xref: /linux/fs/bcachefs/btree_cache.c (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "bcachefs.h"
4 #include "bkey_buf.h"
5 #include "btree_cache.h"
6 #include "btree_io.h"
7 #include "btree_iter.h"
8 #include "btree_locking.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12 #include "trace.h"
13 
14 #include <linux/prefetch.h>
15 #include <linux/sched/mm.h>
16 
17 const char * const bch2_btree_node_flags[] = {
18 #define x(f)	#f,
19 	BTREE_FLAGS()
20 #undef x
21 	NULL
22 };
23 
24 void bch2_recalc_btree_reserve(struct bch_fs *c)
25 {
26 	unsigned i, reserve = 16;
27 
28 	if (!c->btree_roots_known[0].b)
29 		reserve += 8;
30 
31 	for (i = 0; i < btree_id_nr_alive(c); i++) {
32 		struct btree_root *r = bch2_btree_id_root(c, i);
33 
34 		if (r->b)
35 			reserve += min_t(unsigned, 1, r->b->c.level) * 8;
36 	}
37 
38 	c->btree_cache.reserve = reserve;
39 }
40 
41 static inline unsigned btree_cache_can_free(struct btree_cache *bc)
42 {
43 	return max_t(int, 0, bc->used - bc->reserve);
44 }
45 
46 static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
47 {
48 	if (b->c.lock.readers)
49 		list_move(&b->list, &bc->freed_pcpu);
50 	else
51 		list_move(&b->list, &bc->freed_nonpcpu);
52 }
53 
54 static void btree_node_data_free(struct bch_fs *c, struct btree *b)
55 {
56 	struct btree_cache *bc = &c->btree_cache;
57 
58 	EBUG_ON(btree_node_write_in_flight(b));
59 
60 	clear_btree_node_just_written(b);
61 
62 	kvpfree(b->data, btree_bytes(c));
63 	b->data = NULL;
64 #ifdef __KERNEL__
65 	kvfree(b->aux_data);
66 #else
67 	munmap(b->aux_data, btree_aux_data_bytes(b));
68 #endif
69 	b->aux_data = NULL;
70 
71 	bc->used--;
72 
73 	btree_node_to_freedlist(bc, b);
74 }
75 
76 static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
77 				   const void *obj)
78 {
79 	const struct btree *b = obj;
80 	const u64 *v = arg->key;
81 
82 	return b->hash_val == *v ? 0 : 1;
83 }
84 
85 static const struct rhashtable_params bch_btree_cache_params = {
86 	.head_offset	= offsetof(struct btree, hash),
87 	.key_offset	= offsetof(struct btree, hash_val),
88 	.key_len	= sizeof(u64),
89 	.obj_cmpfn	= bch2_btree_cache_cmp_fn,
90 };
91 
92 static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
93 {
94 	BUG_ON(b->data || b->aux_data);
95 
96 	b->data = kvpmalloc(btree_bytes(c), gfp);
97 	if (!b->data)
98 		return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
99 #ifdef __KERNEL__
100 	b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
101 #else
102 	b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
103 			   PROT_READ|PROT_WRITE|PROT_EXEC,
104 			   MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
105 	if (b->aux_data == MAP_FAILED)
106 		b->aux_data = NULL;
107 #endif
108 	if (!b->aux_data) {
109 		kvpfree(b->data, btree_bytes(c));
110 		b->data = NULL;
111 		return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
112 	}
113 
114 	return 0;
115 }
116 
117 static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
118 {
119 	struct btree *b;
120 
121 	b = kzalloc(sizeof(struct btree), gfp);
122 	if (!b)
123 		return NULL;
124 
125 	bkey_btree_ptr_init(&b->key);
126 	INIT_LIST_HEAD(&b->list);
127 	INIT_LIST_HEAD(&b->write_blocked);
128 	b->byte_order = ilog2(btree_bytes(c));
129 	return b;
130 }
131 
132 struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
133 {
134 	struct btree_cache *bc = &c->btree_cache;
135 	struct btree *b;
136 
137 	b = __btree_node_mem_alloc(c, GFP_KERNEL);
138 	if (!b)
139 		return NULL;
140 
141 	if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
142 		kfree(b);
143 		return NULL;
144 	}
145 
146 	bch2_btree_lock_init(&b->c, 0);
147 
148 	bc->used++;
149 	list_add(&b->list, &bc->freeable);
150 	return b;
151 }
152 
153 /* Btree in memory cache - hash table */
154 
155 void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
156 {
157 	int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
158 
159 	BUG_ON(ret);
160 
161 	/* Cause future lookups for this node to fail: */
162 	b->hash_val = 0;
163 }
164 
165 int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
166 {
167 	BUG_ON(b->hash_val);
168 	b->hash_val = btree_ptr_hash_val(&b->key);
169 
170 	return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
171 					     bch_btree_cache_params);
172 }
173 
174 int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
175 				unsigned level, enum btree_id id)
176 {
177 	int ret;
178 
179 	b->c.level	= level;
180 	b->c.btree_id	= id;
181 
182 	mutex_lock(&bc->lock);
183 	ret = __bch2_btree_node_hash_insert(bc, b);
184 	if (!ret)
185 		list_add_tail(&b->list, &bc->live);
186 	mutex_unlock(&bc->lock);
187 
188 	return ret;
189 }
190 
191 __flatten
192 static inline struct btree *btree_cache_find(struct btree_cache *bc,
193 				     const struct bkey_i *k)
194 {
195 	u64 v = btree_ptr_hash_val(k);
196 
197 	return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
198 }
199 
200 /*
201  * this version is for btree nodes that have already been freed (we're not
202  * reaping a real btree node)
203  */
204 static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
205 {
206 	struct btree_cache *bc = &c->btree_cache;
207 	int ret = 0;
208 
209 	lockdep_assert_held(&bc->lock);
210 wait_on_io:
211 	if (b->flags & ((1U << BTREE_NODE_dirty)|
212 			(1U << BTREE_NODE_read_in_flight)|
213 			(1U << BTREE_NODE_write_in_flight))) {
214 		if (!flush)
215 			return -BCH_ERR_ENOMEM_btree_node_reclaim;
216 
217 		/* XXX: waiting on IO with btree cache lock held */
218 		bch2_btree_node_wait_on_read(b);
219 		bch2_btree_node_wait_on_write(b);
220 	}
221 
222 	if (!six_trylock_intent(&b->c.lock))
223 		return -BCH_ERR_ENOMEM_btree_node_reclaim;
224 
225 	if (!six_trylock_write(&b->c.lock))
226 		goto out_unlock_intent;
227 
228 	/* recheck under lock */
229 	if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
230 			(1U << BTREE_NODE_write_in_flight))) {
231 		if (!flush)
232 			goto out_unlock;
233 		six_unlock_write(&b->c.lock);
234 		six_unlock_intent(&b->c.lock);
235 		goto wait_on_io;
236 	}
237 
238 	if (btree_node_noevict(b) ||
239 	    btree_node_write_blocked(b) ||
240 	    btree_node_will_make_reachable(b))
241 		goto out_unlock;
242 
243 	if (btree_node_dirty(b)) {
244 		if (!flush)
245 			goto out_unlock;
246 		/*
247 		 * Using the underscore version because we don't want to compact
248 		 * bsets after the write, since this node is about to be evicted
249 		 * - unless btree verify mode is enabled, since it runs out of
250 		 * the post write cleanup:
251 		 */
252 		if (bch2_verify_btree_ondisk)
253 			bch2_btree_node_write(c, b, SIX_LOCK_intent,
254 					      BTREE_WRITE_cache_reclaim);
255 		else
256 			__bch2_btree_node_write(c, b,
257 						BTREE_WRITE_cache_reclaim);
258 
259 		six_unlock_write(&b->c.lock);
260 		six_unlock_intent(&b->c.lock);
261 		goto wait_on_io;
262 	}
263 out:
264 	if (b->hash_val && !ret)
265 		trace_and_count(c, btree_cache_reap, c, b);
266 	return ret;
267 out_unlock:
268 	six_unlock_write(&b->c.lock);
269 out_unlock_intent:
270 	six_unlock_intent(&b->c.lock);
271 	ret = -BCH_ERR_ENOMEM_btree_node_reclaim;
272 	goto out;
273 }
274 
275 static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
276 {
277 	return __btree_node_reclaim(c, b, false);
278 }
279 
280 static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
281 {
282 	return __btree_node_reclaim(c, b, true);
283 }
284 
285 static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
286 					   struct shrink_control *sc)
287 {
288 	struct bch_fs *c = shrink->private_data;
289 	struct btree_cache *bc = &c->btree_cache;
290 	struct btree *b, *t;
291 	unsigned long nr = sc->nr_to_scan;
292 	unsigned long can_free = 0;
293 	unsigned long freed = 0;
294 	unsigned long touched = 0;
295 	unsigned i, flags;
296 	unsigned long ret = SHRINK_STOP;
297 	bool trigger_writes = atomic_read(&bc->dirty) + nr >=
298 		bc->used * 3 / 4;
299 
300 	if (bch2_btree_shrinker_disabled)
301 		return SHRINK_STOP;
302 
303 	mutex_lock(&bc->lock);
304 	flags = memalloc_nofs_save();
305 
306 	/*
307 	 * It's _really_ critical that we don't free too many btree nodes - we
308 	 * have to always leave ourselves a reserve. The reserve is how we
309 	 * guarantee that allocating memory for a new btree node can always
310 	 * succeed, so that inserting keys into the btree can always succeed and
311 	 * IO can always make forward progress:
312 	 */
313 	can_free = btree_cache_can_free(bc);
314 	nr = min_t(unsigned long, nr, can_free);
315 
316 	i = 0;
317 	list_for_each_entry_safe(b, t, &bc->freeable, list) {
318 		/*
319 		 * Leave a few nodes on the freeable list, so that a btree split
320 		 * won't have to hit the system allocator:
321 		 */
322 		if (++i <= 3)
323 			continue;
324 
325 		touched++;
326 
327 		if (touched >= nr)
328 			goto out;
329 
330 		if (!btree_node_reclaim(c, b)) {
331 			btree_node_data_free(c, b);
332 			six_unlock_write(&b->c.lock);
333 			six_unlock_intent(&b->c.lock);
334 			freed++;
335 		}
336 	}
337 restart:
338 	list_for_each_entry_safe(b, t, &bc->live, list) {
339 		touched++;
340 
341 		if (btree_node_accessed(b)) {
342 			clear_btree_node_accessed(b);
343 		} else if (!btree_node_reclaim(c, b)) {
344 			freed++;
345 			btree_node_data_free(c, b);
346 
347 			bch2_btree_node_hash_remove(bc, b);
348 			six_unlock_write(&b->c.lock);
349 			six_unlock_intent(&b->c.lock);
350 
351 			if (freed == nr)
352 				goto out_rotate;
353 		} else if (trigger_writes &&
354 			   btree_node_dirty(b) &&
355 			   !btree_node_will_make_reachable(b) &&
356 			   !btree_node_write_blocked(b) &&
357 			   six_trylock_read(&b->c.lock)) {
358 			list_move(&bc->live, &b->list);
359 			mutex_unlock(&bc->lock);
360 			__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
361 			six_unlock_read(&b->c.lock);
362 			if (touched >= nr)
363 				goto out_nounlock;
364 			mutex_lock(&bc->lock);
365 			goto restart;
366 		}
367 
368 		if (touched >= nr)
369 			break;
370 	}
371 out_rotate:
372 	if (&t->list != &bc->live)
373 		list_move_tail(&bc->live, &t->list);
374 out:
375 	mutex_unlock(&bc->lock);
376 out_nounlock:
377 	ret = freed;
378 	memalloc_nofs_restore(flags);
379 	trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
380 	return ret;
381 }
382 
383 static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
384 					    struct shrink_control *sc)
385 {
386 	struct bch_fs *c = shrink->private_data;
387 	struct btree_cache *bc = &c->btree_cache;
388 
389 	if (bch2_btree_shrinker_disabled)
390 		return 0;
391 
392 	return btree_cache_can_free(bc);
393 }
394 
395 void bch2_fs_btree_cache_exit(struct bch_fs *c)
396 {
397 	struct btree_cache *bc = &c->btree_cache;
398 	struct btree *b;
399 	unsigned i, flags;
400 
401 	shrinker_free(bc->shrink);
402 
403 	/* vfree() can allocate memory: */
404 	flags = memalloc_nofs_save();
405 	mutex_lock(&bc->lock);
406 
407 	if (c->verify_data)
408 		list_move(&c->verify_data->list, &bc->live);
409 
410 	kvpfree(c->verify_ondisk, btree_bytes(c));
411 
412 	for (i = 0; i < btree_id_nr_alive(c); i++) {
413 		struct btree_root *r = bch2_btree_id_root(c, i);
414 
415 		if (r->b)
416 			list_add(&r->b->list, &bc->live);
417 	}
418 
419 	list_splice(&bc->freeable, &bc->live);
420 
421 	while (!list_empty(&bc->live)) {
422 		b = list_first_entry(&bc->live, struct btree, list);
423 
424 		BUG_ON(btree_node_read_in_flight(b) ||
425 		       btree_node_write_in_flight(b));
426 
427 		if (btree_node_dirty(b))
428 			bch2_btree_complete_write(c, b, btree_current_write(b));
429 		clear_btree_node_dirty_acct(c, b);
430 
431 		btree_node_data_free(c, b);
432 	}
433 
434 	BUG_ON(atomic_read(&c->btree_cache.dirty));
435 
436 	list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
437 
438 	while (!list_empty(&bc->freed_nonpcpu)) {
439 		b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
440 		list_del(&b->list);
441 		six_lock_exit(&b->c.lock);
442 		kfree(b);
443 	}
444 
445 	mutex_unlock(&bc->lock);
446 	memalloc_nofs_restore(flags);
447 
448 	if (bc->table_init_done)
449 		rhashtable_destroy(&bc->table);
450 }
451 
452 int bch2_fs_btree_cache_init(struct bch_fs *c)
453 {
454 	struct btree_cache *bc = &c->btree_cache;
455 	struct shrinker *shrink;
456 	unsigned i;
457 	int ret = 0;
458 
459 	ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
460 	if (ret)
461 		goto err;
462 
463 	bc->table_init_done = true;
464 
465 	bch2_recalc_btree_reserve(c);
466 
467 	for (i = 0; i < bc->reserve; i++)
468 		if (!__bch2_btree_node_mem_alloc(c))
469 			goto err;
470 
471 	list_splice_init(&bc->live, &bc->freeable);
472 
473 	mutex_init(&c->verify_lock);
474 
475 	shrink = shrinker_alloc(0, "%s-btree_cache", c->name);
476 	if (!shrink)
477 		goto err;
478 	bc->shrink = shrink;
479 	shrink->count_objects	= bch2_btree_cache_count;
480 	shrink->scan_objects	= bch2_btree_cache_scan;
481 	shrink->seeks		= 4;
482 	shrink->private_data	= c;
483 	shrinker_register(shrink);
484 
485 	return 0;
486 err:
487 	return -BCH_ERR_ENOMEM_fs_btree_cache_init;
488 }
489 
490 void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
491 {
492 	mutex_init(&bc->lock);
493 	INIT_LIST_HEAD(&bc->live);
494 	INIT_LIST_HEAD(&bc->freeable);
495 	INIT_LIST_HEAD(&bc->freed_pcpu);
496 	INIT_LIST_HEAD(&bc->freed_nonpcpu);
497 }
498 
499 /*
500  * We can only have one thread cannibalizing other cached btree nodes at a time,
501  * or we'll deadlock. We use an open coded mutex to ensure that, which a
502  * cannibalize_bucket() will take. This means every time we unlock the root of
503  * the btree, we need to release this lock if we have it held.
504  */
505 void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
506 {
507 	struct btree_cache *bc = &c->btree_cache;
508 
509 	if (bc->alloc_lock == current) {
510 		trace_and_count(c, btree_cache_cannibalize_unlock, c);
511 		bc->alloc_lock = NULL;
512 		closure_wake_up(&bc->alloc_wait);
513 	}
514 }
515 
516 int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
517 {
518 	struct btree_cache *bc = &c->btree_cache;
519 	struct task_struct *old;
520 
521 	old = cmpxchg(&bc->alloc_lock, NULL, current);
522 	if (old == NULL || old == current)
523 		goto success;
524 
525 	if (!cl) {
526 		trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
527 		return -BCH_ERR_ENOMEM_btree_cache_cannibalize_lock;
528 	}
529 
530 	closure_wait(&bc->alloc_wait, cl);
531 
532 	/* Try again, after adding ourselves to waitlist */
533 	old = cmpxchg(&bc->alloc_lock, NULL, current);
534 	if (old == NULL || old == current) {
535 		/* We raced */
536 		closure_wake_up(&bc->alloc_wait);
537 		goto success;
538 	}
539 
540 	trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
541 	return -BCH_ERR_btree_cache_cannibalize_lock_blocked;
542 
543 success:
544 	trace_and_count(c, btree_cache_cannibalize_lock, c);
545 	return 0;
546 }
547 
548 static struct btree *btree_node_cannibalize(struct bch_fs *c)
549 {
550 	struct btree_cache *bc = &c->btree_cache;
551 	struct btree *b;
552 
553 	list_for_each_entry_reverse(b, &bc->live, list)
554 		if (!btree_node_reclaim(c, b))
555 			return b;
556 
557 	while (1) {
558 		list_for_each_entry_reverse(b, &bc->live, list)
559 			if (!btree_node_write_and_reclaim(c, b))
560 				return b;
561 
562 		/*
563 		 * Rare case: all nodes were intent-locked.
564 		 * Just busy-wait.
565 		 */
566 		WARN_ONCE(1, "btree cache cannibalize failed\n");
567 		cond_resched();
568 	}
569 }
570 
571 struct btree *bch2_btree_node_mem_alloc(struct btree_trans *trans, bool pcpu_read_locks)
572 {
573 	struct bch_fs *c = trans->c;
574 	struct btree_cache *bc = &c->btree_cache;
575 	struct list_head *freed = pcpu_read_locks
576 		? &bc->freed_pcpu
577 		: &bc->freed_nonpcpu;
578 	struct btree *b, *b2;
579 	u64 start_time = local_clock();
580 	unsigned flags;
581 
582 	flags = memalloc_nofs_save();
583 	mutex_lock(&bc->lock);
584 
585 	/*
586 	 * We never free struct btree itself, just the memory that holds the on
587 	 * disk node. Check the freed list before allocating a new one:
588 	 */
589 	list_for_each_entry(b, freed, list)
590 		if (!btree_node_reclaim(c, b)) {
591 			list_del_init(&b->list);
592 			goto got_node;
593 		}
594 
595 	b = __btree_node_mem_alloc(c, GFP_NOWAIT|__GFP_NOWARN);
596 	if (!b) {
597 		mutex_unlock(&bc->lock);
598 		bch2_trans_unlock(trans);
599 		b = __btree_node_mem_alloc(c, GFP_KERNEL);
600 		if (!b)
601 			goto err;
602 		mutex_lock(&bc->lock);
603 	}
604 
605 	bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0);
606 
607 	BUG_ON(!six_trylock_intent(&b->c.lock));
608 	BUG_ON(!six_trylock_write(&b->c.lock));
609 got_node:
610 
611 	/*
612 	 * btree_free() doesn't free memory; it sticks the node on the end of
613 	 * the list. Check if there's any freed nodes there:
614 	 */
615 	list_for_each_entry(b2, &bc->freeable, list)
616 		if (!btree_node_reclaim(c, b2)) {
617 			swap(b->data, b2->data);
618 			swap(b->aux_data, b2->aux_data);
619 			btree_node_to_freedlist(bc, b2);
620 			six_unlock_write(&b2->c.lock);
621 			six_unlock_intent(&b2->c.lock);
622 			goto got_mem;
623 		}
624 
625 	mutex_unlock(&bc->lock);
626 
627 	if (btree_node_data_alloc(c, b, GFP_NOWAIT|__GFP_NOWARN)) {
628 		bch2_trans_unlock(trans);
629 		if (btree_node_data_alloc(c, b, GFP_KERNEL|__GFP_NOWARN))
630 			goto err;
631 	}
632 
633 	mutex_lock(&bc->lock);
634 	bc->used++;
635 got_mem:
636 	mutex_unlock(&bc->lock);
637 
638 	BUG_ON(btree_node_hashed(b));
639 	BUG_ON(btree_node_dirty(b));
640 	BUG_ON(btree_node_write_in_flight(b));
641 out:
642 	b->flags		= 0;
643 	b->written		= 0;
644 	b->nsets		= 0;
645 	b->sib_u64s[0]		= 0;
646 	b->sib_u64s[1]		= 0;
647 	b->whiteout_u64s	= 0;
648 	bch2_btree_keys_init(b);
649 	set_btree_node_accessed(b);
650 
651 	bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
652 			       start_time);
653 
654 	memalloc_nofs_restore(flags);
655 	return b;
656 err:
657 	mutex_lock(&bc->lock);
658 
659 	/* Try to cannibalize another cached btree node: */
660 	if (bc->alloc_lock == current) {
661 		b2 = btree_node_cannibalize(c);
662 		clear_btree_node_just_written(b2);
663 		bch2_btree_node_hash_remove(bc, b2);
664 
665 		if (b) {
666 			swap(b->data, b2->data);
667 			swap(b->aux_data, b2->aux_data);
668 			btree_node_to_freedlist(bc, b2);
669 			six_unlock_write(&b2->c.lock);
670 			six_unlock_intent(&b2->c.lock);
671 		} else {
672 			b = b2;
673 			list_del_init(&b->list);
674 		}
675 
676 		mutex_unlock(&bc->lock);
677 
678 		trace_and_count(c, btree_cache_cannibalize, c);
679 		goto out;
680 	}
681 
682 	mutex_unlock(&bc->lock);
683 	memalloc_nofs_restore(flags);
684 	return ERR_PTR(-BCH_ERR_ENOMEM_btree_node_mem_alloc);
685 }
686 
687 /* Slowpath, don't want it inlined into btree_iter_traverse() */
688 static noinline struct btree *bch2_btree_node_fill(struct btree_trans *trans,
689 				struct btree_path *path,
690 				const struct bkey_i *k,
691 				enum btree_id btree_id,
692 				unsigned level,
693 				enum six_lock_type lock_type,
694 				bool sync)
695 {
696 	struct bch_fs *c = trans->c;
697 	struct btree_cache *bc = &c->btree_cache;
698 	struct btree *b;
699 	u32 seq;
700 
701 	BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
702 	/*
703 	 * Parent node must be locked, else we could read in a btree node that's
704 	 * been freed:
705 	 */
706 	if (path && !bch2_btree_node_relock(trans, path, level + 1)) {
707 		trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
708 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
709 	}
710 
711 	b = bch2_btree_node_mem_alloc(trans, level != 0);
712 
713 	if (bch2_err_matches(PTR_ERR_OR_ZERO(b), ENOMEM)) {
714 		trans->memory_allocation_failure = true;
715 		trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
716 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
717 	}
718 
719 	if (IS_ERR(b))
720 		return b;
721 
722 	/*
723 	 * Btree nodes read in from disk should not have the accessed bit set
724 	 * initially, so that linear scans don't thrash the cache:
725 	 */
726 	clear_btree_node_accessed(b);
727 
728 	bkey_copy(&b->key, k);
729 	if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
730 		/* raced with another fill: */
731 
732 		/* mark as unhashed... */
733 		b->hash_val = 0;
734 
735 		mutex_lock(&bc->lock);
736 		list_add(&b->list, &bc->freeable);
737 		mutex_unlock(&bc->lock);
738 
739 		six_unlock_write(&b->c.lock);
740 		six_unlock_intent(&b->c.lock);
741 		return NULL;
742 	}
743 
744 	set_btree_node_read_in_flight(b);
745 
746 	six_unlock_write(&b->c.lock);
747 	seq = six_lock_seq(&b->c.lock);
748 	six_unlock_intent(&b->c.lock);
749 
750 	/* Unlock before doing IO: */
751 	if (path && sync)
752 		bch2_trans_unlock_noassert(trans);
753 
754 	bch2_btree_node_read(c, b, sync);
755 
756 	if (!sync)
757 		return NULL;
758 
759 	if (path) {
760 		int ret = bch2_trans_relock(trans) ?:
761 			bch2_btree_path_relock_intent(trans, path);
762 		if (ret) {
763 			BUG_ON(!trans->restarted);
764 			return ERR_PTR(ret);
765 		}
766 	}
767 
768 	if (!six_relock_type(&b->c.lock, lock_type, seq)) {
769 		if (path)
770 			trace_and_count(c, trans_restart_relock_after_fill, trans, _THIS_IP_, path);
771 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill));
772 	}
773 
774 	return b;
775 }
776 
777 static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
778 {
779 	struct printbuf buf = PRINTBUF;
780 
781 	if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_allocations)
782 		return;
783 
784 	prt_printf(&buf,
785 	       "btree node header doesn't match ptr\n"
786 	       "btree %s level %u\n"
787 	       "ptr: ",
788 	       bch2_btree_id_str(b->c.btree_id), b->c.level);
789 	bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
790 
791 	prt_printf(&buf, "\nheader: btree %s level %llu\n"
792 	       "min ",
793 	       bch2_btree_id_str(BTREE_NODE_ID(b->data)),
794 	       BTREE_NODE_LEVEL(b->data));
795 	bch2_bpos_to_text(&buf, b->data->min_key);
796 
797 	prt_printf(&buf, "\nmax ");
798 	bch2_bpos_to_text(&buf, b->data->max_key);
799 
800 	bch2_fs_inconsistent(c, "%s", buf.buf);
801 	printbuf_exit(&buf);
802 }
803 
804 static inline void btree_check_header(struct bch_fs *c, struct btree *b)
805 {
806 	if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
807 	    b->c.level != BTREE_NODE_LEVEL(b->data) ||
808 	    !bpos_eq(b->data->max_key, b->key.k.p) ||
809 	    (b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
810 	     !bpos_eq(b->data->min_key,
811 		      bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
812 		btree_bad_header(c, b);
813 }
814 
815 static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
816 					   const struct bkey_i *k, unsigned level,
817 					   enum six_lock_type lock_type,
818 					   unsigned long trace_ip)
819 {
820 	struct bch_fs *c = trans->c;
821 	struct btree_cache *bc = &c->btree_cache;
822 	struct btree *b;
823 	struct bset_tree *t;
824 	bool need_relock = false;
825 	int ret;
826 
827 	EBUG_ON(level >= BTREE_MAX_DEPTH);
828 retry:
829 	b = btree_cache_find(bc, k);
830 	if (unlikely(!b)) {
831 		/*
832 		 * We must have the parent locked to call bch2_btree_node_fill(),
833 		 * else we could read in a btree node from disk that's been
834 		 * freed:
835 		 */
836 		b = bch2_btree_node_fill(trans, path, k, path->btree_id,
837 					 level, lock_type, true);
838 		need_relock = true;
839 
840 		/* We raced and found the btree node in the cache */
841 		if (!b)
842 			goto retry;
843 
844 		if (IS_ERR(b))
845 			return b;
846 	} else {
847 		if (btree_node_read_locked(path, level + 1))
848 			btree_node_unlock(trans, path, level + 1);
849 
850 		ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
851 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
852 			return ERR_PTR(ret);
853 
854 		BUG_ON(ret);
855 
856 		if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
857 			     b->c.level != level ||
858 			     race_fault())) {
859 			six_unlock_type(&b->c.lock, lock_type);
860 			if (bch2_btree_node_relock(trans, path, level + 1))
861 				goto retry;
862 
863 			trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
864 			return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
865 		}
866 
867 		/* avoid atomic set bit if it's not needed: */
868 		if (!btree_node_accessed(b))
869 			set_btree_node_accessed(b);
870 	}
871 
872 	if (unlikely(btree_node_read_in_flight(b))) {
873 		u32 seq = six_lock_seq(&b->c.lock);
874 
875 		six_unlock_type(&b->c.lock, lock_type);
876 		bch2_trans_unlock(trans);
877 		need_relock = true;
878 
879 		bch2_btree_node_wait_on_read(b);
880 
881 		/*
882 		 * should_be_locked is not set on this path yet, so we need to
883 		 * relock it specifically:
884 		 */
885 		if (!six_relock_type(&b->c.lock, lock_type, seq))
886 			goto retry;
887 	}
888 
889 	if (unlikely(need_relock)) {
890 		ret = bch2_trans_relock(trans) ?:
891 			bch2_btree_path_relock_intent(trans, path);
892 		if (ret) {
893 			six_unlock_type(&b->c.lock, lock_type);
894 			return ERR_PTR(ret);
895 		}
896 	}
897 
898 	prefetch(b->aux_data);
899 
900 	for_each_bset(b, t) {
901 		void *p = (u64 *) b->aux_data + t->aux_data_offset;
902 
903 		prefetch(p + L1_CACHE_BYTES * 0);
904 		prefetch(p + L1_CACHE_BYTES * 1);
905 		prefetch(p + L1_CACHE_BYTES * 2);
906 	}
907 
908 	if (unlikely(btree_node_read_error(b))) {
909 		six_unlock_type(&b->c.lock, lock_type);
910 		return ERR_PTR(-EIO);
911 	}
912 
913 	EBUG_ON(b->c.btree_id != path->btree_id);
914 	EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
915 	btree_check_header(c, b);
916 
917 	return b;
918 }
919 
920 /**
921  * bch2_btree_node_get - find a btree node in the cache and lock it, reading it
922  * in from disk if necessary.
923  *
924  * @trans:	btree transaction object
925  * @path:	btree_path being traversed
926  * @k:		pointer to btree node (generally KEY_TYPE_btree_ptr_v2)
927  * @level:	level of btree node being looked up (0 == leaf node)
928  * @lock_type:	SIX_LOCK_read or SIX_LOCK_intent
929  * @trace_ip:	ip of caller of btree iterator code (i.e. caller of bch2_btree_iter_peek())
930  *
931  * The btree node will have either a read or a write lock held, depending on
932  * the @write parameter.
933  *
934  * Returns: btree node or ERR_PTR()
935  */
936 struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
937 				  const struct bkey_i *k, unsigned level,
938 				  enum six_lock_type lock_type,
939 				  unsigned long trace_ip)
940 {
941 	struct bch_fs *c = trans->c;
942 	struct btree *b;
943 	struct bset_tree *t;
944 	int ret;
945 
946 	EBUG_ON(level >= BTREE_MAX_DEPTH);
947 
948 	b = btree_node_mem_ptr(k);
949 
950 	/*
951 	 * Check b->hash_val _before_ calling btree_node_lock() - this might not
952 	 * be the node we want anymore, and trying to lock the wrong node could
953 	 * cause an unneccessary transaction restart:
954 	 */
955 	if (unlikely(!c->opts.btree_node_mem_ptr_optimization ||
956 		     !b ||
957 		     b->hash_val != btree_ptr_hash_val(k)))
958 		return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
959 
960 	if (btree_node_read_locked(path, level + 1))
961 		btree_node_unlock(trans, path, level + 1);
962 
963 	ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
964 	if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
965 		return ERR_PTR(ret);
966 
967 	BUG_ON(ret);
968 
969 	if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
970 		     b->c.level != level ||
971 		     race_fault())) {
972 		six_unlock_type(&b->c.lock, lock_type);
973 		if (bch2_btree_node_relock(trans, path, level + 1))
974 			return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
975 
976 		trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
977 		return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
978 	}
979 
980 	if (unlikely(btree_node_read_in_flight(b))) {
981 		six_unlock_type(&b->c.lock, lock_type);
982 		return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
983 	}
984 
985 	prefetch(b->aux_data);
986 
987 	for_each_bset(b, t) {
988 		void *p = (u64 *) b->aux_data + t->aux_data_offset;
989 
990 		prefetch(p + L1_CACHE_BYTES * 0);
991 		prefetch(p + L1_CACHE_BYTES * 1);
992 		prefetch(p + L1_CACHE_BYTES * 2);
993 	}
994 
995 	/* avoid atomic set bit if it's not needed: */
996 	if (!btree_node_accessed(b))
997 		set_btree_node_accessed(b);
998 
999 	if (unlikely(btree_node_read_error(b))) {
1000 		six_unlock_type(&b->c.lock, lock_type);
1001 		return ERR_PTR(-EIO);
1002 	}
1003 
1004 	EBUG_ON(b->c.btree_id != path->btree_id);
1005 	EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1006 	btree_check_header(c, b);
1007 
1008 	return b;
1009 }
1010 
1011 struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
1012 					 const struct bkey_i *k,
1013 					 enum btree_id btree_id,
1014 					 unsigned level,
1015 					 bool nofill)
1016 {
1017 	struct bch_fs *c = trans->c;
1018 	struct btree_cache *bc = &c->btree_cache;
1019 	struct btree *b;
1020 	struct bset_tree *t;
1021 	int ret;
1022 
1023 	EBUG_ON(level >= BTREE_MAX_DEPTH);
1024 
1025 	if (c->opts.btree_node_mem_ptr_optimization) {
1026 		b = btree_node_mem_ptr(k);
1027 		if (b)
1028 			goto lock_node;
1029 	}
1030 retry:
1031 	b = btree_cache_find(bc, k);
1032 	if (unlikely(!b)) {
1033 		if (nofill)
1034 			goto out;
1035 
1036 		b = bch2_btree_node_fill(trans, NULL, k, btree_id,
1037 					 level, SIX_LOCK_read, true);
1038 
1039 		/* We raced and found the btree node in the cache */
1040 		if (!b)
1041 			goto retry;
1042 
1043 		if (IS_ERR(b) &&
1044 		    !bch2_btree_cache_cannibalize_lock(c, NULL))
1045 			goto retry;
1046 
1047 		if (IS_ERR(b))
1048 			goto out;
1049 	} else {
1050 lock_node:
1051 		ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_);
1052 		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1053 			return ERR_PTR(ret);
1054 
1055 		BUG_ON(ret);
1056 
1057 		if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1058 			     b->c.btree_id != btree_id ||
1059 			     b->c.level != level)) {
1060 			six_unlock_read(&b->c.lock);
1061 			goto retry;
1062 		}
1063 	}
1064 
1065 	/* XXX: waiting on IO with btree locks held: */
1066 	__bch2_btree_node_wait_on_read(b);
1067 
1068 	prefetch(b->aux_data);
1069 
1070 	for_each_bset(b, t) {
1071 		void *p = (u64 *) b->aux_data + t->aux_data_offset;
1072 
1073 		prefetch(p + L1_CACHE_BYTES * 0);
1074 		prefetch(p + L1_CACHE_BYTES * 1);
1075 		prefetch(p + L1_CACHE_BYTES * 2);
1076 	}
1077 
1078 	/* avoid atomic set bit if it's not needed: */
1079 	if (!btree_node_accessed(b))
1080 		set_btree_node_accessed(b);
1081 
1082 	if (unlikely(btree_node_read_error(b))) {
1083 		six_unlock_read(&b->c.lock);
1084 		b = ERR_PTR(-EIO);
1085 		goto out;
1086 	}
1087 
1088 	EBUG_ON(b->c.btree_id != btree_id);
1089 	EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1090 	btree_check_header(c, b);
1091 out:
1092 	bch2_btree_cache_cannibalize_unlock(c);
1093 	return b;
1094 }
1095 
1096 int bch2_btree_node_prefetch(struct btree_trans *trans,
1097 			     struct btree_path *path,
1098 			     const struct bkey_i *k,
1099 			     enum btree_id btree_id, unsigned level)
1100 {
1101 	struct bch_fs *c = trans->c;
1102 	struct btree_cache *bc = &c->btree_cache;
1103 	struct btree *b;
1104 
1105 	BUG_ON(trans && !btree_node_locked(path, level + 1));
1106 	BUG_ON(level >= BTREE_MAX_DEPTH);
1107 
1108 	b = btree_cache_find(bc, k);
1109 	if (b)
1110 		return 0;
1111 
1112 	b = bch2_btree_node_fill(trans, path, k, btree_id,
1113 				 level, SIX_LOCK_read, false);
1114 	return PTR_ERR_OR_ZERO(b);
1115 }
1116 
1117 void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
1118 {
1119 	struct bch_fs *c = trans->c;
1120 	struct btree_cache *bc = &c->btree_cache;
1121 	struct btree *b;
1122 
1123 	b = btree_cache_find(bc, k);
1124 	if (!b)
1125 		return;
1126 wait_on_io:
1127 	/* not allowed to wait on io with btree locks held: */
1128 
1129 	/* XXX we're called from btree_gc which will be holding other btree
1130 	 * nodes locked
1131 	 */
1132 	__bch2_btree_node_wait_on_read(b);
1133 	__bch2_btree_node_wait_on_write(b);
1134 
1135 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
1136 	btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
1137 
1138 	if (btree_node_dirty(b)) {
1139 		__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
1140 		six_unlock_write(&b->c.lock);
1141 		six_unlock_intent(&b->c.lock);
1142 		goto wait_on_io;
1143 	}
1144 
1145 	BUG_ON(btree_node_dirty(b));
1146 
1147 	mutex_lock(&bc->lock);
1148 	btree_node_data_free(c, b);
1149 	bch2_btree_node_hash_remove(bc, b);
1150 	mutex_unlock(&bc->lock);
1151 
1152 	six_unlock_write(&b->c.lock);
1153 	six_unlock_intent(&b->c.lock);
1154 }
1155 
1156 const char *bch2_btree_id_str(enum btree_id btree)
1157 {
1158 	return btree < BTREE_ID_NR ? __bch2_btree_ids[btree] : "(unknown)";
1159 }
1160 
1161 void bch2_btree_pos_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1162 {
1163 	prt_printf(out, "%s level %u/%u\n  ",
1164 	       bch2_btree_id_str(b->c.btree_id),
1165 	       b->c.level,
1166 	       bch2_btree_id_root(c, b->c.btree_id)->level);
1167 	bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1168 }
1169 
1170 void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1171 {
1172 	struct bset_stats stats;
1173 
1174 	memset(&stats, 0, sizeof(stats));
1175 
1176 	bch2_btree_keys_stats(b, &stats);
1177 
1178 	prt_printf(out, "l %u ", b->c.level);
1179 	bch2_bpos_to_text(out, b->data->min_key);
1180 	prt_printf(out, " - ");
1181 	bch2_bpos_to_text(out, b->data->max_key);
1182 	prt_printf(out, ":\n"
1183 	       "    ptrs: ");
1184 	bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1185 	prt_newline(out);
1186 
1187 	prt_printf(out,
1188 	       "    format: ");
1189 	bch2_bkey_format_to_text(out, &b->format);
1190 
1191 	prt_printf(out,
1192 	       "    unpack fn len: %u\n"
1193 	       "    bytes used %zu/%zu (%zu%% full)\n"
1194 	       "    sib u64s: %u, %u (merge threshold %u)\n"
1195 	       "    nr packed keys %u\n"
1196 	       "    nr unpacked keys %u\n"
1197 	       "    floats %zu\n"
1198 	       "    failed unpacked %zu\n",
1199 	       b->unpack_fn_len,
1200 	       b->nr.live_u64s * sizeof(u64),
1201 	       btree_bytes(c) - sizeof(struct btree_node),
1202 	       b->nr.live_u64s * 100 / btree_max_u64s(c),
1203 	       b->sib_u64s[0],
1204 	       b->sib_u64s[1],
1205 	       c->btree_foreground_merge_threshold,
1206 	       b->nr.packed_keys,
1207 	       b->nr.unpacked_keys,
1208 	       stats.floats,
1209 	       stats.failed);
1210 }
1211 
1212 void bch2_btree_cache_to_text(struct printbuf *out, const struct bch_fs *c)
1213 {
1214 	prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
1215 	prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
1216 	prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
1217 }
1218