xref: /linux/fs/bcachefs/bset.h (revision dbcedec3a31119d7594baacc743300d127c99c56)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BSET_H
3 #define _BCACHEFS_BSET_H
4 
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 
8 #include "bcachefs.h"
9 #include "bkey.h"
10 #include "bkey_methods.h"
11 #include "btree_types.h"
12 #include "util.h" /* for time_stats */
13 #include "vstructs.h"
14 
15 /*
16  * BKEYS:
17  *
18  * A bkey contains a key, a size field, a variable number of pointers, and some
19  * ancillary flag bits.
20  *
21  * We use two different functions for validating bkeys, bkey_invalid and
22  * bkey_deleted().
23  *
24  * The one exception to the rule that ptr_invalid() filters out invalid keys is
25  * that it also filters out keys of size 0 - these are keys that have been
26  * completely overwritten. It'd be safe to delete these in memory while leaving
27  * them on disk, just unnecessary work - so we filter them out when resorting
28  * instead.
29  *
30  * We can't filter out stale keys when we're resorting, because garbage
31  * collection needs to find them to ensure bucket gens don't wrap around -
32  * unless we're rewriting the btree node those stale keys still exist on disk.
33  *
34  * We also implement functions here for removing some number of sectors from the
35  * front or the back of a bkey - this is mainly used for fixing overlapping
36  * extents, by removing the overlapping sectors from the older key.
37  *
38  * BSETS:
39  *
40  * A bset is an array of bkeys laid out contiguously in memory in sorted order,
41  * along with a header. A btree node is made up of a number of these, written at
42  * different times.
43  *
44  * There could be many of them on disk, but we never allow there to be more than
45  * 4 in memory - we lazily resort as needed.
46  *
47  * We implement code here for creating and maintaining auxiliary search trees
48  * (described below) for searching an individial bset, and on top of that we
49  * implement a btree iterator.
50  *
51  * BTREE ITERATOR:
52  *
53  * Most of the code in bcache doesn't care about an individual bset - it needs
54  * to search entire btree nodes and iterate over them in sorted order.
55  *
56  * The btree iterator code serves both functions; it iterates through the keys
57  * in a btree node in sorted order, starting from either keys after a specific
58  * point (if you pass it a search key) or the start of the btree node.
59  *
60  * AUXILIARY SEARCH TREES:
61  *
62  * Since keys are variable length, we can't use a binary search on a bset - we
63  * wouldn't be able to find the start of the next key. But binary searches are
64  * slow anyways, due to terrible cache behaviour; bcache originally used binary
65  * searches and that code topped out at under 50k lookups/second.
66  *
67  * So we need to construct some sort of lookup table. Since we only insert keys
68  * into the last (unwritten) set, most of the keys within a given btree node are
69  * usually in sets that are mostly constant. We use two different types of
70  * lookup tables to take advantage of this.
71  *
72  * Both lookup tables share in common that they don't index every key in the
73  * set; they index one key every BSET_CACHELINE bytes, and then a linear search
74  * is used for the rest.
75  *
76  * For sets that have been written to disk and are no longer being inserted
77  * into, we construct a binary search tree in an array - traversing a binary
78  * search tree in an array gives excellent locality of reference and is very
79  * fast, since both children of any node are adjacent to each other in memory
80  * (and their grandchildren, and great grandchildren...) - this means
81  * prefetching can be used to great effect.
82  *
83  * It's quite useful performance wise to keep these nodes small - not just
84  * because they're more likely to be in L2, but also because we can prefetch
85  * more nodes on a single cacheline and thus prefetch more iterations in advance
86  * when traversing this tree.
87  *
88  * Nodes in the auxiliary search tree must contain both a key to compare against
89  * (we don't want to fetch the key from the set, that would defeat the purpose),
90  * and a pointer to the key. We use a few tricks to compress both of these.
91  *
92  * To compress the pointer, we take advantage of the fact that one node in the
93  * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
94  * a function (to_inorder()) that takes the index of a node in a binary tree and
95  * returns what its index would be in an inorder traversal, so we only have to
96  * store the low bits of the offset.
97  *
98  * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
99  * compress that,  we take advantage of the fact that when we're traversing the
100  * search tree at every iteration we know that both our search key and the key
101  * we're looking for lie within some range - bounded by our previous
102  * comparisons. (We special case the start of a search so that this is true even
103  * at the root of the tree).
104  *
105  * So we know the key we're looking for is between a and b, and a and b don't
106  * differ higher than bit 50, we don't need to check anything higher than bit
107  * 50.
108  *
109  * We don't usually need the rest of the bits, either; we only need enough bits
110  * to partition the key range we're currently checking.  Consider key n - the
111  * key our auxiliary search tree node corresponds to, and key p, the key
112  * immediately preceding n.  The lowest bit we need to store in the auxiliary
113  * search tree is the highest bit that differs between n and p.
114  *
115  * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
116  * comparison. But we'd really like our nodes in the auxiliary search tree to be
117  * of fixed size.
118  *
119  * The solution is to make them fixed size, and when we're constructing a node
120  * check if p and n differed in the bits we needed them to. If they don't we
121  * flag that node, and when doing lookups we fallback to comparing against the
122  * real key. As long as this doesn't happen to often (and it seems to reliably
123  * happen a bit less than 1% of the time), we win - even on failures, that key
124  * is then more likely to be in cache than if we were doing binary searches all
125  * the way, since we're touching so much less memory.
126  *
127  * The keys in the auxiliary search tree are stored in (software) floating
128  * point, with an exponent and a mantissa. The exponent needs to be big enough
129  * to address all the bits in the original key, but the number of bits in the
130  * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
131  *
132  * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
133  * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
134  * We need one node per 128 bytes in the btree node, which means the auxiliary
135  * search trees take up 3% as much memory as the btree itself.
136  *
137  * Constructing these auxiliary search trees is moderately expensive, and we
138  * don't want to be constantly rebuilding the search tree for the last set
139  * whenever we insert another key into it. For the unwritten set, we use a much
140  * simpler lookup table - it's just a flat array, so index i in the lookup table
141  * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
142  * within each byte range works the same as with the auxiliary search trees.
143  *
144  * These are much easier to keep up to date when we insert a key - we do it
145  * somewhat lazily; when we shift a key up we usually just increment the pointer
146  * to it, only when it would overflow do we go to the trouble of finding the
147  * first key in that range of bytes again.
148  */
149 
150 enum bset_aux_tree_type {
151 	BSET_NO_AUX_TREE,
152 	BSET_RO_AUX_TREE,
153 	BSET_RW_AUX_TREE,
154 };
155 
156 #define BSET_TREE_NR_TYPES	3
157 
158 #define BSET_NO_AUX_TREE_VAL	(U16_MAX)
159 #define BSET_RW_AUX_TREE_VAL	(U16_MAX - 1)
160 
161 static inline enum bset_aux_tree_type bset_aux_tree_type(const struct bset_tree *t)
162 {
163 	switch (t->extra) {
164 	case BSET_NO_AUX_TREE_VAL:
165 		EBUG_ON(t->size);
166 		return BSET_NO_AUX_TREE;
167 	case BSET_RW_AUX_TREE_VAL:
168 		EBUG_ON(!t->size);
169 		return BSET_RW_AUX_TREE;
170 	default:
171 		EBUG_ON(!t->size);
172 		return BSET_RO_AUX_TREE;
173 	}
174 }
175 
176 /*
177  * BSET_CACHELINE was originally intended to match the hardware cacheline size -
178  * it used to be 64, but I realized the lookup code would touch slightly less
179  * memory if it was 128.
180  *
181  * It definites the number of bytes (in struct bset) per struct bkey_float in
182  * the auxiliar search tree - when we're done searching the bset_float tree we
183  * have this many bytes left that we do a linear search over.
184  *
185  * Since (after level 5) every level of the bset_tree is on a new cacheline,
186  * we're touching one fewer cacheline in the bset tree in exchange for one more
187  * cacheline in the linear search - but the linear search might stop before it
188  * gets to the second cacheline.
189  */
190 
191 #define BSET_CACHELINE		256
192 
193 static inline size_t btree_keys_cachelines(const struct btree *b)
194 {
195 	return (1U << b->byte_order) / BSET_CACHELINE;
196 }
197 
198 static inline size_t btree_aux_data_bytes(const struct btree *b)
199 {
200 	return btree_keys_cachelines(b) * 8;
201 }
202 
203 static inline size_t btree_aux_data_u64s(const struct btree *b)
204 {
205 	return btree_aux_data_bytes(b) / sizeof(u64);
206 }
207 
208 #define for_each_bset(_b, _t)						\
209 	for (_t = (_b)->set; _t < (_b)->set + (_b)->nsets; _t++)
210 
211 #define bset_tree_for_each_key(_b, _t, _k)				\
212 	for (_k = btree_bkey_first(_b, _t);				\
213 	     _k != btree_bkey_last(_b, _t);				\
214 	     _k = bkey_p_next(_k))
215 
216 static inline bool bset_has_ro_aux_tree(const struct bset_tree *t)
217 {
218 	return bset_aux_tree_type(t) == BSET_RO_AUX_TREE;
219 }
220 
221 static inline bool bset_has_rw_aux_tree(struct bset_tree *t)
222 {
223 	return bset_aux_tree_type(t) == BSET_RW_AUX_TREE;
224 }
225 
226 static inline void bch2_bset_set_no_aux_tree(struct btree *b,
227 					    struct bset_tree *t)
228 {
229 	BUG_ON(t < b->set);
230 
231 	for (; t < b->set + ARRAY_SIZE(b->set); t++) {
232 		t->size = 0;
233 		t->extra = BSET_NO_AUX_TREE_VAL;
234 		t->aux_data_offset = U16_MAX;
235 	}
236 }
237 
238 static inline void btree_node_set_format(struct btree *b,
239 					 struct bkey_format f)
240 {
241 	int len;
242 
243 	b->format	= f;
244 	b->nr_key_bits	= bkey_format_key_bits(&f);
245 
246 	len = bch2_compile_bkey_format(&b->format, b->aux_data);
247 	BUG_ON(len < 0 || len > U8_MAX);
248 
249 	b->unpack_fn_len = len;
250 
251 	bch2_bset_set_no_aux_tree(b, b->set);
252 }
253 
254 static inline struct bset *bset_next_set(struct btree *b,
255 					 unsigned block_bytes)
256 {
257 	struct bset *i = btree_bset_last(b);
258 
259 	EBUG_ON(!is_power_of_2(block_bytes));
260 
261 	return ((void *) i) + round_up(vstruct_bytes(i), block_bytes);
262 }
263 
264 void bch2_btree_keys_init(struct btree *);
265 
266 void bch2_bset_init_first(struct btree *, struct bset *);
267 void bch2_bset_init_next(struct btree *, struct btree_node_entry *);
268 void bch2_bset_build_aux_tree(struct btree *, struct bset_tree *, bool);
269 
270 void bch2_bset_insert(struct btree *, struct btree_node_iter *,
271 		     struct bkey_packed *, struct bkey_i *, unsigned);
272 void bch2_bset_delete(struct btree *, struct bkey_packed *, unsigned);
273 
274 /* Bkey utility code */
275 
276 /* packed or unpacked */
277 static inline int bkey_cmp_p_or_unp(const struct btree *b,
278 				    const struct bkey_packed *l,
279 				    const struct bkey_packed *r_packed,
280 				    const struct bpos *r)
281 {
282 	EBUG_ON(r_packed && !bkey_packed(r_packed));
283 
284 	if (unlikely(!bkey_packed(l)))
285 		return bpos_cmp(packed_to_bkey_c(l)->p, *r);
286 
287 	if (likely(r_packed))
288 		return __bch2_bkey_cmp_packed_format_checked(l, r_packed, b);
289 
290 	return __bch2_bkey_cmp_left_packed_format_checked(b, l, r);
291 }
292 
293 static inline struct bset_tree *
294 bch2_bkey_to_bset_inlined(struct btree *b, struct bkey_packed *k)
295 {
296 	unsigned offset = __btree_node_key_to_offset(b, k);
297 	struct bset_tree *t;
298 
299 	for_each_bset(b, t)
300 		if (offset <= t->end_offset) {
301 			EBUG_ON(offset < btree_bkey_first_offset(t));
302 			return t;
303 		}
304 
305 	BUG();
306 }
307 
308 struct bset_tree *bch2_bkey_to_bset(struct btree *, struct bkey_packed *);
309 
310 struct bkey_packed *bch2_bkey_prev_filter(struct btree *, struct bset_tree *,
311 					  struct bkey_packed *, unsigned);
312 
313 static inline struct bkey_packed *
314 bch2_bkey_prev_all(struct btree *b, struct bset_tree *t, struct bkey_packed *k)
315 {
316 	return bch2_bkey_prev_filter(b, t, k, 0);
317 }
318 
319 static inline struct bkey_packed *
320 bch2_bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k)
321 {
322 	return bch2_bkey_prev_filter(b, t, k, 1);
323 }
324 
325 /* Btree key iteration */
326 
327 void bch2_btree_node_iter_push(struct btree_node_iter *, struct btree *,
328 			      const struct bkey_packed *,
329 			      const struct bkey_packed *);
330 void bch2_btree_node_iter_init(struct btree_node_iter *, struct btree *,
331 			       struct bpos *);
332 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *,
333 					  struct btree *);
334 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *,
335 						 struct btree *,
336 						 struct bset_tree *);
337 
338 void bch2_btree_node_iter_sort(struct btree_node_iter *, struct btree *);
339 void bch2_btree_node_iter_set_drop(struct btree_node_iter *,
340 				   struct btree_node_iter_set *);
341 void bch2_btree_node_iter_advance(struct btree_node_iter *, struct btree *);
342 
343 #define btree_node_iter_for_each(_iter, _set)				\
344 	for (_set = (_iter)->data;					\
345 	     _set < (_iter)->data + ARRAY_SIZE((_iter)->data) &&	\
346 	     (_set)->k != (_set)->end;					\
347 	     _set++)
348 
349 static inline bool __btree_node_iter_set_end(struct btree_node_iter *iter,
350 					     unsigned i)
351 {
352 	return iter->data[i].k == iter->data[i].end;
353 }
354 
355 static inline bool bch2_btree_node_iter_end(struct btree_node_iter *iter)
356 {
357 	return __btree_node_iter_set_end(iter, 0);
358 }
359 
360 /*
361  * When keys compare equal, deleted keys compare first:
362  *
363  * XXX: only need to compare pointers for keys that are both within a
364  * btree_node_iterator - we need to break ties for prev() to work correctly
365  */
366 static inline int bkey_iter_cmp(const struct btree *b,
367 				const struct bkey_packed *l,
368 				const struct bkey_packed *r)
369 {
370 	return bch2_bkey_cmp_packed(b, l, r)
371 		?: (int) bkey_deleted(r) - (int) bkey_deleted(l)
372 		?: cmp_int(l, r);
373 }
374 
375 static inline int btree_node_iter_cmp(const struct btree *b,
376 				      struct btree_node_iter_set l,
377 				      struct btree_node_iter_set r)
378 {
379 	return bkey_iter_cmp(b,
380 			__btree_node_offset_to_key(b, l.k),
381 			__btree_node_offset_to_key(b, r.k));
382 }
383 
384 /* These assume r (the search key) is not a deleted key: */
385 static inline int bkey_iter_pos_cmp(const struct btree *b,
386 			const struct bkey_packed *l,
387 			const struct bpos *r)
388 {
389 	return bkey_cmp_left_packed(b, l, r)
390 		?: -((int) bkey_deleted(l));
391 }
392 
393 static inline int bkey_iter_cmp_p_or_unp(const struct btree *b,
394 				    const struct bkey_packed *l,
395 				    const struct bkey_packed *r_packed,
396 				    const struct bpos *r)
397 {
398 	return bkey_cmp_p_or_unp(b, l, r_packed, r)
399 		?: -((int) bkey_deleted(l));
400 }
401 
402 static inline struct bkey_packed *
403 __bch2_btree_node_iter_peek_all(struct btree_node_iter *iter,
404 				struct btree *b)
405 {
406 	return __btree_node_offset_to_key(b, iter->data->k);
407 }
408 
409 static inline struct bkey_packed *
410 bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, struct btree *b)
411 {
412 	return !bch2_btree_node_iter_end(iter)
413 		? __btree_node_offset_to_key(b, iter->data->k)
414 		: NULL;
415 }
416 
417 static inline struct bkey_packed *
418 bch2_btree_node_iter_peek(struct btree_node_iter *iter, struct btree *b)
419 {
420 	struct bkey_packed *k;
421 
422 	while ((k = bch2_btree_node_iter_peek_all(iter, b)) &&
423 	       bkey_deleted(k))
424 		bch2_btree_node_iter_advance(iter, b);
425 
426 	return k;
427 }
428 
429 static inline struct bkey_packed *
430 bch2_btree_node_iter_next_all(struct btree_node_iter *iter, struct btree *b)
431 {
432 	struct bkey_packed *ret = bch2_btree_node_iter_peek_all(iter, b);
433 
434 	if (ret)
435 		bch2_btree_node_iter_advance(iter, b);
436 
437 	return ret;
438 }
439 
440 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *,
441 						  struct btree *);
442 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *,
443 					      struct btree *);
444 
445 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *,
446 						struct btree *,
447 						struct bkey *);
448 
449 #define for_each_btree_node_key(b, k, iter)				\
450 	for (bch2_btree_node_iter_init_from_start((iter), (b));		\
451 	     (k = bch2_btree_node_iter_peek((iter), (b)));		\
452 	     bch2_btree_node_iter_advance(iter, b))
453 
454 #define for_each_btree_node_key_unpack(b, k, iter, unpacked)		\
455 	for (bch2_btree_node_iter_init_from_start((iter), (b));		\
456 	     (k = bch2_btree_node_iter_peek_unpack((iter), (b), (unpacked))).k;\
457 	     bch2_btree_node_iter_advance(iter, b))
458 
459 /* Accounting: */
460 
461 static inline void btree_keys_account_key(struct btree_nr_keys *n,
462 					  unsigned bset,
463 					  struct bkey_packed *k,
464 					  int sign)
465 {
466 	n->live_u64s		+= k->u64s * sign;
467 	n->bset_u64s[bset]	+= k->u64s * sign;
468 
469 	if (bkey_packed(k))
470 		n->packed_keys	+= sign;
471 	else
472 		n->unpacked_keys += sign;
473 }
474 
475 static inline void btree_keys_account_val_delta(struct btree *b,
476 						struct bkey_packed *k,
477 						int delta)
478 {
479 	struct bset_tree *t = bch2_bkey_to_bset(b, k);
480 
481 	b->nr.live_u64s			+= delta;
482 	b->nr.bset_u64s[t - b->set]	+= delta;
483 }
484 
485 #define btree_keys_account_key_add(_nr, _bset_idx, _k)		\
486 	btree_keys_account_key(_nr, _bset_idx, _k, 1)
487 #define btree_keys_account_key_drop(_nr, _bset_idx, _k)	\
488 	btree_keys_account_key(_nr, _bset_idx, _k, -1)
489 
490 #define btree_account_key_add(_b, _k)				\
491 	btree_keys_account_key(&(_b)->nr,			\
492 		bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, 1)
493 #define btree_account_key_drop(_b, _k)				\
494 	btree_keys_account_key(&(_b)->nr,			\
495 		bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, -1)
496 
497 struct bset_stats {
498 	struct {
499 		size_t nr, bytes;
500 	} sets[BSET_TREE_NR_TYPES];
501 
502 	size_t floats;
503 	size_t failed;
504 };
505 
506 void bch2_btree_keys_stats(const struct btree *, struct bset_stats *);
507 void bch2_bfloat_to_text(struct printbuf *, struct btree *,
508 			 struct bkey_packed *);
509 
510 /* Debug stuff */
511 
512 void bch2_dump_bset(struct bch_fs *, struct btree *, struct bset *, unsigned);
513 void bch2_dump_btree_node(struct bch_fs *, struct btree *);
514 void bch2_dump_btree_node_iter(struct btree *, struct btree_node_iter *);
515 
516 #ifdef CONFIG_BCACHEFS_DEBUG
517 
518 void __bch2_verify_btree_nr_keys(struct btree *);
519 void bch2_btree_node_iter_verify(struct btree_node_iter *, struct btree *);
520 void bch2_verify_insert_pos(struct btree *, struct bkey_packed *,
521 			    struct bkey_packed *, unsigned);
522 
523 #else
524 
525 static inline void __bch2_verify_btree_nr_keys(struct btree *b) {}
526 static inline void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
527 					      struct btree *b) {}
528 static inline void bch2_verify_insert_pos(struct btree *b,
529 					  struct bkey_packed *where,
530 					  struct bkey_packed *insert,
531 					  unsigned clobber_u64s) {}
532 #endif
533 
534 static inline void bch2_verify_btree_nr_keys(struct btree *b)
535 {
536 	if (bch2_debug_check_btree_accounting)
537 		__bch2_verify_btree_nr_keys(b);
538 }
539 
540 #endif /* _BCACHEFS_BSET_H */
541