1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "bkey_methods.h" 5 #include "bkey_sort.h" 6 #include "btree_cache.h" 7 #include "btree_io.h" 8 #include "btree_iter.h" 9 #include "btree_locking.h" 10 #include "btree_update.h" 11 #include "btree_update_interior.h" 12 #include "buckets.h" 13 #include "checksum.h" 14 #include "debug.h" 15 #include "error.h" 16 #include "extents.h" 17 #include "io_write.h" 18 #include "journal_reclaim.h" 19 #include "journal_seq_blacklist.h" 20 #include "recovery.h" 21 #include "super-io.h" 22 #include "trace.h" 23 24 #include <linux/sched/mm.h> 25 26 void bch2_btree_node_io_unlock(struct btree *b) 27 { 28 EBUG_ON(!btree_node_write_in_flight(b)); 29 30 clear_btree_node_write_in_flight_inner(b); 31 clear_btree_node_write_in_flight(b); 32 wake_up_bit(&b->flags, BTREE_NODE_write_in_flight); 33 } 34 35 void bch2_btree_node_io_lock(struct btree *b) 36 { 37 bch2_assert_btree_nodes_not_locked(); 38 39 wait_on_bit_lock_io(&b->flags, BTREE_NODE_write_in_flight, 40 TASK_UNINTERRUPTIBLE); 41 } 42 43 void __bch2_btree_node_wait_on_read(struct btree *b) 44 { 45 wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight, 46 TASK_UNINTERRUPTIBLE); 47 } 48 49 void __bch2_btree_node_wait_on_write(struct btree *b) 50 { 51 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight, 52 TASK_UNINTERRUPTIBLE); 53 } 54 55 void bch2_btree_node_wait_on_read(struct btree *b) 56 { 57 bch2_assert_btree_nodes_not_locked(); 58 59 wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight, 60 TASK_UNINTERRUPTIBLE); 61 } 62 63 void bch2_btree_node_wait_on_write(struct btree *b) 64 { 65 bch2_assert_btree_nodes_not_locked(); 66 67 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight, 68 TASK_UNINTERRUPTIBLE); 69 } 70 71 static void verify_no_dups(struct btree *b, 72 struct bkey_packed *start, 73 struct bkey_packed *end) 74 { 75 #ifdef CONFIG_BCACHEFS_DEBUG 76 struct bkey_packed *k, *p; 77 78 if (start == end) 79 return; 80 81 for (p = start, k = bkey_p_next(start); 82 k != end; 83 p = k, k = bkey_p_next(k)) { 84 struct bkey l = bkey_unpack_key(b, p); 85 struct bkey r = bkey_unpack_key(b, k); 86 87 BUG_ON(bpos_ge(l.p, bkey_start_pos(&r))); 88 } 89 #endif 90 } 91 92 static void set_needs_whiteout(struct bset *i, int v) 93 { 94 struct bkey_packed *k; 95 96 for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) 97 k->needs_whiteout = v; 98 } 99 100 static void btree_bounce_free(struct bch_fs *c, size_t size, 101 bool used_mempool, void *p) 102 { 103 if (used_mempool) 104 mempool_free(p, &c->btree_bounce_pool); 105 else 106 vpfree(p, size); 107 } 108 109 static void *btree_bounce_alloc(struct bch_fs *c, size_t size, 110 bool *used_mempool) 111 { 112 unsigned flags = memalloc_nofs_save(); 113 void *p; 114 115 BUG_ON(size > btree_bytes(c)); 116 117 *used_mempool = false; 118 p = vpmalloc(size, __GFP_NOWARN|GFP_NOWAIT); 119 if (!p) { 120 *used_mempool = true; 121 p = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS); 122 } 123 memalloc_nofs_restore(flags); 124 return p; 125 } 126 127 static void sort_bkey_ptrs(const struct btree *bt, 128 struct bkey_packed **ptrs, unsigned nr) 129 { 130 unsigned n = nr, a = nr / 2, b, c, d; 131 132 if (!a) 133 return; 134 135 /* Heap sort: see lib/sort.c: */ 136 while (1) { 137 if (a) 138 a--; 139 else if (--n) 140 swap(ptrs[0], ptrs[n]); 141 else 142 break; 143 144 for (b = a; c = 2 * b + 1, (d = c + 1) < n;) 145 b = bch2_bkey_cmp_packed(bt, 146 ptrs[c], 147 ptrs[d]) >= 0 ? c : d; 148 if (d == n) 149 b = c; 150 151 while (b != a && 152 bch2_bkey_cmp_packed(bt, 153 ptrs[a], 154 ptrs[b]) >= 0) 155 b = (b - 1) / 2; 156 c = b; 157 while (b != a) { 158 b = (b - 1) / 2; 159 swap(ptrs[b], ptrs[c]); 160 } 161 } 162 } 163 164 static void bch2_sort_whiteouts(struct bch_fs *c, struct btree *b) 165 { 166 struct bkey_packed *new_whiteouts, **ptrs, **ptrs_end, *k; 167 bool used_mempool = false; 168 size_t bytes = b->whiteout_u64s * sizeof(u64); 169 170 if (!b->whiteout_u64s) 171 return; 172 173 new_whiteouts = btree_bounce_alloc(c, bytes, &used_mempool); 174 175 ptrs = ptrs_end = ((void *) new_whiteouts + bytes); 176 177 for (k = unwritten_whiteouts_start(c, b); 178 k != unwritten_whiteouts_end(c, b); 179 k = bkey_p_next(k)) 180 *--ptrs = k; 181 182 sort_bkey_ptrs(b, ptrs, ptrs_end - ptrs); 183 184 k = new_whiteouts; 185 186 while (ptrs != ptrs_end) { 187 bkey_copy(k, *ptrs); 188 k = bkey_p_next(k); 189 ptrs++; 190 } 191 192 verify_no_dups(b, new_whiteouts, 193 (void *) ((u64 *) new_whiteouts + b->whiteout_u64s)); 194 195 memcpy_u64s(unwritten_whiteouts_start(c, b), 196 new_whiteouts, b->whiteout_u64s); 197 198 btree_bounce_free(c, bytes, used_mempool, new_whiteouts); 199 } 200 201 static bool should_compact_bset(struct btree *b, struct bset_tree *t, 202 bool compacting, enum compact_mode mode) 203 { 204 if (!bset_dead_u64s(b, t)) 205 return false; 206 207 switch (mode) { 208 case COMPACT_LAZY: 209 return should_compact_bset_lazy(b, t) || 210 (compacting && !bset_written(b, bset(b, t))); 211 case COMPACT_ALL: 212 return true; 213 default: 214 BUG(); 215 } 216 } 217 218 static bool bch2_drop_whiteouts(struct btree *b, enum compact_mode mode) 219 { 220 struct bset_tree *t; 221 bool ret = false; 222 223 for_each_bset(b, t) { 224 struct bset *i = bset(b, t); 225 struct bkey_packed *k, *n, *out, *start, *end; 226 struct btree_node_entry *src = NULL, *dst = NULL; 227 228 if (t != b->set && !bset_written(b, i)) { 229 src = container_of(i, struct btree_node_entry, keys); 230 dst = max(write_block(b), 231 (void *) btree_bkey_last(b, t - 1)); 232 } 233 234 if (src != dst) 235 ret = true; 236 237 if (!should_compact_bset(b, t, ret, mode)) { 238 if (src != dst) { 239 memmove(dst, src, sizeof(*src) + 240 le16_to_cpu(src->keys.u64s) * 241 sizeof(u64)); 242 i = &dst->keys; 243 set_btree_bset(b, t, i); 244 } 245 continue; 246 } 247 248 start = btree_bkey_first(b, t); 249 end = btree_bkey_last(b, t); 250 251 if (src != dst) { 252 memmove(dst, src, sizeof(*src)); 253 i = &dst->keys; 254 set_btree_bset(b, t, i); 255 } 256 257 out = i->start; 258 259 for (k = start; k != end; k = n) { 260 n = bkey_p_next(k); 261 262 if (!bkey_deleted(k)) { 263 bkey_copy(out, k); 264 out = bkey_p_next(out); 265 } else { 266 BUG_ON(k->needs_whiteout); 267 } 268 } 269 270 i->u64s = cpu_to_le16((u64 *) out - i->_data); 271 set_btree_bset_end(b, t); 272 bch2_bset_set_no_aux_tree(b, t); 273 ret = true; 274 } 275 276 bch2_verify_btree_nr_keys(b); 277 278 bch2_btree_build_aux_trees(b); 279 280 return ret; 281 } 282 283 bool bch2_compact_whiteouts(struct bch_fs *c, struct btree *b, 284 enum compact_mode mode) 285 { 286 return bch2_drop_whiteouts(b, mode); 287 } 288 289 static void btree_node_sort(struct bch_fs *c, struct btree *b, 290 unsigned start_idx, 291 unsigned end_idx, 292 bool filter_whiteouts) 293 { 294 struct btree_node *out; 295 struct sort_iter_stack sort_iter; 296 struct bset_tree *t; 297 struct bset *start_bset = bset(b, &b->set[start_idx]); 298 bool used_mempool = false; 299 u64 start_time, seq = 0; 300 unsigned i, u64s = 0, bytes, shift = end_idx - start_idx - 1; 301 bool sorting_entire_node = start_idx == 0 && 302 end_idx == b->nsets; 303 304 sort_iter_stack_init(&sort_iter, b); 305 306 for (t = b->set + start_idx; 307 t < b->set + end_idx; 308 t++) { 309 u64s += le16_to_cpu(bset(b, t)->u64s); 310 sort_iter_add(&sort_iter.iter, 311 btree_bkey_first(b, t), 312 btree_bkey_last(b, t)); 313 } 314 315 bytes = sorting_entire_node 316 ? btree_bytes(c) 317 : __vstruct_bytes(struct btree_node, u64s); 318 319 out = btree_bounce_alloc(c, bytes, &used_mempool); 320 321 start_time = local_clock(); 322 323 u64s = bch2_sort_keys(out->keys.start, &sort_iter.iter, filter_whiteouts); 324 325 out->keys.u64s = cpu_to_le16(u64s); 326 327 BUG_ON(vstruct_end(&out->keys) > (void *) out + bytes); 328 329 if (sorting_entire_node) 330 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], 331 start_time); 332 333 /* Make sure we preserve bset journal_seq: */ 334 for (t = b->set + start_idx; t < b->set + end_idx; t++) 335 seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq)); 336 start_bset->journal_seq = cpu_to_le64(seq); 337 338 if (sorting_entire_node) { 339 u64s = le16_to_cpu(out->keys.u64s); 340 341 BUG_ON(bytes != btree_bytes(c)); 342 343 /* 344 * Our temporary buffer is the same size as the btree node's 345 * buffer, we can just swap buffers instead of doing a big 346 * memcpy() 347 */ 348 *out = *b->data; 349 out->keys.u64s = cpu_to_le16(u64s); 350 swap(out, b->data); 351 set_btree_bset(b, b->set, &b->data->keys); 352 } else { 353 start_bset->u64s = out->keys.u64s; 354 memcpy_u64s(start_bset->start, 355 out->keys.start, 356 le16_to_cpu(out->keys.u64s)); 357 } 358 359 for (i = start_idx + 1; i < end_idx; i++) 360 b->nr.bset_u64s[start_idx] += 361 b->nr.bset_u64s[i]; 362 363 b->nsets -= shift; 364 365 for (i = start_idx + 1; i < b->nsets; i++) { 366 b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift]; 367 b->set[i] = b->set[i + shift]; 368 } 369 370 for (i = b->nsets; i < MAX_BSETS; i++) 371 b->nr.bset_u64s[i] = 0; 372 373 set_btree_bset_end(b, &b->set[start_idx]); 374 bch2_bset_set_no_aux_tree(b, &b->set[start_idx]); 375 376 btree_bounce_free(c, bytes, used_mempool, out); 377 378 bch2_verify_btree_nr_keys(b); 379 } 380 381 void bch2_btree_sort_into(struct bch_fs *c, 382 struct btree *dst, 383 struct btree *src) 384 { 385 struct btree_nr_keys nr; 386 struct btree_node_iter src_iter; 387 u64 start_time = local_clock(); 388 389 BUG_ON(dst->nsets != 1); 390 391 bch2_bset_set_no_aux_tree(dst, dst->set); 392 393 bch2_btree_node_iter_init_from_start(&src_iter, src); 394 395 nr = bch2_sort_repack(btree_bset_first(dst), 396 src, &src_iter, 397 &dst->format, 398 true); 399 400 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], 401 start_time); 402 403 set_btree_bset_end(dst, dst->set); 404 405 dst->nr.live_u64s += nr.live_u64s; 406 dst->nr.bset_u64s[0] += nr.bset_u64s[0]; 407 dst->nr.packed_keys += nr.packed_keys; 408 dst->nr.unpacked_keys += nr.unpacked_keys; 409 410 bch2_verify_btree_nr_keys(dst); 411 } 412 413 /* 414 * We're about to add another bset to the btree node, so if there's currently 415 * too many bsets - sort some of them together: 416 */ 417 static bool btree_node_compact(struct bch_fs *c, struct btree *b) 418 { 419 unsigned unwritten_idx; 420 bool ret = false; 421 422 for (unwritten_idx = 0; 423 unwritten_idx < b->nsets; 424 unwritten_idx++) 425 if (!bset_written(b, bset(b, &b->set[unwritten_idx]))) 426 break; 427 428 if (b->nsets - unwritten_idx > 1) { 429 btree_node_sort(c, b, unwritten_idx, 430 b->nsets, false); 431 ret = true; 432 } 433 434 if (unwritten_idx > 1) { 435 btree_node_sort(c, b, 0, unwritten_idx, false); 436 ret = true; 437 } 438 439 return ret; 440 } 441 442 void bch2_btree_build_aux_trees(struct btree *b) 443 { 444 struct bset_tree *t; 445 446 for_each_bset(b, t) 447 bch2_bset_build_aux_tree(b, t, 448 !bset_written(b, bset(b, t)) && 449 t == bset_tree_last(b)); 450 } 451 452 /* 453 * If we have MAX_BSETS (3) bsets, should we sort them all down to just one? 454 * 455 * The first bset is going to be of similar order to the size of the node, the 456 * last bset is bounded by btree_write_set_buffer(), which is set to keep the 457 * memmove on insert from being too expensive: the middle bset should, ideally, 458 * be the geometric mean of the first and the last. 459 * 460 * Returns true if the middle bset is greater than that geometric mean: 461 */ 462 static inline bool should_compact_all(struct bch_fs *c, struct btree *b) 463 { 464 unsigned mid_u64s_bits = 465 (ilog2(btree_max_u64s(c)) + BTREE_WRITE_SET_U64s_BITS) / 2; 466 467 return bset_u64s(&b->set[1]) > 1U << mid_u64s_bits; 468 } 469 470 /* 471 * @bch_btree_init_next - initialize a new (unwritten) bset that can then be 472 * inserted into 473 * 474 * Safe to call if there already is an unwritten bset - will only add a new bset 475 * if @b doesn't already have one. 476 * 477 * Returns true if we sorted (i.e. invalidated iterators 478 */ 479 void bch2_btree_init_next(struct btree_trans *trans, struct btree *b) 480 { 481 struct bch_fs *c = trans->c; 482 struct btree_node_entry *bne; 483 bool reinit_iter = false; 484 485 EBUG_ON(!six_lock_counts(&b->c.lock).n[SIX_LOCK_write]); 486 BUG_ON(bset_written(b, bset(b, &b->set[1]))); 487 BUG_ON(btree_node_just_written(b)); 488 489 if (b->nsets == MAX_BSETS && 490 !btree_node_write_in_flight(b) && 491 should_compact_all(c, b)) { 492 bch2_btree_node_write(c, b, SIX_LOCK_write, 493 BTREE_WRITE_init_next_bset); 494 reinit_iter = true; 495 } 496 497 if (b->nsets == MAX_BSETS && 498 btree_node_compact(c, b)) 499 reinit_iter = true; 500 501 BUG_ON(b->nsets >= MAX_BSETS); 502 503 bne = want_new_bset(c, b); 504 if (bne) 505 bch2_bset_init_next(c, b, bne); 506 507 bch2_btree_build_aux_trees(b); 508 509 if (reinit_iter) 510 bch2_trans_node_reinit_iter(trans, b); 511 } 512 513 static void btree_pos_to_text(struct printbuf *out, struct bch_fs *c, 514 struct btree *b) 515 { 516 prt_printf(out, "%s level %u/%u\n ", 517 bch2_btree_ids[b->c.btree_id], 518 b->c.level, 519 bch2_btree_id_root(c, b->c.btree_id)->level); 520 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key)); 521 } 522 523 static void btree_err_msg(struct printbuf *out, struct bch_fs *c, 524 struct bch_dev *ca, 525 struct btree *b, struct bset *i, 526 unsigned offset, int write) 527 { 528 prt_printf(out, bch2_log_msg(c, "%s"), 529 write == READ 530 ? "error validating btree node " 531 : "corrupt btree node before write "); 532 if (ca) 533 prt_printf(out, "on %s ", ca->name); 534 prt_printf(out, "at btree "); 535 btree_pos_to_text(out, c, b); 536 537 prt_printf(out, "\n node offset %u", b->written); 538 if (i) 539 prt_printf(out, " bset u64s %u", le16_to_cpu(i->u64s)); 540 prt_str(out, ": "); 541 } 542 543 __printf(8, 9) 544 static int __btree_err(int ret, 545 struct bch_fs *c, 546 struct bch_dev *ca, 547 struct btree *b, 548 struct bset *i, 549 int write, 550 bool have_retry, 551 const char *fmt, ...) 552 { 553 struct printbuf out = PRINTBUF; 554 va_list args; 555 556 btree_err_msg(&out, c, ca, b, i, b->written, write); 557 558 va_start(args, fmt); 559 prt_vprintf(&out, fmt, args); 560 va_end(args); 561 562 if (write == WRITE) { 563 bch2_print_string_as_lines(KERN_ERR, out.buf); 564 ret = c->opts.errors == BCH_ON_ERROR_continue 565 ? 0 566 : -BCH_ERR_fsck_errors_not_fixed; 567 goto out; 568 } 569 570 if (!have_retry && ret == -BCH_ERR_btree_node_read_err_want_retry) 571 ret = -BCH_ERR_btree_node_read_err_fixable; 572 if (!have_retry && ret == -BCH_ERR_btree_node_read_err_must_retry) 573 ret = -BCH_ERR_btree_node_read_err_bad_node; 574 575 switch (ret) { 576 case -BCH_ERR_btree_node_read_err_fixable: 577 mustfix_fsck_err(c, "%s", out.buf); 578 ret = -BCH_ERR_fsck_fix; 579 break; 580 case -BCH_ERR_btree_node_read_err_want_retry: 581 case -BCH_ERR_btree_node_read_err_must_retry: 582 bch2_print_string_as_lines(KERN_ERR, out.buf); 583 break; 584 case -BCH_ERR_btree_node_read_err_bad_node: 585 bch2_print_string_as_lines(KERN_ERR, out.buf); 586 bch2_topology_error(c); 587 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology) ?: -EIO; 588 break; 589 case -BCH_ERR_btree_node_read_err_incompatible: 590 bch2_print_string_as_lines(KERN_ERR, out.buf); 591 ret = -BCH_ERR_fsck_errors_not_fixed; 592 break; 593 default: 594 BUG(); 595 } 596 out: 597 fsck_err: 598 printbuf_exit(&out); 599 return ret; 600 } 601 602 #define btree_err(type, c, ca, b, i, msg, ...) \ 603 ({ \ 604 int _ret = __btree_err(type, c, ca, b, i, write, have_retry, msg, ##__VA_ARGS__);\ 605 \ 606 if (_ret != -BCH_ERR_fsck_fix) { \ 607 ret = _ret; \ 608 goto fsck_err; \ 609 } \ 610 \ 611 *saw_error = true; \ 612 }) 613 614 #define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false) 615 616 /* 617 * When btree topology repair changes the start or end of a node, that might 618 * mean we have to drop keys that are no longer inside the node: 619 */ 620 __cold 621 void bch2_btree_node_drop_keys_outside_node(struct btree *b) 622 { 623 struct bset_tree *t; 624 625 for_each_bset(b, t) { 626 struct bset *i = bset(b, t); 627 struct bkey_packed *k; 628 629 for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) 630 if (bkey_cmp_left_packed(b, k, &b->data->min_key) >= 0) 631 break; 632 633 if (k != i->start) { 634 unsigned shift = (u64 *) k - (u64 *) i->start; 635 636 memmove_u64s_down(i->start, k, 637 (u64 *) vstruct_end(i) - (u64 *) k); 638 i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - shift); 639 set_btree_bset_end(b, t); 640 } 641 642 for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) 643 if (bkey_cmp_left_packed(b, k, &b->data->max_key) > 0) 644 break; 645 646 if (k != vstruct_last(i)) { 647 i->u64s = cpu_to_le16((u64 *) k - (u64 *) i->start); 648 set_btree_bset_end(b, t); 649 } 650 } 651 652 /* 653 * Always rebuild search trees: eytzinger search tree nodes directly 654 * depend on the values of min/max key: 655 */ 656 bch2_bset_set_no_aux_tree(b, b->set); 657 bch2_btree_build_aux_trees(b); 658 659 struct bkey_s_c k; 660 struct bkey unpacked; 661 struct btree_node_iter iter; 662 for_each_btree_node_key_unpack(b, k, &iter, &unpacked) { 663 BUG_ON(bpos_lt(k.k->p, b->data->min_key)); 664 BUG_ON(bpos_gt(k.k->p, b->data->max_key)); 665 } 666 } 667 668 static int validate_bset(struct bch_fs *c, struct bch_dev *ca, 669 struct btree *b, struct bset *i, 670 unsigned offset, unsigned sectors, 671 int write, bool have_retry, bool *saw_error) 672 { 673 unsigned version = le16_to_cpu(i->version); 674 struct printbuf buf1 = PRINTBUF; 675 struct printbuf buf2 = PRINTBUF; 676 int ret = 0; 677 678 btree_err_on(!bch2_version_compatible(version), 679 -BCH_ERR_btree_node_read_err_incompatible, c, ca, b, i, 680 "unsupported bset version %u.%u", 681 BCH_VERSION_MAJOR(version), 682 BCH_VERSION_MINOR(version)); 683 684 if (btree_err_on(version < c->sb.version_min, 685 -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, 686 "bset version %u older than superblock version_min %u", 687 version, c->sb.version_min)) { 688 mutex_lock(&c->sb_lock); 689 c->disk_sb.sb->version_min = cpu_to_le16(version); 690 bch2_write_super(c); 691 mutex_unlock(&c->sb_lock); 692 } 693 694 if (btree_err_on(BCH_VERSION_MAJOR(version) > 695 BCH_VERSION_MAJOR(c->sb.version), 696 -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, 697 "bset version %u newer than superblock version %u", 698 version, c->sb.version)) { 699 mutex_lock(&c->sb_lock); 700 c->disk_sb.sb->version = cpu_to_le16(version); 701 bch2_write_super(c); 702 mutex_unlock(&c->sb_lock); 703 } 704 705 btree_err_on(BSET_SEPARATE_WHITEOUTS(i), 706 -BCH_ERR_btree_node_read_err_incompatible, c, ca, b, i, 707 "BSET_SEPARATE_WHITEOUTS no longer supported"); 708 709 if (btree_err_on(offset + sectors > btree_sectors(c), 710 -BCH_ERR_btree_node_read_err_fixable, c, ca, b, i, 711 "bset past end of btree node")) { 712 i->u64s = 0; 713 ret = 0; 714 goto out; 715 } 716 717 btree_err_on(offset && !i->u64s, 718 -BCH_ERR_btree_node_read_err_fixable, c, ca, b, i, 719 "empty bset"); 720 721 btree_err_on(BSET_OFFSET(i) && 722 BSET_OFFSET(i) != offset, 723 -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, 724 "bset at wrong sector offset"); 725 726 if (!offset) { 727 struct btree_node *bn = 728 container_of(i, struct btree_node, keys); 729 /* These indicate that we read the wrong btree node: */ 730 731 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 732 struct bch_btree_ptr_v2 *bp = 733 &bkey_i_to_btree_ptr_v2(&b->key)->v; 734 735 /* XXX endianness */ 736 btree_err_on(bp->seq != bn->keys.seq, 737 -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, 738 "incorrect sequence number (wrong btree node)"); 739 } 740 741 btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id, 742 -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, i, 743 "incorrect btree id"); 744 745 btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level, 746 -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, i, 747 "incorrect level"); 748 749 if (!write) 750 compat_btree_node(b->c.level, b->c.btree_id, version, 751 BSET_BIG_ENDIAN(i), write, bn); 752 753 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 754 struct bch_btree_ptr_v2 *bp = 755 &bkey_i_to_btree_ptr_v2(&b->key)->v; 756 757 if (BTREE_PTR_RANGE_UPDATED(bp)) { 758 b->data->min_key = bp->min_key; 759 b->data->max_key = b->key.k.p; 760 } 761 762 btree_err_on(!bpos_eq(b->data->min_key, bp->min_key), 763 -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, 764 "incorrect min_key: got %s should be %s", 765 (printbuf_reset(&buf1), 766 bch2_bpos_to_text(&buf1, bn->min_key), buf1.buf), 767 (printbuf_reset(&buf2), 768 bch2_bpos_to_text(&buf2, bp->min_key), buf2.buf)); 769 } 770 771 btree_err_on(!bpos_eq(bn->max_key, b->key.k.p), 772 -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, i, 773 "incorrect max key %s", 774 (printbuf_reset(&buf1), 775 bch2_bpos_to_text(&buf1, bn->max_key), buf1.buf)); 776 777 if (write) 778 compat_btree_node(b->c.level, b->c.btree_id, version, 779 BSET_BIG_ENDIAN(i), write, bn); 780 781 btree_err_on(bch2_bkey_format_invalid(c, &bn->format, write, &buf1), 782 -BCH_ERR_btree_node_read_err_bad_node, c, ca, b, i, 783 "invalid bkey format: %s\n %s", buf1.buf, 784 (printbuf_reset(&buf2), 785 bch2_bkey_format_to_text(&buf2, &bn->format), buf2.buf)); 786 printbuf_reset(&buf1); 787 788 compat_bformat(b->c.level, b->c.btree_id, version, 789 BSET_BIG_ENDIAN(i), write, 790 &bn->format); 791 } 792 out: 793 fsck_err: 794 printbuf_exit(&buf2); 795 printbuf_exit(&buf1); 796 return ret; 797 } 798 799 static int bset_key_invalid(struct bch_fs *c, struct btree *b, 800 struct bkey_s_c k, 801 bool updated_range, int rw, 802 struct printbuf *err) 803 { 804 return __bch2_bkey_invalid(c, k, btree_node_type(b), READ, err) ?: 805 (!updated_range ? bch2_bkey_in_btree_node(b, k, err) : 0) ?: 806 (rw == WRITE ? bch2_bkey_val_invalid(c, k, READ, err) : 0); 807 } 808 809 static int validate_bset_keys(struct bch_fs *c, struct btree *b, 810 struct bset *i, int write, 811 bool have_retry, bool *saw_error) 812 { 813 unsigned version = le16_to_cpu(i->version); 814 struct bkey_packed *k, *prev = NULL; 815 struct printbuf buf = PRINTBUF; 816 bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 && 817 BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v); 818 int ret = 0; 819 820 for (k = i->start; 821 k != vstruct_last(i);) { 822 struct bkey_s u; 823 struct bkey tmp; 824 825 if (btree_err_on(bkey_p_next(k) > vstruct_last(i), 826 -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, 827 "key extends past end of bset")) { 828 i->u64s = cpu_to_le16((u64 *) k - i->_data); 829 break; 830 } 831 832 if (btree_err_on(k->format > KEY_FORMAT_CURRENT, 833 -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, 834 "invalid bkey format %u", k->format)) { 835 i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); 836 memmove_u64s_down(k, bkey_p_next(k), 837 (u64 *) vstruct_end(i) - (u64 *) k); 838 continue; 839 } 840 841 /* XXX: validate k->u64s */ 842 if (!write) 843 bch2_bkey_compat(b->c.level, b->c.btree_id, version, 844 BSET_BIG_ENDIAN(i), write, 845 &b->format, k); 846 847 u = __bkey_disassemble(b, k, &tmp); 848 849 printbuf_reset(&buf); 850 if (bset_key_invalid(c, b, u.s_c, updated_range, write, &buf)) { 851 printbuf_reset(&buf); 852 prt_printf(&buf, "invalid bkey: "); 853 bset_key_invalid(c, b, u.s_c, updated_range, write, &buf); 854 prt_printf(&buf, "\n "); 855 bch2_bkey_val_to_text(&buf, c, u.s_c); 856 857 btree_err(-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, "%s", buf.buf); 858 859 i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); 860 memmove_u64s_down(k, bkey_p_next(k), 861 (u64 *) vstruct_end(i) - (u64 *) k); 862 continue; 863 } 864 865 if (write) 866 bch2_bkey_compat(b->c.level, b->c.btree_id, version, 867 BSET_BIG_ENDIAN(i), write, 868 &b->format, k); 869 870 if (prev && bkey_iter_cmp(b, prev, k) > 0) { 871 struct bkey up = bkey_unpack_key(b, prev); 872 873 printbuf_reset(&buf); 874 prt_printf(&buf, "keys out of order: "); 875 bch2_bkey_to_text(&buf, &up); 876 prt_printf(&buf, " > "); 877 bch2_bkey_to_text(&buf, u.k); 878 879 bch2_dump_bset(c, b, i, 0); 880 881 if (btree_err(-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, "%s", buf.buf)) { 882 i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); 883 memmove_u64s_down(k, bkey_p_next(k), 884 (u64 *) vstruct_end(i) - (u64 *) k); 885 continue; 886 } 887 } 888 889 prev = k; 890 k = bkey_p_next(k); 891 } 892 fsck_err: 893 printbuf_exit(&buf); 894 return ret; 895 } 896 897 int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca, 898 struct btree *b, bool have_retry, bool *saw_error) 899 { 900 struct btree_node_entry *bne; 901 struct sort_iter *iter; 902 struct btree_node *sorted; 903 struct bkey_packed *k; 904 struct bch_extent_ptr *ptr; 905 struct bset *i; 906 bool used_mempool, blacklisted; 907 bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 && 908 BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v); 909 unsigned u64s; 910 unsigned ptr_written = btree_ptr_sectors_written(&b->key); 911 struct printbuf buf = PRINTBUF; 912 int ret = 0, retry_read = 0, write = READ; 913 914 b->version_ondisk = U16_MAX; 915 /* We might get called multiple times on read retry: */ 916 b->written = 0; 917 918 iter = mempool_alloc(&c->fill_iter, GFP_NOFS); 919 sort_iter_init(iter, b, (btree_blocks(c) + 1) * 2); 920 921 if (bch2_meta_read_fault("btree")) 922 btree_err(-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, 923 "dynamic fault"); 924 925 btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c), 926 -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, 927 "bad magic: want %llx, got %llx", 928 bset_magic(c), le64_to_cpu(b->data->magic)); 929 930 btree_err_on(!b->data->keys.seq, 931 -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, 932 "bad btree header: seq 0"); 933 934 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { 935 struct bch_btree_ptr_v2 *bp = 936 &bkey_i_to_btree_ptr_v2(&b->key)->v; 937 938 btree_err_on(b->data->keys.seq != bp->seq, 939 -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, 940 "got wrong btree node (seq %llx want %llx)", 941 b->data->keys.seq, bp->seq); 942 } 943 944 while (b->written < (ptr_written ?: btree_sectors(c))) { 945 unsigned sectors; 946 struct nonce nonce; 947 struct bch_csum csum; 948 bool first = !b->written; 949 950 if (!b->written) { 951 i = &b->data->keys; 952 953 btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)), 954 -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, 955 "unknown checksum type %llu", 956 BSET_CSUM_TYPE(i)); 957 958 nonce = btree_nonce(i, b->written << 9); 959 csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data); 960 961 btree_err_on(bch2_crc_cmp(csum, b->data->csum), 962 -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, 963 "invalid checksum"); 964 965 ret = bset_encrypt(c, i, b->written << 9); 966 if (bch2_fs_fatal_err_on(ret, c, 967 "error decrypting btree node: %i", ret)) 968 goto fsck_err; 969 970 btree_err_on(btree_node_type_is_extents(btree_node_type(b)) && 971 !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data), 972 -BCH_ERR_btree_node_read_err_incompatible, c, NULL, b, NULL, 973 "btree node does not have NEW_EXTENT_OVERWRITE set"); 974 975 sectors = vstruct_sectors(b->data, c->block_bits); 976 } else { 977 bne = write_block(b); 978 i = &bne->keys; 979 980 if (i->seq != b->data->keys.seq) 981 break; 982 983 btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)), 984 -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, 985 "unknown checksum type %llu", 986 BSET_CSUM_TYPE(i)); 987 988 nonce = btree_nonce(i, b->written << 9); 989 csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); 990 991 btree_err_on(bch2_crc_cmp(csum, bne->csum), 992 -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, 993 "invalid checksum"); 994 995 ret = bset_encrypt(c, i, b->written << 9); 996 if (bch2_fs_fatal_err_on(ret, c, 997 "error decrypting btree node: %i\n", ret)) 998 goto fsck_err; 999 1000 sectors = vstruct_sectors(bne, c->block_bits); 1001 } 1002 1003 b->version_ondisk = min(b->version_ondisk, 1004 le16_to_cpu(i->version)); 1005 1006 ret = validate_bset(c, ca, b, i, b->written, sectors, 1007 READ, have_retry, saw_error); 1008 if (ret) 1009 goto fsck_err; 1010 1011 if (!b->written) 1012 btree_node_set_format(b, b->data->format); 1013 1014 ret = validate_bset_keys(c, b, i, READ, have_retry, saw_error); 1015 if (ret) 1016 goto fsck_err; 1017 1018 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 1019 1020 blacklisted = bch2_journal_seq_is_blacklisted(c, 1021 le64_to_cpu(i->journal_seq), 1022 true); 1023 1024 btree_err_on(blacklisted && first, 1025 -BCH_ERR_btree_node_read_err_fixable, c, ca, b, i, 1026 "first btree node bset has blacklisted journal seq (%llu)", 1027 le64_to_cpu(i->journal_seq)); 1028 1029 btree_err_on(blacklisted && ptr_written, 1030 -BCH_ERR_btree_node_read_err_fixable, c, ca, b, i, 1031 "found blacklisted bset (journal seq %llu) in btree node at offset %u-%u/%u", 1032 le64_to_cpu(i->journal_seq), 1033 b->written, b->written + sectors, ptr_written); 1034 1035 b->written += sectors; 1036 1037 if (blacklisted && !first) 1038 continue; 1039 1040 sort_iter_add(iter, 1041 vstruct_idx(i, 0), 1042 vstruct_last(i)); 1043 } 1044 1045 if (ptr_written) { 1046 btree_err_on(b->written < ptr_written, 1047 -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, NULL, 1048 "btree node data missing: expected %u sectors, found %u", 1049 ptr_written, b->written); 1050 } else { 1051 for (bne = write_block(b); 1052 bset_byte_offset(b, bne) < btree_bytes(c); 1053 bne = (void *) bne + block_bytes(c)) 1054 btree_err_on(bne->keys.seq == b->data->keys.seq && 1055 !bch2_journal_seq_is_blacklisted(c, 1056 le64_to_cpu(bne->keys.journal_seq), 1057 true), 1058 -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, NULL, 1059 "found bset signature after last bset"); 1060 } 1061 1062 sorted = btree_bounce_alloc(c, btree_bytes(c), &used_mempool); 1063 sorted->keys.u64s = 0; 1064 1065 set_btree_bset(b, b->set, &b->data->keys); 1066 1067 b->nr = bch2_key_sort_fix_overlapping(c, &sorted->keys, iter); 1068 1069 u64s = le16_to_cpu(sorted->keys.u64s); 1070 *sorted = *b->data; 1071 sorted->keys.u64s = cpu_to_le16(u64s); 1072 swap(sorted, b->data); 1073 set_btree_bset(b, b->set, &b->data->keys); 1074 b->nsets = 1; 1075 1076 BUG_ON(b->nr.live_u64s != u64s); 1077 1078 btree_bounce_free(c, btree_bytes(c), used_mempool, sorted); 1079 1080 if (updated_range) 1081 bch2_btree_node_drop_keys_outside_node(b); 1082 1083 i = &b->data->keys; 1084 for (k = i->start; k != vstruct_last(i);) { 1085 struct bkey tmp; 1086 struct bkey_s u = __bkey_disassemble(b, k, &tmp); 1087 1088 printbuf_reset(&buf); 1089 1090 if (bch2_bkey_val_invalid(c, u.s_c, READ, &buf) || 1091 (bch2_inject_invalid_keys && 1092 !bversion_cmp(u.k->version, MAX_VERSION))) { 1093 printbuf_reset(&buf); 1094 1095 prt_printf(&buf, "invalid bkey: "); 1096 bch2_bkey_val_invalid(c, u.s_c, READ, &buf); 1097 prt_printf(&buf, "\n "); 1098 bch2_bkey_val_to_text(&buf, c, u.s_c); 1099 1100 btree_err(-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, "%s", buf.buf); 1101 1102 btree_keys_account_key_drop(&b->nr, 0, k); 1103 1104 i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); 1105 memmove_u64s_down(k, bkey_p_next(k), 1106 (u64 *) vstruct_end(i) - (u64 *) k); 1107 set_btree_bset_end(b, b->set); 1108 continue; 1109 } 1110 1111 if (u.k->type == KEY_TYPE_btree_ptr_v2) { 1112 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(u); 1113 1114 bp.v->mem_ptr = 0; 1115 } 1116 1117 k = bkey_p_next(k); 1118 } 1119 1120 bch2_bset_build_aux_tree(b, b->set, false); 1121 1122 set_needs_whiteout(btree_bset_first(b), true); 1123 1124 btree_node_reset_sib_u64s(b); 1125 1126 bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&b->key)), ptr) { 1127 struct bch_dev *ca2 = bch_dev_bkey_exists(c, ptr->dev); 1128 1129 if (ca2->mi.state != BCH_MEMBER_STATE_rw) 1130 set_btree_node_need_rewrite(b); 1131 } 1132 1133 if (!ptr_written) 1134 set_btree_node_need_rewrite(b); 1135 out: 1136 mempool_free(iter, &c->fill_iter); 1137 printbuf_exit(&buf); 1138 return retry_read; 1139 fsck_err: 1140 if (ret == -BCH_ERR_btree_node_read_err_want_retry || 1141 ret == -BCH_ERR_btree_node_read_err_must_retry) 1142 retry_read = 1; 1143 else 1144 set_btree_node_read_error(b); 1145 goto out; 1146 } 1147 1148 static void btree_node_read_work(struct work_struct *work) 1149 { 1150 struct btree_read_bio *rb = 1151 container_of(work, struct btree_read_bio, work); 1152 struct bch_fs *c = rb->c; 1153 struct btree *b = rb->b; 1154 struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); 1155 struct bio *bio = &rb->bio; 1156 struct bch_io_failures failed = { .nr = 0 }; 1157 struct printbuf buf = PRINTBUF; 1158 bool saw_error = false; 1159 bool retry = false; 1160 bool can_retry; 1161 1162 goto start; 1163 while (1) { 1164 retry = true; 1165 bch_info(c, "retrying read"); 1166 ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); 1167 rb->have_ioref = bch2_dev_get_ioref(ca, READ); 1168 bio_reset(bio, NULL, REQ_OP_READ|REQ_SYNC|REQ_META); 1169 bio->bi_iter.bi_sector = rb->pick.ptr.offset; 1170 bio->bi_iter.bi_size = btree_bytes(c); 1171 1172 if (rb->have_ioref) { 1173 bio_set_dev(bio, ca->disk_sb.bdev); 1174 submit_bio_wait(bio); 1175 } else { 1176 bio->bi_status = BLK_STS_REMOVED; 1177 } 1178 start: 1179 printbuf_reset(&buf); 1180 btree_pos_to_text(&buf, c, b); 1181 bch2_dev_io_err_on(bio->bi_status, ca, "btree read error %s for %s", 1182 bch2_blk_status_to_str(bio->bi_status), buf.buf); 1183 if (rb->have_ioref) 1184 percpu_ref_put(&ca->io_ref); 1185 rb->have_ioref = false; 1186 1187 bch2_mark_io_failure(&failed, &rb->pick); 1188 1189 can_retry = bch2_bkey_pick_read_device(c, 1190 bkey_i_to_s_c(&b->key), 1191 &failed, &rb->pick) > 0; 1192 1193 if (!bio->bi_status && 1194 !bch2_btree_node_read_done(c, ca, b, can_retry, &saw_error)) { 1195 if (retry) 1196 bch_info(c, "retry success"); 1197 break; 1198 } 1199 1200 saw_error = true; 1201 1202 if (!can_retry) { 1203 set_btree_node_read_error(b); 1204 break; 1205 } 1206 } 1207 1208 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read], 1209 rb->start_time); 1210 bio_put(&rb->bio); 1211 1212 if (saw_error && !btree_node_read_error(b)) { 1213 printbuf_reset(&buf); 1214 bch2_bpos_to_text(&buf, b->key.k.p); 1215 bch_info(c, "%s: rewriting btree node at btree=%s level=%u %s due to error", 1216 __func__, bch2_btree_ids[b->c.btree_id], b->c.level, buf.buf); 1217 1218 bch2_btree_node_rewrite_async(c, b); 1219 } 1220 1221 printbuf_exit(&buf); 1222 clear_btree_node_read_in_flight(b); 1223 wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); 1224 } 1225 1226 static void btree_node_read_endio(struct bio *bio) 1227 { 1228 struct btree_read_bio *rb = 1229 container_of(bio, struct btree_read_bio, bio); 1230 struct bch_fs *c = rb->c; 1231 1232 if (rb->have_ioref) { 1233 struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); 1234 1235 bch2_latency_acct(ca, rb->start_time, READ); 1236 } 1237 1238 queue_work(c->io_complete_wq, &rb->work); 1239 } 1240 1241 struct btree_node_read_all { 1242 struct closure cl; 1243 struct bch_fs *c; 1244 struct btree *b; 1245 unsigned nr; 1246 void *buf[BCH_REPLICAS_MAX]; 1247 struct bio *bio[BCH_REPLICAS_MAX]; 1248 blk_status_t err[BCH_REPLICAS_MAX]; 1249 }; 1250 1251 static unsigned btree_node_sectors_written(struct bch_fs *c, void *data) 1252 { 1253 struct btree_node *bn = data; 1254 struct btree_node_entry *bne; 1255 unsigned offset = 0; 1256 1257 if (le64_to_cpu(bn->magic) != bset_magic(c)) 1258 return 0; 1259 1260 while (offset < btree_sectors(c)) { 1261 if (!offset) { 1262 offset += vstruct_sectors(bn, c->block_bits); 1263 } else { 1264 bne = data + (offset << 9); 1265 if (bne->keys.seq != bn->keys.seq) 1266 break; 1267 offset += vstruct_sectors(bne, c->block_bits); 1268 } 1269 } 1270 1271 return offset; 1272 } 1273 1274 static bool btree_node_has_extra_bsets(struct bch_fs *c, unsigned offset, void *data) 1275 { 1276 struct btree_node *bn = data; 1277 struct btree_node_entry *bne; 1278 1279 if (!offset) 1280 return false; 1281 1282 while (offset < btree_sectors(c)) { 1283 bne = data + (offset << 9); 1284 if (bne->keys.seq == bn->keys.seq) 1285 return true; 1286 offset++; 1287 } 1288 1289 return false; 1290 return offset; 1291 } 1292 1293 static void btree_node_read_all_replicas_done(struct closure *cl) 1294 { 1295 struct btree_node_read_all *ra = 1296 container_of(cl, struct btree_node_read_all, cl); 1297 struct bch_fs *c = ra->c; 1298 struct btree *b = ra->b; 1299 struct printbuf buf = PRINTBUF; 1300 bool dump_bset_maps = false; 1301 bool have_retry = false; 1302 int ret = 0, best = -1, write = READ; 1303 unsigned i, written = 0, written2 = 0; 1304 __le64 seq = b->key.k.type == KEY_TYPE_btree_ptr_v2 1305 ? bkey_i_to_btree_ptr_v2(&b->key)->v.seq : 0; 1306 bool _saw_error = false, *saw_error = &_saw_error; 1307 1308 for (i = 0; i < ra->nr; i++) { 1309 struct btree_node *bn = ra->buf[i]; 1310 1311 if (ra->err[i]) 1312 continue; 1313 1314 if (le64_to_cpu(bn->magic) != bset_magic(c) || 1315 (seq && seq != bn->keys.seq)) 1316 continue; 1317 1318 if (best < 0) { 1319 best = i; 1320 written = btree_node_sectors_written(c, bn); 1321 continue; 1322 } 1323 1324 written2 = btree_node_sectors_written(c, ra->buf[i]); 1325 if (btree_err_on(written2 != written, -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, NULL, 1326 "btree node sectors written mismatch: %u != %u", 1327 written, written2) || 1328 btree_err_on(btree_node_has_extra_bsets(c, written2, ra->buf[i]), 1329 -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, NULL, 1330 "found bset signature after last bset") || 1331 btree_err_on(memcmp(ra->buf[best], ra->buf[i], written << 9), 1332 -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, NULL, 1333 "btree node replicas content mismatch")) 1334 dump_bset_maps = true; 1335 1336 if (written2 > written) { 1337 written = written2; 1338 best = i; 1339 } 1340 } 1341 fsck_err: 1342 if (dump_bset_maps) { 1343 for (i = 0; i < ra->nr; i++) { 1344 struct btree_node *bn = ra->buf[i]; 1345 struct btree_node_entry *bne = NULL; 1346 unsigned offset = 0, sectors; 1347 bool gap = false; 1348 1349 if (ra->err[i]) 1350 continue; 1351 1352 printbuf_reset(&buf); 1353 1354 while (offset < btree_sectors(c)) { 1355 if (!offset) { 1356 sectors = vstruct_sectors(bn, c->block_bits); 1357 } else { 1358 bne = ra->buf[i] + (offset << 9); 1359 if (bne->keys.seq != bn->keys.seq) 1360 break; 1361 sectors = vstruct_sectors(bne, c->block_bits); 1362 } 1363 1364 prt_printf(&buf, " %u-%u", offset, offset + sectors); 1365 if (bne && bch2_journal_seq_is_blacklisted(c, 1366 le64_to_cpu(bne->keys.journal_seq), false)) 1367 prt_printf(&buf, "*"); 1368 offset += sectors; 1369 } 1370 1371 while (offset < btree_sectors(c)) { 1372 bne = ra->buf[i] + (offset << 9); 1373 if (bne->keys.seq == bn->keys.seq) { 1374 if (!gap) 1375 prt_printf(&buf, " GAP"); 1376 gap = true; 1377 1378 sectors = vstruct_sectors(bne, c->block_bits); 1379 prt_printf(&buf, " %u-%u", offset, offset + sectors); 1380 if (bch2_journal_seq_is_blacklisted(c, 1381 le64_to_cpu(bne->keys.journal_seq), false)) 1382 prt_printf(&buf, "*"); 1383 } 1384 offset++; 1385 } 1386 1387 bch_err(c, "replica %u:%s", i, buf.buf); 1388 } 1389 } 1390 1391 if (best >= 0) { 1392 memcpy(b->data, ra->buf[best], btree_bytes(c)); 1393 ret = bch2_btree_node_read_done(c, NULL, b, false, saw_error); 1394 } else { 1395 ret = -1; 1396 } 1397 1398 if (ret) 1399 set_btree_node_read_error(b); 1400 else if (*saw_error) 1401 bch2_btree_node_rewrite_async(c, b); 1402 1403 for (i = 0; i < ra->nr; i++) { 1404 mempool_free(ra->buf[i], &c->btree_bounce_pool); 1405 bio_put(ra->bio[i]); 1406 } 1407 1408 closure_debug_destroy(&ra->cl); 1409 kfree(ra); 1410 printbuf_exit(&buf); 1411 1412 clear_btree_node_read_in_flight(b); 1413 wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); 1414 } 1415 1416 static void btree_node_read_all_replicas_endio(struct bio *bio) 1417 { 1418 struct btree_read_bio *rb = 1419 container_of(bio, struct btree_read_bio, bio); 1420 struct bch_fs *c = rb->c; 1421 struct btree_node_read_all *ra = rb->ra; 1422 1423 if (rb->have_ioref) { 1424 struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); 1425 1426 bch2_latency_acct(ca, rb->start_time, READ); 1427 } 1428 1429 ra->err[rb->idx] = bio->bi_status; 1430 closure_put(&ra->cl); 1431 } 1432 1433 /* 1434 * XXX This allocates multiple times from the same mempools, and can deadlock 1435 * under sufficient memory pressure (but is only a debug path) 1436 */ 1437 static int btree_node_read_all_replicas(struct bch_fs *c, struct btree *b, bool sync) 1438 { 1439 struct bkey_s_c k = bkey_i_to_s_c(&b->key); 1440 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1441 const union bch_extent_entry *entry; 1442 struct extent_ptr_decoded pick; 1443 struct btree_node_read_all *ra; 1444 unsigned i; 1445 1446 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1447 if (!ra) 1448 return -BCH_ERR_ENOMEM_btree_node_read_all_replicas; 1449 1450 closure_init(&ra->cl, NULL); 1451 ra->c = c; 1452 ra->b = b; 1453 ra->nr = bch2_bkey_nr_ptrs(k); 1454 1455 for (i = 0; i < ra->nr; i++) { 1456 ra->buf[i] = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS); 1457 ra->bio[i] = bio_alloc_bioset(NULL, 1458 buf_pages(ra->buf[i], btree_bytes(c)), 1459 REQ_OP_READ|REQ_SYNC|REQ_META, 1460 GFP_NOFS, 1461 &c->btree_bio); 1462 } 1463 1464 i = 0; 1465 bkey_for_each_ptr_decode(k.k, ptrs, pick, entry) { 1466 struct bch_dev *ca = bch_dev_bkey_exists(c, pick.ptr.dev); 1467 struct btree_read_bio *rb = 1468 container_of(ra->bio[i], struct btree_read_bio, bio); 1469 rb->c = c; 1470 rb->b = b; 1471 rb->ra = ra; 1472 rb->start_time = local_clock(); 1473 rb->have_ioref = bch2_dev_get_ioref(ca, READ); 1474 rb->idx = i; 1475 rb->pick = pick; 1476 rb->bio.bi_iter.bi_sector = pick.ptr.offset; 1477 rb->bio.bi_end_io = btree_node_read_all_replicas_endio; 1478 bch2_bio_map(&rb->bio, ra->buf[i], btree_bytes(c)); 1479 1480 if (rb->have_ioref) { 1481 this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree], 1482 bio_sectors(&rb->bio)); 1483 bio_set_dev(&rb->bio, ca->disk_sb.bdev); 1484 1485 closure_get(&ra->cl); 1486 submit_bio(&rb->bio); 1487 } else { 1488 ra->err[i] = BLK_STS_REMOVED; 1489 } 1490 1491 i++; 1492 } 1493 1494 if (sync) { 1495 closure_sync(&ra->cl); 1496 btree_node_read_all_replicas_done(&ra->cl); 1497 } else { 1498 continue_at(&ra->cl, btree_node_read_all_replicas_done, 1499 c->io_complete_wq); 1500 } 1501 1502 return 0; 1503 } 1504 1505 void bch2_btree_node_read(struct bch_fs *c, struct btree *b, 1506 bool sync) 1507 { 1508 struct extent_ptr_decoded pick; 1509 struct btree_read_bio *rb; 1510 struct bch_dev *ca; 1511 struct bio *bio; 1512 int ret; 1513 1514 trace_and_count(c, btree_node_read, c, b); 1515 1516 if (bch2_verify_all_btree_replicas && 1517 !btree_node_read_all_replicas(c, b, sync)) 1518 return; 1519 1520 ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key), 1521 NULL, &pick); 1522 1523 if (ret <= 0) { 1524 struct printbuf buf = PRINTBUF; 1525 1526 prt_str(&buf, "btree node read error: no device to read from\n at "); 1527 btree_pos_to_text(&buf, c, b); 1528 bch_err(c, "%s", buf.buf); 1529 1530 if (c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology) && 1531 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) 1532 bch2_fatal_error(c); 1533 1534 set_btree_node_read_error(b); 1535 clear_btree_node_read_in_flight(b); 1536 wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); 1537 printbuf_exit(&buf); 1538 return; 1539 } 1540 1541 ca = bch_dev_bkey_exists(c, pick.ptr.dev); 1542 1543 bio = bio_alloc_bioset(NULL, 1544 buf_pages(b->data, btree_bytes(c)), 1545 REQ_OP_READ|REQ_SYNC|REQ_META, 1546 GFP_NOFS, 1547 &c->btree_bio); 1548 rb = container_of(bio, struct btree_read_bio, bio); 1549 rb->c = c; 1550 rb->b = b; 1551 rb->ra = NULL; 1552 rb->start_time = local_clock(); 1553 rb->have_ioref = bch2_dev_get_ioref(ca, READ); 1554 rb->pick = pick; 1555 INIT_WORK(&rb->work, btree_node_read_work); 1556 bio->bi_iter.bi_sector = pick.ptr.offset; 1557 bio->bi_end_io = btree_node_read_endio; 1558 bch2_bio_map(bio, b->data, btree_bytes(c)); 1559 1560 if (rb->have_ioref) { 1561 this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree], 1562 bio_sectors(bio)); 1563 bio_set_dev(bio, ca->disk_sb.bdev); 1564 1565 if (sync) { 1566 submit_bio_wait(bio); 1567 1568 btree_node_read_work(&rb->work); 1569 } else { 1570 submit_bio(bio); 1571 } 1572 } else { 1573 bio->bi_status = BLK_STS_REMOVED; 1574 1575 if (sync) 1576 btree_node_read_work(&rb->work); 1577 else 1578 queue_work(c->io_complete_wq, &rb->work); 1579 } 1580 } 1581 1582 static int __bch2_btree_root_read(struct btree_trans *trans, enum btree_id id, 1583 const struct bkey_i *k, unsigned level) 1584 { 1585 struct bch_fs *c = trans->c; 1586 struct closure cl; 1587 struct btree *b; 1588 int ret; 1589 1590 closure_init_stack(&cl); 1591 1592 do { 1593 ret = bch2_btree_cache_cannibalize_lock(c, &cl); 1594 closure_sync(&cl); 1595 } while (ret); 1596 1597 b = bch2_btree_node_mem_alloc(trans, level != 0); 1598 bch2_btree_cache_cannibalize_unlock(c); 1599 1600 BUG_ON(IS_ERR(b)); 1601 1602 bkey_copy(&b->key, k); 1603 BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id)); 1604 1605 set_btree_node_read_in_flight(b); 1606 1607 bch2_btree_node_read(c, b, true); 1608 1609 if (btree_node_read_error(b)) { 1610 bch2_btree_node_hash_remove(&c->btree_cache, b); 1611 1612 mutex_lock(&c->btree_cache.lock); 1613 list_move(&b->list, &c->btree_cache.freeable); 1614 mutex_unlock(&c->btree_cache.lock); 1615 1616 ret = -EIO; 1617 goto err; 1618 } 1619 1620 bch2_btree_set_root_for_read(c, b); 1621 err: 1622 six_unlock_write(&b->c.lock); 1623 six_unlock_intent(&b->c.lock); 1624 1625 return ret; 1626 } 1627 1628 int bch2_btree_root_read(struct bch_fs *c, enum btree_id id, 1629 const struct bkey_i *k, unsigned level) 1630 { 1631 return bch2_trans_run(c, __bch2_btree_root_read(trans, id, k, level)); 1632 } 1633 1634 void bch2_btree_complete_write(struct bch_fs *c, struct btree *b, 1635 struct btree_write *w) 1636 { 1637 unsigned long old, new, v = READ_ONCE(b->will_make_reachable); 1638 1639 do { 1640 old = new = v; 1641 if (!(old & 1)) 1642 break; 1643 1644 new &= ~1UL; 1645 } while ((v = cmpxchg(&b->will_make_reachable, old, new)) != old); 1646 1647 if (old & 1) 1648 closure_put(&((struct btree_update *) new)->cl); 1649 1650 bch2_journal_pin_drop(&c->journal, &w->journal); 1651 } 1652 1653 static void __btree_node_write_done(struct bch_fs *c, struct btree *b) 1654 { 1655 struct btree_write *w = btree_prev_write(b); 1656 unsigned long old, new, v; 1657 unsigned type = 0; 1658 1659 bch2_btree_complete_write(c, b, w); 1660 1661 v = READ_ONCE(b->flags); 1662 do { 1663 old = new = v; 1664 1665 if ((old & (1U << BTREE_NODE_dirty)) && 1666 (old & (1U << BTREE_NODE_need_write)) && 1667 !(old & (1U << BTREE_NODE_never_write)) && 1668 !(old & (1U << BTREE_NODE_write_blocked)) && 1669 !(old & (1U << BTREE_NODE_will_make_reachable))) { 1670 new &= ~(1U << BTREE_NODE_dirty); 1671 new &= ~(1U << BTREE_NODE_need_write); 1672 new |= (1U << BTREE_NODE_write_in_flight); 1673 new |= (1U << BTREE_NODE_write_in_flight_inner); 1674 new |= (1U << BTREE_NODE_just_written); 1675 new ^= (1U << BTREE_NODE_write_idx); 1676 1677 type = new & BTREE_WRITE_TYPE_MASK; 1678 new &= ~BTREE_WRITE_TYPE_MASK; 1679 } else { 1680 new &= ~(1U << BTREE_NODE_write_in_flight); 1681 new &= ~(1U << BTREE_NODE_write_in_flight_inner); 1682 } 1683 } while ((v = cmpxchg(&b->flags, old, new)) != old); 1684 1685 if (new & (1U << BTREE_NODE_write_in_flight)) 1686 __bch2_btree_node_write(c, b, BTREE_WRITE_ALREADY_STARTED|type); 1687 else 1688 wake_up_bit(&b->flags, BTREE_NODE_write_in_flight); 1689 } 1690 1691 static void btree_node_write_done(struct bch_fs *c, struct btree *b) 1692 { 1693 struct btree_trans *trans = bch2_trans_get(c); 1694 1695 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); 1696 __btree_node_write_done(c, b); 1697 six_unlock_read(&b->c.lock); 1698 1699 bch2_trans_put(trans); 1700 } 1701 1702 static void btree_node_write_work(struct work_struct *work) 1703 { 1704 struct btree_write_bio *wbio = 1705 container_of(work, struct btree_write_bio, work); 1706 struct bch_fs *c = wbio->wbio.c; 1707 struct btree *b = wbio->wbio.bio.bi_private; 1708 struct bch_extent_ptr *ptr; 1709 int ret = 0; 1710 1711 btree_bounce_free(c, 1712 wbio->data_bytes, 1713 wbio->wbio.used_mempool, 1714 wbio->data); 1715 1716 bch2_bkey_drop_ptrs(bkey_i_to_s(&wbio->key), ptr, 1717 bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev)); 1718 1719 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(&wbio->key))) 1720 goto err; 1721 1722 if (wbio->wbio.first_btree_write) { 1723 if (wbio->wbio.failed.nr) { 1724 1725 } 1726 } else { 1727 ret = bch2_trans_do(c, NULL, NULL, 0, 1728 bch2_btree_node_update_key_get_iter(trans, b, &wbio->key, 1729 BCH_WATERMARK_reclaim| 1730 BTREE_INSERT_JOURNAL_RECLAIM| 1731 BTREE_INSERT_NOFAIL| 1732 BTREE_INSERT_NOCHECK_RW, 1733 !wbio->wbio.failed.nr)); 1734 if (ret) 1735 goto err; 1736 } 1737 out: 1738 bio_put(&wbio->wbio.bio); 1739 btree_node_write_done(c, b); 1740 return; 1741 err: 1742 set_btree_node_noevict(b); 1743 if (!bch2_err_matches(ret, EROFS)) 1744 bch2_fs_fatal_error(c, "fatal error writing btree node: %s", bch2_err_str(ret)); 1745 goto out; 1746 } 1747 1748 static void btree_node_write_endio(struct bio *bio) 1749 { 1750 struct bch_write_bio *wbio = to_wbio(bio); 1751 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; 1752 struct bch_write_bio *orig = parent ?: wbio; 1753 struct btree_write_bio *wb = container_of(orig, struct btree_write_bio, wbio); 1754 struct bch_fs *c = wbio->c; 1755 struct btree *b = wbio->bio.bi_private; 1756 struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev); 1757 unsigned long flags; 1758 1759 if (wbio->have_ioref) 1760 bch2_latency_acct(ca, wbio->submit_time, WRITE); 1761 1762 if (bch2_dev_io_err_on(bio->bi_status, ca, "btree write error: %s", 1763 bch2_blk_status_to_str(bio->bi_status)) || 1764 bch2_meta_write_fault("btree")) { 1765 spin_lock_irqsave(&c->btree_write_error_lock, flags); 1766 bch2_dev_list_add_dev(&orig->failed, wbio->dev); 1767 spin_unlock_irqrestore(&c->btree_write_error_lock, flags); 1768 } 1769 1770 if (wbio->have_ioref) 1771 percpu_ref_put(&ca->io_ref); 1772 1773 if (parent) { 1774 bio_put(bio); 1775 bio_endio(&parent->bio); 1776 return; 1777 } 1778 1779 clear_btree_node_write_in_flight_inner(b); 1780 wake_up_bit(&b->flags, BTREE_NODE_write_in_flight_inner); 1781 INIT_WORK(&wb->work, btree_node_write_work); 1782 queue_work(c->btree_io_complete_wq, &wb->work); 1783 } 1784 1785 static int validate_bset_for_write(struct bch_fs *c, struct btree *b, 1786 struct bset *i, unsigned sectors) 1787 { 1788 struct printbuf buf = PRINTBUF; 1789 bool saw_error; 1790 int ret; 1791 1792 ret = bch2_bkey_invalid(c, bkey_i_to_s_c(&b->key), 1793 BKEY_TYPE_btree, WRITE, &buf); 1794 1795 if (ret) 1796 bch2_fs_inconsistent(c, "invalid btree node key before write: %s", buf.buf); 1797 printbuf_exit(&buf); 1798 if (ret) 1799 return ret; 1800 1801 ret = validate_bset_keys(c, b, i, WRITE, false, &saw_error) ?: 1802 validate_bset(c, NULL, b, i, b->written, sectors, WRITE, false, &saw_error); 1803 if (ret) { 1804 bch2_inconsistent_error(c); 1805 dump_stack(); 1806 } 1807 1808 return ret; 1809 } 1810 1811 static void btree_write_submit(struct work_struct *work) 1812 { 1813 struct btree_write_bio *wbio = container_of(work, struct btree_write_bio, work); 1814 struct bch_extent_ptr *ptr; 1815 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; 1816 1817 bkey_copy(&tmp.k, &wbio->key); 1818 1819 bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&tmp.k)), ptr) 1820 ptr->offset += wbio->sector_offset; 1821 1822 bch2_submit_wbio_replicas(&wbio->wbio, wbio->wbio.c, BCH_DATA_btree, 1823 &tmp.k, false); 1824 } 1825 1826 void __bch2_btree_node_write(struct bch_fs *c, struct btree *b, unsigned flags) 1827 { 1828 struct btree_write_bio *wbio; 1829 struct bset_tree *t; 1830 struct bset *i; 1831 struct btree_node *bn = NULL; 1832 struct btree_node_entry *bne = NULL; 1833 struct sort_iter_stack sort_iter; 1834 struct nonce nonce; 1835 unsigned bytes_to_write, sectors_to_write, bytes, u64s; 1836 u64 seq = 0; 1837 bool used_mempool; 1838 unsigned long old, new; 1839 bool validate_before_checksum = false; 1840 enum btree_write_type type = flags & BTREE_WRITE_TYPE_MASK; 1841 void *data; 1842 int ret; 1843 1844 if (flags & BTREE_WRITE_ALREADY_STARTED) 1845 goto do_write; 1846 1847 /* 1848 * We may only have a read lock on the btree node - the dirty bit is our 1849 * "lock" against racing with other threads that may be trying to start 1850 * a write, we do a write iff we clear the dirty bit. Since setting the 1851 * dirty bit requires a write lock, we can't race with other threads 1852 * redirtying it: 1853 */ 1854 do { 1855 old = new = READ_ONCE(b->flags); 1856 1857 if (!(old & (1 << BTREE_NODE_dirty))) 1858 return; 1859 1860 if ((flags & BTREE_WRITE_ONLY_IF_NEED) && 1861 !(old & (1 << BTREE_NODE_need_write))) 1862 return; 1863 1864 if (old & 1865 ((1 << BTREE_NODE_never_write)| 1866 (1 << BTREE_NODE_write_blocked))) 1867 return; 1868 1869 if (b->written && 1870 (old & (1 << BTREE_NODE_will_make_reachable))) 1871 return; 1872 1873 if (old & (1 << BTREE_NODE_write_in_flight)) 1874 return; 1875 1876 if (flags & BTREE_WRITE_ONLY_IF_NEED) 1877 type = new & BTREE_WRITE_TYPE_MASK; 1878 new &= ~BTREE_WRITE_TYPE_MASK; 1879 1880 new &= ~(1 << BTREE_NODE_dirty); 1881 new &= ~(1 << BTREE_NODE_need_write); 1882 new |= (1 << BTREE_NODE_write_in_flight); 1883 new |= (1 << BTREE_NODE_write_in_flight_inner); 1884 new |= (1 << BTREE_NODE_just_written); 1885 new ^= (1 << BTREE_NODE_write_idx); 1886 } while (cmpxchg_acquire(&b->flags, old, new) != old); 1887 1888 if (new & (1U << BTREE_NODE_need_write)) 1889 return; 1890 do_write: 1891 BUG_ON((type == BTREE_WRITE_initial) != (b->written == 0)); 1892 1893 atomic_dec(&c->btree_cache.dirty); 1894 1895 BUG_ON(btree_node_fake(b)); 1896 BUG_ON((b->will_make_reachable != 0) != !b->written); 1897 1898 BUG_ON(b->written >= btree_sectors(c)); 1899 BUG_ON(b->written & (block_sectors(c) - 1)); 1900 BUG_ON(bset_written(b, btree_bset_last(b))); 1901 BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c)); 1902 BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format))); 1903 1904 bch2_sort_whiteouts(c, b); 1905 1906 sort_iter_stack_init(&sort_iter, b); 1907 1908 bytes = !b->written 1909 ? sizeof(struct btree_node) 1910 : sizeof(struct btree_node_entry); 1911 1912 bytes += b->whiteout_u64s * sizeof(u64); 1913 1914 for_each_bset(b, t) { 1915 i = bset(b, t); 1916 1917 if (bset_written(b, i)) 1918 continue; 1919 1920 bytes += le16_to_cpu(i->u64s) * sizeof(u64); 1921 sort_iter_add(&sort_iter.iter, 1922 btree_bkey_first(b, t), 1923 btree_bkey_last(b, t)); 1924 seq = max(seq, le64_to_cpu(i->journal_seq)); 1925 } 1926 1927 BUG_ON(b->written && !seq); 1928 1929 /* bch2_varint_decode may read up to 7 bytes past the end of the buffer: */ 1930 bytes += 8; 1931 1932 /* buffer must be a multiple of the block size */ 1933 bytes = round_up(bytes, block_bytes(c)); 1934 1935 data = btree_bounce_alloc(c, bytes, &used_mempool); 1936 1937 if (!b->written) { 1938 bn = data; 1939 *bn = *b->data; 1940 i = &bn->keys; 1941 } else { 1942 bne = data; 1943 bne->keys = b->data->keys; 1944 i = &bne->keys; 1945 } 1946 1947 i->journal_seq = cpu_to_le64(seq); 1948 i->u64s = 0; 1949 1950 sort_iter_add(&sort_iter.iter, 1951 unwritten_whiteouts_start(c, b), 1952 unwritten_whiteouts_end(c, b)); 1953 SET_BSET_SEPARATE_WHITEOUTS(i, false); 1954 1955 b->whiteout_u64s = 0; 1956 1957 u64s = bch2_sort_keys(i->start, &sort_iter.iter, false); 1958 le16_add_cpu(&i->u64s, u64s); 1959 1960 BUG_ON(!b->written && i->u64s != b->data->keys.u64s); 1961 1962 set_needs_whiteout(i, false); 1963 1964 /* do we have data to write? */ 1965 if (b->written && !i->u64s) 1966 goto nowrite; 1967 1968 bytes_to_write = vstruct_end(i) - data; 1969 sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9; 1970 1971 if (!b->written && 1972 b->key.k.type == KEY_TYPE_btree_ptr_v2) 1973 BUG_ON(btree_ptr_sectors_written(&b->key) != sectors_to_write); 1974 1975 memset(data + bytes_to_write, 0, 1976 (sectors_to_write << 9) - bytes_to_write); 1977 1978 BUG_ON(b->written + sectors_to_write > btree_sectors(c)); 1979 BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN); 1980 BUG_ON(i->seq != b->data->keys.seq); 1981 1982 i->version = cpu_to_le16(c->sb.version); 1983 SET_BSET_OFFSET(i, b->written); 1984 SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c)); 1985 1986 if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i))) 1987 validate_before_checksum = true; 1988 1989 /* validate_bset will be modifying: */ 1990 if (le16_to_cpu(i->version) < bcachefs_metadata_version_current) 1991 validate_before_checksum = true; 1992 1993 /* if we're going to be encrypting, check metadata validity first: */ 1994 if (validate_before_checksum && 1995 validate_bset_for_write(c, b, i, sectors_to_write)) 1996 goto err; 1997 1998 ret = bset_encrypt(c, i, b->written << 9); 1999 if (bch2_fs_fatal_err_on(ret, c, 2000 "error encrypting btree node: %i\n", ret)) 2001 goto err; 2002 2003 nonce = btree_nonce(i, b->written << 9); 2004 2005 if (bn) 2006 bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn); 2007 else 2008 bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); 2009 2010 /* if we're not encrypting, check metadata after checksumming: */ 2011 if (!validate_before_checksum && 2012 validate_bset_for_write(c, b, i, sectors_to_write)) 2013 goto err; 2014 2015 /* 2016 * We handle btree write errors by immediately halting the journal - 2017 * after we've done that, we can't issue any subsequent btree writes 2018 * because they might have pointers to new nodes that failed to write. 2019 * 2020 * Furthermore, there's no point in doing any more btree writes because 2021 * with the journal stopped, we're never going to update the journal to 2022 * reflect that those writes were done and the data flushed from the 2023 * journal: 2024 * 2025 * Also on journal error, the pending write may have updates that were 2026 * never journalled (interior nodes, see btree_update_nodes_written()) - 2027 * it's critical that we don't do the write in that case otherwise we 2028 * will have updates visible that weren't in the journal: 2029 * 2030 * Make sure to update b->written so bch2_btree_init_next() doesn't 2031 * break: 2032 */ 2033 if (bch2_journal_error(&c->journal) || 2034 c->opts.nochanges) 2035 goto err; 2036 2037 trace_and_count(c, btree_node_write, b, bytes_to_write, sectors_to_write); 2038 2039 wbio = container_of(bio_alloc_bioset(NULL, 2040 buf_pages(data, sectors_to_write << 9), 2041 REQ_OP_WRITE|REQ_META, 2042 GFP_NOFS, 2043 &c->btree_bio), 2044 struct btree_write_bio, wbio.bio); 2045 wbio_init(&wbio->wbio.bio); 2046 wbio->data = data; 2047 wbio->data_bytes = bytes; 2048 wbio->sector_offset = b->written; 2049 wbio->wbio.c = c; 2050 wbio->wbio.used_mempool = used_mempool; 2051 wbio->wbio.first_btree_write = !b->written; 2052 wbio->wbio.bio.bi_end_io = btree_node_write_endio; 2053 wbio->wbio.bio.bi_private = b; 2054 2055 bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9); 2056 2057 bkey_copy(&wbio->key, &b->key); 2058 2059 b->written += sectors_to_write; 2060 2061 if (wbio->key.k.type == KEY_TYPE_btree_ptr_v2) 2062 bkey_i_to_btree_ptr_v2(&wbio->key)->v.sectors_written = 2063 cpu_to_le16(b->written); 2064 2065 atomic64_inc(&c->btree_write_stats[type].nr); 2066 atomic64_add(bytes_to_write, &c->btree_write_stats[type].bytes); 2067 2068 INIT_WORK(&wbio->work, btree_write_submit); 2069 queue_work(c->io_complete_wq, &wbio->work); 2070 return; 2071 err: 2072 set_btree_node_noevict(b); 2073 b->written += sectors_to_write; 2074 nowrite: 2075 btree_bounce_free(c, bytes, used_mempool, data); 2076 __btree_node_write_done(c, b); 2077 } 2078 2079 /* 2080 * Work that must be done with write lock held: 2081 */ 2082 bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b) 2083 { 2084 bool invalidated_iter = false; 2085 struct btree_node_entry *bne; 2086 struct bset_tree *t; 2087 2088 if (!btree_node_just_written(b)) 2089 return false; 2090 2091 BUG_ON(b->whiteout_u64s); 2092 2093 clear_btree_node_just_written(b); 2094 2095 /* 2096 * Note: immediately after write, bset_written() doesn't work - the 2097 * amount of data we had to write after compaction might have been 2098 * smaller than the offset of the last bset. 2099 * 2100 * However, we know that all bsets have been written here, as long as 2101 * we're still holding the write lock: 2102 */ 2103 2104 /* 2105 * XXX: decide if we really want to unconditionally sort down to a 2106 * single bset: 2107 */ 2108 if (b->nsets > 1) { 2109 btree_node_sort(c, b, 0, b->nsets, true); 2110 invalidated_iter = true; 2111 } else { 2112 invalidated_iter = bch2_drop_whiteouts(b, COMPACT_ALL); 2113 } 2114 2115 for_each_bset(b, t) 2116 set_needs_whiteout(bset(b, t), true); 2117 2118 bch2_btree_verify(c, b); 2119 2120 /* 2121 * If later we don't unconditionally sort down to a single bset, we have 2122 * to ensure this is still true: 2123 */ 2124 BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b)); 2125 2126 bne = want_new_bset(c, b); 2127 if (bne) 2128 bch2_bset_init_next(c, b, bne); 2129 2130 bch2_btree_build_aux_trees(b); 2131 2132 return invalidated_iter; 2133 } 2134 2135 /* 2136 * Use this one if the node is intent locked: 2137 */ 2138 void bch2_btree_node_write(struct bch_fs *c, struct btree *b, 2139 enum six_lock_type lock_type_held, 2140 unsigned flags) 2141 { 2142 if (lock_type_held == SIX_LOCK_intent || 2143 (lock_type_held == SIX_LOCK_read && 2144 six_lock_tryupgrade(&b->c.lock))) { 2145 __bch2_btree_node_write(c, b, flags); 2146 2147 /* don't cycle lock unnecessarily: */ 2148 if (btree_node_just_written(b) && 2149 six_trylock_write(&b->c.lock)) { 2150 bch2_btree_post_write_cleanup(c, b); 2151 six_unlock_write(&b->c.lock); 2152 } 2153 2154 if (lock_type_held == SIX_LOCK_read) 2155 six_lock_downgrade(&b->c.lock); 2156 } else { 2157 __bch2_btree_node_write(c, b, flags); 2158 if (lock_type_held == SIX_LOCK_write && 2159 btree_node_just_written(b)) 2160 bch2_btree_post_write_cleanup(c, b); 2161 } 2162 } 2163 2164 static bool __bch2_btree_flush_all(struct bch_fs *c, unsigned flag) 2165 { 2166 struct bucket_table *tbl; 2167 struct rhash_head *pos; 2168 struct btree *b; 2169 unsigned i; 2170 bool ret = false; 2171 restart: 2172 rcu_read_lock(); 2173 for_each_cached_btree(b, c, tbl, i, pos) 2174 if (test_bit(flag, &b->flags)) { 2175 rcu_read_unlock(); 2176 wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE); 2177 ret = true; 2178 goto restart; 2179 } 2180 rcu_read_unlock(); 2181 2182 return ret; 2183 } 2184 2185 bool bch2_btree_flush_all_reads(struct bch_fs *c) 2186 { 2187 return __bch2_btree_flush_all(c, BTREE_NODE_read_in_flight); 2188 } 2189 2190 bool bch2_btree_flush_all_writes(struct bch_fs *c) 2191 { 2192 return __bch2_btree_flush_all(c, BTREE_NODE_write_in_flight); 2193 } 2194 2195 static const char * const bch2_btree_write_types[] = { 2196 #define x(t, n) [n] = #t, 2197 BCH_BTREE_WRITE_TYPES() 2198 NULL 2199 }; 2200 2201 void bch2_btree_write_stats_to_text(struct printbuf *out, struct bch_fs *c) 2202 { 2203 printbuf_tabstop_push(out, 20); 2204 printbuf_tabstop_push(out, 10); 2205 2206 prt_tab(out); 2207 prt_str(out, "nr"); 2208 prt_tab(out); 2209 prt_str(out, "size"); 2210 prt_newline(out); 2211 2212 for (unsigned i = 0; i < BTREE_WRITE_TYPE_NR; i++) { 2213 u64 nr = atomic64_read(&c->btree_write_stats[i].nr); 2214 u64 bytes = atomic64_read(&c->btree_write_stats[i].bytes); 2215 2216 prt_printf(out, "%s:", bch2_btree_write_types[i]); 2217 prt_tab(out); 2218 prt_u64(out, nr); 2219 prt_tab(out); 2220 prt_human_readable_u64(out, nr ? div64_u64(bytes, nr) : 0); 2221 prt_newline(out); 2222 } 2223 } 2224