1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_BSET_H 3 #define _BCACHEFS_BSET_H 4 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 8 #include "bcachefs.h" 9 #include "bkey.h" 10 #include "bkey_methods.h" 11 #include "btree_types.h" 12 #include "util.h" /* for time_stats */ 13 #include "vstructs.h" 14 15 /* 16 * BKEYS: 17 * 18 * A bkey contains a key, a size field, a variable number of pointers, and some 19 * ancillary flag bits. 20 * 21 * We use two different functions for validating bkeys, bkey_invalid and 22 * bkey_deleted(). 23 * 24 * The one exception to the rule that ptr_invalid() filters out invalid keys is 25 * that it also filters out keys of size 0 - these are keys that have been 26 * completely overwritten. It'd be safe to delete these in memory while leaving 27 * them on disk, just unnecessary work - so we filter them out when resorting 28 * instead. 29 * 30 * We can't filter out stale keys when we're resorting, because garbage 31 * collection needs to find them to ensure bucket gens don't wrap around - 32 * unless we're rewriting the btree node those stale keys still exist on disk. 33 * 34 * We also implement functions here for removing some number of sectors from the 35 * front or the back of a bkey - this is mainly used for fixing overlapping 36 * extents, by removing the overlapping sectors from the older key. 37 * 38 * BSETS: 39 * 40 * A bset is an array of bkeys laid out contiguously in memory in sorted order, 41 * along with a header. A btree node is made up of a number of these, written at 42 * different times. 43 * 44 * There could be many of them on disk, but we never allow there to be more than 45 * 4 in memory - we lazily resort as needed. 46 * 47 * We implement code here for creating and maintaining auxiliary search trees 48 * (described below) for searching an individial bset, and on top of that we 49 * implement a btree iterator. 50 * 51 * BTREE ITERATOR: 52 * 53 * Most of the code in bcache doesn't care about an individual bset - it needs 54 * to search entire btree nodes and iterate over them in sorted order. 55 * 56 * The btree iterator code serves both functions; it iterates through the keys 57 * in a btree node in sorted order, starting from either keys after a specific 58 * point (if you pass it a search key) or the start of the btree node. 59 * 60 * AUXILIARY SEARCH TREES: 61 * 62 * Since keys are variable length, we can't use a binary search on a bset - we 63 * wouldn't be able to find the start of the next key. But binary searches are 64 * slow anyways, due to terrible cache behaviour; bcache originally used binary 65 * searches and that code topped out at under 50k lookups/second. 66 * 67 * So we need to construct some sort of lookup table. Since we only insert keys 68 * into the last (unwritten) set, most of the keys within a given btree node are 69 * usually in sets that are mostly constant. We use two different types of 70 * lookup tables to take advantage of this. 71 * 72 * Both lookup tables share in common that they don't index every key in the 73 * set; they index one key every BSET_CACHELINE bytes, and then a linear search 74 * is used for the rest. 75 * 76 * For sets that have been written to disk and are no longer being inserted 77 * into, we construct a binary search tree in an array - traversing a binary 78 * search tree in an array gives excellent locality of reference and is very 79 * fast, since both children of any node are adjacent to each other in memory 80 * (and their grandchildren, and great grandchildren...) - this means 81 * prefetching can be used to great effect. 82 * 83 * It's quite useful performance wise to keep these nodes small - not just 84 * because they're more likely to be in L2, but also because we can prefetch 85 * more nodes on a single cacheline and thus prefetch more iterations in advance 86 * when traversing this tree. 87 * 88 * Nodes in the auxiliary search tree must contain both a key to compare against 89 * (we don't want to fetch the key from the set, that would defeat the purpose), 90 * and a pointer to the key. We use a few tricks to compress both of these. 91 * 92 * To compress the pointer, we take advantage of the fact that one node in the 93 * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have 94 * a function (to_inorder()) that takes the index of a node in a binary tree and 95 * returns what its index would be in an inorder traversal, so we only have to 96 * store the low bits of the offset. 97 * 98 * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To 99 * compress that, we take advantage of the fact that when we're traversing the 100 * search tree at every iteration we know that both our search key and the key 101 * we're looking for lie within some range - bounded by our previous 102 * comparisons. (We special case the start of a search so that this is true even 103 * at the root of the tree). 104 * 105 * So we know the key we're looking for is between a and b, and a and b don't 106 * differ higher than bit 50, we don't need to check anything higher than bit 107 * 50. 108 * 109 * We don't usually need the rest of the bits, either; we only need enough bits 110 * to partition the key range we're currently checking. Consider key n - the 111 * key our auxiliary search tree node corresponds to, and key p, the key 112 * immediately preceding n. The lowest bit we need to store in the auxiliary 113 * search tree is the highest bit that differs between n and p. 114 * 115 * Note that this could be bit 0 - we might sometimes need all 80 bits to do the 116 * comparison. But we'd really like our nodes in the auxiliary search tree to be 117 * of fixed size. 118 * 119 * The solution is to make them fixed size, and when we're constructing a node 120 * check if p and n differed in the bits we needed them to. If they don't we 121 * flag that node, and when doing lookups we fallback to comparing against the 122 * real key. As long as this doesn't happen to often (and it seems to reliably 123 * happen a bit less than 1% of the time), we win - even on failures, that key 124 * is then more likely to be in cache than if we were doing binary searches all 125 * the way, since we're touching so much less memory. 126 * 127 * The keys in the auxiliary search tree are stored in (software) floating 128 * point, with an exponent and a mantissa. The exponent needs to be big enough 129 * to address all the bits in the original key, but the number of bits in the 130 * mantissa is somewhat arbitrary; more bits just gets us fewer failures. 131 * 132 * We need 7 bits for the exponent and 3 bits for the key's offset (since keys 133 * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes. 134 * We need one node per 128 bytes in the btree node, which means the auxiliary 135 * search trees take up 3% as much memory as the btree itself. 136 * 137 * Constructing these auxiliary search trees is moderately expensive, and we 138 * don't want to be constantly rebuilding the search tree for the last set 139 * whenever we insert another key into it. For the unwritten set, we use a much 140 * simpler lookup table - it's just a flat array, so index i in the lookup table 141 * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing 142 * within each byte range works the same as with the auxiliary search trees. 143 * 144 * These are much easier to keep up to date when we insert a key - we do it 145 * somewhat lazily; when we shift a key up we usually just increment the pointer 146 * to it, only when it would overflow do we go to the trouble of finding the 147 * first key in that range of bytes again. 148 */ 149 150 enum bset_aux_tree_type { 151 BSET_NO_AUX_TREE, 152 BSET_RO_AUX_TREE, 153 BSET_RW_AUX_TREE, 154 }; 155 156 #define BSET_TREE_NR_TYPES 3 157 158 #define BSET_NO_AUX_TREE_VAL (U16_MAX) 159 #define BSET_RW_AUX_TREE_VAL (U16_MAX - 1) 160 161 static inline enum bset_aux_tree_type bset_aux_tree_type(const struct bset_tree *t) 162 { 163 switch (t->extra) { 164 case BSET_NO_AUX_TREE_VAL: 165 EBUG_ON(t->size); 166 return BSET_NO_AUX_TREE; 167 case BSET_RW_AUX_TREE_VAL: 168 EBUG_ON(!t->size); 169 return BSET_RW_AUX_TREE; 170 default: 171 EBUG_ON(!t->size); 172 return BSET_RO_AUX_TREE; 173 } 174 } 175 176 /* 177 * BSET_CACHELINE was originally intended to match the hardware cacheline size - 178 * it used to be 64, but I realized the lookup code would touch slightly less 179 * memory if it was 128. 180 * 181 * It definites the number of bytes (in struct bset) per struct bkey_float in 182 * the auxiliar search tree - when we're done searching the bset_float tree we 183 * have this many bytes left that we do a linear search over. 184 * 185 * Since (after level 5) every level of the bset_tree is on a new cacheline, 186 * we're touching one fewer cacheline in the bset tree in exchange for one more 187 * cacheline in the linear search - but the linear search might stop before it 188 * gets to the second cacheline. 189 */ 190 191 #define BSET_CACHELINE 256 192 193 static inline size_t btree_keys_cachelines(const struct btree *b) 194 { 195 return (1U << b->byte_order) / BSET_CACHELINE; 196 } 197 198 static inline size_t btree_aux_data_bytes(const struct btree *b) 199 { 200 return btree_keys_cachelines(b) * 8; 201 } 202 203 static inline size_t btree_aux_data_u64s(const struct btree *b) 204 { 205 return btree_aux_data_bytes(b) / sizeof(u64); 206 } 207 208 #define for_each_bset(_b, _t) \ 209 for (_t = (_b)->set; _t < (_b)->set + (_b)->nsets; _t++) 210 211 #define bset_tree_for_each_key(_b, _t, _k) \ 212 for (_k = btree_bkey_first(_b, _t); \ 213 _k != btree_bkey_last(_b, _t); \ 214 _k = bkey_p_next(_k)) 215 216 static inline bool bset_has_ro_aux_tree(const struct bset_tree *t) 217 { 218 return bset_aux_tree_type(t) == BSET_RO_AUX_TREE; 219 } 220 221 static inline bool bset_has_rw_aux_tree(struct bset_tree *t) 222 { 223 return bset_aux_tree_type(t) == BSET_RW_AUX_TREE; 224 } 225 226 static inline void bch2_bset_set_no_aux_tree(struct btree *b, 227 struct bset_tree *t) 228 { 229 BUG_ON(t < b->set); 230 231 for (; t < b->set + ARRAY_SIZE(b->set); t++) { 232 t->size = 0; 233 t->extra = BSET_NO_AUX_TREE_VAL; 234 t->aux_data_offset = U16_MAX; 235 } 236 } 237 238 static inline void btree_node_set_format(struct btree *b, 239 struct bkey_format f) 240 { 241 int len; 242 243 b->format = f; 244 b->nr_key_bits = bkey_format_key_bits(&f); 245 246 len = bch2_compile_bkey_format(&b->format, b->aux_data); 247 BUG_ON(len < 0 || len > U8_MAX); 248 249 b->unpack_fn_len = len; 250 251 bch2_bset_set_no_aux_tree(b, b->set); 252 } 253 254 static inline struct bset *bset_next_set(struct btree *b, 255 unsigned block_bytes) 256 { 257 struct bset *i = btree_bset_last(b); 258 259 EBUG_ON(!is_power_of_2(block_bytes)); 260 261 return ((void *) i) + round_up(vstruct_bytes(i), block_bytes); 262 } 263 264 void bch2_btree_keys_init(struct btree *); 265 266 void bch2_bset_init_first(struct btree *, struct bset *); 267 void bch2_bset_init_next(struct btree *, struct btree_node_entry *); 268 void bch2_bset_build_aux_tree(struct btree *, struct bset_tree *, bool); 269 270 void bch2_bset_insert(struct btree *, struct btree_node_iter *, 271 struct bkey_packed *, struct bkey_i *, unsigned); 272 void bch2_bset_delete(struct btree *, struct bkey_packed *, unsigned); 273 274 /* Bkey utility code */ 275 276 /* packed or unpacked */ 277 static inline int bkey_cmp_p_or_unp(const struct btree *b, 278 const struct bkey_packed *l, 279 const struct bkey_packed *r_packed, 280 const struct bpos *r) 281 { 282 EBUG_ON(r_packed && !bkey_packed(r_packed)); 283 284 if (unlikely(!bkey_packed(l))) 285 return bpos_cmp(packed_to_bkey_c(l)->p, *r); 286 287 if (likely(r_packed)) 288 return __bch2_bkey_cmp_packed_format_checked(l, r_packed, b); 289 290 return __bch2_bkey_cmp_left_packed_format_checked(b, l, r); 291 } 292 293 static inline struct bset_tree * 294 bch2_bkey_to_bset_inlined(struct btree *b, struct bkey_packed *k) 295 { 296 unsigned offset = __btree_node_key_to_offset(b, k); 297 struct bset_tree *t; 298 299 for_each_bset(b, t) 300 if (offset <= t->end_offset) { 301 EBUG_ON(offset < btree_bkey_first_offset(t)); 302 return t; 303 } 304 305 BUG(); 306 } 307 308 struct bset_tree *bch2_bkey_to_bset(struct btree *, struct bkey_packed *); 309 310 struct bkey_packed *bch2_bkey_prev_filter(struct btree *, struct bset_tree *, 311 struct bkey_packed *, unsigned); 312 313 static inline struct bkey_packed * 314 bch2_bkey_prev_all(struct btree *b, struct bset_tree *t, struct bkey_packed *k) 315 { 316 return bch2_bkey_prev_filter(b, t, k, 0); 317 } 318 319 static inline struct bkey_packed * 320 bch2_bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k) 321 { 322 return bch2_bkey_prev_filter(b, t, k, 1); 323 } 324 325 /* Btree key iteration */ 326 327 void bch2_btree_node_iter_push(struct btree_node_iter *, struct btree *, 328 const struct bkey_packed *, 329 const struct bkey_packed *); 330 void bch2_btree_node_iter_init(struct btree_node_iter *, struct btree *, 331 struct bpos *); 332 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *, 333 struct btree *); 334 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *, 335 struct btree *, 336 struct bset_tree *); 337 338 void bch2_btree_node_iter_sort(struct btree_node_iter *, struct btree *); 339 void bch2_btree_node_iter_set_drop(struct btree_node_iter *, 340 struct btree_node_iter_set *); 341 void bch2_btree_node_iter_advance(struct btree_node_iter *, struct btree *); 342 343 #define btree_node_iter_for_each(_iter, _set) \ 344 for (_set = (_iter)->data; \ 345 _set < (_iter)->data + ARRAY_SIZE((_iter)->data) && \ 346 (_set)->k != (_set)->end; \ 347 _set++) 348 349 static inline bool __btree_node_iter_set_end(struct btree_node_iter *iter, 350 unsigned i) 351 { 352 return iter->data[i].k == iter->data[i].end; 353 } 354 355 static inline bool bch2_btree_node_iter_end(struct btree_node_iter *iter) 356 { 357 return __btree_node_iter_set_end(iter, 0); 358 } 359 360 /* 361 * When keys compare equal, deleted keys compare first: 362 * 363 * XXX: only need to compare pointers for keys that are both within a 364 * btree_node_iterator - we need to break ties for prev() to work correctly 365 */ 366 static inline int bkey_iter_cmp(const struct btree *b, 367 const struct bkey_packed *l, 368 const struct bkey_packed *r) 369 { 370 return bch2_bkey_cmp_packed(b, l, r) 371 ?: (int) bkey_deleted(r) - (int) bkey_deleted(l) 372 ?: cmp_int(l, r); 373 } 374 375 static inline int btree_node_iter_cmp(const struct btree *b, 376 struct btree_node_iter_set l, 377 struct btree_node_iter_set r) 378 { 379 return bkey_iter_cmp(b, 380 __btree_node_offset_to_key(b, l.k), 381 __btree_node_offset_to_key(b, r.k)); 382 } 383 384 /* These assume r (the search key) is not a deleted key: */ 385 static inline int bkey_iter_pos_cmp(const struct btree *b, 386 const struct bkey_packed *l, 387 const struct bpos *r) 388 { 389 return bkey_cmp_left_packed(b, l, r) 390 ?: -((int) bkey_deleted(l)); 391 } 392 393 static inline int bkey_iter_cmp_p_or_unp(const struct btree *b, 394 const struct bkey_packed *l, 395 const struct bkey_packed *r_packed, 396 const struct bpos *r) 397 { 398 return bkey_cmp_p_or_unp(b, l, r_packed, r) 399 ?: -((int) bkey_deleted(l)); 400 } 401 402 static inline struct bkey_packed * 403 __bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, 404 struct btree *b) 405 { 406 return __btree_node_offset_to_key(b, iter->data->k); 407 } 408 409 static inline struct bkey_packed * 410 bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, struct btree *b) 411 { 412 return !bch2_btree_node_iter_end(iter) 413 ? __btree_node_offset_to_key(b, iter->data->k) 414 : NULL; 415 } 416 417 static inline struct bkey_packed * 418 bch2_btree_node_iter_peek(struct btree_node_iter *iter, struct btree *b) 419 { 420 struct bkey_packed *k; 421 422 while ((k = bch2_btree_node_iter_peek_all(iter, b)) && 423 bkey_deleted(k)) 424 bch2_btree_node_iter_advance(iter, b); 425 426 return k; 427 } 428 429 static inline struct bkey_packed * 430 bch2_btree_node_iter_next_all(struct btree_node_iter *iter, struct btree *b) 431 { 432 struct bkey_packed *ret = bch2_btree_node_iter_peek_all(iter, b); 433 434 if (ret) 435 bch2_btree_node_iter_advance(iter, b); 436 437 return ret; 438 } 439 440 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *, 441 struct btree *); 442 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *, 443 struct btree *); 444 445 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *, 446 struct btree *, 447 struct bkey *); 448 449 #define for_each_btree_node_key(b, k, iter) \ 450 for (bch2_btree_node_iter_init_from_start((iter), (b)); \ 451 (k = bch2_btree_node_iter_peek((iter), (b))); \ 452 bch2_btree_node_iter_advance(iter, b)) 453 454 #define for_each_btree_node_key_unpack(b, k, iter, unpacked) \ 455 for (bch2_btree_node_iter_init_from_start((iter), (b)); \ 456 (k = bch2_btree_node_iter_peek_unpack((iter), (b), (unpacked))).k;\ 457 bch2_btree_node_iter_advance(iter, b)) 458 459 /* Accounting: */ 460 461 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *); 462 463 static inline void btree_keys_account_key(struct btree_nr_keys *n, 464 unsigned bset, 465 struct bkey_packed *k, 466 int sign) 467 { 468 n->live_u64s += k->u64s * sign; 469 n->bset_u64s[bset] += k->u64s * sign; 470 471 if (bkey_packed(k)) 472 n->packed_keys += sign; 473 else 474 n->unpacked_keys += sign; 475 } 476 477 static inline void btree_keys_account_val_delta(struct btree *b, 478 struct bkey_packed *k, 479 int delta) 480 { 481 struct bset_tree *t = bch2_bkey_to_bset(b, k); 482 483 b->nr.live_u64s += delta; 484 b->nr.bset_u64s[t - b->set] += delta; 485 } 486 487 #define btree_keys_account_key_add(_nr, _bset_idx, _k) \ 488 btree_keys_account_key(_nr, _bset_idx, _k, 1) 489 #define btree_keys_account_key_drop(_nr, _bset_idx, _k) \ 490 btree_keys_account_key(_nr, _bset_idx, _k, -1) 491 492 #define btree_account_key_add(_b, _k) \ 493 btree_keys_account_key(&(_b)->nr, \ 494 bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, 1) 495 #define btree_account_key_drop(_b, _k) \ 496 btree_keys_account_key(&(_b)->nr, \ 497 bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, -1) 498 499 struct bset_stats { 500 struct { 501 size_t nr, bytes; 502 } sets[BSET_TREE_NR_TYPES]; 503 504 size_t floats; 505 size_t failed; 506 }; 507 508 void bch2_btree_keys_stats(const struct btree *, struct bset_stats *); 509 void bch2_bfloat_to_text(struct printbuf *, struct btree *, 510 struct bkey_packed *); 511 512 /* Debug stuff */ 513 514 void bch2_dump_bset(struct bch_fs *, struct btree *, struct bset *, unsigned); 515 void bch2_dump_btree_node(struct bch_fs *, struct btree *); 516 void bch2_dump_btree_node_iter(struct btree *, struct btree_node_iter *); 517 518 #ifdef CONFIG_BCACHEFS_DEBUG 519 520 void __bch2_verify_btree_nr_keys(struct btree *); 521 void bch2_btree_node_iter_verify(struct btree_node_iter *, struct btree *); 522 void bch2_verify_insert_pos(struct btree *, struct bkey_packed *, 523 struct bkey_packed *, unsigned); 524 525 #else 526 527 static inline void __bch2_verify_btree_nr_keys(struct btree *b) {} 528 static inline void bch2_btree_node_iter_verify(struct btree_node_iter *iter, 529 struct btree *b) {} 530 static inline void bch2_verify_insert_pos(struct btree *b, 531 struct bkey_packed *where, 532 struct bkey_packed *insert, 533 unsigned clobber_u64s) {} 534 #endif 535 536 static inline void bch2_verify_btree_nr_keys(struct btree *b) 537 { 538 if (bch2_debug_check_btree_accounting) 539 __bch2_verify_btree_nr_keys(b); 540 } 541 542 #endif /* _BCACHEFS_BSET_H */ 543