree_node, keys); 797 /* These indicate that we read the wrong btree node: */ 798 799 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 800 struct bch_btree_ptr_v2 *bp = 801 &bkey_i_to_btree_ptr_v2(&b->key)->v; 802 803 /* XXX endianness */ 804 btree_err_on(bp->seq != bn->keys.seq, 805 -BCH_ERR_btree_node_read_err_must_retry, 806 c, ca, b, NULL, NULL, 807 bset_bad_seq, 808 "incorrect sequence number (wrong btree node)"); 809 } 810 811 btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id, 812 -BCH_ERR_btree_node_read_err_must_retry, 813 c, ca, b, i, NULL, 814 btree_node_bad_btree, 815 "incorrect btree id"); 816 817 btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level, 818 -BCH_ERR_btree_node_read_err_must_retry, 819 c, ca, b, i, NULL, 820 btree_node_bad_level, 821 "incorrect level"); 822 823 if (!write) 824 compat_btree_node(b->c.level, b->c.btree_id, version, 825 BSET_BIG_ENDIAN(i), write, bn); 826 827 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 828 struct bch_btree_ptr_v2 *bp = 829 &bkey_i_to_btree_ptr_v2(&b->key)->v; 830 831 if (BTREE_PTR_RANGE_UPDATED(bp)) { 832 b->data->min_key = bp->min_key; 833 b->data->max_key = b->key.k.p; 834 } 835 836 btree_err_on(!bpos_eq(b->data->min_key, bp->min_key), 837 -BCH_ERR_btree_node_read_err_must_retry, 838 c, ca, b, NULL, NULL, 839 btree_node_bad_min_key, 840 "incorrect min_key: got %s should be %s", 841 (printbuf_reset(&buf1), 842 bch2_bpos_to_text(&buf1, bn->min_key), buf1.buf), 843 (printbuf_reset(&buf2), 844 bch2_bpos_to_text(&buf2, bp->min_key), buf2.buf)); 845 } 846 847 btree_err_on(!bpos_eq(bn->max_key, b->key.k.p), 848 -BCH_ERR_btree_node_read_err_must_retry, 849 c, ca, b, i, NULL, 850 btree_node_bad_max_key, 851 "incorrect max key %s", 852 (printbuf_reset(&buf1), 853 bch2_bpos_to_text(&buf1, bn->max_key), buf1.buf)); 854 855 if (write) 856 compat_btree_node(b->c.level, b->c.btree_id, version, 857 BSET_BIG_ENDIAN(i), write, bn); 858 859 btree_err_on(bch2_bkey_format_invalid(c, &bn->format, write, &buf1), 860 -BCH_ERR_btree_node_read_err_bad_node, 861 c, ca, b, i, NULL, 862 btree_node_bad_format, 863 "invalid bkey format: %s\n%s", buf1.buf, 864 (printbuf_reset(&buf2), 865 bch2_bkey_format_to_text(&buf2, &bn->format), buf2.buf)); 866 printbuf_reset(&buf1); 867 868 compat_bformat(b->c.level, b->c.btree_id, version, 869 BSET_BIG_ENDIAN(i), write, 870 &bn->format); 871 } 872 fsck_err: 873 printbuf_exit(&buf2); 874 printbuf_exit(&buf1); 875 return ret; 876 } 877 878 static int btree_node_bkey_val_validate(struct bch_fs *c, struct btree *b, 879 struct bkey_s_c k, 880 enum bch_validate_flags flags) 881 { 882 return bch2_bkey_val_validate(c, k, (struct bkey_validate_context) { 883 .from = BKEY_VALIDATE_btree_node, 884 .level = b->c.level, 885 .btree = b->c.btree_id, 886 .flags = flags 887 }); 888 } 889 890 static int bset_key_validate(struct bch_fs *c, struct btree *b, 891 struct bkey_s_c k, 892 bool updated_range, 893 enum bch_validate_flags flags) 894 { 895 struct bkey_validate_context from = (struct bkey_validate_context) { 896 .from = BKEY_VALIDATE_btree_node, 897 .level = b->c.level, 898 .btree = b->c.btree_id, 899 .flags = flags, 900 }; 901 return __bch2_bkey_validate(c, k, from) ?: 902 (!updated_range ? bch2_bkey_in_btree_node(c, b, k, from) : 0) ?: 903 (flags & BCH_VALIDATE_write ? btree_node_bkey_val_validate(c, b, k, flags) : 0); 904 } 905 906 static bool bkey_packed_valid(struct bch_fs *c, struct btree *b, 907 struct bset *i, struct bkey_packed *k) 908 { 909 if (bkey_p_next(k) > vstruct_last(i)) 910 return false; 911 912 if (k->format > KEY_FORMAT_CURRENT) 913 return false; 914 915 if (!bkeyp_u64s_valid(&b->format, k)) 916 return false; 917 918 struct bkey tmp; 919 struct bkey_s u = __bkey_disassemble(b, k, &tmp); 920 return !__bch2_bkey_validate(c, u.s_c, 921 (struct bkey_validate_context) { 922 .from = BKEY_VALIDATE_btree_node, 923 .level = b->c.level, 924 .btree = b->c.btree_id, 925 .flags = BCH_VALIDATE_silent 926 }); 927 } 928 929 static inline int btree_node_read_bkey_cmp(const struct btree *b, 930 const struct bkey_packed *l, 931 const struct bkey_packed *r) 932 { 933 return bch2_bkey_cmp_packed(b, l, r) 934 ?: (int) bkey_deleted(r) - (int) bkey_deleted(l); 935 } 936 937 static int validate_bset_keys(struct bch_fs *c, struct btree *b, 938 struct bset *i, int write, 939 struct bch_io_failures *failed, 940 struct printbuf *err_msg) 941 { 942 unsigned version = le16_to_cpu(i->version); 943 struct bkey_packed *k, *prev = NULL; 944 struct printbuf buf = PRINTBUF; 945 bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 && 946 BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v); 947 int ret = 0; 948 949 for (k = i->start; 950 k != vstruct_last(i);) { 951 struct bkey_s u; 952 struct bkey tmp; 953 unsigned next_good_key; 954 955 if (btree_err_on(bkey_p_next(k) > vstruct_last(i), 956 -BCH_ERR_btree_node_read_err_fixable, 957 c, NULL, b, i, k, 958 btree_node_bkey_past_bset_end, 959 "key extends past end of bset")) { 960 i->u64s = cpu_to_le16((u64 *) k - i->_data); 961 break; 962 } 963 964 if (btree_err_on(k->format > KEY_FORMAT_CURRENT, 965 -BCH_ERR_btree_node_read_err_fixable, 966 c, NULL, b, i, k, 967 btree_node_bkey_bad_format, 968 "invalid bkey format %u", k->format)) 969 goto drop_this_key; 970 971 if (btree_err_on(!bkeyp_u64s_valid(&b->format, k), 972 -BCH_ERR_btree_node_read_err_fixable, 973 c, NULL, b, i, k, 974 btree_node_bkey_bad_u64s, 975 "bad k->u64s %u (min %u max %zu)", k->u64s, 976 bkeyp_key_u64s(&b->format, k), 977 U8_MAX - BKEY_U64s + bkeyp_key_u64s(&b->format, k))) 978 goto drop_this_key; 979 980 if (!write) 981 bch2_bkey_compat(b->c.level, b->c.btree_id, version, 982 BSET_BIG_ENDIAN(i), write, 983 &b->format, k); 984 985 u = __bkey_disassemble(b, k, &tmp); 986 987 ret = bset_key_validate(c, b, u.s_c, updated_range, write); 988 if (ret == -BCH_ERR_fsck_delete_bkey) 989 goto drop_this_key; 990 if (ret) 991 goto fsck_err; 992 993 if (write) 994 bch2_bkey_compat(b->c.level, b->c.btree_id, version, 995 BSET_BIG_ENDIAN(i), write, 996 &b->format, k); 997 998 if (prev && btree_node_read_bkey_cmp(b, prev, k) >= 0) { 999 struct bkey up = bkey_unpack_key(b, prev); 1000 1001 printbuf_reset(&buf); 1002 prt_printf(&buf, "keys out of order: "); 1003 bch2_bkey_to_text(&buf, &up); 1004 prt_printf(&buf, " > "); 1005 bch2_bkey_to_text(&buf, u.k); 1006 1007 if (btree_err(-BCH_ERR_btree_node_read_err_fixable, 1008 c, NULL, b, i, k, 1009 btree_node_bkey_out_of_order, 1010 "%s", buf.buf)) 1011 goto drop_this_key; 1012 } 1013 1014 prev = k; 1015 k = bkey_p_next(k); 1016 continue; 1017 drop_this_key: 1018 next_good_key = k->u64s; 1019 1020 if (!next_good_key || 1021 (BSET_BIG_ENDIAN(i) == CPU_BIG_ENDIAN && 1022 version >= bcachefs_metadata_version_snapshot)) { 1023 /* 1024 * only do scanning if bch2_bkey_compat() has nothing to 1025 * do 1026 */ 1027 1028 if (!bkey_packed_valid(c, b, i, (void *) ((u64 *) k + next_good_key))) { 1029 for (next_good_key = 1; 1030 next_good_key < (u64 *) vstruct_last(i) - (u64 *) k; 1031 next_good_key++) 1032 if (bkey_packed_valid(c, b, i, (void *) ((u64 *) k + next_good_key))) 1033 goto got_good_key; 1034 } 1035 1036 /* 1037 * didn't find a good key, have to truncate the rest of 1038 * the bset 1039 */ 1040 next_good_key = (u64 *) vstruct_last(i) - (u64 *) k; 1041 } 1042 got_good_key: 1043 le16_add_cpu(&i->u64s, -next_good_key); 1044 memmove_u64s_down(k, (u64 *) k + next_good_key, (u64 *) vstruct_end(i) - (u64 *) k); 1045 set_btree_node_need_rewrite(b); 1046 set_btree_node_need_rewrite_error(b); 1047 } 1048 fsck_err: 1049 printbuf_exit(&buf); 1050 return ret; 1051 } 1052 1053 int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca, 1054 struct btree *b, 1055 struct bch_io_failures *failed, 1056 struct printbuf *err_msg) 1057 { 1058 struct btree_node_entry *bne; 1059 struct sort_iter *iter; 1060 struct btree_node *sorted; 1061 struct bkey_packed *k; 1062 struct bset *i; 1063 bool used_mempool, blacklisted; 1064 bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 && 1065 BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v); 1066 unsigned ptr_written = btree_ptr_sectors_written(bkey_i_to_s_c(&b->key)); 1067 u64 max_journal_seq = 0; 1068 struct printbuf buf = PRINTBUF; 1069 int ret = 0, write = READ; 1070 u64 start_time = local_clock(); 1071 1072 b->version_ondisk = U16_MAX; 1073 /* We might get called multiple times on read retry: */ 1074 b->written = 0; 1075 1076 iter = mempool_alloc(&c->fill_iter, GFP_NOFS); 1077 sort_iter_init(iter, b, (btree_blocks(c) + 1) * 2); 1078 1079 if (bch2_meta_read_fault("btree")) 1080 btree_err(-BCH_ERR_btree_node_read_err_must_retry, 1081 c, ca, b, NULL, NULL, 1082 btree_node_fault_injected, 1083 "dynamic fault"); 1084 1085 btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c), 1086 -BCH_ERR_btree_node_read_err_must_retry, 1087 c, ca, b, NULL, NULL, 1088 btree_node_bad_magic, 1089 "bad magic: want %llx, got %llx", 1090 bset_magic(c), le64_to_cpu(b->data->magic)); 1091 1092 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 1093 struct bch_btree_ptr_v2 *bp = 1094 &bkey_i_to_btree_ptr_v2(&b->key)->v; 1095 1096 bch2_bpos_to_text(&buf, b->data->min_key); 1097 prt_str(&buf, "-"); 1098 bch2_bpos_to_text(&buf, b->data->max_key); 1099 1100 btree_err_on(b->data->keys.seq != bp->seq, 1101 -BCH_ERR_btree_node_read_err_must_retry, 1102 c, ca, b, NULL, NULL, 1103 btree_node_bad_seq, 1104 "got wrong btree node: got\n%s", 1105 (printbuf_reset(&buf), 1106 bch2_btree_node_header_to_text(&buf, b->data), 1107 buf.buf)); 1108 } else { 1109 btree_err_on(!b->data->keys.seq, 1110 -BCH_ERR_btree_node_read_err_must_retry, 1111 c, ca, b, NULL, NULL, 1112 btree_node_bad_seq, 1113 "bad btree header: seq 0\n%s", 1114 (printbuf_reset(&buf), 1115 bch2_btree_node_header_to_text(&buf, b->data), 1116 buf.buf)); 1117 } 1118 1119 while (b->written < (ptr_written ?: btree_sectors(c))) { 1120 unsigned sectors; 1121 bool first = !b->written; 1122 1123 if (first) { 1124 bne = NULL; 1125 i = &b->data->keys; 1126 } else { 1127 bne = write_block(b); 1128 i = &bne->keys; 1129 1130 if (i->seq != b->data->keys.seq) 1131 break; 1132 } 1133 1134 struct nonce nonce = btree_nonce(i, b->written << 9); 1135 bool good_csum_type = bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)); 1136 1137 btree_err_on(!good_csum_type, 1138 bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i)) 1139 ? -BCH_ERR_btree_node_read_err_must_retry 1140 : -BCH_ERR_btree_node_read_err_want_retry, 1141 c, ca, b, i, NULL, 1142 bset_unknown_csum, 1143 "unknown checksum type %llu", BSET_CSUM_TYPE(i)); 1144 1145 if (first) { 1146 sectors = vstruct_sectors(b->data, c->block_bits); 1147 if (btree_err_on(b->written + sectors > (ptr_written ?: btree_sectors(c)), 1148 -BCH_ERR_btree_node_read_err_fixable, 1149 c, ca, b, i, NULL, 1150 bset_past_end_of_btree_node, 1151 "bset past end of btree node (offset %u len %u but written %zu)", 1152 b->written, sectors, ptr_written ?: btree_sectors(c))) 1153 i->u64s = 0; 1154 if (good_csum_type) { 1155 struct bch_csum csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data); 1156 bool csum_bad = bch2_crc_cmp(b->data->csum, csum); 1157 if (csum_bad) 1158 bch2_io_error(ca, BCH_MEMBER_ERROR_checksum); 1159 1160 btree_err_on(csum_bad, 1161 -BCH_ERR_btree_node_read_err_want_retry, 1162 c, ca, b, i, NULL, 1163 bset_bad_csum, 1164 "%s", 1165 (printbuf_reset(&buf), 1166 bch2_csum_err_msg(&buf, BSET_CSUM_TYPE(i), b->data->csum, csum), 1167 buf.buf)); 1168 1169 ret = bset_encrypt(c, i, b->written << 9); 1170 if (bch2_fs_fatal_err_on(ret, c, 1171 "decrypting btree node: %s", bch2_err_str(ret))) 1172 goto fsck_err; 1173 } 1174 1175 btree_err_on(btree_node_type_is_extents(btree_node_type(b)) && 1176 !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data), 1177 -BCH_ERR_btree_node_read_err_incompatible, 1178 c, NULL, b, NULL, NULL, 1179 btree_node_unsupported_version, 1180 "btree node does not have NEW_EXTENT_OVERWRITE set"); 1181 } else { 1182 sectors = vstruct_sectors(bne, c->block_bits); 1183 if (btree_err_on(b->written + sectors > (ptr_written ?: btree_sectors(c)), 1184 -BCH_ERR_btree_node_read_err_fixable, 1185 c, ca, b, i, NULL, 1186 bset_past_end_of_btree_node, 1187 "bset past end of btree node (offset %u len %u but written %zu)", 1188 b->written, sectors, ptr_written ?: btree_sectors(c))) 1189 i->u64s = 0; 1190 if (good_csum_type) { 1191 struct bch_csum csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); 1192 bool csum_bad = bch2_crc_cmp(bne->csum, csum); 1193 if (ca && csum_bad) 1194 bch2_io_error(ca, BCH_MEMBER_ERROR_checksum); 1195 1196 btree_err_on(csum_bad, 1197 -BCH_ERR_btree_node_read_err_want_retry, 1198 c, ca, b, i, NULL, 1199 bset_bad_csum, 1200 "%s", 1201 (printbuf_reset(&buf), 1202 bch2_csum_err_msg(&buf, BSET_CSUM_TYPE(i), bne->csum, csum), 1203 buf.buf)); 1204 1205 ret = bset_encrypt(c, i, b->written << 9); 1206 if (bch2_fs_fatal_err_on(ret, c, 1207 "decrypting btree node: %s", bch2_err_str(ret))) 1208 goto fsck_err; 1209 } 1210 } 1211 1212 b->version_ondisk = min(b->version_ondisk, 1213 le16_to_cpu(i->version)); 1214 1215 ret = validate_bset(c, ca, b, i, b->written, READ, failed, err_msg); 1216 if (ret) 1217 goto fsck_err; 1218 1219 if (!b->written) 1220 btree_node_set_format(b, b->data->format); 1221 1222 ret = validate_bset_keys(c, b, i, READ, failed, err_msg); 1223 if (ret) 1224 goto fsck_err; 1225 1226 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 1227 1228 blacklisted = bch2_journal_seq_is_blacklisted(c, 1229 le64_to_cpu(i->journal_seq), 1230 true); 1231 1232 btree_err_on(blacklisted && first, 1233 -BCH_ERR_btree_node_read_err_fixable, 1234 c, ca, b, i, NULL, 1235 bset_blacklisted_journal_seq, 1236 "first btree node bset has blacklisted journal seq (%llu)", 1237 le64_to_cpu(i->journal_seq)); 1238 1239 btree_err_on(blacklisted && ptr_written, 1240 -BCH_ERR_btree_node_read_err_fixable, 1241 c, ca, b, i, NULL, 1242 first_bset_blacklisted_journal_seq, 1243 "found blacklisted bset (journal seq %llu) in btree node at offset %u-%u/%u", 1244 le64_to_cpu(i->journal_seq), 1245 b->written, b->written + sectors, ptr_written); 1246 1247 b->written = min(b->written + sectors, btree_sectors(c)); 1248 1249 if (blacklisted && !first) 1250 continue; 1251 1252 sort_iter_add(iter, 1253 vstruct_idx(i, 0), 1254 vstruct_last(i)); 1255 1256 max_journal_seq = max(max_journal_seq, le64_to_cpu(i->journal_seq)); 1257 } 1258 1259 if (ptr_written) { 1260 btree_err_on(b->written < ptr_written, 1261 -BCH_ERR_btree_node_read_err_want_retry, 1262 c, ca, b, NULL, NULL, 1263 btree_node_data_missing, 1264 "btree node data missing: expected %u sectors, found %u", 1265 ptr_written, b->written); 1266 } else { 1267 for (bne = write_block(b); 1268 bset_byte_offset(b, bne) < btree_buf_bytes(b); 1269 bne = (void *) bne + block_bytes(c)) 1270 btree_err_on(bne->keys.seq == b->data->keys.seq && 1271 !bch2_journal_seq_is_blacklisted(c, 1272 le64_to_cpu(bne->keys.journal_seq), 1273 true), 1274 -BCH_ERR_btree_node_read_err_want_retry, 1275 c, ca, b, NULL, NULL, 1276 btree_node_bset_after_end, 1277 "found bset signature after last bset"); 1278 } 1279 1280 sorted = btree_bounce_alloc(c, btree_buf_bytes(b), &used_mempool); 1281 sorted->keys.u64s = 0; 1282 1283 b->nr = bch2_key_sort_fix_overlapping(c, &sorted->keys, iter); 1284 memset((uint8_t *)(sorted + 1) + b->nr.live_u64s * sizeof(u64), 0, 1285 btree_buf_bytes(b) - 1286 sizeof(struct btree_node) - 1287 b->nr.live_u64s * sizeof(u64)); 1288 1289 b->data->keys.u64s = sorted->keys.u64s; 1290 *sorted = *b->data; 1291 swap(sorted, b->data); 1292 set_btree_bset(b, b->set, &b->data->keys); 1293 b->nsets = 1; 1294 b->data->keys.journal_seq = cpu_to_le64(max_journal_seq); 1295 1296 BUG_ON(b->nr.live_u64s != le16_to_cpu(b->data->keys.u64s)); 1297 1298 btree_bounce_free(c, btree_buf_bytes(b), used_mempool, sorted); 1299 1300 if (updated_range) 1301 bch2_btree_node_drop_keys_outside_node(b); 1302 1303 i = &b->data->keys; 1304 for (k = i->start; k != vstruct_last(i);) { 1305 struct bkey tmp; 1306 struct bkey_s u = __bkey_disassemble(b, k, &tmp); 1307 1308 ret = btree_node_bkey_val_validate(c, b, u.s_c, READ); 1309 if (ret == -BCH_ERR_fsck_delete_bkey || 1310 (static_branch_unlikely(&bch2_inject_invalid_keys) && 1311 !bversion_cmp(u.k->bversion, MAX_VERSION))) { 1312 btree_keys_account_key_drop(&b->nr, 0, k); 1313 1314 i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); 1315 memmove_u64s_down(k, bkey_p_next(k), 1316 (u64 *) vstruct_end(i) - (u64 *) k); 1317 set_btree_bset_end(b, b->set); 1318 set_btree_node_need_rewrite(b); 1319 set_btree_node_need_rewrite_error(b); 1320 continue; 1321 } 1322 if (ret) 1323 goto fsck_err; 1324 1325 if (u.k->type == KEY_TYPE_btree_ptr_v2) { 1326 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(u); 1327 1328 bp.v->mem_ptr = 0; 1329 } 1330 1331 k = bkey_p_next(k); 1332 } 1333 1334 bch2_bset_build_aux_tree(b, b->set, false); 1335 1336 set_needs_whiteout(btree_bset_first(b), true); 1337 1338 btree_node_reset_sib_u64s(b); 1339 1340 /* 1341 * XXX: 1342 * 1343 * We deadlock if too many btree updates require node rewrites while 1344 * we're still in journal replay. 1345 * 1346 * This is because btree node rewrites generate more updates for the 1347 * interior updates (alloc, backpointers), and if those updates touch 1348 * new nodes and generate more rewrites - well, you see the problem. 1349 * 1350 * The biggest cause is that we don't use the btree write buffer (for 1351 * the backpointer updates - this needs some real thought on locking in 1352 * order to fix. 1353 * 1354 * The problem with this workaround (not doing the rewrite for degraded 1355 * nodes in journal replay) is that those degraded nodes persist, and we 1356 * don't want that (this is a real bug when a btree node write completes 1357 * with fewer replicas than we wanted and leaves a degraded node due to 1358 * device _removal_, i.e. the device went away mid write). 1359 * 1360 * It's less of a bug here, but still a problem because we don't yet 1361 * have a way of tracking degraded data - we another index (all 1362 * extents/btree nodes, by replicas entry) in order to fix properly 1363 * (re-replicate degraded data at the earliest possible time). 1364 */ 1365 if (c->recovery.passes_complete & BIT_ULL(BCH_RECOVERY_PASS_journal_replay)) { 1366 scoped_guard(rcu) 1367 bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&b->key)), ptr) { 1368 struct bch_dev *ca2 = bch2_dev_rcu(c, ptr->dev); 1369 1370 if (!ca2 || ca2->mi.state != BCH_MEMBER_STATE_rw) { 1371 set_btree_node_need_rewrite(b); 1372 set_btree_node_need_rewrite_degraded(b); 1373 } 1374 } 1375 } 1376 1377 if (!ptr_written) { 1378 set_btree_node_need_rewrite(b); 1379 set_btree_node_need_rewrite_ptr_written_zero(b); 1380 } 1381 fsck_err: 1382 mempool_free(iter, &c->fill_iter); 1383 printbuf_exit(&buf); 1384 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read_done], start_time); 1385 return ret; 1386 } 1387 1388 static void btree_node_read_work(struct work_struct *work) 1389 { 1390 struct btree_read_bio *rb = 1391 container_of(work, struct btree_read_bio, work); 1392 struct bch_fs *c = rb->c; 1393 struct bch_dev *ca = rb->have_ioref ? bch2_dev_have_ref(c, rb->pick.ptr.dev) : NULL; 1394 struct btree *b = rb->b; 1395 struct bio *bio = &rb->bio; 1396 struct bch_io_failures failed = { .nr = 0 }; 1397 int ret = 0; 1398 1399 struct printbuf buf = PRINTBUF; 1400 bch2_log_msg_start(c, &buf); 1401 1402 prt_printf(&buf, "btree node read error at btree "); 1403 bch2_btree_pos_to_text(&buf, c, b); 1404 prt_newline(&buf); 1405 1406 goto start; 1407 while (1) { 1408 ret = bch2_bkey_pick_read_device(c, 1409 bkey_i_to_s_c(&b->key), 1410 &failed, &rb->pick, -1); 1411 if (ret) { 1412 set_btree_node_read_error(b); 1413 break; 1414 } 1415 1416 ca = bch2_dev_get_ioref(c, rb->pick.ptr.dev, READ, BCH_DEV_READ_REF_btree_node_read); 1417 rb->have_ioref = ca != NULL; 1418 rb->start_time = local_clock(); 1419 bio_reset(bio, NULL, REQ_OP_READ|REQ_SYNC|REQ_META); 1420 bio->bi_iter.bi_sector = rb->pick.ptr.offset; 1421 bio->bi_iter.bi_size = btree_buf_bytes(b); 1422 1423 if (rb->have_ioref) { 1424 bio_set_dev(bio, ca->disk_sb.bdev); 1425 submit_bio_wait(bio); 1426 } else { 1427 bio->bi_status = BLK_STS_REMOVED; 1428 } 1429 1430 bch2_account_io_completion(ca, BCH_MEMBER_ERROR_read, 1431 rb->start_time, !bio->bi_status); 1432 start: 1433 if (rb->have_ioref) 1434 enumerated_ref_put(&ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_read); 1435 rb->have_ioref = false; 1436 1437 if (bio->bi_status) { 1438 bch2_mark_io_failure(&failed, &rb->pick, false); 1439 continue; 1440 } 1441 1442 ret = bch2_btree_node_read_done(c, ca, b, &failed, &buf); 1443 if (ret == -BCH_ERR_btree_node_read_err_want_retry || 1444 ret == -BCH_ERR_btree_node_read_err_must_retry) 1445 continue; 1446 1447 if (ret) 1448 set_btree_node_read_error(b); 1449 1450 break; 1451 } 1452 1453 bch2_io_failures_to_text(&buf, c, &failed); 1454 1455 if (btree_node_read_error(b)) 1456 bch2_btree_lost_data(c, &buf, b->c.btree_id); 1457 1458 /* 1459 * only print retry success if we read from a replica with no errors 1460 */ 1461 if (btree_node_read_error(b)) 1462 prt_printf(&buf, "ret %s", bch2_err_str(ret)); 1463 else if (failed.nr) { 1464 if (!bch2_dev_io_failures(&failed, rb->pick.ptr.dev)) 1465 prt_printf(&buf, "retry success"); 1466 else 1467 prt_printf(&buf, "repair success"); 1468 } 1469 1470 if ((failed.nr || 1471 btree_node_need_rewrite(b)) && 1472 !btree_node_read_error(b) && 1473 c->recovery.curr_pass != BCH_RECOVERY_PASS_scan_for_btree_nodes) { 1474 prt_printf(&buf, " (rewriting node)"); 1475 bch2_btree_node_rewrite_async(c, b); 1476 } 1477 prt_newline(&buf); 1478 1479 if (failed.nr) 1480 bch2_print_str_ratelimited(c, KERN_ERR, buf.buf); 1481 1482 async_object_list_del(c, btree_read_bio, rb->list_idx); 1483 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read], 1484 rb->start_time); 1485 bio_put(&rb->bio); 1486 printbuf_exit(&buf); 1487 clear_btree_node_read_in_flight(b); 1488 smp_mb__after_atomic(); 1489 wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); 1490 } 1491 1492 static void btree_node_read_endio(struct bio *bio) 1493 { 1494 struct btree_read_bio *rb = 1495 container_of(bio, struct btree_read_bio, bio); 1496 struct bch_fs *c = rb->c; 1497 struct bch_dev *ca = rb->have_ioref 1498 ? bch2_dev_have_ref(c, rb->pick.ptr.dev) : NULL; 1499 1500 bch2_account_io_completion(ca, BCH_MEMBER_ERROR_read, 1501 rb->start_time, !bio->bi_status); 1502 1503 queue_work(c->btree_read_complete_wq, &rb->work); 1504 } 1505 1506 void bch2_btree_read_bio_to_text(struct printbuf *out, struct btree_read_bio *rbio) 1507 { 1508 bch2_bio_to_text(out, &rbio->bio); 1509 } 1510 1511 struct btree_node_read_all { 1512 struct closure cl; 1513 struct bch_fs *c; 1514 struct btree *b; 1515 unsigned nr; 1516 void *buf[BCH_REPLICAS_MAX]; 1517 struct bio *bio[BCH_REPLICAS_MAX]; 1518 blk_status_t err[BCH_REPLICAS_MAX]; 1519 }; 1520 1521 static unsigned btree_node_sectors_written(struct bch_fs *c, void *data) 1522 { 1523 struct btree_node *bn = data; 1524 struct btree_node_entry *bne; 1525 unsigned offset = 0; 1526 1527 if (le64_to_cpu(bn->magic) != bset_magic(c)) 1528 return 0; 1529 1530 while (offset < btree_sectors(c)) { 1531 if (!offset) { 1532 offset += vstruct_sectors(bn, c->block_bits); 1533 } else { 1534 bne = data + (offset << 9); 1535 if (bne->keys.seq != bn->keys.seq) 1536 break; 1537 offset += vstruct_sectors(bne, c->block_bits); 1538 } 1539 } 1540 1541 return offset; 1542 } 1543 1544 static bool btree_node_has_extra_bsets(struct bch_fs *c, unsigned offset, void *data) 1545 { 1546 struct btree_node *bn = data; 1547 struct btree_node_entry *bne; 1548 1549 if (!offset) 1550 return false; 1551 1552 while (offset < btree_sectors(c)) { 1553 bne = data + (offset << 9); 1554 if (bne->keys.seq == bn->keys.seq) 1555 return true; 1556 offset++; 1557 } 1558 1559 return false; 1560 return offset; 1561 } 1562 1563 static CLOSURE_CALLBACK(btree_node_read_all_replicas_done) 1564 { 1565 closure_type(ra, struct btree_node_read_all, cl); 1566 struct bch_fs *c = ra->c; 1567 struct btree *b = ra->b; 1568 struct printbuf buf = PRINTBUF; 1569 bool dump_bset_maps = false; 1570 int ret = 0, best = -1, write = READ; 1571 unsigned i, written = 0, written2 = 0; 1572 __le64 seq = b->key.k.type == KEY_TYPE_btree_ptr_v2 1573 ? bkey_i_to_btree_ptr_v2(&b->key)->v.seq : 0; 1574 bool _saw_error = false, *saw_error = &_saw_error; 1575 struct printbuf *err_msg = NULL; 1576 struct bch_io_failures *failed = NULL; 1577 1578 for (i = 0; i < ra->nr; i++) { 1579 struct btree_node *bn = ra->buf[i]; 1580 1581 if (ra->err[i]) 1582 continue; 1583 1584 if (le64_to_cpu(bn->magic) != bset_magic(c) || 1585 (seq && seq != bn->keys.seq)) 1586 continue; 1587 1588 if (best < 0) { 1589 best = i; 1590 written = btree_node_sectors_written(c, bn); 1591 continue; 1592 } 1593 1594 written2 = btree_node_sectors_written(c, ra->buf[i]); 1595 if (btree_err_on(written2 != written, -BCH_ERR_btree_node_read_err_fixable, 1596 c, NULL, b, NULL, NULL, 1597 btree_node_replicas_sectors_written_mismatch, 1598 "btree node sectors written mismatch: %u != %u", 1599 written, written2) || 1600 btree_err_on(btree_node_has_extra_bsets(c, written2, ra->buf[i]), 1601 -BCH_ERR_btree_node_read_err_fixable, 1602 c, NULL, b, NULL, NULL, 1603 btree_node_bset_after_end, 1604 "found bset signature after last bset") || 1605 btree_err_on(memcmp(ra->buf[best], ra->buf[i], written << 9), 1606 -BCH_ERR_btree_node_read_err_fixable, 1607 c, NULL, b, NULL, NULL, 1608 btree_node_replicas_data_mismatch, 1609 "btree node replicas content mismatch")) 1610 dump_bset_maps = true; 1611 1612 if (written2 > written) { 1613 written = written2; 1614 best = i; 1615 } 1616 } 1617 fsck_err: 1618 if (dump_bset_maps) { 1619 for (i = 0; i < ra->nr; i++) { 1620 struct btree_node *bn = ra->buf[i]; 1621 struct btree_node_entry *bne = NULL; 1622 unsigned offset = 0, sectors; 1623 bool gap = false; 1624 1625 if (ra->err[i]) 1626 continue; 1627 1628 printbuf_reset(&buf); 1629 1630 while (offset < btree_sectors(c)) { 1631 if (!offset) { 1632 sectors = vstruct_sectors(bn, c->block_bits); 1633 } else { 1634 bne = ra->buf[i] + (offset << 9); 1635 if (bne->keys.seq != bn->keys.seq) 1636 break; 1637 sectors = vstruct_sectors(bne, c->block_bits); 1638 } 1639 1640 prt_printf(&buf, " %u-%u", offset, offset + sectors); 1641 if (bne && bch2_journal_seq_is_blacklisted(c, 1642 le64_to_cpu(bne->keys.journal_seq), false)) 1643 prt_printf(&buf, "*"); 1644 offset += sectors; 1645 } 1646 1647 while (offset < btree_sectors(c)) { 1648 bne = ra->buf[i] + (offset << 9); 1649 if (bne->keys.seq == bn->keys.seq) { 1650 if (!gap) 1651 prt_printf(&buf, " GAP"); 1652 gap = true; 1653 1654 sectors = vstruct_sectors(bne, c->block_bits); 1655 prt_printf(&buf, " %u-%u", offset, offset + sectors); 1656 if (bch2_journal_seq_is_blacklisted(c, 1657 le64_to_cpu(bne->keys.journal_seq), false)) 1658 prt_printf(&buf, "*"); 1659 } 1660 offset++; 1661 } 1662 1663 bch_err(c, "replica %u:%s", i, buf.buf); 1664 } 1665 } 1666 1667 if (best >= 0) { 1668 memcpy(b->data, ra->buf[best], btree_buf_bytes(b)); 1669 ret = bch2_btree_node_read_done(c, NULL, b, NULL, NULL); 1670 } else { 1671 ret = -1; 1672 } 1673 1674 if (ret) { 1675 set_btree_node_read_error(b); 1676 1677 struct printbuf buf = PRINTBUF; 1678 bch2_btree_lost_data(c, &buf, b->c.btree_id); 1679 if (buf.pos) 1680 bch_err(c, "%s", buf.buf); 1681 printbuf_exit(&buf); 1682 } else if (*saw_error) 1683 bch2_btree_node_rewrite_async(c, b); 1684 1685 for (i = 0; i < ra->nr; i++) { 1686 mempool_free(ra->buf[i], &c->btree_bounce_pool); 1687 bio_put(ra->bio[i]); 1688 } 1689 1690 closure_debug_destroy(&ra->cl); 1691 kfree(ra); 1692 printbuf_exit(&buf); 1693 1694 clear_btree_node_read_in_flight(b); 1695 smp_mb__after_atomic(); 1696 wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); 1697 } 1698 1699 static void btree_node_read_all_replicas_endio(struct bio *bio) 1700 { 1701 struct btree_read_bio *rb = 1702 container_of(bio, struct btree_read_bio, bio); 1703 struct bch_fs *c = rb->c; 1704 struct btree_node_read_all *ra = rb->ra; 1705 1706 if (rb->have_ioref) { 1707 struct bch_dev *ca = bch2_dev_have_ref(c, rb->pick.ptr.dev); 1708 1709 bch2_latency_acct(ca, rb->start_time, READ); 1710 enumerated_ref_put(&ca->io_ref[READ], 1711 BCH_DEV_READ_REF_btree_node_read_all_replicas); 1712 } 1713 1714 ra->err[rb->idx] = bio->bi_status; 1715 closure_put(&ra->cl); 1716 } 1717 1718 /* 1719 * XXX This allocates multiple times from the same mempools, and can deadlock 1720 * under sufficient memory pressure (but is only a debug path) 1721 */ 1722 static int btree_node_read_all_replicas(struct bch_fs *c, struct btree *b, bool sync) 1723 { 1724 struct bkey_s_c k = bkey_i_to_s_c(&b->key); 1725 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1726 const union bch_extent_entry *entry; 1727 struct extent_ptr_decoded pick; 1728 struct btree_node_read_all *ra; 1729 unsigned i; 1730 1731 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1732 if (!ra) 1733 return bch_err_throw(c, ENOMEM_btree_node_read_all_replicas); 1734 1735 closure_init(&ra->cl, NULL); 1736 ra->c = c; 1737 ra->b = b; 1738 ra->nr = bch2_bkey_nr_ptrs(k); 1739 1740 for (i = 0; i < ra->nr; i++) { 1741 ra->buf[i] = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS); 1742 ra->bio[i] = bio_alloc_bioset(NULL, 1743 buf_pages(ra->buf[i], btree_buf_bytes(b)), 1744 REQ_OP_READ|REQ_SYNC|REQ_META, 1745 GFP_NOFS, 1746 &c->btree_bio); 1747 } 1748 1749 i = 0; 1750 bkey_for_each_ptr_decode(k.k, ptrs, pick, entry) { 1751 struct bch_dev *ca = bch2_dev_get_ioref(c, pick.ptr.dev, READ, 1752 BCH_DEV_READ_REF_btree_node_read_all_replicas); 1753 struct btree_read_bio *rb = 1754 container_of(ra->bio[i], struct btree_read_bio, bio); 1755 rb->c = c; 1756 rb->b = b; 1757 rb->ra = ra; 1758 rb->start_time = local_clock(); 1759 rb->have_ioref = ca != NULL; 1760 rb->idx = i; 1761 rb->pick = pick; 1762 rb->bio.bi_iter.bi_sector = pick.ptr.offset; 1763 rb->bio.bi_end_io = btree_node_read_all_replicas_endio; 1764 bch2_bio_map(&rb->bio, ra->buf[i], btree_buf_bytes(b)); 1765 1766 if (rb->have_ioref) { 1767 this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree], 1768 bio_sectors(&rb->bio)); 1769 bio_set_dev(&rb->bio, ca->disk_sb.bdev); 1770 1771 closure_get(&ra->cl); 1772 submit_bio(&rb->bio); 1773 } else { 1774 ra->err[i] = BLK_STS_REMOVED; 1775 } 1776 1777 i++; 1778 } 1779 1780 if (sync) { 1781 closure_sync(&ra->cl); 1782 btree_node_read_all_replicas_done(&ra->cl.work); 1783 } else { 1784 continue_at(&ra->cl, btree_node_read_all_replicas_done, 1785 c->btree_read_complete_wq); 1786 } 1787 1788 return 0; 1789 } 1790 1791 void bch2_btree_node_read(struct btree_trans *trans, struct btree *b, 1792 bool sync) 1793 { 1794 struct bch_fs *c = trans->c; 1795 struct extent_ptr_decoded pick; 1796 struct btree_read_bio *rb; 1797 struct bch_dev *ca; 1798 struct bio *bio; 1799 int ret; 1800 1801 trace_and_count(c, btree_node_read, trans, b); 1802 1803 if (static_branch_unlikely(&bch2_verify_all_btree_replicas) && 1804 !btree_node_read_all_replicas(c, b, sync)) 1805 return; 1806 1807 ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key), 1808 NULL, &pick, -1); 1809 1810 if (ret <= 0) { 1811 bool ratelimit = true; 1812 struct printbuf buf = PRINTBUF; 1813 bch2_log_msg_start(c, &buf); 1814 1815 prt_str(&buf, "btree node read error: no device to read from\n at "); 1816 bch2_btree_pos_to_text(&buf, c, b); 1817 prt_newline(&buf); 1818 bch2_btree_lost_data(c, &buf, b->c.btree_id); 1819 1820 if (c->recovery.passes_complete & BIT_ULL(BCH_RECOVERY_PASS_check_topology) && 1821 bch2_fs_emergency_read_only2(c, &buf)) 1822 ratelimit = false; 1823 1824 static DEFINE_RATELIMIT_STATE(rs, 1825 DEFAULT_RATELIMIT_INTERVAL, 1826 DEFAULT_RATELIMIT_BURST); 1827 if (!ratelimit || __ratelimit(&rs)) 1828 bch2_print_str(c, KERN_ERR, buf.buf); 1829 printbuf_exit(&buf); 1830 1831 set_btree_node_read_error(b); 1832 clear_btree_node_read_in_flight(b); 1833 smp_mb__after_atomic(); 1834 wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); 1835 return; 1836 } 1837 1838 ca = bch2_dev_get_ioref(c, pick.ptr.dev, READ, BCH_DEV_READ_REF_btree_node_read); 1839 1840 bio = bio_alloc_bioset(NULL, 1841 buf_pages(b->data, btree_buf_bytes(b)), 1842 REQ_OP_READ|REQ_SYNC|REQ_META, 1843 GFP_NOFS, 1844 &c->btree_bio); 1845 rb = container_of(bio, struct btree_read_bio, bio); 1846 rb->c = c; 1847 rb->b = b; 1848 rb->ra = NULL; 1849 rb->start_time = local_clock(); 1850 rb->have_ioref = ca != NULL; 1851 rb->pick = pick; 1852 INIT_WORK(&rb->work, btree_node_read_work); 1853 bio->bi_iter.bi_sector = pick.ptr.offset; 1854 bio->bi_end_io = btree_node_read_endio; 1855 bch2_bio_map(bio, b->data, btree_buf_bytes(b)); 1856 1857 async_object_list_add(c, btree_read_bio, rb, &rb->list_idx); 1858 1859 if (rb->have_ioref) { 1860 this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree], 1861 bio_sectors(bio)); 1862 bio_set_dev(bio, ca->disk_sb.bdev); 1863 1864 if (sync) { 1865 submit_bio_wait(bio); 1866 bch2_latency_acct(ca, rb->start_time, READ); 1867 btree_node_read_work(&rb->work); 1868 } else { 1869 submit_bio(bio); 1870 } 1871 } else { 1872 bio->bi_status = BLK_STS_REMOVED; 1873 1874 if (sync) 1875 btree_node_read_work(&rb->work); 1876 else 1877 queue_work(c->btree_read_complete_wq, &rb->work); 1878 } 1879 } 1880 1881 static int __bch2_btree_root_read(struct btree_trans *trans, enum btree_id id, 1882 const struct bkey_i *k, unsigned level) 1883 { 1884 struct bch_fs *c = trans->c; 1885 struct closure cl; 1886 struct btree *b; 1887 int ret; 1888 1889 closure_init_stack(&cl); 1890 1891 do { 1892 ret = bch2_btree_cache_cannibalize_lock(trans, &cl); 1893 closure_sync(&cl); 1894 } while (ret); 1895 1896 b = bch2_btree_node_mem_alloc(trans, level != 0); 1897 bch2_btree_cache_cannibalize_unlock(trans); 1898 1899 BUG_ON(IS_ERR(b)); 1900 1901 bkey_copy(&b->key, k); 1902 BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id)); 1903 1904 set_btree_node_read_in_flight(b); 1905 1906 /* we can't pass the trans to read_done() for fsck errors, so it must be unlocked */ 1907 bch2_trans_unlock(trans); 1908 bch2_btree_node_read(trans, b, true); 1909 1910 if (btree_node_read_error(b)) { 1911 mutex_lock(&c->btree_cache.lock); 1912 bch2_btree_node_hash_remove(&c->btree_cache, b); 1913 mutex_unlock(&c->btree_cache.lock); 1914 1915 ret = bch_err_throw(c, btree_node_read_error); 1916 goto err; 1917 } 1918 1919 bch2_btree_set_root_for_read(c, b); 1920 err: 1921 six_unlock_write(&b->c.lock); 1922 six_unlock_intent(&b->c.lock); 1923 1924 return ret; 1925 } 1926 1927 int bch2_btree_root_read(struct bch_fs *c, enum btree_id id, 1928 const struct bkey_i *k, unsigned level) 1929 { 1930 return bch2_trans_run(c, __bch2_btree_root_read(trans, id, k, level)); 1931 } 1932 1933 struct btree_node_scrub { 1934 struct bch_fs *c; 1935 struct bch_dev *ca; 1936 void *buf; 1937 bool used_mempool; 1938 unsigned written; 1939 1940 enum btree_id btree; 1941 unsigned level; 1942 struct bkey_buf key; 1943 __le64 seq; 1944 1945 struct work_struct work; 1946 struct bio bio; 1947 }; 1948 1949 static bool btree_node_scrub_check(struct bch_fs *c, struct btree_node *data, unsigned ptr_written, 1950 struct printbuf *err) 1951 { 1952 unsigned written = 0; 1953 1954 if (le64_to_cpu(data->magic) != bset_magic(c)) { 1955 prt_printf(err, "bad magic: want %llx, got %llx", 1956 bset_magic(c), le64_to_cpu(data->magic)); 1957 return false; 1958 } 1959 1960 while (written < (ptr_written ?: btree_sectors(c))) { 1961 struct btree_node_entry *bne; 1962 struct bset *i; 1963 bool first = !written; 1964 1965 if (first) { 1966 bne = NULL; 1967 i = &data->keys; 1968 } else { 1969 bne = (void *) data + (written << 9); 1970 i = &bne->keys; 1971 1972 if (!ptr_written && i->seq != data->keys.seq) 1973 break; 1974 } 1975 1976 struct nonce nonce = btree_nonce(i, written << 9); 1977 bool good_csum_type = bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)); 1978 1979 if (first) { 1980 if (good_csum_type) { 1981 struct bch_csum csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, data); 1982 if (bch2_crc_cmp(data->csum, csum)) { 1983 bch2_csum_err_msg(err, BSET_CSUM_TYPE(i), data->csum, csum); 1984 return false; 1985 } 1986 } 1987 1988 written += vstruct_sectors(data, c->block_bits); 1989 } else { 1990 if (good_csum_type) { 1991 struct bch_csum csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); 1992 if (bch2_crc_cmp(bne->csum, csum)) { 1993 bch2_csum_err_msg(err, BSET_CSUM_TYPE(i), bne->csum, csum); 1994 return false; 1995 } 1996 } 1997 1998 written += vstruct_sectors(bne, c->block_bits); 1999 } 2000 } 2001 2002 return true; 2003 } 2004 2005 static void btree_node_scrub_work(struct work_struct *work) 2006 { 2007 struct btree_node_scrub *scrub = container_of(work, struct btree_node_scrub, work); 2008 struct bch_fs *c = scrub->c; 2009 struct printbuf err = PRINTBUF; 2010 2011 __bch2_btree_pos_to_text(&err, c, scrub->btree, scrub->level, 2012 bkey_i_to_s_c(scrub->key.k)); 2013 prt_newline(&err); 2014 2015 if (!btree_node_scrub_check(c, scrub->buf, scrub->written, &err)) { 2016 int ret = bch2_trans_do(c, 2017 bch2_btree_node_rewrite_key(trans, scrub->btree, scrub->level - 1, 2018 scrub->key.k, 0)); 2019 if (!bch2_err_matches(ret, ENOENT) && 2020 !bch2_err_matches(ret, EROFS)) 2021 bch_err_fn_ratelimited(c, ret); 2022 } 2023 2024 printbuf_exit(&err); 2025 bch2_bkey_buf_exit(&scrub->key, c);; 2026 btree_bounce_free(c, c->opts.btree_node_size, scrub->used_mempool, scrub->buf); 2027 enumerated_ref_put(&scrub->ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_scrub); 2028 kfree(scrub); 2029 enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_node_scrub); 2030 } 2031 2032 static void btree_node_scrub_endio(struct bio *bio) 2033 { 2034 struct btree_node_scrub *scrub = container_of(bio, struct btree_node_scrub, bio); 2035 2036 queue_work(scrub->c->btree_read_complete_wq, &scrub->work); 2037 } 2038 2039 int bch2_btree_node_scrub(struct btree_trans *trans, 2040 enum btree_id btree, unsigned level, 2041 struct bkey_s_c k, unsigned dev) 2042 { 2043 if (k.k->type != KEY_TYPE_btree_ptr_v2) 2044 return 0; 2045 2046 struct bch_fs *c = trans->c; 2047 2048 if (!enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_btree_node_scrub)) 2049 return bch_err_throw(c, erofs_no_writes); 2050 2051 struct extent_ptr_decoded pick; 2052 int ret = bch2_bkey_pick_read_device(c, k, NULL, &pick, dev); 2053 if (ret <= 0) 2054 goto err; 2055 2056 struct bch_dev *ca = bch2_dev_get_ioref(c, pick.ptr.dev, READ, 2057 BCH_DEV_READ_REF_btree_node_scrub); 2058 if (!ca) { 2059 ret = bch_err_throw(c, device_offline); 2060 goto err; 2061 } 2062 2063 bool used_mempool = false; 2064 void *buf = btree_bounce_alloc(c, c->opts.btree_node_size, &used_mempool); 2065 2066 unsigned vecs = buf_pages(buf, c->opts.btree_node_size); 2067 2068 struct btree_node_scrub *scrub = 2069 kzalloc(sizeof(*scrub) + sizeof(struct bio_vec) * vecs, GFP_KERNEL); 2070 if (!scrub) { 2071 ret = -ENOMEM; 2072 goto err_free; 2073 } 2074 2075 scrub->c = c; 2076 scrub->ca = ca; 2077 scrub->buf = buf; 2078 scrub->used_mempool = used_mempool; 2079 scrub->written = btree_ptr_sectors_written(k); 2080 2081 scrub->btree = btree; 2082 scrub->level = level; 2083 bch2_bkey_buf_init(&scrub->key); 2084 bch2_bkey_buf_reassemble(&scrub->key, c, k); 2085 scrub->seq = bkey_s_c_to_btree_ptr_v2(k).v->seq; 2086 2087 INIT_WORK(&scrub->work, btree_node_scrub_work); 2088 2089 bio_init(&scrub->bio, ca->disk_sb.bdev, scrub->bio.bi_inline_vecs, vecs, REQ_OP_READ); 2090 bch2_bio_map(&scrub->bio, scrub->buf, c->opts.btree_node_size); 2091 scrub->bio.bi_iter.bi_sector = pick.ptr.offset; 2092 scrub->bio.bi_end_io = btree_node_scrub_endio; 2093 submit_bio(&scrub->bio); 2094 return 0; 2095 err_free: 2096 btree_bounce_free(c, c->opts.btree_node_size, used_mempool, buf); 2097 enumerated_ref_put(&ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_scrub); 2098 err: 2099 enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_node_scrub); 2100 return ret; 2101 } 2102 2103 static void bch2_btree_complete_write(struct bch_fs *c, struct btree *b, 2104 struct btree_write *w) 2105 { 2106 unsigned long old, new; 2107 2108 old = READ_ONCE(b->will_make_reachable); 2109 do { 2110 new = old; 2111 if (!(old & 1)) 2112 break; 2113 2114 new &= ~1UL; 2115 } while (!try_cmpxchg(&b->will_make_reachable, &old, new)); 2116 2117 if (old & 1) 2118 closure_put(&((struct btree_update *) new)->cl); 2119 2120 bch2_journal_pin_drop(&c->journal, &w->journal); 2121 } 2122 2123 static void __btree_node_write_done(struct bch_fs *c, struct btree *b, u64 start_time) 2124 { 2125 struct btree_write *w = btree_prev_write(b); 2126 unsigned long old, new; 2127 unsigned type = 0; 2128 2129 bch2_btree_complete_write(c, b, w); 2130 2131 if (start_time) 2132 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_write], start_time); 2133 2134 old = READ_ONCE(b->flags); 2135 do { 2136 new = old; 2137 2138 if ((old & (1U << BTREE_NODE_dirty)) && 2139 (old & (1U << BTREE_NODE_need_write)) && 2140 !(old & (1U << BTREE_NODE_never_write)) && 2141 !(old & (1U << BTREE_NODE_write_blocked)) && 2142 !(old & (1U << BTREE_NODE_will_make_reachable))) { 2143 new &= ~(1U << BTREE_NODE_dirty); 2144 new &= ~(1U << BTREE_NODE_need_write); 2145 new |= (1U << BTREE_NODE_write_in_flight); 2146 new |= (1U << BTREE_NODE_write_in_flight_inner); 2147 new |= (1U << BTREE_NODE_just_written); 2148 new ^= (1U << BTREE_NODE_write_idx); 2149 2150 type = new & BTREE_WRITE_TYPE_MASK; 2151 new &= ~BTREE_WRITE_TYPE_MASK; 2152 } else { 2153 new &= ~(1U << BTREE_NODE_write_in_flight); 2154 new &= ~(1U << BTREE_NODE_write_in_flight_inner); 2155 } 2156 } while (!try_cmpxchg(&b->flags, &old, new)); 2157 2158 if (new & (1U << BTREE_NODE_write_in_flight)) 2159 __bch2_btree_node_write(c, b, BTREE_WRITE_ALREADY_STARTED|type); 2160 else { 2161 smp_mb__after_atomic(); 2162 wake_up_bit(&b->flags, BTREE_NODE_write_in_flight); 2163 } 2164 } 2165 2166 static void btree_node_write_done(struct bch_fs *c, struct btree *b, u64 start_time) 2167 { 2168 struct btree_trans *trans = bch2_trans_get(c); 2169 2170 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 2171 2172 /* we don't need transaction context anymore after we got the lock. */ 2173 bch2_trans_put(trans); 2174 __btree_node_write_done(c, b, start_time); 2175 six_unlock_read(&b->c.lock); 2176 } 2177 2178 static void btree_node_write_work(struct work_struct *work) 2179 { 2180 struct btree_write_bio *wbio = 2181 container_of(work, struct btree_write_bio, work); 2182 struct bch_fs *c = wbio->wbio.c; 2183 struct btree *b = wbio->wbio.bio.bi_private; 2184 u64 start_time = wbio->start_time; 2185 int ret = 0; 2186 2187 btree_bounce_free(c, 2188 wbio->data_bytes, 2189 wbio->wbio.used_mempool, 2190 wbio->data); 2191 2192 bch2_bkey_drop_ptrs(bkey_i_to_s(&wbio->key), ptr, 2193 bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev)); 2194 2195 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(&wbio->key))) { 2196 ret = bch_err_throw(c, btree_node_write_all_failed); 2197 goto err; 2198 } 2199 2200 if (wbio->wbio.first_btree_write) { 2201 if (wbio->wbio.failed.nr) { 2202 2203 } 2204 } else { 2205 ret = bch2_trans_do(c, 2206 bch2_btree_node_update_key_get_iter(trans, b, &wbio->key, 2207 BCH_WATERMARK_interior_updates| 2208 BCH_TRANS_COMMIT_journal_reclaim| 2209 BCH_TRANS_COMMIT_no_enospc| 2210 BCH_TRANS_COMMIT_no_check_rw, 2211 !wbio->wbio.failed.nr)); 2212 if (ret) 2213 goto err; 2214 } 2215 out: 2216 async_object_list_del(c, btree_write_bio, wbio->list_idx); 2217 bio_put(&wbio->wbio.bio); 2218 btree_node_write_done(c, b, start_time); 2219 return; 2220 err: 2221 set_btree_node_noevict(b); 2222 2223 if (!bch2_err_matches(ret, EROFS)) { 2224 struct printbuf buf = PRINTBUF; 2225 prt_printf(&buf, "writing btree node: %s\n ", bch2_err_str(ret)); 2226 bch2_btree_pos_to_text(&buf, c, b); 2227 bch2_fs_fatal_error(c, "%s", buf.buf); 2228 printbuf_exit(&buf); 2229 } 2230 goto out; 2231 } 2232 2233 static void btree_node_write_endio(struct bio *bio) 2234 { 2235 struct bch_write_bio *wbio = to_wbio(bio); 2236 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; 2237 struct bch_write_bio *orig = parent ?: wbio; 2238 struct btree_write_bio *wb = container_of(orig, struct btree_write_bio, wbio); 2239 struct bch_fs *c = wbio->c; 2240 struct btree *b = wbio->bio.bi_private; 2241 struct bch_dev *ca = wbio->have_ioref ? bch2_dev_have_ref(c, wbio->dev) : NULL; 2242 2243 bch2_account_io_completion(ca, BCH_MEMBER_ERROR_write, 2244 wbio->submit_time, !bio->bi_status); 2245 2246 if (ca && bio->bi_status) { 2247 struct printbuf buf = PRINTBUF; 2248 buf.atomic++; 2249 prt_printf(&buf, "btree write error: %s\n ", 2250 bch2_blk_status_to_str(bio->bi_status)); 2251 bch2_btree_pos_to_text(&buf, c, b); 2252 bch_err_dev_ratelimited(ca, "%s", buf.buf); 2253 printbuf_exit(&buf); 2254 } 2255 2256 if (bio->bi_status) { 2257 unsigned long flags; 2258 spin_lock_irqsave(&c->btree_write_error_lock, flags); 2259 bch2_dev_list_add_dev(&orig->failed, wbio->dev); 2260 spin_unlock_irqrestore(&c->btree_write_error_lock, flags); 2261 } 2262 2263 /* 2264 * XXX: we should be using io_ref[WRITE], but we aren't retrying failed 2265 * btree writes yet (due to device removal/ro): 2266 */ 2267 if (wbio->have_ioref) 2268 enumerated_ref_put(&ca->io_ref[READ], 2269 BCH_DEV_READ_REF_btree_node_write); 2270 2271 if (parent) { 2272 bio_put(bio); 2273 bio_endio(&parent->bio); 2274 return; 2275 } 2276 2277 clear_btree_node_write_in_flight_inner(b); 2278 smp_mb__after_atomic(); 2279 wake_up_bit(&b->flags, BTREE_NODE_write_in_flight_inner); 2280 INIT_WORK(&wb->work, btree_node_write_work); 2281 queue_work(c->btree_write_complete_wq, &wb->work); 2282 } 2283 2284 static int validate_bset_for_write(struct bch_fs *c, struct btree *b, 2285 struct bset *i) 2286 { 2287 int ret = bch2_bkey_validate(c, bkey_i_to_s_c(&b->key), 2288 (struct bkey_validate_context) { 2289 .from = BKEY_VALIDATE_btree_node, 2290 .level = b->c.level + 1, 2291 .btree = b->c.btree_id, 2292 .flags = BCH_VALIDATE_write, 2293 }); 2294 if (ret) { 2295 bch2_fs_inconsistent(c, "invalid btree node key before write"); 2296 return ret; 2297 } 2298 2299 ret = validate_bset_keys(c, b, i, WRITE, NULL, NULL) ?: 2300 validate_bset(c, NULL, b, i, b->written, WRITE, NULL, NULL); 2301 if (ret) { 2302 bch2_inconsistent_error(c); 2303 dump_stack(); 2304 } 2305 2306 return ret; 2307 } 2308 2309 static void btree_write_submit(struct work_struct *work) 2310 { 2311 struct btree_write_bio *wbio = container_of(work, struct btree_write_bio, work); 2312 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 2313 2314 bkey_copy(&tmp.k, &wbio->key); 2315 2316 bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&tmp.k)), ptr) 2317 ptr->offset += wbio->sector_offset; 2318 2319 bch2_submit_wbio_replicas(&wbio->wbio, wbio->wbio.c, BCH_DATA_btree, 2320 &tmp.k, false); 2321 } 2322 2323 void __bch2_btree_node_write(struct bch_fs *c, struct btree *b, unsigned flags) 2324 { 2325 struct btree_write_bio *wbio; 2326 struct bset *i; 2327 struct btree_node *bn = NULL; 2328 struct btree_node_entry *bne = NULL; 2329 struct sort_iter_stack sort_iter; 2330 struct nonce nonce; 2331 unsigned bytes_to_write, sectors_to_write, bytes, u64s; 2332 u64 seq = 0; 2333 bool used_mempool; 2334 unsigned long old, new; 2335 bool validate_before_checksum = false; 2336 enum btree_write_type type = flags & BTREE_WRITE_TYPE_MASK; 2337 void *data; 2338 u64 start_time = local_clock(); 2339 int ret; 2340 2341 if (flags & BTREE_WRITE_ALREADY_STARTED) 2342 goto do_write; 2343 2344 /* 2345 * We may only have a read lock on the btree node - the dirty bit is our 2346 * "lock" against racing with other threads that may be trying to start 2347 * a write, we do a write iff we clear the dirty bit. Since setting the 2348 * dirty bit requires a write lock, we can't race with other threads 2349 * redirtying it: 2350 */ 2351 old = READ_ONCE(b->flags); 2352 do { 2353 new = old; 2354 2355 if (!(old & (1 << BTREE_NODE_dirty))) 2356 return; 2357 2358 if ((flags & BTREE_WRITE_ONLY_IF_NEED) && 2359 !(old & (1 << BTREE_NODE_need_write))) 2360 return; 2361 2362 if (old & 2363 ((1 << BTREE_NODE_never_write)| 2364 (1 << BTREE_NODE_write_blocked))) 2365 return; 2366 2367 if (b->written && 2368 (old & (1 << BTREE_NODE_will_make_reachable))) 2369 return; 2370 2371 if (old & (1 << BTREE_NODE_write_in_flight)) 2372 return; 2373 2374 if (flags & BTREE_WRITE_ONLY_IF_NEED) 2375 type = new & BTREE_WRITE_TYPE_MASK; 2376 new &= ~BTREE_WRITE_TYPE_MASK; 2377 2378 new &= ~(1 << BTREE_NODE_dirty); 2379 new &= ~(1 << BTREE_NODE_need_write); 2380 new |= (1 << BTREE_NODE_write_in_flight); 2381 new |= (1 << BTREE_NODE_write_in_flight_inner); 2382 new |= (1 << BTREE_NODE_just_written); 2383 new ^= (1 << BTREE_NODE_write_idx); 2384 } while (!try_cmpxchg_acquire(&b->flags, &old, new)); 2385 2386 if (new & (1U << BTREE_NODE_need_write)) 2387 return; 2388 do_write: 2389 BUG_ON((type == BTREE_WRITE_initial) != (b->written == 0)); 2390 2391 atomic_long_dec(&c->btree_cache.nr_dirty); 2392 2393 BUG_ON(btree_node_fake(b)); 2394 BUG_ON((b->will_make_reachable != 0) != !b->written); 2395 2396 BUG_ON(b->written >= btree_sectors(c)); 2397 BUG_ON(b->written & (block_sectors(c) - 1)); 2398 BUG_ON(bset_written(b, btree_bset_last(b))); 2399 BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c)); 2400 BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format))); 2401 2402 bch2_sort_whiteouts(c, b); 2403 2404 sort_iter_stack_init(&sort_iter, b); 2405 2406 bytes = !b->written 2407 ? sizeof(struct btree_node) 2408 : sizeof(struct btree_node_entry); 2409 2410 bytes += b->whiteout_u64s * sizeof(u64); 2411 2412 for_each_bset(b, t) { 2413 i = bset(b, t); 2414 2415 if (bset_written(b, i)) 2416 continue; 2417 2418 bytes += le16_to_cpu(i->u64s) * sizeof(u64); 2419 sort_iter_add(&sort_iter.iter, 2420 btree_bkey_first(b, t), 2421 btree_bkey_last(b, t)); 2422 seq = max(seq, le64_to_cpu(i->journal_seq)); 2423 } 2424 2425 BUG_ON(b->written && !seq); 2426 2427 /* bch2_varint_decode may read up to 7 bytes past the end of the buffer: */ 2428 bytes += 8; 2429 2430 /* buffer must be a multiple of the block size */ 2431 bytes = round_up(bytes, block_bytes(c)); 2432 2433 data = btree_bounce_alloc(c, bytes, &used_mempool); 2434 2435 if (!b->written) { 2436 bn = data; 2437 *bn = *b->data; 2438 i = &bn->keys; 2439 } else { 2440 bne = data; 2441 bne->keys = b->data->keys; 2442 i = &bne->keys; 2443 } 2444 2445 i->journal_seq = cpu_to_le64(seq); 2446 i->u64s = 0; 2447 2448 sort_iter_add(&sort_iter.iter, 2449 unwritten_whiteouts_start(b), 2450 unwritten_whiteouts_end(b)); 2451 SET_BSET_SEPARATE_WHITEOUTS(i, false); 2452 2453 u64s = bch2_sort_keys_keep_unwritten_whiteouts(i->start, &sort_iter.iter); 2454 le16_add_cpu(&i->u64s, u64s); 2455 2456 b->whiteout_u64s = 0; 2457 2458 BUG_ON(!b->written && i->u64s != b->data->keys.u64s); 2459 2460 set_needs_whiteout(i, false); 2461 2462 /* do we have data to write? */ 2463 if (b->written && !i->u64s) 2464 goto nowrite; 2465 2466 bytes_to_write = vstruct_end(i) - data; 2467 sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9; 2468 2469 if (!b->written && 2470 b->key.k.type == KEY_TYPE_btree_ptr_v2) 2471 BUG_ON(btree_ptr_sectors_written(bkey_i_to_s_c(&b->key)) != sectors_to_write); 2472 2473 memset(data + bytes_to_write, 0, 2474 (sectors_to_write << 9) - bytes_to_write); 2475 2476 BUG_ON(b->written + sectors_to_write > btree_sectors(c)); 2477 BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN); 2478 BUG_ON(i->seq != b->data->keys.seq); 2479 2480 i->version = cpu_to_le16(c->sb.version); 2481 SET_BSET_OFFSET(i, b->written); 2482 SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c)); 2483 2484 if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i))) 2485 validate_before_checksum = true; 2486 2487 /* validate_bset will be modifying: */ 2488 if (le16_to_cpu(i->version) < bcachefs_metadata_version_current) 2489 validate_before_checksum = true; 2490 2491 /* if we're going to be encrypting, check metadata validity first: */ 2492 if (validate_before_checksum && 2493 validate_bset_for_write(c, b, i)) 2494 goto err; 2495 2496 ret = bset_encrypt(c, i, b->written << 9); 2497 if (bch2_fs_fatal_err_on(ret, c, 2498 "encrypting btree node: %s", bch2_err_str(ret))) 2499 goto err; 2500 2501 nonce = btree_nonce(i, b->written << 9); 2502 2503 if (bn) 2504 bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn); 2505 else 2506 bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); 2507 2508 /* if we're not encrypting, check metadata after checksumming: */ 2509 if (!validate_before_checksum && 2510 validate_bset_for_write(c, b, i)) 2511 goto err; 2512 2513 /* 2514 * We handle btree write errors by immediately halting the journal - 2515 * after we've done that, we can't issue any subsequent btree writes 2516 * because they might have pointers to new nodes that failed to write. 2517 * 2518 * Furthermore, there's no point in doing any more btree writes because 2519 * with the journal stopped, we're never going to update the journal to 2520 * reflect that those writes were done and the data flushed from the 2521 * journal: 2522 * 2523 * Also on journal error, the pending write may have updates that were 2524 * never journalled (interior nodes, see btree_update_nodes_written()) - 2525 * it's critical that we don't do the write in that case otherwise we 2526 * will have updates visible that weren't in the journal: 2527 * 2528 * Make sure to update b->written so bch2_btree_init_next() doesn't 2529 * break: 2530 */ 2531 if (bch2_journal_error(&c->journal) || 2532 c->opts.nochanges) 2533 goto err; 2534 2535 trace_and_count(c, btree_node_write, b, bytes_to_write, sectors_to_write); 2536 2537 wbio = container_of(bio_alloc_bioset(NULL, 2538 buf_pages(data, sectors_to_write << 9), 2539 REQ_OP_WRITE|REQ_META, 2540 GFP_NOFS, 2541 &c->btree_bio), 2542 struct btree_write_bio, wbio.bio); 2543 wbio_init(&wbio->wbio.bio); 2544 wbio->data = data; 2545 wbio->data_bytes = bytes; 2546 wbio->sector_offset = b->written; 2547 wbio->start_time = start_time; 2548 wbio->wbio.c = c; 2549 wbio->wbio.used_mempool = used_mempool; 2550 wbio->wbio.first_btree_write = !b->written; 2551 wbio->wbio.bio.bi_end_io = btree_node_write_endio; 2552 wbio->wbio.bio.bi_private = b; 2553 2554 bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9); 2555 2556 bkey_copy(&wbio->key, &b->key); 2557 2558 b->written += sectors_to_write; 2559 2560 if (wbio->key.k.type == KEY_TYPE_btree_ptr_v2) 2561 bkey_i_to_btree_ptr_v2(&wbio->key)->v.sectors_written = 2562 cpu_to_le16(b->written); 2563 2564 atomic64_inc(&c->btree_write_stats[type].nr); 2565 atomic64_add(bytes_to_write, &c->btree_write_stats[type].bytes); 2566 2567 async_object_list_add(c, btree_write_bio, wbio, &wbio->list_idx); 2568 2569 INIT_WORK(&wbio->work, btree_write_submit); 2570 queue_work(c->btree_write_submit_wq, &wbio->work); 2571 return; 2572 err: 2573 set_btree_node_noevict(b); 2574 b->written += sectors_to_write; 2575 nowrite: 2576 btree_bounce_free(c, bytes, used_mempool, data); 2577 __btree_node_write_done(c, b, 0); 2578 } 2579 2580 /* 2581 * Work that must be done with write lock held: 2582 */ 2583 bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b) 2584 { 2585 bool invalidated_iter = false; 2586 struct btree_node_entry *bne; 2587 2588 if (!btree_node_just_written(b)) 2589 return false; 2590 2591 BUG_ON(b->whiteout_u64s); 2592 2593 clear_btree_node_just_written(b); 2594 2595 /* 2596 * Note: immediately after write, bset_written() doesn't work - the 2597 * amount of data we had to write after compaction might have been 2598 * smaller than the offset of the last bset. 2599 * 2600 * However, we know that all bsets have been written here, as long as 2601 * we're still holding the write lock: 2602 */ 2603 2604 /* 2605 * XXX: decide if we really want to unconditionally sort down to a 2606 * single bset: 2607 */ 2608 if (b->nsets > 1) { 2609 btree_node_sort(c, b, 0, b->nsets); 2610 invalidated_iter = true; 2611 } else { 2612 invalidated_iter = bch2_drop_whiteouts(b, COMPACT_ALL); 2613 } 2614 2615 for_each_bset(b, t) 2616 set_needs_whiteout(bset(b, t), true); 2617 2618 bch2_btree_verify(c, b); 2619 2620 /* 2621 * If later we don't unconditionally sort down to a single bset, we have 2622 * to ensure this is still true: 2623 */ 2624 BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b)); 2625 2626 bne = want_new_bset(c, b); 2627 if (bne) 2628 bch2_bset_init_next(b, bne); 2629 2630 bch2_btree_build_aux_trees(b); 2631 2632 return invalidated_iter; 2633 } 2634 2635 /* 2636 * Use this one if the node is intent locked: 2637 */ 2638 void bch2_btree_node_write(struct bch_fs *c, struct btree *b, 2639 enum six_lock_type lock_type_held, 2640 unsigned flags) 2641 { 2642 if (lock_type_held == SIX_LOCK_intent || 2643 (lock_type_held == SIX_LOCK_read && 2644 six_lock_tryupgrade(&b->c.lock))) { 2645 __bch2_btree_node_write(c, b, flags); 2646 2647 /* don't cycle lock unnecessarily: */ 2648 if (btree_node_just_written(b) && 2649 six_trylock_write(&b->c.lock)) { 2650 bch2_btree_post_write_cleanup(c, b); 2651 six_unlock_write(&b->c.lock); 2652 } 2653 2654 if (lock_type_held == SIX_LOCK_read) 2655 six_lock_downgrade(&b->c.lock); 2656 } else { 2657 __bch2_btree_node_write(c, b, flags); 2658 if (lock_type_held == SIX_LOCK_write && 2659 btree_node_just_written(b)) 2660 bch2_btree_post_write_cleanup(c, b); 2661 } 2662 } 2663 2664 void bch2_btree_node_write_trans(struct btree_trans *trans, struct btree *b, 2665 enum six_lock_type lock_type_held, 2666 unsigned flags) 2667 { 2668 struct bch_fs *c = trans->c; 2669 2670 if (lock_type_held == SIX_LOCK_intent || 2671 (lock_type_held == SIX_LOCK_read && 2672 six_lock_tryupgrade(&b->c.lock))) { 2673 __bch2_btree_node_write(c, b, flags); 2674 2675 /* don't cycle lock unnecessarily: */ 2676 if (btree_node_just_written(b) && 2677 six_trylock_write(&b->c.lock)) { 2678 bch2_btree_post_write_cleanup(c, b); 2679 __bch2_btree_node_unlock_write(trans, b); 2680 } 2681 2682 if (lock_type_held == SIX_LOCK_read) 2683 six_lock_downgrade(&b->c.lock); 2684 } else { 2685 __bch2_btree_node_write(c, b, flags); 2686 if (lock_type_held == SIX_LOCK_write && 2687 btree_node_just_written(b)) 2688 bch2_btree_post_write_cleanup(c, b); 2689 } 2690 } 2691 2692 static bool __bch2_btree_flush_all(struct bch_fs *c, unsigned flag) 2693 { 2694 struct bucket_table *tbl; 2695 struct rhash_head *pos; 2696 struct btree *b; 2697 unsigned i; 2698 bool ret = false; 2699 restart: 2700 rcu_read_lock(); 2701 for_each_cached_btree(b, c, tbl, i, pos) 2702 if (test_bit(flag, &b->flags)) { 2703 rcu_read_unlock(); 2704 wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE); 2705 ret = true; 2706 goto restart; 2707 } 2708 rcu_read_unlock(); 2709 2710 return ret; 2711 } 2712 2713 bool bch2_btree_flush_all_reads(struct bch_fs *c) 2714 { 2715 return __bch2_btree_flush_all(c, BTREE_NODE_read_in_flight); 2716 } 2717 2718 bool bch2_btree_flush_all_writes(struct bch_fs *c) 2719 { 2720 return __bch2_btree_flush_all(c, BTREE_NODE_write_in_flight); 2721 } 2722 2723 static const char * const bch2_btree_write_types[] = { 2724 #define x(t, n) [n] = #t, 2725 BCH_BTREE_WRITE_TYPES() 2726 NULL 2727 }; 2728 2729 void bch2_btree_write_stats_to_text(struct printbuf *out, struct bch_fs *c) 2730 { 2731 printbuf_tabstop_push(out, 20); 2732 printbuf_tabstop_push(out, 10); 2733 2734 prt_printf(out, "\tnr\tsize\n"); 2735 2736 for (unsigned i = 0; i < BTREE_WRITE_TYPE_NR; i++) { 2737 u64 nr = atomic64_read(&c->btree_write_stats[i].nr); 2738 u64 bytes = atomic64_read(&c->btree_write_stats[i].bytes); 2739 2740 prt_printf(out, "%s:\t%llu\t", bch2_btree_write_types[i], nr); 2741 prt_human_readable_u64(out, nr ? div64_u64(bytes, nr) : 0); 2742 prt_newline(out); 2743 } 2744 } 2745