1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Code for working with individual keys, and sorted sets of keys with in a 4 * btree node 5 * 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcachefs.h" 10 #include "btree_cache.h" 11 #include "bset.h" 12 #include "eytzinger.h" 13 #include "trace.h" 14 #include "util.h" 15 16 #include <linux/unaligned.h> 17 #include <linux/console.h> 18 #include <linux/random.h> 19 #include <linux/prefetch.h> 20 21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *, 22 struct btree *); 23 24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter) 25 { 26 unsigned n = ARRAY_SIZE(iter->data); 27 28 while (n && __btree_node_iter_set_end(iter, n - 1)) 29 --n; 30 31 return n; 32 } 33 34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k) 35 { 36 return bch2_bkey_to_bset_inlined(b, k); 37 } 38 39 /* 40 * There are never duplicate live keys in the btree - but including keys that 41 * have been flagged as deleted (and will be cleaned up later) we _will_ see 42 * duplicates. 43 * 44 * Thus the sort order is: usual key comparison first, but for keys that compare 45 * equal the deleted key(s) come first, and the (at most one) live version comes 46 * last. 47 * 48 * The main reason for this is insertion: to handle overwrites, we first iterate 49 * over keys that compare equal to our insert key, and then insert immediately 50 * prior to the first key greater than the key we're inserting - our insert 51 * position will be after all keys that compare equal to our insert key, which 52 * by the time we actually do the insert will all be deleted. 53 */ 54 55 void bch2_dump_bset(struct bch_fs *c, struct btree *b, 56 struct bset *i, unsigned set) 57 { 58 struct bkey_packed *_k, *_n; 59 struct bkey uk, n; 60 struct bkey_s_c k; 61 struct printbuf buf = PRINTBUF; 62 63 if (!i->u64s) 64 return; 65 66 for (_k = i->start; 67 _k < vstruct_last(i); 68 _k = _n) { 69 _n = bkey_p_next(_k); 70 71 if (!_k->u64s) { 72 printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set, 73 _k->_data - i->_data); 74 break; 75 } 76 77 k = bkey_disassemble(b, _k, &uk); 78 79 printbuf_reset(&buf); 80 if (c) 81 bch2_bkey_val_to_text(&buf, c, k); 82 else 83 bch2_bkey_to_text(&buf, k.k); 84 printk(KERN_ERR "block %u key %5zu: %s\n", set, 85 _k->_data - i->_data, buf.buf); 86 87 if (_n == vstruct_last(i)) 88 continue; 89 90 n = bkey_unpack_key(b, _n); 91 92 if (bpos_lt(n.p, k.k->p)) { 93 printk(KERN_ERR "Key skipped backwards\n"); 94 continue; 95 } 96 97 if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p)) 98 printk(KERN_ERR "Duplicate keys\n"); 99 } 100 101 printbuf_exit(&buf); 102 } 103 104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b) 105 { 106 console_lock(); 107 for_each_bset(b, t) 108 bch2_dump_bset(c, b, bset(b, t), t - b->set); 109 console_unlock(); 110 } 111 112 void bch2_dump_btree_node_iter(struct btree *b, 113 struct btree_node_iter *iter) 114 { 115 struct btree_node_iter_set *set; 116 struct printbuf buf = PRINTBUF; 117 118 printk(KERN_ERR "btree node iter with %u/%u sets:\n", 119 __btree_node_iter_used(iter), b->nsets); 120 121 btree_node_iter_for_each(iter, set) { 122 struct bkey_packed *k = __btree_node_offset_to_key(b, set->k); 123 struct bset_tree *t = bch2_bkey_to_bset(b, k); 124 struct bkey uk = bkey_unpack_key(b, k); 125 126 printbuf_reset(&buf); 127 bch2_bkey_to_text(&buf, &uk); 128 printk(KERN_ERR "set %zu key %u: %s\n", 129 t - b->set, set->k, buf.buf); 130 } 131 132 printbuf_exit(&buf); 133 } 134 135 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b) 136 { 137 struct bkey_packed *k; 138 struct btree_nr_keys nr = {}; 139 140 for_each_bset(b, t) 141 bset_tree_for_each_key(b, t, k) 142 if (!bkey_deleted(k)) 143 btree_keys_account_key_add(&nr, t - b->set, k); 144 return nr; 145 } 146 147 void __bch2_verify_btree_nr_keys(struct btree *b) 148 { 149 struct btree_nr_keys nr = bch2_btree_node_count_keys(b); 150 151 BUG_ON(memcmp(&nr, &b->nr, sizeof(nr))); 152 } 153 154 static void __bch2_btree_node_iter_next_check(struct btree_node_iter *_iter, 155 struct btree *b) 156 { 157 struct btree_node_iter iter = *_iter; 158 const struct bkey_packed *k, *n; 159 160 k = bch2_btree_node_iter_peek_all(&iter, b); 161 __bch2_btree_node_iter_advance(&iter, b); 162 n = bch2_btree_node_iter_peek_all(&iter, b); 163 164 bkey_unpack_key(b, k); 165 166 if (n && 167 bkey_iter_cmp(b, k, n) > 0) { 168 struct btree_node_iter_set *set; 169 struct bkey ku = bkey_unpack_key(b, k); 170 struct bkey nu = bkey_unpack_key(b, n); 171 struct printbuf buf1 = PRINTBUF; 172 struct printbuf buf2 = PRINTBUF; 173 174 bch2_dump_btree_node(NULL, b); 175 bch2_bkey_to_text(&buf1, &ku); 176 bch2_bkey_to_text(&buf2, &nu); 177 printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n", 178 buf1.buf, buf2.buf); 179 printk(KERN_ERR "iter was:"); 180 181 btree_node_iter_for_each(_iter, set) { 182 struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k); 183 struct bset_tree *t = bch2_bkey_to_bset(b, k2); 184 printk(" [%zi %zi]", t - b->set, 185 k2->_data - bset(b, t)->_data); 186 } 187 panic("\n"); 188 } 189 } 190 191 void __bch2_btree_node_iter_verify(struct btree_node_iter *iter, 192 struct btree *b) 193 { 194 struct btree_node_iter_set *set, *s2; 195 struct bkey_packed *k, *p; 196 197 if (bch2_btree_node_iter_end(iter)) 198 return; 199 200 /* Verify no duplicates: */ 201 btree_node_iter_for_each(iter, set) { 202 BUG_ON(set->k > set->end); 203 btree_node_iter_for_each(iter, s2) 204 BUG_ON(set != s2 && set->end == s2->end); 205 } 206 207 /* Verify that set->end is correct: */ 208 btree_node_iter_for_each(iter, set) { 209 for_each_bset(b, t) 210 if (set->end == t->end_offset) { 211 BUG_ON(set->k < btree_bkey_first_offset(t) || 212 set->k >= t->end_offset); 213 goto found; 214 } 215 BUG(); 216 found: 217 do {} while (0); 218 } 219 220 /* Verify iterator is sorted: */ 221 btree_node_iter_for_each(iter, set) 222 BUG_ON(set != iter->data && 223 btree_node_iter_cmp(b, set[-1], set[0]) > 0); 224 225 k = bch2_btree_node_iter_peek_all(iter, b); 226 227 for_each_bset(b, t) { 228 if (iter->data[0].end == t->end_offset) 229 continue; 230 231 p = bch2_bkey_prev_all(b, t, 232 bch2_btree_node_iter_bset_pos(iter, b, t)); 233 234 BUG_ON(p && bkey_iter_cmp(b, k, p) < 0); 235 } 236 } 237 238 static void __bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where, 239 struct bkey_packed *insert, unsigned clobber_u64s) 240 { 241 struct bset_tree *t = bch2_bkey_to_bset(b, where); 242 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where); 243 struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s); 244 struct printbuf buf1 = PRINTBUF; 245 struct printbuf buf2 = PRINTBUF; 246 #if 0 247 BUG_ON(prev && 248 bkey_iter_cmp(b, prev, insert) > 0); 249 #else 250 if (prev && 251 bkey_iter_cmp(b, prev, insert) > 0) { 252 struct bkey k1 = bkey_unpack_key(b, prev); 253 struct bkey k2 = bkey_unpack_key(b, insert); 254 255 bch2_dump_btree_node(NULL, b); 256 bch2_bkey_to_text(&buf1, &k1); 257 bch2_bkey_to_text(&buf2, &k2); 258 259 panic("prev > insert:\n" 260 "prev key %s\n" 261 "insert key %s\n", 262 buf1.buf, buf2.buf); 263 } 264 #endif 265 #if 0 266 BUG_ON(next != btree_bkey_last(b, t) && 267 bkey_iter_cmp(b, insert, next) > 0); 268 #else 269 if (next != btree_bkey_last(b, t) && 270 bkey_iter_cmp(b, insert, next) > 0) { 271 struct bkey k1 = bkey_unpack_key(b, insert); 272 struct bkey k2 = bkey_unpack_key(b, next); 273 274 bch2_dump_btree_node(NULL, b); 275 bch2_bkey_to_text(&buf1, &k1); 276 bch2_bkey_to_text(&buf2, &k2); 277 278 panic("insert > next:\n" 279 "insert key %s\n" 280 "next key %s\n", 281 buf1.buf, buf2.buf); 282 } 283 #endif 284 } 285 286 static inline void bch2_verify_insert_pos(struct btree *b, 287 struct bkey_packed *where, 288 struct bkey_packed *insert, 289 unsigned clobber_u64s) 290 { 291 if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) 292 __bch2_verify_insert_pos(b, where, insert, clobber_u64s); 293 } 294 295 296 /* Auxiliary search trees */ 297 298 #define BFLOAT_FAILED_UNPACKED U8_MAX 299 #define BFLOAT_FAILED U8_MAX 300 301 struct bkey_float { 302 u8 exponent; 303 u8 key_offset; 304 u16 mantissa; 305 }; 306 #define BKEY_MANTISSA_BITS 16 307 308 struct ro_aux_tree { 309 u8 nothing[0]; 310 struct bkey_float f[]; 311 }; 312 313 struct rw_aux_tree { 314 u16 offset; 315 struct bpos k; 316 }; 317 318 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t) 319 { 320 BUG_ON(t->aux_data_offset == U16_MAX); 321 322 switch (bset_aux_tree_type(t)) { 323 case BSET_NO_AUX_TREE: 324 return t->aux_data_offset; 325 case BSET_RO_AUX_TREE: 326 return t->aux_data_offset + 327 DIV_ROUND_UP(t->size * sizeof(struct bkey_float), 8); 328 case BSET_RW_AUX_TREE: 329 return t->aux_data_offset + 330 DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8); 331 default: 332 BUG(); 333 } 334 } 335 336 static unsigned bset_aux_tree_buf_start(const struct btree *b, 337 const struct bset_tree *t) 338 { 339 return t == b->set 340 ? DIV_ROUND_UP(b->unpack_fn_len, 8) 341 : bset_aux_tree_buf_end(t - 1); 342 } 343 344 static void *__aux_tree_base(const struct btree *b, 345 const struct bset_tree *t) 346 { 347 return b->aux_data + t->aux_data_offset * 8; 348 } 349 350 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b, 351 const struct bset_tree *t) 352 { 353 EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); 354 355 return __aux_tree_base(b, t); 356 } 357 358 static struct bkey_float *bkey_float(const struct btree *b, 359 const struct bset_tree *t, 360 unsigned idx) 361 { 362 return ro_aux_tree_base(b, t)->f + idx; 363 } 364 365 static void __bset_aux_tree_verify(struct btree *b) 366 { 367 for_each_bset(b, t) { 368 if (t->aux_data_offset == U16_MAX) 369 continue; 370 371 BUG_ON(t != b->set && 372 t[-1].aux_data_offset == U16_MAX); 373 374 BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t)); 375 BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b)); 376 BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b)); 377 } 378 } 379 380 static inline void bset_aux_tree_verify(struct btree *b) 381 { 382 if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) 383 __bset_aux_tree_verify(b); 384 } 385 386 void bch2_btree_keys_init(struct btree *b) 387 { 388 unsigned i; 389 390 b->nsets = 0; 391 memset(&b->nr, 0, sizeof(b->nr)); 392 393 for (i = 0; i < MAX_BSETS; i++) 394 b->set[i].data_offset = U16_MAX; 395 396 bch2_bset_set_no_aux_tree(b, b->set); 397 } 398 399 /* Binary tree stuff for auxiliary search trees */ 400 401 /* 402 * Cacheline/offset <-> bkey pointer arithmetic: 403 * 404 * t->tree is a binary search tree in an array; each node corresponds to a key 405 * in one cacheline in t->set (BSET_CACHELINE bytes). 406 * 407 * This means we don't have to store the full index of the key that a node in 408 * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and 409 * then bkey_float->m gives us the offset within that cacheline, in units of 8 410 * bytes. 411 * 412 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 413 * make this work. 414 * 415 * To construct the bfloat for an arbitrary key we need to know what the key 416 * immediately preceding it is: we have to check if the two keys differ in the 417 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 418 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 419 */ 420 421 static inline void *bset_cacheline(const struct btree *b, 422 const struct bset_tree *t, 423 unsigned cacheline) 424 { 425 return (void *) round_down((unsigned long) btree_bkey_first(b, t), 426 L1_CACHE_BYTES) + 427 cacheline * BSET_CACHELINE; 428 } 429 430 static struct bkey_packed *cacheline_to_bkey(const struct btree *b, 431 const struct bset_tree *t, 432 unsigned cacheline, 433 unsigned offset) 434 { 435 return bset_cacheline(b, t, cacheline) + offset * 8; 436 } 437 438 static unsigned bkey_to_cacheline(const struct btree *b, 439 const struct bset_tree *t, 440 const struct bkey_packed *k) 441 { 442 return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE; 443 } 444 445 static ssize_t __bkey_to_cacheline_offset(const struct btree *b, 446 const struct bset_tree *t, 447 unsigned cacheline, 448 const struct bkey_packed *k) 449 { 450 return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline); 451 } 452 453 static unsigned bkey_to_cacheline_offset(const struct btree *b, 454 const struct bset_tree *t, 455 unsigned cacheline, 456 const struct bkey_packed *k) 457 { 458 size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k); 459 460 EBUG_ON(m > U8_MAX); 461 return m; 462 } 463 464 static inline struct bkey_packed *tree_to_bkey(const struct btree *b, 465 const struct bset_tree *t, 466 unsigned j) 467 { 468 return cacheline_to_bkey(b, t, 469 __eytzinger1_to_inorder(j, t->size - 1, t->extra), 470 bkey_float(b, t, j)->key_offset); 471 } 472 473 static struct rw_aux_tree *rw_aux_tree(const struct btree *b, 474 const struct bset_tree *t) 475 { 476 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); 477 478 return __aux_tree_base(b, t); 479 } 480 481 /* 482 * For the write set - the one we're currently inserting keys into - we don't 483 * maintain a full search tree, we just keep a simple lookup table in t->prev. 484 */ 485 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b, 486 struct bset_tree *t, 487 unsigned j) 488 { 489 return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset); 490 } 491 492 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t, 493 unsigned j, struct bkey_packed *k) 494 { 495 EBUG_ON(k >= btree_bkey_last(b, t)); 496 497 rw_aux_tree(b, t)[j] = (struct rw_aux_tree) { 498 .offset = __btree_node_key_to_offset(b, k), 499 .k = bkey_unpack_pos(b, k), 500 }; 501 } 502 503 static void __bch2_bset_verify_rw_aux_tree(struct btree *b, struct bset_tree *t) 504 { 505 struct bkey_packed *k = btree_bkey_first(b, t); 506 unsigned j = 0; 507 508 BUG_ON(bset_has_ro_aux_tree(t)); 509 510 if (!bset_has_rw_aux_tree(t)) 511 return; 512 513 BUG_ON(t->size < 1); 514 BUG_ON(rw_aux_to_bkey(b, t, j) != k); 515 516 goto start; 517 while (1) { 518 if (rw_aux_to_bkey(b, t, j) == k) { 519 BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k, 520 bkey_unpack_pos(b, k))); 521 start: 522 if (++j == t->size) 523 break; 524 525 BUG_ON(rw_aux_tree(b, t)[j].offset <= 526 rw_aux_tree(b, t)[j - 1].offset); 527 } 528 529 k = bkey_p_next(k); 530 BUG_ON(k >= btree_bkey_last(b, t)); 531 } 532 } 533 534 static inline void bch2_bset_verify_rw_aux_tree(struct btree *b, 535 struct bset_tree *t) 536 { 537 if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) 538 __bch2_bset_verify_rw_aux_tree(b, t); 539 } 540 541 /* returns idx of first entry >= offset: */ 542 static unsigned rw_aux_tree_bsearch(struct btree *b, 543 struct bset_tree *t, 544 unsigned offset) 545 { 546 unsigned bset_offs = offset - btree_bkey_first_offset(t); 547 unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t); 548 unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0; 549 550 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); 551 EBUG_ON(!t->size); 552 EBUG_ON(idx > t->size); 553 554 while (idx < t->size && 555 rw_aux_tree(b, t)[idx].offset < offset) 556 idx++; 557 558 while (idx && 559 rw_aux_tree(b, t)[idx - 1].offset >= offset) 560 idx--; 561 562 EBUG_ON(idx < t->size && 563 rw_aux_tree(b, t)[idx].offset < offset); 564 EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset); 565 EBUG_ON(idx + 1 < t->size && 566 rw_aux_tree(b, t)[idx].offset == 567 rw_aux_tree(b, t)[idx + 1].offset); 568 569 return idx; 570 } 571 572 static inline unsigned bkey_mantissa(const struct bkey_packed *k, 573 const struct bkey_float *f) 574 { 575 u64 v; 576 577 EBUG_ON(!bkey_packed(k)); 578 579 v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3))); 580 581 /* 582 * In little endian, we're shifting off low bits (and then the bits we 583 * want are at the low end), in big endian we're shifting off high bits 584 * (and then the bits we want are at the high end, so we shift them 585 * back down): 586 */ 587 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 588 v >>= f->exponent & 7; 589 #else 590 v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS; 591 #endif 592 return (u16) v; 593 } 594 595 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t, 596 unsigned j, 597 struct bkey_packed *min_key, 598 struct bkey_packed *max_key) 599 { 600 struct bkey_float *f = bkey_float(b, t, j); 601 struct bkey_packed *m = tree_to_bkey(b, t, j); 602 struct bkey_packed *l = is_power_of_2(j) 603 ? min_key 604 : tree_to_bkey(b, t, j >> ffs(j)); 605 struct bkey_packed *r = is_power_of_2(j + 1) 606 ? max_key 607 : tree_to_bkey(b, t, j >> (ffz(j) + 1)); 608 unsigned mantissa; 609 int shift, exponent, high_bit; 610 611 /* 612 * for failed bfloats, the lookup code falls back to comparing against 613 * the original key. 614 */ 615 616 if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) || 617 !b->nr_key_bits) { 618 f->exponent = BFLOAT_FAILED_UNPACKED; 619 return; 620 } 621 622 /* 623 * The greatest differing bit of l and r is the first bit we must 624 * include in the bfloat mantissa we're creating in order to do 625 * comparisons - that bit always becomes the high bit of 626 * bfloat->mantissa, and thus the exponent we're calculating here is 627 * the position of what will become the low bit in bfloat->mantissa: 628 * 629 * Note that this may be negative - we may be running off the low end 630 * of the key: we handle this later: 631 */ 632 high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r), 633 min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1); 634 exponent = high_bit - (BKEY_MANTISSA_BITS - 1); 635 636 /* 637 * Then we calculate the actual shift value, from the start of the key 638 * (k->_data), to get the key bits starting at exponent: 639 */ 640 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 641 shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent; 642 643 EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64); 644 #else 645 shift = high_bit_offset + 646 b->nr_key_bits - 647 exponent - 648 BKEY_MANTISSA_BITS; 649 650 EBUG_ON(shift < KEY_PACKED_BITS_START); 651 #endif 652 EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED); 653 654 f->exponent = shift; 655 mantissa = bkey_mantissa(m, f); 656 657 /* 658 * If we've got garbage bits, set them to all 1s - it's legal for the 659 * bfloat to compare larger than the original key, but not smaller: 660 */ 661 if (exponent < 0) 662 mantissa |= ~(~0U << -exponent); 663 664 f->mantissa = mantissa; 665 } 666 667 /* bytes remaining - only valid for last bset: */ 668 static unsigned __bset_tree_capacity(struct btree *b, const struct bset_tree *t) 669 { 670 bset_aux_tree_verify(b); 671 672 return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64); 673 } 674 675 static unsigned bset_ro_tree_capacity(struct btree *b, const struct bset_tree *t) 676 { 677 return __bset_tree_capacity(b, t) / sizeof(struct bkey_float); 678 } 679 680 static unsigned bset_rw_tree_capacity(struct btree *b, const struct bset_tree *t) 681 { 682 return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree); 683 } 684 685 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t) 686 { 687 struct bkey_packed *k; 688 689 t->size = 1; 690 t->extra = BSET_RW_AUX_TREE_VAL; 691 rw_aux_tree(b, t)[0].offset = 692 __btree_node_key_to_offset(b, btree_bkey_first(b, t)); 693 694 bset_tree_for_each_key(b, t, k) { 695 if (t->size == bset_rw_tree_capacity(b, t)) 696 break; 697 698 if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) > 699 L1_CACHE_BYTES) 700 rw_aux_tree_set(b, t, t->size++, k); 701 } 702 } 703 704 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t) 705 { 706 struct bkey_packed *k = btree_bkey_first(b, t); 707 struct bkey_i min_key, max_key; 708 unsigned cacheline = 1; 709 710 t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)), 711 bset_ro_tree_capacity(b, t)); 712 retry: 713 if (t->size < 2) { 714 t->size = 0; 715 t->extra = BSET_NO_AUX_TREE_VAL; 716 return; 717 } 718 719 t->extra = eytzinger1_extra(t->size - 1); 720 721 /* First we figure out where the first key in each cacheline is */ 722 eytzinger1_for_each(j, t->size - 1) { 723 while (bkey_to_cacheline(b, t, k) < cacheline) 724 k = bkey_p_next(k); 725 726 if (k >= btree_bkey_last(b, t)) { 727 /* XXX: this path sucks */ 728 t->size--; 729 goto retry; 730 } 731 732 bkey_float(b, t, j)->key_offset = 733 bkey_to_cacheline_offset(b, t, cacheline++, k); 734 735 EBUG_ON(tree_to_bkey(b, t, j) != k); 736 } 737 738 if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) { 739 bkey_init(&min_key.k); 740 min_key.k.p = b->data->min_key; 741 } 742 743 if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) { 744 bkey_init(&max_key.k); 745 max_key.k.p = b->data->max_key; 746 } 747 748 /* Then we build the tree */ 749 eytzinger1_for_each(j, t->size - 1) 750 make_bfloat(b, t, j, 751 bkey_to_packed(&min_key), 752 bkey_to_packed(&max_key)); 753 } 754 755 static void bset_alloc_tree(struct btree *b, struct bset_tree *t) 756 { 757 struct bset_tree *i; 758 759 for (i = b->set; i != t; i++) 760 BUG_ON(bset_has_rw_aux_tree(i)); 761 762 bch2_bset_set_no_aux_tree(b, t); 763 764 /* round up to next cacheline: */ 765 t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t), 766 SMP_CACHE_BYTES / sizeof(u64)); 767 768 bset_aux_tree_verify(b); 769 } 770 771 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t, 772 bool writeable) 773 { 774 if (writeable 775 ? bset_has_rw_aux_tree(t) 776 : bset_has_ro_aux_tree(t)) 777 return; 778 779 bset_alloc_tree(b, t); 780 781 if (!__bset_tree_capacity(b, t)) 782 return; 783 784 if (writeable) 785 __build_rw_aux_tree(b, t); 786 else 787 __build_ro_aux_tree(b, t); 788 789 bset_aux_tree_verify(b); 790 } 791 792 void bch2_bset_init_first(struct btree *b, struct bset *i) 793 { 794 struct bset_tree *t; 795 796 BUG_ON(b->nsets); 797 798 memset(i, 0, sizeof(*i)); 799 get_random_bytes(&i->seq, sizeof(i->seq)); 800 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 801 802 t = &b->set[b->nsets++]; 803 set_btree_bset(b, t, i); 804 } 805 806 void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne) 807 { 808 struct bset *i = &bne->keys; 809 struct bset_tree *t; 810 811 BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b)); 812 BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b))); 813 BUG_ON(b->nsets >= MAX_BSETS); 814 815 memset(i, 0, sizeof(*i)); 816 i->seq = btree_bset_first(b)->seq; 817 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 818 819 t = &b->set[b->nsets++]; 820 set_btree_bset(b, t, i); 821 } 822 823 /* 824 * find _some_ key in the same bset as @k that precedes @k - not necessarily the 825 * immediate predecessor: 826 */ 827 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t, 828 struct bkey_packed *k) 829 { 830 struct bkey_packed *p; 831 unsigned offset; 832 int j; 833 834 EBUG_ON(k < btree_bkey_first(b, t) || 835 k > btree_bkey_last(b, t)); 836 837 if (k == btree_bkey_first(b, t)) 838 return NULL; 839 840 switch (bset_aux_tree_type(t)) { 841 case BSET_NO_AUX_TREE: 842 p = btree_bkey_first(b, t); 843 break; 844 case BSET_RO_AUX_TREE: 845 j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k)); 846 847 do { 848 p = j ? tree_to_bkey(b, t, 849 __inorder_to_eytzinger1(j--, 850 t->size - 1, t->extra)) 851 : btree_bkey_first(b, t); 852 } while (p >= k); 853 break; 854 case BSET_RW_AUX_TREE: 855 offset = __btree_node_key_to_offset(b, k); 856 j = rw_aux_tree_bsearch(b, t, offset); 857 p = j ? rw_aux_to_bkey(b, t, j - 1) 858 : btree_bkey_first(b, t); 859 break; 860 } 861 862 return p; 863 } 864 865 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b, 866 struct bset_tree *t, 867 struct bkey_packed *k, 868 unsigned min_key_type) 869 { 870 struct bkey_packed *p, *i, *ret = NULL, *orig_k = k; 871 872 while ((p = __bkey_prev(b, t, k)) && !ret) { 873 for (i = p; i != k; i = bkey_p_next(i)) 874 if (i->type >= min_key_type) 875 ret = i; 876 877 k = p; 878 } 879 880 if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) { 881 BUG_ON(ret >= orig_k); 882 883 for (i = ret 884 ? bkey_p_next(ret) 885 : btree_bkey_first(b, t); 886 i != orig_k; 887 i = bkey_p_next(i)) 888 BUG_ON(i->type >= min_key_type); 889 } 890 891 return ret; 892 } 893 894 /* Insert */ 895 896 static void rw_aux_tree_insert_entry(struct btree *b, 897 struct bset_tree *t, 898 unsigned idx) 899 { 900 EBUG_ON(!idx || idx > t->size); 901 struct bkey_packed *start = rw_aux_to_bkey(b, t, idx - 1); 902 struct bkey_packed *end = idx < t->size 903 ? rw_aux_to_bkey(b, t, idx) 904 : btree_bkey_last(b, t); 905 906 if (t->size < bset_rw_tree_capacity(b, t) && 907 (void *) end - (void *) start > L1_CACHE_BYTES) { 908 struct bkey_packed *k = start; 909 910 while (1) { 911 k = bkey_p_next(k); 912 if (k == end) 913 break; 914 915 if ((void *) k - (void *) start >= L1_CACHE_BYTES) { 916 memmove(&rw_aux_tree(b, t)[idx + 1], 917 &rw_aux_tree(b, t)[idx], 918 (void *) &rw_aux_tree(b, t)[t->size] - 919 (void *) &rw_aux_tree(b, t)[idx]); 920 t->size++; 921 rw_aux_tree_set(b, t, idx, k); 922 break; 923 } 924 } 925 } 926 } 927 928 static void bch2_bset_fix_lookup_table(struct btree *b, 929 struct bset_tree *t, 930 struct bkey_packed *_where, 931 unsigned clobber_u64s, 932 unsigned new_u64s) 933 { 934 int shift = new_u64s - clobber_u64s; 935 unsigned idx, j, where = __btree_node_key_to_offset(b, _where); 936 937 EBUG_ON(bset_has_ro_aux_tree(t)); 938 939 if (!bset_has_rw_aux_tree(t)) 940 return; 941 942 if (where > rw_aux_tree(b, t)[t->size - 1].offset) { 943 rw_aux_tree_insert_entry(b, t, t->size); 944 goto verify; 945 } 946 947 /* returns first entry >= where */ 948 idx = rw_aux_tree_bsearch(b, t, where); 949 950 if (rw_aux_tree(b, t)[idx].offset == where) { 951 if (!idx) { /* never delete first entry */ 952 idx++; 953 } else if (where < t->end_offset) { 954 rw_aux_tree_set(b, t, idx++, _where); 955 } else { 956 EBUG_ON(where != t->end_offset); 957 rw_aux_tree_insert_entry(b, t, --t->size); 958 goto verify; 959 } 960 } 961 962 EBUG_ON(idx < t->size && rw_aux_tree(b, t)[idx].offset <= where); 963 if (idx < t->size && 964 rw_aux_tree(b, t)[idx].offset + shift == 965 rw_aux_tree(b, t)[idx - 1].offset) { 966 memmove(&rw_aux_tree(b, t)[idx], 967 &rw_aux_tree(b, t)[idx + 1], 968 (void *) &rw_aux_tree(b, t)[t->size] - 969 (void *) &rw_aux_tree(b, t)[idx + 1]); 970 t->size -= 1; 971 } 972 973 for (j = idx; j < t->size; j++) 974 rw_aux_tree(b, t)[j].offset += shift; 975 976 EBUG_ON(idx < t->size && 977 rw_aux_tree(b, t)[idx].offset == 978 rw_aux_tree(b, t)[idx - 1].offset); 979 980 rw_aux_tree_insert_entry(b, t, idx); 981 982 verify: 983 bch2_bset_verify_rw_aux_tree(b, t); 984 bset_aux_tree_verify(b); 985 } 986 987 void bch2_bset_insert(struct btree *b, 988 struct bkey_packed *where, 989 struct bkey_i *insert, 990 unsigned clobber_u64s) 991 { 992 struct bkey_format *f = &b->format; 993 struct bset_tree *t = bset_tree_last(b); 994 struct bkey_packed packed, *src = bkey_to_packed(insert); 995 996 bch2_bset_verify_rw_aux_tree(b, t); 997 bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s); 998 999 if (bch2_bkey_pack_key(&packed, &insert->k, f)) 1000 src = &packed; 1001 1002 if (!bkey_deleted(&insert->k)) 1003 btree_keys_account_key_add(&b->nr, t - b->set, src); 1004 1005 if (src->u64s != clobber_u64s) { 1006 u64 *src_p = (u64 *) where->_data + clobber_u64s; 1007 u64 *dst_p = (u64 *) where->_data + src->u64s; 1008 1009 EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) < 1010 (int) clobber_u64s - src->u64s); 1011 1012 memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); 1013 le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s); 1014 set_btree_bset_end(b, t); 1015 } 1016 1017 memcpy_u64s_small(where, src, 1018 bkeyp_key_u64s(f, src)); 1019 memcpy_u64s(bkeyp_val(f, where), &insert->v, 1020 bkeyp_val_u64s(f, src)); 1021 1022 if (src->u64s != clobber_u64s) 1023 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s); 1024 1025 bch2_verify_btree_nr_keys(b); 1026 } 1027 1028 void bch2_bset_delete(struct btree *b, 1029 struct bkey_packed *where, 1030 unsigned clobber_u64s) 1031 { 1032 struct bset_tree *t = bset_tree_last(b); 1033 u64 *src_p = (u64 *) where->_data + clobber_u64s; 1034 u64 *dst_p = where->_data; 1035 1036 bch2_bset_verify_rw_aux_tree(b, t); 1037 1038 EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s); 1039 1040 memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); 1041 le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s); 1042 set_btree_bset_end(b, t); 1043 1044 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0); 1045 } 1046 1047 /* Lookup */ 1048 1049 __flatten 1050 static struct bkey_packed *bset_search_write_set(const struct btree *b, 1051 struct bset_tree *t, 1052 struct bpos *search) 1053 { 1054 unsigned l = 0, r = t->size; 1055 1056 while (l + 1 != r) { 1057 unsigned m = (l + r) >> 1; 1058 1059 if (bpos_lt(rw_aux_tree(b, t)[m].k, *search)) 1060 l = m; 1061 else 1062 r = m; 1063 } 1064 1065 return rw_aux_to_bkey(b, t, l); 1066 } 1067 1068 static inline void prefetch_four_cachelines(void *p) 1069 { 1070 #ifdef CONFIG_X86_64 1071 asm("prefetcht0 (-127 + 64 * 0)(%0);" 1072 "prefetcht0 (-127 + 64 * 1)(%0);" 1073 "prefetcht0 (-127 + 64 * 2)(%0);" 1074 "prefetcht0 (-127 + 64 * 3)(%0);" 1075 : 1076 : "r" (p + 127)); 1077 #else 1078 prefetch(p + L1_CACHE_BYTES * 0); 1079 prefetch(p + L1_CACHE_BYTES * 1); 1080 prefetch(p + L1_CACHE_BYTES * 2); 1081 prefetch(p + L1_CACHE_BYTES * 3); 1082 #endif 1083 } 1084 1085 static inline bool bkey_mantissa_bits_dropped(const struct btree *b, 1086 const struct bkey_float *f) 1087 { 1088 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1089 unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits; 1090 1091 return f->exponent > key_bits_start; 1092 #else 1093 unsigned key_bits_end = high_bit_offset + b->nr_key_bits; 1094 1095 return f->exponent + BKEY_MANTISSA_BITS < key_bits_end; 1096 #endif 1097 } 1098 1099 __flatten 1100 static struct bkey_packed *bset_search_tree(const struct btree *b, 1101 const struct bset_tree *t, 1102 const struct bpos *search, 1103 const struct bkey_packed *packed_search) 1104 { 1105 struct ro_aux_tree *base = ro_aux_tree_base(b, t); 1106 struct bkey_float *f; 1107 struct bkey_packed *k; 1108 unsigned inorder, n = 1, l, r; 1109 int cmp; 1110 1111 do { 1112 if (likely(n << 4 < t->size)) 1113 prefetch(&base->f[n << 4]); 1114 1115 f = &base->f[n]; 1116 if (unlikely(f->exponent >= BFLOAT_FAILED)) 1117 goto slowpath; 1118 1119 l = f->mantissa; 1120 r = bkey_mantissa(packed_search, f); 1121 1122 if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f)) 1123 goto slowpath; 1124 1125 n = n * 2 + (l < r); 1126 continue; 1127 slowpath: 1128 k = tree_to_bkey(b, t, n); 1129 cmp = bkey_cmp_p_or_unp(b, k, packed_search, search); 1130 if (!cmp) 1131 return k; 1132 1133 n = n * 2 + (cmp < 0); 1134 } while (n < t->size); 1135 1136 inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra); 1137 1138 /* 1139 * n would have been the node we recursed to - the low bit tells us if 1140 * we recursed left or recursed right. 1141 */ 1142 if (likely(!(n & 1))) { 1143 --inorder; 1144 if (unlikely(!inorder)) 1145 return btree_bkey_first(b, t); 1146 1147 f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)]; 1148 } 1149 1150 return cacheline_to_bkey(b, t, inorder, f->key_offset); 1151 } 1152 1153 static __always_inline __flatten 1154 struct bkey_packed *__bch2_bset_search(struct btree *b, 1155 struct bset_tree *t, 1156 struct bpos *search, 1157 const struct bkey_packed *lossy_packed_search) 1158 { 1159 1160 /* 1161 * First, we search for a cacheline, then lastly we do a linear search 1162 * within that cacheline. 1163 * 1164 * To search for the cacheline, there's three different possibilities: 1165 * * The set is too small to have a search tree, so we just do a linear 1166 * search over the whole set. 1167 * * The set is the one we're currently inserting into; keeping a full 1168 * auxiliary search tree up to date would be too expensive, so we 1169 * use a much simpler lookup table to do a binary search - 1170 * bset_search_write_set(). 1171 * * Or we use the auxiliary search tree we constructed earlier - 1172 * bset_search_tree() 1173 */ 1174 1175 switch (bset_aux_tree_type(t)) { 1176 case BSET_NO_AUX_TREE: 1177 return btree_bkey_first(b, t); 1178 case BSET_RW_AUX_TREE: 1179 return bset_search_write_set(b, t, search); 1180 case BSET_RO_AUX_TREE: 1181 return bset_search_tree(b, t, search, lossy_packed_search); 1182 default: 1183 BUG(); 1184 } 1185 } 1186 1187 static __always_inline __flatten 1188 struct bkey_packed *bch2_bset_search_linear(struct btree *b, 1189 struct bset_tree *t, 1190 struct bpos *search, 1191 struct bkey_packed *packed_search, 1192 const struct bkey_packed *lossy_packed_search, 1193 struct bkey_packed *m) 1194 { 1195 if (lossy_packed_search) 1196 while (m != btree_bkey_last(b, t) && 1197 bkey_iter_cmp_p_or_unp(b, m, 1198 lossy_packed_search, search) < 0) 1199 m = bkey_p_next(m); 1200 1201 if (!packed_search) 1202 while (m != btree_bkey_last(b, t) && 1203 bkey_iter_pos_cmp(b, m, search) < 0) 1204 m = bkey_p_next(m); 1205 1206 if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) { 1207 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m); 1208 1209 BUG_ON(prev && 1210 bkey_iter_cmp_p_or_unp(b, prev, 1211 packed_search, search) >= 0); 1212 } 1213 1214 return m; 1215 } 1216 1217 /* Btree node iterator */ 1218 1219 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter, 1220 struct btree *b, 1221 const struct bkey_packed *k, 1222 const struct bkey_packed *end) 1223 { 1224 if (k != end) { 1225 struct btree_node_iter_set *pos; 1226 1227 btree_node_iter_for_each(iter, pos) 1228 ; 1229 1230 BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data)); 1231 *pos = (struct btree_node_iter_set) { 1232 __btree_node_key_to_offset(b, k), 1233 __btree_node_key_to_offset(b, end) 1234 }; 1235 } 1236 } 1237 1238 void bch2_btree_node_iter_push(struct btree_node_iter *iter, 1239 struct btree *b, 1240 const struct bkey_packed *k, 1241 const struct bkey_packed *end) 1242 { 1243 __bch2_btree_node_iter_push(iter, b, k, end); 1244 bch2_btree_node_iter_sort(iter, b); 1245 } 1246 1247 noinline __flatten __cold 1248 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter, 1249 struct btree *b, struct bpos *search) 1250 { 1251 struct bkey_packed *k; 1252 1253 trace_bkey_pack_pos_fail(search); 1254 1255 bch2_btree_node_iter_init_from_start(iter, b); 1256 1257 while ((k = bch2_btree_node_iter_peek(iter, b)) && 1258 bkey_iter_pos_cmp(b, k, search) < 0) 1259 bch2_btree_node_iter_advance(iter, b); 1260 } 1261 1262 /** 1263 * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a 1264 * given position 1265 * 1266 * @iter: iterator to initialize 1267 * @b: btree node to search 1268 * @search: search key 1269 * 1270 * Main entry point to the lookup code for individual btree nodes: 1271 * 1272 * NOTE: 1273 * 1274 * When you don't filter out deleted keys, btree nodes _do_ contain duplicate 1275 * keys. This doesn't matter for most code, but it does matter for lookups. 1276 * 1277 * Some adjacent keys with a string of equal keys: 1278 * i j k k k k l m 1279 * 1280 * If you search for k, the lookup code isn't guaranteed to return you any 1281 * specific k. The lookup code is conceptually doing a binary search and 1282 * iterating backwards is very expensive so if the pivot happens to land at the 1283 * last k that's what you'll get. 1284 * 1285 * This works out ok, but it's something to be aware of: 1286 * 1287 * - For non extents, we guarantee that the live key comes last - see 1288 * btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't 1289 * see will only be deleted keys you don't care about. 1290 * 1291 * - For extents, deleted keys sort last (see the comment at the top of this 1292 * file). But when you're searching for extents, you actually want the first 1293 * key strictly greater than your search key - an extent that compares equal 1294 * to the search key is going to have 0 sectors after the search key. 1295 * 1296 * But this does mean that we can't just search for 1297 * bpos_successor(start_of_range) to get the first extent that overlaps with 1298 * the range we want - if we're unlucky and there's an extent that ends 1299 * exactly where we searched, then there could be a deleted key at the same 1300 * position and we'd get that when we search instead of the preceding extent 1301 * we needed. 1302 * 1303 * So we've got to search for start_of_range, then after the lookup iterate 1304 * past any extents that compare equal to the position we searched for. 1305 */ 1306 __flatten 1307 void bch2_btree_node_iter_init(struct btree_node_iter *iter, 1308 struct btree *b, struct bpos *search) 1309 { 1310 struct bkey_packed p, *packed_search = NULL; 1311 struct btree_node_iter_set *pos = iter->data; 1312 struct bkey_packed *k[MAX_BSETS]; 1313 unsigned i; 1314 1315 EBUG_ON(bpos_lt(*search, b->data->min_key)); 1316 EBUG_ON(bpos_gt(*search, b->data->max_key)); 1317 bset_aux_tree_verify(b); 1318 1319 memset(iter, 0, sizeof(*iter)); 1320 1321 switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) { 1322 case BKEY_PACK_POS_EXACT: 1323 packed_search = &p; 1324 break; 1325 case BKEY_PACK_POS_SMALLER: 1326 packed_search = NULL; 1327 break; 1328 case BKEY_PACK_POS_FAIL: 1329 btree_node_iter_init_pack_failed(iter, b, search); 1330 return; 1331 } 1332 1333 for (i = 0; i < b->nsets; i++) { 1334 k[i] = __bch2_bset_search(b, b->set + i, search, &p); 1335 prefetch_four_cachelines(k[i]); 1336 } 1337 1338 for (i = 0; i < b->nsets; i++) { 1339 struct bset_tree *t = b->set + i; 1340 struct bkey_packed *end = btree_bkey_last(b, t); 1341 1342 k[i] = bch2_bset_search_linear(b, t, search, 1343 packed_search, &p, k[i]); 1344 if (k[i] != end) 1345 *pos++ = (struct btree_node_iter_set) { 1346 __btree_node_key_to_offset(b, k[i]), 1347 __btree_node_key_to_offset(b, end) 1348 }; 1349 } 1350 1351 bch2_btree_node_iter_sort(iter, b); 1352 } 1353 1354 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter, 1355 struct btree *b) 1356 { 1357 memset(iter, 0, sizeof(*iter)); 1358 1359 for_each_bset(b, t) 1360 __bch2_btree_node_iter_push(iter, b, 1361 btree_bkey_first(b, t), 1362 btree_bkey_last(b, t)); 1363 bch2_btree_node_iter_sort(iter, b); 1364 } 1365 1366 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter, 1367 struct btree *b, 1368 struct bset_tree *t) 1369 { 1370 struct btree_node_iter_set *set; 1371 1372 btree_node_iter_for_each(iter, set) 1373 if (set->end == t->end_offset) 1374 return __btree_node_offset_to_key(b, set->k); 1375 1376 return btree_bkey_last(b, t); 1377 } 1378 1379 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter, 1380 struct btree *b, 1381 unsigned first) 1382 { 1383 bool ret; 1384 1385 if ((ret = (btree_node_iter_cmp(b, 1386 iter->data[first], 1387 iter->data[first + 1]) > 0))) 1388 swap(iter->data[first], iter->data[first + 1]); 1389 return ret; 1390 } 1391 1392 void bch2_btree_node_iter_sort(struct btree_node_iter *iter, 1393 struct btree *b) 1394 { 1395 /* unrolled bubble sort: */ 1396 1397 if (!__btree_node_iter_set_end(iter, 2)) { 1398 btree_node_iter_sort_two(iter, b, 0); 1399 btree_node_iter_sort_two(iter, b, 1); 1400 } 1401 1402 if (!__btree_node_iter_set_end(iter, 1)) 1403 btree_node_iter_sort_two(iter, b, 0); 1404 } 1405 1406 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter, 1407 struct btree_node_iter_set *set) 1408 { 1409 struct btree_node_iter_set *last = 1410 iter->data + ARRAY_SIZE(iter->data) - 1; 1411 1412 memmove(&set[0], &set[1], (void *) last - (void *) set); 1413 *last = (struct btree_node_iter_set) { 0, 0 }; 1414 } 1415 1416 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter, 1417 struct btree *b) 1418 { 1419 iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s; 1420 1421 EBUG_ON(iter->data->k > iter->data->end); 1422 1423 if (unlikely(__btree_node_iter_set_end(iter, 0))) { 1424 /* avoid an expensive memmove call: */ 1425 iter->data[0] = iter->data[1]; 1426 iter->data[1] = iter->data[2]; 1427 iter->data[2] = (struct btree_node_iter_set) { 0, 0 }; 1428 return; 1429 } 1430 1431 if (__btree_node_iter_set_end(iter, 1)) 1432 return; 1433 1434 if (!btree_node_iter_sort_two(iter, b, 0)) 1435 return; 1436 1437 if (__btree_node_iter_set_end(iter, 2)) 1438 return; 1439 1440 btree_node_iter_sort_two(iter, b, 1); 1441 } 1442 1443 void bch2_btree_node_iter_advance(struct btree_node_iter *iter, 1444 struct btree *b) 1445 { 1446 if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) { 1447 __bch2_btree_node_iter_verify(iter, b); 1448 __bch2_btree_node_iter_next_check(iter, b); 1449 } 1450 1451 __bch2_btree_node_iter_advance(iter, b); 1452 } 1453 1454 /* 1455 * Expensive: 1456 */ 1457 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter, 1458 struct btree *b) 1459 { 1460 struct bkey_packed *k, *prev = NULL; 1461 struct btree_node_iter_set *set; 1462 unsigned end = 0; 1463 1464 bch2_btree_node_iter_verify(iter, b); 1465 1466 for_each_bset(b, t) { 1467 k = bch2_bkey_prev_all(b, t, 1468 bch2_btree_node_iter_bset_pos(iter, b, t)); 1469 if (k && 1470 (!prev || bkey_iter_cmp(b, k, prev) > 0)) { 1471 prev = k; 1472 end = t->end_offset; 1473 } 1474 } 1475 1476 if (!prev) 1477 return NULL; 1478 1479 /* 1480 * We're manually memmoving instead of just calling sort() to ensure the 1481 * prev we picked ends up in slot 0 - sort won't necessarily put it 1482 * there because of duplicate deleted keys: 1483 */ 1484 btree_node_iter_for_each(iter, set) 1485 if (set->end == end) 1486 goto found; 1487 1488 BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]); 1489 found: 1490 BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data)); 1491 1492 memmove(&iter->data[1], 1493 &iter->data[0], 1494 (void *) set - (void *) &iter->data[0]); 1495 1496 iter->data[0].k = __btree_node_key_to_offset(b, prev); 1497 iter->data[0].end = end; 1498 1499 bch2_btree_node_iter_verify(iter, b); 1500 return prev; 1501 } 1502 1503 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter, 1504 struct btree *b) 1505 { 1506 struct bkey_packed *prev; 1507 1508 do { 1509 prev = bch2_btree_node_iter_prev_all(iter, b); 1510 } while (prev && bkey_deleted(prev)); 1511 1512 return prev; 1513 } 1514 1515 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter, 1516 struct btree *b, 1517 struct bkey *u) 1518 { 1519 struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b); 1520 1521 return k ? bkey_disassemble(b, k, u) : bkey_s_c_null; 1522 } 1523 1524 /* Mergesort */ 1525 1526 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats) 1527 { 1528 for_each_bset_c(b, t) { 1529 enum bset_aux_tree_type type = bset_aux_tree_type(t); 1530 size_t j; 1531 1532 stats->sets[type].nr++; 1533 stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) * 1534 sizeof(u64); 1535 1536 if (bset_has_ro_aux_tree(t)) { 1537 stats->floats += t->size - 1; 1538 1539 for (j = 1; j < t->size; j++) 1540 stats->failed += 1541 bkey_float(b, t, j)->exponent == 1542 BFLOAT_FAILED; 1543 } 1544 } 1545 } 1546 1547 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b, 1548 struct bkey_packed *k) 1549 { 1550 struct bset_tree *t = bch2_bkey_to_bset(b, k); 1551 struct bkey uk; 1552 unsigned j, inorder; 1553 1554 if (!bset_has_ro_aux_tree(t)) 1555 return; 1556 1557 inorder = bkey_to_cacheline(b, t, k); 1558 if (!inorder || inorder >= t->size) 1559 return; 1560 1561 j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra); 1562 if (k != tree_to_bkey(b, t, j)) 1563 return; 1564 1565 switch (bkey_float(b, t, j)->exponent) { 1566 case BFLOAT_FAILED: 1567 uk = bkey_unpack_key(b, k); 1568 prt_printf(out, 1569 " failed unpacked at depth %u\n" 1570 "\t", 1571 ilog2(j)); 1572 bch2_bpos_to_text(out, uk.p); 1573 prt_printf(out, "\n"); 1574 break; 1575 } 1576 } 1577