xref: /linux/fs/bcachefs/btree_cache.c (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "bbpos.h"
5 #include "bkey_buf.h"
6 #include "btree_cache.h"
7 #include "btree_io.h"
8 #include "btree_iter.h"
9 #include "btree_locking.h"
10 #include "debug.h"
11 #include "errcode.h"
12 #include "error.h"
13 #include "journal.h"
14 #include "trace.h"
15 
16 #include <linux/prefetch.h>
17 #include <linux/sched/mm.h>
18 
19 #define BTREE_CACHE_NOT_FREED_INCREMENT(counter) \
20 do {						 \
21 	if (shrinker_counter)			 \
22 		bc->not_freed_##counter++;	 \
23 } while (0)
24 
25 const char * const bch2_btree_node_flags[] = {
26 #define x(f)	#f,
27 	BTREE_FLAGS()
28 #undef x
29 	NULL
30 };
31 
32 void bch2_recalc_btree_reserve(struct bch_fs *c)
33 {
34 	unsigned i, reserve = 16;
35 
36 	if (!c->btree_roots_known[0].b)
37 		reserve += 8;
38 
39 	for (i = 0; i < btree_id_nr_alive(c); i++) {
40 		struct btree_root *r = bch2_btree_id_root(c, i);
41 
42 		if (r->b)
43 			reserve += min_t(unsigned, 1, r->b->c.level) * 8;
44 	}
45 
46 	c->btree_cache.reserve = reserve;
47 }
48 
49 static inline unsigned btree_cache_can_free(struct btree_cache *bc)
50 {
51 	return max_t(int, 0, bc->used - bc->reserve);
52 }
53 
54 static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
55 {
56 	if (b->c.lock.readers)
57 		list_move(&b->list, &bc->freed_pcpu);
58 	else
59 		list_move(&b->list, &bc->freed_nonpcpu);
60 }
61 
62 static void btree_node_data_free(struct bch_fs *c, struct btree *b)
63 {
64 	struct btree_cache *bc = &c->btree_cache;
65 
66 	EBUG_ON(btree_node_write_in_flight(b));
67 
68 	clear_btree_node_just_written(b);
69 
70 	kvfree(b->data);
71 	b->data = NULL;
72 #ifdef __KERNEL__
73 	kvfree(b->aux_data);
74 #else
75 	munmap(b->aux_data, btree_aux_data_bytes(b));
76 #endif
77 	b->aux_data = NULL;
78 
79 	bc->used--;
80 
81 	btree_node_to_freedlist(bc, b);
82 }
83 
84 static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
85 				   const void *obj)
86 {
87 	const struct btree *b = obj;
88 	const u64 *v = arg->key;
89 
90 	return b->hash_val == *v ? 0 : 1;
91 }
92 
93 static const struct rhashtable_params bch_btree_cache_params = {
94 	.head_offset		= offsetof(struct btree, hash),
95 	.key_offset		= offsetof(struct btree, hash_val),
96 	.key_len		= sizeof(u64),
97 	.obj_cmpfn		= bch2_btree_cache_cmp_fn,
98 	.automatic_shrinking	= true,
99 };
100 
101 static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
102 {
103 	BUG_ON(b->data || b->aux_data);
104 
105 	b->data = kvmalloc(btree_buf_bytes(b), gfp);
106 	if (!b->data)
107 		return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
108 #ifdef __KERNEL__
109 	b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
110 #else
111 	b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
112 			   PROT_READ|PROT_WRITE|PROT_EXEC,
113 			   MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
114 	if (b->aux_data == MAP_FAILED)
115 		b->aux_data = NULL;
116 #endif
117 	if (!b->aux_data) {
118 		kvfree(b->data);
119 		b->data = NULL;
120 		return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
121 	}
122 
123 	return 0;
124 }
125 
126 static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
127 {
128 	struct btree *b;
129 
130 	b = kzalloc(sizeof(struct btree), gfp);
131 	if (!b)
132 		return NULL;
133 
134 	bkey_btree_ptr_init(&b->key);
135 	INIT_LIST_HEAD(&b->list);
136 	INIT_LIST_HEAD(&b->write_blocked);
137 	b->byte_order = ilog2(c->opts.btree_node_size);
138 	return b;
139 }
140 
141 struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
142 {
143 	struct btree_cache *bc = &c->btree_cache;
144 	struct btree *b;
145 
146 	b = __btree_node_mem_alloc(c, GFP_KERNEL);
147 	if (!b)
148 		return NULL;
149 
150 	if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
151 		kfree(b);
152 		return NULL;
153 	}
154 
155 	bch2_btree_lock_init(&b->c, 0);
156 
157 	bc->used++;
158 	list_add(&b->list, &bc->freeable);
159 	return b;
160 }
161 
162 void bch2_btree_node_to_freelist(struct bch_fs *c, struct btree *b)
163 {
164 	mutex_lock(&c->btree_cache.lock);
165 	list_move(&b->list, &c->btree_cache.freeable);
166 	mutex_unlock(&c->btree_cache.lock);
167 
168 	six_unlock_write(&b->c.lock);
169 	six_unlock_intent(&b->c.lock);
170 }
171 
172 /* Btree in memory cache - hash table */
173 
174 void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
175 {
176 	int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
177 
178 	BUG_ON(ret);
179 
180 	/* Cause future lookups for this node to fail: */
181 	b->hash_val = 0;
182 
183 	if (b->c.btree_id < BTREE_ID_NR)
184 		--bc->used_by_btree[b->c.btree_id];
185 }
186 
187 int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
188 {
189 	BUG_ON(b->hash_val);
190 	b->hash_val = btree_ptr_hash_val(&b->key);
191 
192 	int ret = rhashtable_lookup_insert_fast(&bc->table, &b->hash,
193 						bch_btree_cache_params);
194 	if (!ret && b->c.btree_id < BTREE_ID_NR)
195 		bc->used_by_btree[b->c.btree_id]++;
196 	return ret;
197 }
198 
199 int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
200 				unsigned level, enum btree_id id)
201 {
202 	int ret;
203 
204 	b->c.level	= level;
205 	b->c.btree_id	= id;
206 
207 	mutex_lock(&bc->lock);
208 	ret = __bch2_btree_node_hash_insert(bc, b);
209 	if (!ret)
210 		list_add_tail(&b->list, &bc->live);
211 	mutex_unlock(&bc->lock);
212 
213 	return ret;
214 }
215 
216 void bch2_btree_node_update_key_early(struct btree_trans *trans,
217 				      enum btree_id btree, unsigned level,
218 				      struct bkey_s_c old, struct bkey_i *new)
219 {
220 	struct bch_fs *c = trans->c;
221 	struct btree *b;
222 	struct bkey_buf tmp;
223 	int ret;
224 
225 	bch2_bkey_buf_init(&tmp);
226 	bch2_bkey_buf_reassemble(&tmp, c, old);
227 
228 	b = bch2_btree_node_get_noiter(trans, tmp.k, btree, level, true);
229 	if (!IS_ERR_OR_NULL(b)) {
230 		mutex_lock(&c->btree_cache.lock);
231 
232 		bch2_btree_node_hash_remove(&c->btree_cache, b);
233 
234 		bkey_copy(&b->key, new);
235 		ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
236 		BUG_ON(ret);
237 
238 		mutex_unlock(&c->btree_cache.lock);
239 		six_unlock_read(&b->c.lock);
240 	}
241 
242 	bch2_bkey_buf_exit(&tmp, c);
243 }
244 
245 __flatten
246 static inline struct btree *btree_cache_find(struct btree_cache *bc,
247 				     const struct bkey_i *k)
248 {
249 	u64 v = btree_ptr_hash_val(k);
250 
251 	return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
252 }
253 
254 /*
255  * this version is for btree nodes that have already been freed (we're not
256  * reaping a real btree node)
257  */
258 static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush, bool shrinker_counter)
259 {
260 	struct btree_cache *bc = &c->btree_cache;
261 	int ret = 0;
262 
263 	lockdep_assert_held(&bc->lock);
264 
265 	struct bbpos pos = BBPOS(b->c.btree_id, b->key.k.p);
266 
267 	u64 mask = b->c.level
268 		? bc->pinned_nodes_interior_mask
269 		: bc->pinned_nodes_leaf_mask;
270 
271 	if ((mask & BIT_ULL(b->c.btree_id)) &&
272 	    bbpos_cmp(bc->pinned_nodes_start, pos) < 0 &&
273 	    bbpos_cmp(bc->pinned_nodes_end, pos) >= 0)
274 		return -BCH_ERR_ENOMEM_btree_node_reclaim;
275 
276 wait_on_io:
277 	if (b->flags & ((1U << BTREE_NODE_dirty)|
278 			(1U << BTREE_NODE_read_in_flight)|
279 			(1U << BTREE_NODE_write_in_flight))) {
280 		if (!flush) {
281 			if (btree_node_dirty(b))
282 				BTREE_CACHE_NOT_FREED_INCREMENT(dirty);
283 			else if (btree_node_read_in_flight(b))
284 				BTREE_CACHE_NOT_FREED_INCREMENT(read_in_flight);
285 			else if (btree_node_write_in_flight(b))
286 				BTREE_CACHE_NOT_FREED_INCREMENT(write_in_flight);
287 			return -BCH_ERR_ENOMEM_btree_node_reclaim;
288 		}
289 
290 		/* XXX: waiting on IO with btree cache lock held */
291 		bch2_btree_node_wait_on_read(b);
292 		bch2_btree_node_wait_on_write(b);
293 	}
294 
295 	if (!six_trylock_intent(&b->c.lock)) {
296 		BTREE_CACHE_NOT_FREED_INCREMENT(lock_intent);
297 		return -BCH_ERR_ENOMEM_btree_node_reclaim;
298 	}
299 
300 	if (!six_trylock_write(&b->c.lock)) {
301 		BTREE_CACHE_NOT_FREED_INCREMENT(lock_write);
302 		goto out_unlock_intent;
303 	}
304 
305 	/* recheck under lock */
306 	if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
307 			(1U << BTREE_NODE_write_in_flight))) {
308 		if (!flush) {
309 			if (btree_node_read_in_flight(b))
310 				BTREE_CACHE_NOT_FREED_INCREMENT(read_in_flight);
311 			else if (btree_node_write_in_flight(b))
312 				BTREE_CACHE_NOT_FREED_INCREMENT(write_in_flight);
313 			goto out_unlock;
314 		}
315 		six_unlock_write(&b->c.lock);
316 		six_unlock_intent(&b->c.lock);
317 		goto wait_on_io;
318 	}
319 
320 	if (btree_node_noevict(b)) {
321 		BTREE_CACHE_NOT_FREED_INCREMENT(noevict);
322 		goto out_unlock;
323 	}
324 	if (btree_node_write_blocked(b)) {
325 		BTREE_CACHE_NOT_FREED_INCREMENT(write_blocked);
326 		goto out_unlock;
327 	}
328 	if (btree_node_will_make_reachable(b)) {
329 		BTREE_CACHE_NOT_FREED_INCREMENT(will_make_reachable);
330 		goto out_unlock;
331 	}
332 
333 	if (btree_node_dirty(b)) {
334 		if (!flush) {
335 			BTREE_CACHE_NOT_FREED_INCREMENT(dirty);
336 			goto out_unlock;
337 		}
338 		/*
339 		 * Using the underscore version because we don't want to compact
340 		 * bsets after the write, since this node is about to be evicted
341 		 * - unless btree verify mode is enabled, since it runs out of
342 		 * the post write cleanup:
343 		 */
344 		if (bch2_verify_btree_ondisk)
345 			bch2_btree_node_write(c, b, SIX_LOCK_intent,
346 					      BTREE_WRITE_cache_reclaim);
347 		else
348 			__bch2_btree_node_write(c, b,
349 						BTREE_WRITE_cache_reclaim);
350 
351 		six_unlock_write(&b->c.lock);
352 		six_unlock_intent(&b->c.lock);
353 		goto wait_on_io;
354 	}
355 out:
356 	if (b->hash_val && !ret)
357 		trace_and_count(c, btree_cache_reap, c, b);
358 	return ret;
359 out_unlock:
360 	six_unlock_write(&b->c.lock);
361 out_unlock_intent:
362 	six_unlock_intent(&b->c.lock);
363 	ret = -BCH_ERR_ENOMEM_btree_node_reclaim;
364 	goto out;
365 }
366 
367 static int btree_node_reclaim(struct bch_fs *c, struct btree *b, bool shrinker_counter)
368 {
369 	return __btree_node_reclaim(c, b, false, shrinker_counter);
370 }
371 
372 static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
373 {
374 	return __btree_node_reclaim(c, b, true, false);
375 }
376 
377 static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
378 					   struct shrink_control *sc)
379 {
380 	struct bch_fs *c = shrink->private_data;
381 	struct btree_cache *bc = &c->btree_cache;
382 	struct btree *b, *t;
383 	unsigned long nr = sc->nr_to_scan;
384 	unsigned long can_free = 0;
385 	unsigned long freed = 0;
386 	unsigned long touched = 0;
387 	unsigned i, flags;
388 	unsigned long ret = SHRINK_STOP;
389 	bool trigger_writes = atomic_read(&bc->dirty) + nr >=
390 		bc->used * 3 / 4;
391 
392 	if (bch2_btree_shrinker_disabled)
393 		return SHRINK_STOP;
394 
395 	mutex_lock(&bc->lock);
396 	flags = memalloc_nofs_save();
397 
398 	/*
399 	 * It's _really_ critical that we don't free too many btree nodes - we
400 	 * have to always leave ourselves a reserve. The reserve is how we
401 	 * guarantee that allocating memory for a new btree node can always
402 	 * succeed, so that inserting keys into the btree can always succeed and
403 	 * IO can always make forward progress:
404 	 */
405 	can_free = btree_cache_can_free(bc);
406 	nr = min_t(unsigned long, nr, can_free);
407 
408 	i = 0;
409 	list_for_each_entry_safe(b, t, &bc->freeable, list) {
410 		/*
411 		 * Leave a few nodes on the freeable list, so that a btree split
412 		 * won't have to hit the system allocator:
413 		 */
414 		if (++i <= 3)
415 			continue;
416 
417 		touched++;
418 
419 		if (touched >= nr)
420 			goto out;
421 
422 		if (!btree_node_reclaim(c, b, true)) {
423 			btree_node_data_free(c, b);
424 			six_unlock_write(&b->c.lock);
425 			six_unlock_intent(&b->c.lock);
426 			freed++;
427 			bc->freed++;
428 		}
429 	}
430 restart:
431 	list_for_each_entry_safe(b, t, &bc->live, list) {
432 		touched++;
433 
434 		if (btree_node_accessed(b)) {
435 			clear_btree_node_accessed(b);
436 			bc->not_freed_access_bit++;
437 		} else if (!btree_node_reclaim(c, b, true)) {
438 			freed++;
439 			btree_node_data_free(c, b);
440 			bc->freed++;
441 
442 			bch2_btree_node_hash_remove(bc, b);
443 			six_unlock_write(&b->c.lock);
444 			six_unlock_intent(&b->c.lock);
445 
446 			if (freed == nr)
447 				goto out_rotate;
448 		} else if (trigger_writes &&
449 			   btree_node_dirty(b) &&
450 			   !btree_node_will_make_reachable(b) &&
451 			   !btree_node_write_blocked(b) &&
452 			   six_trylock_read(&b->c.lock)) {
453 			list_move(&bc->live, &b->list);
454 			mutex_unlock(&bc->lock);
455 			__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
456 			six_unlock_read(&b->c.lock);
457 			if (touched >= nr)
458 				goto out_nounlock;
459 			mutex_lock(&bc->lock);
460 			goto restart;
461 		}
462 
463 		if (touched >= nr)
464 			break;
465 	}
466 out_rotate:
467 	if (&t->list != &bc->live)
468 		list_move_tail(&bc->live, &t->list);
469 out:
470 	mutex_unlock(&bc->lock);
471 out_nounlock:
472 	ret = freed;
473 	memalloc_nofs_restore(flags);
474 	trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
475 	return ret;
476 }
477 
478 static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
479 					    struct shrink_control *sc)
480 {
481 	struct bch_fs *c = shrink->private_data;
482 	struct btree_cache *bc = &c->btree_cache;
483 
484 	if (bch2_btree_shrinker_disabled)
485 		return 0;
486 
487 	return btree_cache_can_free(bc);
488 }
489 
490 void bch2_fs_btree_cache_exit(struct bch_fs *c)
491 {
492 	struct btree_cache *bc = &c->btree_cache;
493 	struct btree *b;
494 	unsigned i, flags;
495 
496 	shrinker_free(bc->shrink);
497 
498 	/* vfree() can allocate memory: */
499 	flags = memalloc_nofs_save();
500 	mutex_lock(&bc->lock);
501 
502 	if (c->verify_data)
503 		list_move(&c->verify_data->list, &bc->live);
504 
505 	kvfree(c->verify_ondisk);
506 
507 	for (i = 0; i < btree_id_nr_alive(c); i++) {
508 		struct btree_root *r = bch2_btree_id_root(c, i);
509 
510 		if (r->b)
511 			list_add(&r->b->list, &bc->live);
512 	}
513 
514 	list_splice(&bc->freeable, &bc->live);
515 
516 	while (!list_empty(&bc->live)) {
517 		b = list_first_entry(&bc->live, struct btree, list);
518 
519 		BUG_ON(btree_node_read_in_flight(b) ||
520 		       btree_node_write_in_flight(b));
521 
522 		btree_node_data_free(c, b);
523 	}
524 
525 	BUG_ON(!bch2_journal_error(&c->journal) &&
526 	       atomic_read(&c->btree_cache.dirty));
527 
528 	list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
529 
530 	while (!list_empty(&bc->freed_nonpcpu)) {
531 		b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
532 		list_del(&b->list);
533 		six_lock_exit(&b->c.lock);
534 		kfree(b);
535 	}
536 
537 	mutex_unlock(&bc->lock);
538 	memalloc_nofs_restore(flags);
539 
540 	if (bc->table_init_done)
541 		rhashtable_destroy(&bc->table);
542 }
543 
544 int bch2_fs_btree_cache_init(struct bch_fs *c)
545 {
546 	struct btree_cache *bc = &c->btree_cache;
547 	struct shrinker *shrink;
548 	unsigned i;
549 	int ret = 0;
550 
551 	ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
552 	if (ret)
553 		goto err;
554 
555 	bc->table_init_done = true;
556 
557 	bch2_recalc_btree_reserve(c);
558 
559 	for (i = 0; i < bc->reserve; i++)
560 		if (!__bch2_btree_node_mem_alloc(c))
561 			goto err;
562 
563 	list_splice_init(&bc->live, &bc->freeable);
564 
565 	mutex_init(&c->verify_lock);
566 
567 	shrink = shrinker_alloc(0, "%s-btree_cache", c->name);
568 	if (!shrink)
569 		goto err;
570 	bc->shrink = shrink;
571 	shrink->count_objects	= bch2_btree_cache_count;
572 	shrink->scan_objects	= bch2_btree_cache_scan;
573 	shrink->seeks		= 4;
574 	shrink->private_data	= c;
575 	shrinker_register(shrink);
576 
577 	return 0;
578 err:
579 	return -BCH_ERR_ENOMEM_fs_btree_cache_init;
580 }
581 
582 void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
583 {
584 	mutex_init(&bc->lock);
585 	INIT_LIST_HEAD(&bc->live);
586 	INIT_LIST_HEAD(&bc->freeable);
587 	INIT_LIST_HEAD(&bc->freed_pcpu);
588 	INIT_LIST_HEAD(&bc->freed_nonpcpu);
589 }
590 
591 /*
592  * We can only have one thread cannibalizing other cached btree nodes at a time,
593  * or we'll deadlock. We use an open coded mutex to ensure that, which a
594  * cannibalize_bucket() will take. This means every time we unlock the root of
595  * the btree, we need to release this lock if we have it held.
596  */
597 void bch2_btree_cache_cannibalize_unlock(struct btree_trans *trans)
598 {
599 	struct bch_fs *c = trans->c;
600 	struct btree_cache *bc = &c->btree_cache;
601 
602 	if (bc->alloc_lock == current) {
603 		trace_and_count(c, btree_cache_cannibalize_unlock, trans);
604 		bc->alloc_lock = NULL;
605 		closure_wake_up(&bc->alloc_wait);
606 	}
607 }
608 
609 int bch2_btree_cache_cannibalize_lock(struct btree_trans *trans, struct closure *cl)
610 {
611 	struct bch_fs *c = trans->c;
612 	struct btree_cache *bc = &c->btree_cache;
613 	struct task_struct *old;
614 
615 	old = NULL;
616 	if (try_cmpxchg(&bc->alloc_lock, &old, current) || old == current)
617 		goto success;
618 
619 	if (!cl) {
620 		trace_and_count(c, btree_cache_cannibalize_lock_fail, trans);
621 		return -BCH_ERR_ENOMEM_btree_cache_cannibalize_lock;
622 	}
623 
624 	closure_wait(&bc->alloc_wait, cl);
625 
626 	/* Try again, after adding ourselves to waitlist */
627 	old = NULL;
628 	if (try_cmpxchg(&bc->alloc_lock, &old, current) || old == current) {
629 		/* We raced */
630 		closure_wake_up(&bc->alloc_wait);
631 		goto success;
632 	}
633 
634 	trace_and_count(c, btree_cache_cannibalize_lock_fail, trans);
635 	return -BCH_ERR_btree_cache_cannibalize_lock_blocked;
636 
637 success:
638 	trace_and_count(c, btree_cache_cannibalize_lock, trans);
639 	return 0;
640 }
641 
642 static struct btree *btree_node_cannibalize(struct bch_fs *c)
643 {
644 	struct btree_cache *bc = &c->btree_cache;
645 	struct btree *b;
646 
647 	list_for_each_entry_reverse(b, &bc->live, list)
648 		if (!btree_node_reclaim(c, b, false))
649 			return b;
650 
651 	while (1) {
652 		list_for_each_entry_reverse(b, &bc->live, list)
653 			if (!btree_node_write_and_reclaim(c, b))
654 				return b;
655 
656 		/*
657 		 * Rare case: all nodes were intent-locked.
658 		 * Just busy-wait.
659 		 */
660 		WARN_ONCE(1, "btree cache cannibalize failed\n");
661 		cond_resched();
662 	}
663 }
664 
665 struct btree *bch2_btree_node_mem_alloc(struct btree_trans *trans, bool pcpu_read_locks)
666 {
667 	struct bch_fs *c = trans->c;
668 	struct btree_cache *bc = &c->btree_cache;
669 	struct list_head *freed = pcpu_read_locks
670 		? &bc->freed_pcpu
671 		: &bc->freed_nonpcpu;
672 	struct btree *b, *b2;
673 	u64 start_time = local_clock();
674 	unsigned flags;
675 
676 	flags = memalloc_nofs_save();
677 	mutex_lock(&bc->lock);
678 
679 	/*
680 	 * We never free struct btree itself, just the memory that holds the on
681 	 * disk node. Check the freed list before allocating a new one:
682 	 */
683 	list_for_each_entry(b, freed, list)
684 		if (!btree_node_reclaim(c, b, false)) {
685 			list_del_init(&b->list);
686 			goto got_node;
687 		}
688 
689 	b = __btree_node_mem_alloc(c, GFP_NOWAIT|__GFP_NOWARN);
690 	if (!b) {
691 		mutex_unlock(&bc->lock);
692 		bch2_trans_unlock(trans);
693 		b = __btree_node_mem_alloc(c, GFP_KERNEL);
694 		if (!b)
695 			goto err;
696 		mutex_lock(&bc->lock);
697 	}
698 
699 	bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0);
700 
701 	BUG_ON(!six_trylock_intent(&b->c.lock));
702 	BUG_ON(!six_trylock_write(&b->c.lock));
703 got_node:
704 
705 	/*
706 	 * btree_free() doesn't free memory; it sticks the node on the end of
707 	 * the list. Check if there's any freed nodes there:
708 	 */
709 	list_for_each_entry(b2, &bc->freeable, list)
710 		if (!btree_node_reclaim(c, b2, false)) {
711 			swap(b->data, b2->data);
712 			swap(b->aux_data, b2->aux_data);
713 			btree_node_to_freedlist(bc, b2);
714 			six_unlock_write(&b2->c.lock);
715 			six_unlock_intent(&b2->c.lock);
716 			goto got_mem;
717 		}
718 
719 	mutex_unlock(&bc->lock);
720 
721 	if (btree_node_data_alloc(c, b, GFP_NOWAIT|__GFP_NOWARN)) {
722 		bch2_trans_unlock(trans);
723 		if (btree_node_data_alloc(c, b, GFP_KERNEL|__GFP_NOWARN))
724 			goto err;
725 	}
726 
727 	mutex_lock(&bc->lock);
728 	bc->used++;
729 got_mem:
730 	mutex_unlock(&bc->lock);
731 
732 	BUG_ON(btree_node_hashed(b));
733 	BUG_ON(btree_node_dirty(b));
734 	BUG_ON(btree_node_write_in_flight(b));
735 out:
736 	b->flags		= 0;
737 	b->written		= 0;
738 	b->nsets		= 0;
739 	b->sib_u64s[0]		= 0;
740 	b->sib_u64s[1]		= 0;
741 	b->whiteout_u64s	= 0;
742 	bch2_btree_keys_init(b);
743 	set_btree_node_accessed(b);
744 
745 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
746 			       start_time);
747 
748 	memalloc_nofs_restore(flags);
749 
750 	int ret = bch2_trans_relock(trans);
751 	if (unlikely(ret)) {
752 		bch2_btree_node_to_freelist(c, b);
753 		return ERR_PTR(ret);
754 	}
755 
756 	return b;
757 err:
758 	mutex_lock(&bc->lock);
759 
760 	/* Try to cannibalize another cached btree node: */
761 	if (bc->alloc_lock == current) {
762 		b2 = btree_node_cannibalize(c);
763 		clear_btree_node_just_written(b2);
764 		bch2_btree_node_hash_remove(bc, b2);
765 
766 		if (b) {
767 			swap(b->data, b2->data);
768 			swap(b->aux_data, b2->aux_data);
769 			btree_node_to_freedlist(bc, b2);
770 			six_unlock_write(&b2->c.lock);
771 			six_unlock_intent(&b2->c.lock);
772 		} else {
773 			b = b2;
774 			list_del_init(&b->list);
775 		}
776 
777 		mutex_unlock(&bc->lock);
778 
779 		trace_and_count(c, btree_cache_cannibalize, trans);
780 		goto out;
781 	}
782 
783 	mutex_unlock(&bc->lock);
784 	memalloc_nofs_restore(flags);
785 	return ERR_PTR(-BCH_ERR_ENOMEM_btree_node_mem_alloc);
786 }
787 
788 /* Slowpath, don't want it inlined into btree_iter_traverse() */
789 static noinline struct btree *bch2_btree_node_fill(struct btree_trans *trans,
790 				struct btree_path *path,
791 				const struct bkey_i *k,
792 				enum btree_id btree_id,
793 				unsigned level,
794 				enum six_lock_type lock_type,
795 				bool sync)
796 {
797 	struct bch_fs *c = trans->c;
798 	struct btree_cache *bc = &c->btree_cache;
799 	struct btree *b;
800 
801 	if (unlikely(level >= BTREE_MAX_DEPTH)) {
802 		int ret = bch2_fs_topology_error(c, "attempting to get btree node at level %u, >= max depth %u",
803 						 level, BTREE_MAX_DEPTH);
804 		return ERR_PTR(ret);
805 	}
806 
807 	if (unlikely(!bkey_is_btree_ptr(&k->k))) {
808 		struct printbuf buf = PRINTBUF;
809 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k));
810 
811 		int ret = bch2_fs_topology_error(c, "attempting to get btree node with non-btree key %s", buf.buf);
812 		printbuf_exit(&buf);
813 		return ERR_PTR(ret);
814 	}
815 
816 	if (unlikely(k->k.u64s > BKEY_BTREE_PTR_U64s_MAX)) {
817 		struct printbuf buf = PRINTBUF;
818 		bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k));
819 
820 		int ret = bch2_fs_topology_error(c, "attempting to get btree node with too big key %s", buf.buf);
821 		printbuf_exit(&buf);
822 		return ERR_PTR(ret);
823 	}
824 
825 	/*
826 	 * Parent node must be locked, else we could read in a btree node that's
827 	 * been freed:
828 	 */
829 	if (path && !bch2_btree_node_relock(trans, path, level + 1)) {
830 		trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
831 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
832 	}
833 
834 	b = bch2_btree_node_mem_alloc(trans, level != 0);
835 
836 	if (bch2_err_matches(PTR_ERR_OR_ZERO(b), ENOMEM)) {
837 		if (!path)
838 			return b;
839 
840 		trans->memory_allocation_failure = true;
841 		trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
842 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
843 	}
844 
845 	if (IS_ERR(b))
846 		return b;
847 
848 	bkey_copy(&b->key, k);
849 	if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
850 		/* raced with another fill: */
851 
852 		/* mark as unhashed... */
853 		b->hash_val = 0;
854 
855 		mutex_lock(&bc->lock);
856 		list_add(&b->list, &bc->freeable);
857 		mutex_unlock(&bc->lock);
858 
859 		six_unlock_write(&b->c.lock);
860 		six_unlock_intent(&b->c.lock);
861 		return NULL;
862 	}
863 
864 	set_btree_node_read_in_flight(b);
865 	six_unlock_write(&b->c.lock);
866 
867 	if (path) {
868 		u32 seq = six_lock_seq(&b->c.lock);
869 
870 		/* Unlock before doing IO: */
871 		six_unlock_intent(&b->c.lock);
872 		bch2_trans_unlock_noassert(trans);
873 
874 		bch2_btree_node_read(trans, b, sync);
875 
876 		int ret = bch2_trans_relock(trans);
877 		if (ret)
878 			return ERR_PTR(ret);
879 
880 		if (!sync)
881 			return NULL;
882 
883 		if (!six_relock_type(&b->c.lock, lock_type, seq))
884 			b = NULL;
885 	} else {
886 		bch2_btree_node_read(trans, b, sync);
887 		if (lock_type == SIX_LOCK_read)
888 			six_lock_downgrade(&b->c.lock);
889 	}
890 
891 	return b;
892 }
893 
894 static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
895 {
896 	struct printbuf buf = PRINTBUF;
897 
898 	if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_allocations)
899 		return;
900 
901 	prt_printf(&buf,
902 	       "btree node header doesn't match ptr\n"
903 	       "btree %s level %u\n"
904 	       "ptr: ",
905 	       bch2_btree_id_str(b->c.btree_id), b->c.level);
906 	bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
907 
908 	prt_printf(&buf, "\nheader: btree %s level %llu\n"
909 	       "min ",
910 	       bch2_btree_id_str(BTREE_NODE_ID(b->data)),
911 	       BTREE_NODE_LEVEL(b->data));
912 	bch2_bpos_to_text(&buf, b->data->min_key);
913 
914 	prt_printf(&buf, "\nmax ");
915 	bch2_bpos_to_text(&buf, b->data->max_key);
916 
917 	bch2_fs_topology_error(c, "%s", buf.buf);
918 
919 	printbuf_exit(&buf);
920 }
921 
922 static inline void btree_check_header(struct bch_fs *c, struct btree *b)
923 {
924 	if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
925 	    b->c.level != BTREE_NODE_LEVEL(b->data) ||
926 	    !bpos_eq(b->data->max_key, b->key.k.p) ||
927 	    (b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
928 	     !bpos_eq(b->data->min_key,
929 		      bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
930 		btree_bad_header(c, b);
931 }
932 
933 static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
934 					   const struct bkey_i *k, unsigned level,
935 					   enum six_lock_type lock_type,
936 					   unsigned long trace_ip)
937 {
938 	struct bch_fs *c = trans->c;
939 	struct btree_cache *bc = &c->btree_cache;
940 	struct btree *b;
941 	bool need_relock = false;
942 	int ret;
943 
944 	EBUG_ON(level >= BTREE_MAX_DEPTH);
945 retry:
946 	b = btree_cache_find(bc, k);
947 	if (unlikely(!b)) {
948 		/*
949 		 * We must have the parent locked to call bch2_btree_node_fill(),
950 		 * else we could read in a btree node from disk that's been
951 		 * freed:
952 		 */
953 		b = bch2_btree_node_fill(trans, path, k, path->btree_id,
954 					 level, lock_type, true);
955 		need_relock = true;
956 
957 		/* We raced and found the btree node in the cache */
958 		if (!b)
959 			goto retry;
960 
961 		if (IS_ERR(b))
962 			return b;
963 	} else {
964 		if (btree_node_read_locked(path, level + 1))
965 			btree_node_unlock(trans, path, level + 1);
966 
967 		ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
968 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
969 			return ERR_PTR(ret);
970 
971 		BUG_ON(ret);
972 
973 		if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
974 			     b->c.level != level ||
975 			     race_fault())) {
976 			six_unlock_type(&b->c.lock, lock_type);
977 			if (bch2_btree_node_relock(trans, path, level + 1))
978 				goto retry;
979 
980 			trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
981 			return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
982 		}
983 
984 		/* avoid atomic set bit if it's not needed: */
985 		if (!btree_node_accessed(b))
986 			set_btree_node_accessed(b);
987 	}
988 
989 	if (unlikely(btree_node_read_in_flight(b))) {
990 		u32 seq = six_lock_seq(&b->c.lock);
991 
992 		six_unlock_type(&b->c.lock, lock_type);
993 		bch2_trans_unlock(trans);
994 		need_relock = true;
995 
996 		bch2_btree_node_wait_on_read(b);
997 
998 		ret = bch2_trans_relock(trans);
999 		if (ret)
1000 			return ERR_PTR(ret);
1001 
1002 		/*
1003 		 * should_be_locked is not set on this path yet, so we need to
1004 		 * relock it specifically:
1005 		 */
1006 		if (!six_relock_type(&b->c.lock, lock_type, seq))
1007 			goto retry;
1008 	}
1009 
1010 	if (unlikely(need_relock)) {
1011 		ret = bch2_trans_relock(trans) ?:
1012 			bch2_btree_path_relock_intent(trans, path);
1013 		if (ret) {
1014 			six_unlock_type(&b->c.lock, lock_type);
1015 			return ERR_PTR(ret);
1016 		}
1017 	}
1018 
1019 	prefetch(b->aux_data);
1020 
1021 	for_each_bset(b, t) {
1022 		void *p = (u64 *) b->aux_data + t->aux_data_offset;
1023 
1024 		prefetch(p + L1_CACHE_BYTES * 0);
1025 		prefetch(p + L1_CACHE_BYTES * 1);
1026 		prefetch(p + L1_CACHE_BYTES * 2);
1027 	}
1028 
1029 	if (unlikely(btree_node_read_error(b))) {
1030 		six_unlock_type(&b->c.lock, lock_type);
1031 		return ERR_PTR(-BCH_ERR_btree_node_read_error);
1032 	}
1033 
1034 	EBUG_ON(b->c.btree_id != path->btree_id);
1035 	EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1036 	btree_check_header(c, b);
1037 
1038 	return b;
1039 }
1040 
1041 /**
1042  * bch2_btree_node_get - find a btree node in the cache and lock it, reading it
1043  * in from disk if necessary.
1044  *
1045  * @trans:	btree transaction object
1046  * @path:	btree_path being traversed
1047  * @k:		pointer to btree node (generally KEY_TYPE_btree_ptr_v2)
1048  * @level:	level of btree node being looked up (0 == leaf node)
1049  * @lock_type:	SIX_LOCK_read or SIX_LOCK_intent
1050  * @trace_ip:	ip of caller of btree iterator code (i.e. caller of bch2_btree_iter_peek())
1051  *
1052  * The btree node will have either a read or a write lock held, depending on
1053  * the @write parameter.
1054  *
1055  * Returns: btree node or ERR_PTR()
1056  */
1057 struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
1058 				  const struct bkey_i *k, unsigned level,
1059 				  enum six_lock_type lock_type,
1060 				  unsigned long trace_ip)
1061 {
1062 	struct bch_fs *c = trans->c;
1063 	struct btree *b;
1064 	int ret;
1065 
1066 	EBUG_ON(level >= BTREE_MAX_DEPTH);
1067 
1068 	b = btree_node_mem_ptr(k);
1069 
1070 	/*
1071 	 * Check b->hash_val _before_ calling btree_node_lock() - this might not
1072 	 * be the node we want anymore, and trying to lock the wrong node could
1073 	 * cause an unneccessary transaction restart:
1074 	 */
1075 	if (unlikely(!c->opts.btree_node_mem_ptr_optimization ||
1076 		     !b ||
1077 		     b->hash_val != btree_ptr_hash_val(k)))
1078 		return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
1079 
1080 	if (btree_node_read_locked(path, level + 1))
1081 		btree_node_unlock(trans, path, level + 1);
1082 
1083 	ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
1084 	if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1085 		return ERR_PTR(ret);
1086 
1087 	BUG_ON(ret);
1088 
1089 	if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1090 		     b->c.level != level ||
1091 		     race_fault())) {
1092 		six_unlock_type(&b->c.lock, lock_type);
1093 		if (bch2_btree_node_relock(trans, path, level + 1))
1094 			return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
1095 
1096 		trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
1097 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
1098 	}
1099 
1100 	if (unlikely(btree_node_read_in_flight(b))) {
1101 		six_unlock_type(&b->c.lock, lock_type);
1102 		return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
1103 	}
1104 
1105 	prefetch(b->aux_data);
1106 
1107 	for_each_bset(b, t) {
1108 		void *p = (u64 *) b->aux_data + t->aux_data_offset;
1109 
1110 		prefetch(p + L1_CACHE_BYTES * 0);
1111 		prefetch(p + L1_CACHE_BYTES * 1);
1112 		prefetch(p + L1_CACHE_BYTES * 2);
1113 	}
1114 
1115 	/* avoid atomic set bit if it's not needed: */
1116 	if (!btree_node_accessed(b))
1117 		set_btree_node_accessed(b);
1118 
1119 	if (unlikely(btree_node_read_error(b))) {
1120 		six_unlock_type(&b->c.lock, lock_type);
1121 		return ERR_PTR(-BCH_ERR_btree_node_read_error);
1122 	}
1123 
1124 	EBUG_ON(b->c.btree_id != path->btree_id);
1125 	EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1126 	btree_check_header(c, b);
1127 
1128 	return b;
1129 }
1130 
1131 struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
1132 					 const struct bkey_i *k,
1133 					 enum btree_id btree_id,
1134 					 unsigned level,
1135 					 bool nofill)
1136 {
1137 	struct bch_fs *c = trans->c;
1138 	struct btree_cache *bc = &c->btree_cache;
1139 	struct btree *b;
1140 	int ret;
1141 
1142 	EBUG_ON(level >= BTREE_MAX_DEPTH);
1143 
1144 	if (c->opts.btree_node_mem_ptr_optimization) {
1145 		b = btree_node_mem_ptr(k);
1146 		if (b)
1147 			goto lock_node;
1148 	}
1149 retry:
1150 	b = btree_cache_find(bc, k);
1151 	if (unlikely(!b)) {
1152 		if (nofill)
1153 			goto out;
1154 
1155 		b = bch2_btree_node_fill(trans, NULL, k, btree_id,
1156 					 level, SIX_LOCK_read, true);
1157 
1158 		/* We raced and found the btree node in the cache */
1159 		if (!b)
1160 			goto retry;
1161 
1162 		if (IS_ERR(b) &&
1163 		    !bch2_btree_cache_cannibalize_lock(trans, NULL))
1164 			goto retry;
1165 
1166 		if (IS_ERR(b))
1167 			goto out;
1168 	} else {
1169 lock_node:
1170 		ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_);
1171 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1172 			return ERR_PTR(ret);
1173 
1174 		BUG_ON(ret);
1175 
1176 		if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1177 			     b->c.btree_id != btree_id ||
1178 			     b->c.level != level)) {
1179 			six_unlock_read(&b->c.lock);
1180 			goto retry;
1181 		}
1182 	}
1183 
1184 	/* XXX: waiting on IO with btree locks held: */
1185 	__bch2_btree_node_wait_on_read(b);
1186 
1187 	prefetch(b->aux_data);
1188 
1189 	for_each_bset(b, t) {
1190 		void *p = (u64 *) b->aux_data + t->aux_data_offset;
1191 
1192 		prefetch(p + L1_CACHE_BYTES * 0);
1193 		prefetch(p + L1_CACHE_BYTES * 1);
1194 		prefetch(p + L1_CACHE_BYTES * 2);
1195 	}
1196 
1197 	/* avoid atomic set bit if it's not needed: */
1198 	if (!btree_node_accessed(b))
1199 		set_btree_node_accessed(b);
1200 
1201 	if (unlikely(btree_node_read_error(b))) {
1202 		six_unlock_read(&b->c.lock);
1203 		b = ERR_PTR(-BCH_ERR_btree_node_read_error);
1204 		goto out;
1205 	}
1206 
1207 	EBUG_ON(b->c.btree_id != btree_id);
1208 	EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1209 	btree_check_header(c, b);
1210 out:
1211 	bch2_btree_cache_cannibalize_unlock(trans);
1212 	return b;
1213 }
1214 
1215 int bch2_btree_node_prefetch(struct btree_trans *trans,
1216 			     struct btree_path *path,
1217 			     const struct bkey_i *k,
1218 			     enum btree_id btree_id, unsigned level)
1219 {
1220 	struct bch_fs *c = trans->c;
1221 	struct btree_cache *bc = &c->btree_cache;
1222 
1223 	BUG_ON(path && !btree_node_locked(path, level + 1));
1224 	BUG_ON(level >= BTREE_MAX_DEPTH);
1225 
1226 	struct btree *b = btree_cache_find(bc, k);
1227 	if (b)
1228 		return 0;
1229 
1230 	b = bch2_btree_node_fill(trans, path, k, btree_id,
1231 				 level, SIX_LOCK_read, false);
1232 	if (!IS_ERR_OR_NULL(b))
1233 		six_unlock_read(&b->c.lock);
1234 	return bch2_trans_relock(trans) ?: PTR_ERR_OR_ZERO(b);
1235 }
1236 
1237 void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
1238 {
1239 	struct bch_fs *c = trans->c;
1240 	struct btree_cache *bc = &c->btree_cache;
1241 	struct btree *b;
1242 
1243 	b = btree_cache_find(bc, k);
1244 	if (!b)
1245 		return;
1246 
1247 	BUG_ON(b == btree_node_root(trans->c, b));
1248 wait_on_io:
1249 	/* not allowed to wait on io with btree locks held: */
1250 
1251 	/* XXX we're called from btree_gc which will be holding other btree
1252 	 * nodes locked
1253 	 */
1254 	__bch2_btree_node_wait_on_read(b);
1255 	__bch2_btree_node_wait_on_write(b);
1256 
1257 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
1258 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
1259 	if (unlikely(b->hash_val != btree_ptr_hash_val(k)))
1260 		goto out;
1261 
1262 	if (btree_node_dirty(b)) {
1263 		__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
1264 		six_unlock_write(&b->c.lock);
1265 		six_unlock_intent(&b->c.lock);
1266 		goto wait_on_io;
1267 	}
1268 
1269 	BUG_ON(btree_node_dirty(b));
1270 
1271 	mutex_lock(&bc->lock);
1272 	btree_node_data_free(c, b);
1273 	bch2_btree_node_hash_remove(bc, b);
1274 	mutex_unlock(&bc->lock);
1275 out:
1276 	six_unlock_write(&b->c.lock);
1277 	six_unlock_intent(&b->c.lock);
1278 }
1279 
1280 const char *bch2_btree_id_str(enum btree_id btree)
1281 {
1282 	return btree < BTREE_ID_NR ? __bch2_btree_ids[btree] : "(unknown)";
1283 }
1284 
1285 void bch2_btree_id_to_text(struct printbuf *out, enum btree_id btree)
1286 {
1287 	if (btree < BTREE_ID_NR)
1288 		prt_str(out, __bch2_btree_ids[btree]);
1289 	else
1290 		prt_printf(out, "(unknown btree %u)", btree);
1291 }
1292 
1293 void bch2_btree_pos_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1294 {
1295 	prt_printf(out, "%s level %u/%u\n  ",
1296 	       bch2_btree_id_str(b->c.btree_id),
1297 	       b->c.level,
1298 	       bch2_btree_id_root(c, b->c.btree_id)->level);
1299 	bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1300 }
1301 
1302 void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1303 {
1304 	struct bset_stats stats;
1305 
1306 	memset(&stats, 0, sizeof(stats));
1307 
1308 	bch2_btree_keys_stats(b, &stats);
1309 
1310 	prt_printf(out, "l %u ", b->c.level);
1311 	bch2_bpos_to_text(out, b->data->min_key);
1312 	prt_printf(out, " - ");
1313 	bch2_bpos_to_text(out, b->data->max_key);
1314 	prt_printf(out, ":\n"
1315 	       "    ptrs: ");
1316 	bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1317 	prt_newline(out);
1318 
1319 	prt_printf(out,
1320 	       "    format: ");
1321 	bch2_bkey_format_to_text(out, &b->format);
1322 
1323 	prt_printf(out,
1324 	       "    unpack fn len: %u\n"
1325 	       "    bytes used %zu/%zu (%zu%% full)\n"
1326 	       "    sib u64s: %u, %u (merge threshold %u)\n"
1327 	       "    nr packed keys %u\n"
1328 	       "    nr unpacked keys %u\n"
1329 	       "    floats %zu\n"
1330 	       "    failed unpacked %zu\n",
1331 	       b->unpack_fn_len,
1332 	       b->nr.live_u64s * sizeof(u64),
1333 	       btree_buf_bytes(b) - sizeof(struct btree_node),
1334 	       b->nr.live_u64s * 100 / btree_max_u64s(c),
1335 	       b->sib_u64s[0],
1336 	       b->sib_u64s[1],
1337 	       c->btree_foreground_merge_threshold,
1338 	       b->nr.packed_keys,
1339 	       b->nr.unpacked_keys,
1340 	       stats.floats,
1341 	       stats.failed);
1342 }
1343 
1344 static void prt_btree_cache_line(struct printbuf *out, const struct bch_fs *c,
1345 				 const char *label, unsigned nr)
1346 {
1347 	prt_printf(out, "%s\t", label);
1348 	prt_human_readable_u64(out, nr * c->opts.btree_node_size);
1349 	prt_printf(out, " (%u)\n", nr);
1350 }
1351 
1352 void bch2_btree_cache_to_text(struct printbuf *out, const struct btree_cache *bc)
1353 {
1354 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_cache);
1355 
1356 	if (!out->nr_tabstops)
1357 		printbuf_tabstop_push(out, 32);
1358 
1359 	prt_btree_cache_line(out, c, "total:",		bc->used);
1360 	prt_btree_cache_line(out, c, "nr dirty:",	atomic_read(&bc->dirty));
1361 	prt_printf(out, "cannibalize lock:\t%p\n",	bc->alloc_lock);
1362 	prt_newline(out);
1363 
1364 	for (unsigned i = 0; i < ARRAY_SIZE(bc->used_by_btree); i++)
1365 		prt_btree_cache_line(out, c, bch2_btree_id_str(i), bc->used_by_btree[i]);
1366 
1367 	prt_newline(out);
1368 	prt_printf(out, "freed:\t%u\n", bc->freed);
1369 	prt_printf(out, "not freed:\n");
1370 	prt_printf(out, "  dirty\t%u\n", bc->not_freed_dirty);
1371 	prt_printf(out, "  write in flight\t%u\n", bc->not_freed_write_in_flight);
1372 	prt_printf(out, "  read in flight\t%u\n", bc->not_freed_read_in_flight);
1373 	prt_printf(out, "  lock intent failed\t%u\n", bc->not_freed_lock_intent);
1374 	prt_printf(out, "  lock write failed\t%u\n", bc->not_freed_lock_write);
1375 	prt_printf(out, "  access bit\t%u\n", bc->not_freed_access_bit);
1376 	prt_printf(out, "  no evict failed\t%u\n", bc->not_freed_noevict);
1377 	prt_printf(out, "  write blocked\t%u\n", bc->not_freed_write_blocked);
1378 	prt_printf(out, "  will make reachable\t%u\n", bc->not_freed_will_make_reachable);
1379 }
1380