xref: /linux/fs/bcachefs/btree_gc.h (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_GC_H
3 #define _BCACHEFS_BTREE_GC_H
4 
5 #include "bkey.h"
6 #include "btree_types.h"
7 
8 int bch2_check_topology(struct bch_fs *);
9 int bch2_gc(struct bch_fs *, bool, bool);
10 int bch2_gc_gens(struct bch_fs *);
11 void bch2_gc_thread_stop(struct bch_fs *);
12 int bch2_gc_thread_start(struct bch_fs *);
13 
14 /*
15  * For concurrent mark and sweep (with other index updates), we define a total
16  * ordering of _all_ references GC walks:
17  *
18  * Note that some references will have the same GC position as others - e.g.
19  * everything within the same btree node; in those cases we're relying on
20  * whatever locking exists for where those references live, i.e. the write lock
21  * on a btree node.
22  *
23  * That locking is also required to ensure GC doesn't pass the updater in
24  * between the updater adding/removing the reference and updating the GC marks;
25  * without that, we would at best double count sometimes.
26  *
27  * That part is important - whenever calling bch2_mark_pointers(), a lock _must_
28  * be held that prevents GC from passing the position the updater is at.
29  *
30  * (What about the start of gc, when we're clearing all the marks? GC clears the
31  * mark with the gc pos seqlock held, and bch_mark_bucket checks against the gc
32  * position inside its cmpxchg loop, so crap magically works).
33  */
34 
35 /* Position of (the start of) a gc phase: */
36 static inline struct gc_pos gc_phase(enum gc_phase phase)
37 {
38 	return (struct gc_pos) {
39 		.phase	= phase,
40 		.pos	= POS_MIN,
41 		.level	= 0,
42 	};
43 }
44 
45 static inline int gc_pos_cmp(struct gc_pos l, struct gc_pos r)
46 {
47 	return  cmp_int(l.phase, r.phase) ?:
48 		bpos_cmp(l.pos, r.pos) ?:
49 		cmp_int(l.level, r.level);
50 }
51 
52 static inline enum gc_phase btree_id_to_gc_phase(enum btree_id id)
53 {
54 	switch (id) {
55 #define x(name, v, ...) case BTREE_ID_##name: return GC_PHASE_BTREE_##name;
56 	BCH_BTREE_IDS()
57 #undef x
58 	default:
59 		BUG();
60 	}
61 }
62 
63 static inline struct gc_pos gc_pos_btree(enum btree_id id,
64 					 struct bpos pos, unsigned level)
65 {
66 	return (struct gc_pos) {
67 		.phase	= btree_id_to_gc_phase(id),
68 		.pos	= pos,
69 		.level	= level,
70 	};
71 }
72 
73 /*
74  * GC position of the pointers within a btree node: note, _not_ for &b->key
75  * itself, that lives in the parent node:
76  */
77 static inline struct gc_pos gc_pos_btree_node(struct btree *b)
78 {
79 	return gc_pos_btree(b->c.btree_id, b->key.k.p, b->c.level);
80 }
81 
82 /*
83  * GC position of the pointer to a btree root: we don't use
84  * gc_pos_pointer_to_btree_node() here to avoid a potential race with
85  * btree_split() increasing the tree depth - the new root will have level > the
86  * old root and thus have a greater gc position than the old root, but that
87  * would be incorrect since once gc has marked the root it's not coming back.
88  */
89 static inline struct gc_pos gc_pos_btree_root(enum btree_id id)
90 {
91 	return gc_pos_btree(id, SPOS_MAX, BTREE_MAX_DEPTH);
92 }
93 
94 static inline bool gc_visited(struct bch_fs *c, struct gc_pos pos)
95 {
96 	unsigned seq;
97 	bool ret;
98 
99 	do {
100 		seq = read_seqcount_begin(&c->gc_pos_lock);
101 		ret = gc_pos_cmp(pos, c->gc_pos) <= 0;
102 	} while (read_seqcount_retry(&c->gc_pos_lock, seq));
103 
104 	return ret;
105 }
106 
107 static inline void bch2_do_gc_gens(struct bch_fs *c)
108 {
109 	atomic_inc(&c->kick_gc);
110 	if (c->gc_thread)
111 		wake_up_process(c->gc_thread);
112 }
113 
114 #endif /* _BCACHEFS_BTREE_GC_H */
115