xref: /linux/fs/bcachefs/bset.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcachefs.h"
10 #include "btree_cache.h"
11 #include "bset.h"
12 #include "eytzinger.h"
13 #include "trace.h"
14 #include "util.h"
15 
16 #include <asm/unaligned.h>
17 #include <linux/console.h>
18 #include <linux/random.h>
19 #include <linux/prefetch.h>
20 
21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
22 						  struct btree *);
23 
24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
25 {
26 	unsigned n = ARRAY_SIZE(iter->data);
27 
28 	while (n && __btree_node_iter_set_end(iter, n - 1))
29 		--n;
30 
31 	return n;
32 }
33 
34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
35 {
36 	return bch2_bkey_to_bset_inlined(b, k);
37 }
38 
39 /*
40  * There are never duplicate live keys in the btree - but including keys that
41  * have been flagged as deleted (and will be cleaned up later) we _will_ see
42  * duplicates.
43  *
44  * Thus the sort order is: usual key comparison first, but for keys that compare
45  * equal the deleted key(s) come first, and the (at most one) live version comes
46  * last.
47  *
48  * The main reason for this is insertion: to handle overwrites, we first iterate
49  * over keys that compare equal to our insert key, and then insert immediately
50  * prior to the first key greater than the key we're inserting - our insert
51  * position will be after all keys that compare equal to our insert key, which
52  * by the time we actually do the insert will all be deleted.
53  */
54 
55 void bch2_dump_bset(struct bch_fs *c, struct btree *b,
56 		    struct bset *i, unsigned set)
57 {
58 	struct bkey_packed *_k, *_n;
59 	struct bkey uk, n;
60 	struct bkey_s_c k;
61 	struct printbuf buf = PRINTBUF;
62 
63 	if (!i->u64s)
64 		return;
65 
66 	for (_k = i->start;
67 	     _k < vstruct_last(i);
68 	     _k = _n) {
69 		_n = bkey_p_next(_k);
70 
71 		k = bkey_disassemble(b, _k, &uk);
72 
73 		printbuf_reset(&buf);
74 		if (c)
75 			bch2_bkey_val_to_text(&buf, c, k);
76 		else
77 			bch2_bkey_to_text(&buf, k.k);
78 		printk(KERN_ERR "block %u key %5zu: %s\n", set,
79 		       _k->_data - i->_data, buf.buf);
80 
81 		if (_n == vstruct_last(i))
82 			continue;
83 
84 		n = bkey_unpack_key(b, _n);
85 
86 		if (bpos_lt(n.p, k.k->p)) {
87 			printk(KERN_ERR "Key skipped backwards\n");
88 			continue;
89 		}
90 
91 		if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p))
92 			printk(KERN_ERR "Duplicate keys\n");
93 	}
94 
95 	printbuf_exit(&buf);
96 }
97 
98 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
99 {
100 	struct bset_tree *t;
101 
102 	console_lock();
103 	for_each_bset(b, t)
104 		bch2_dump_bset(c, b, bset(b, t), t - b->set);
105 	console_unlock();
106 }
107 
108 void bch2_dump_btree_node_iter(struct btree *b,
109 			      struct btree_node_iter *iter)
110 {
111 	struct btree_node_iter_set *set;
112 	struct printbuf buf = PRINTBUF;
113 
114 	printk(KERN_ERR "btree node iter with %u/%u sets:\n",
115 	       __btree_node_iter_used(iter), b->nsets);
116 
117 	btree_node_iter_for_each(iter, set) {
118 		struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
119 		struct bset_tree *t = bch2_bkey_to_bset(b, k);
120 		struct bkey uk = bkey_unpack_key(b, k);
121 
122 		printbuf_reset(&buf);
123 		bch2_bkey_to_text(&buf, &uk);
124 		printk(KERN_ERR "set %zu key %u: %s\n",
125 		       t - b->set, set->k, buf.buf);
126 	}
127 
128 	printbuf_exit(&buf);
129 }
130 
131 #ifdef CONFIG_BCACHEFS_DEBUG
132 
133 void __bch2_verify_btree_nr_keys(struct btree *b)
134 {
135 	struct bset_tree *t;
136 	struct bkey_packed *k;
137 	struct btree_nr_keys nr = { 0 };
138 
139 	for_each_bset(b, t)
140 		bset_tree_for_each_key(b, t, k)
141 			if (!bkey_deleted(k))
142 				btree_keys_account_key_add(&nr, t - b->set, k);
143 
144 	BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
145 }
146 
147 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
148 					    struct btree *b)
149 {
150 	struct btree_node_iter iter = *_iter;
151 	const struct bkey_packed *k, *n;
152 
153 	k = bch2_btree_node_iter_peek_all(&iter, b);
154 	__bch2_btree_node_iter_advance(&iter, b);
155 	n = bch2_btree_node_iter_peek_all(&iter, b);
156 
157 	bkey_unpack_key(b, k);
158 
159 	if (n &&
160 	    bkey_iter_cmp(b, k, n) > 0) {
161 		struct btree_node_iter_set *set;
162 		struct bkey ku = bkey_unpack_key(b, k);
163 		struct bkey nu = bkey_unpack_key(b, n);
164 		struct printbuf buf1 = PRINTBUF;
165 		struct printbuf buf2 = PRINTBUF;
166 
167 		bch2_dump_btree_node(NULL, b);
168 		bch2_bkey_to_text(&buf1, &ku);
169 		bch2_bkey_to_text(&buf2, &nu);
170 		printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
171 		       buf1.buf, buf2.buf);
172 		printk(KERN_ERR "iter was:");
173 
174 		btree_node_iter_for_each(_iter, set) {
175 			struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k);
176 			struct bset_tree *t = bch2_bkey_to_bset(b, k2);
177 			printk(" [%zi %zi]", t - b->set,
178 			       k2->_data - bset(b, t)->_data);
179 		}
180 		panic("\n");
181 	}
182 }
183 
184 void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
185 				 struct btree *b)
186 {
187 	struct btree_node_iter_set *set, *s2;
188 	struct bkey_packed *k, *p;
189 	struct bset_tree *t;
190 
191 	if (bch2_btree_node_iter_end(iter))
192 		return;
193 
194 	/* Verify no duplicates: */
195 	btree_node_iter_for_each(iter, set) {
196 		BUG_ON(set->k > set->end);
197 		btree_node_iter_for_each(iter, s2)
198 			BUG_ON(set != s2 && set->end == s2->end);
199 	}
200 
201 	/* Verify that set->end is correct: */
202 	btree_node_iter_for_each(iter, set) {
203 		for_each_bset(b, t)
204 			if (set->end == t->end_offset)
205 				goto found;
206 		BUG();
207 found:
208 		BUG_ON(set->k < btree_bkey_first_offset(t) ||
209 		       set->k >= t->end_offset);
210 	}
211 
212 	/* Verify iterator is sorted: */
213 	btree_node_iter_for_each(iter, set)
214 		BUG_ON(set != iter->data &&
215 		       btree_node_iter_cmp(b, set[-1], set[0]) > 0);
216 
217 	k = bch2_btree_node_iter_peek_all(iter, b);
218 
219 	for_each_bset(b, t) {
220 		if (iter->data[0].end == t->end_offset)
221 			continue;
222 
223 		p = bch2_bkey_prev_all(b, t,
224 			bch2_btree_node_iter_bset_pos(iter, b, t));
225 
226 		BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
227 	}
228 }
229 
230 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
231 			    struct bkey_packed *insert, unsigned clobber_u64s)
232 {
233 	struct bset_tree *t = bch2_bkey_to_bset(b, where);
234 	struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
235 	struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s);
236 	struct printbuf buf1 = PRINTBUF;
237 	struct printbuf buf2 = PRINTBUF;
238 #if 0
239 	BUG_ON(prev &&
240 	       bkey_iter_cmp(b, prev, insert) > 0);
241 #else
242 	if (prev &&
243 	    bkey_iter_cmp(b, prev, insert) > 0) {
244 		struct bkey k1 = bkey_unpack_key(b, prev);
245 		struct bkey k2 = bkey_unpack_key(b, insert);
246 
247 		bch2_dump_btree_node(NULL, b);
248 		bch2_bkey_to_text(&buf1, &k1);
249 		bch2_bkey_to_text(&buf2, &k2);
250 
251 		panic("prev > insert:\n"
252 		      "prev    key %s\n"
253 		      "insert  key %s\n",
254 		      buf1.buf, buf2.buf);
255 	}
256 #endif
257 #if 0
258 	BUG_ON(next != btree_bkey_last(b, t) &&
259 	       bkey_iter_cmp(b, insert, next) > 0);
260 #else
261 	if (next != btree_bkey_last(b, t) &&
262 	    bkey_iter_cmp(b, insert, next) > 0) {
263 		struct bkey k1 = bkey_unpack_key(b, insert);
264 		struct bkey k2 = bkey_unpack_key(b, next);
265 
266 		bch2_dump_btree_node(NULL, b);
267 		bch2_bkey_to_text(&buf1, &k1);
268 		bch2_bkey_to_text(&buf2, &k2);
269 
270 		panic("insert > next:\n"
271 		      "insert  key %s\n"
272 		      "next    key %s\n",
273 		      buf1.buf, buf2.buf);
274 	}
275 #endif
276 }
277 
278 #else
279 
280 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
281 						   struct btree *b) {}
282 
283 #endif
284 
285 /* Auxiliary search trees */
286 
287 #define BFLOAT_FAILED_UNPACKED	U8_MAX
288 #define BFLOAT_FAILED		U8_MAX
289 
290 struct bkey_float {
291 	u8		exponent;
292 	u8		key_offset;
293 	u16		mantissa;
294 };
295 #define BKEY_MANTISSA_BITS	16
296 
297 static unsigned bkey_float_byte_offset(unsigned idx)
298 {
299 	return idx * sizeof(struct bkey_float);
300 }
301 
302 struct ro_aux_tree {
303 	u8			nothing[0];
304 	struct bkey_float	f[];
305 };
306 
307 struct rw_aux_tree {
308 	u16		offset;
309 	struct bpos	k;
310 };
311 
312 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
313 {
314 	BUG_ON(t->aux_data_offset == U16_MAX);
315 
316 	switch (bset_aux_tree_type(t)) {
317 	case BSET_NO_AUX_TREE:
318 		return t->aux_data_offset;
319 	case BSET_RO_AUX_TREE:
320 		return t->aux_data_offset +
321 			DIV_ROUND_UP(t->size * sizeof(struct bkey_float) +
322 				     t->size * sizeof(u8), 8);
323 	case BSET_RW_AUX_TREE:
324 		return t->aux_data_offset +
325 			DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
326 	default:
327 		BUG();
328 	}
329 }
330 
331 static unsigned bset_aux_tree_buf_start(const struct btree *b,
332 					const struct bset_tree *t)
333 {
334 	return t == b->set
335 		? DIV_ROUND_UP(b->unpack_fn_len, 8)
336 		: bset_aux_tree_buf_end(t - 1);
337 }
338 
339 static void *__aux_tree_base(const struct btree *b,
340 			     const struct bset_tree *t)
341 {
342 	return b->aux_data + t->aux_data_offset * 8;
343 }
344 
345 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
346 					    const struct bset_tree *t)
347 {
348 	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
349 
350 	return __aux_tree_base(b, t);
351 }
352 
353 static u8 *ro_aux_tree_prev(const struct btree *b,
354 			    const struct bset_tree *t)
355 {
356 	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
357 
358 	return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size);
359 }
360 
361 static struct bkey_float *bkey_float(const struct btree *b,
362 				     const struct bset_tree *t,
363 				     unsigned idx)
364 {
365 	return ro_aux_tree_base(b, t)->f + idx;
366 }
367 
368 static void bset_aux_tree_verify(const struct btree *b)
369 {
370 #ifdef CONFIG_BCACHEFS_DEBUG
371 	const struct bset_tree *t;
372 
373 	for_each_bset(b, t) {
374 		if (t->aux_data_offset == U16_MAX)
375 			continue;
376 
377 		BUG_ON(t != b->set &&
378 		       t[-1].aux_data_offset == U16_MAX);
379 
380 		BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
381 		BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
382 		BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
383 	}
384 #endif
385 }
386 
387 void bch2_btree_keys_init(struct btree *b)
388 {
389 	unsigned i;
390 
391 	b->nsets		= 0;
392 	memset(&b->nr, 0, sizeof(b->nr));
393 
394 	for (i = 0; i < MAX_BSETS; i++)
395 		b->set[i].data_offset = U16_MAX;
396 
397 	bch2_bset_set_no_aux_tree(b, b->set);
398 }
399 
400 /* Binary tree stuff for auxiliary search trees */
401 
402 /*
403  * Cacheline/offset <-> bkey pointer arithmetic:
404  *
405  * t->tree is a binary search tree in an array; each node corresponds to a key
406  * in one cacheline in t->set (BSET_CACHELINE bytes).
407  *
408  * This means we don't have to store the full index of the key that a node in
409  * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
410  * then bkey_float->m gives us the offset within that cacheline, in units of 8
411  * bytes.
412  *
413  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
414  * make this work.
415  *
416  * To construct the bfloat for an arbitrary key we need to know what the key
417  * immediately preceding it is: we have to check if the two keys differ in the
418  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
419  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
420  */
421 
422 static inline void *bset_cacheline(const struct btree *b,
423 				   const struct bset_tree *t,
424 				   unsigned cacheline)
425 {
426 	return (void *) round_down((unsigned long) btree_bkey_first(b, t),
427 				   L1_CACHE_BYTES) +
428 		cacheline * BSET_CACHELINE;
429 }
430 
431 static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
432 					     const struct bset_tree *t,
433 					     unsigned cacheline,
434 					     unsigned offset)
435 {
436 	return bset_cacheline(b, t, cacheline) + offset * 8;
437 }
438 
439 static unsigned bkey_to_cacheline(const struct btree *b,
440 				  const struct bset_tree *t,
441 				  const struct bkey_packed *k)
442 {
443 	return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
444 }
445 
446 static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
447 					  const struct bset_tree *t,
448 					  unsigned cacheline,
449 					  const struct bkey_packed *k)
450 {
451 	return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
452 }
453 
454 static unsigned bkey_to_cacheline_offset(const struct btree *b,
455 					 const struct bset_tree *t,
456 					 unsigned cacheline,
457 					 const struct bkey_packed *k)
458 {
459 	size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
460 
461 	EBUG_ON(m > U8_MAX);
462 	return m;
463 }
464 
465 static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
466 					       const struct bset_tree *t,
467 					       unsigned j)
468 {
469 	return cacheline_to_bkey(b, t,
470 			__eytzinger1_to_inorder(j, t->size - 1, t->extra),
471 			bkey_float(b, t, j)->key_offset);
472 }
473 
474 static struct bkey_packed *tree_to_prev_bkey(const struct btree *b,
475 					     const struct bset_tree *t,
476 					     unsigned j)
477 {
478 	unsigned prev_u64s = ro_aux_tree_prev(b, t)[j];
479 
480 	return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s);
481 }
482 
483 static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
484 				       const struct bset_tree *t)
485 {
486 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
487 
488 	return __aux_tree_base(b, t);
489 }
490 
491 /*
492  * For the write set - the one we're currently inserting keys into - we don't
493  * maintain a full search tree, we just keep a simple lookup table in t->prev.
494  */
495 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
496 					  struct bset_tree *t,
497 					  unsigned j)
498 {
499 	return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
500 }
501 
502 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
503 			    unsigned j, struct bkey_packed *k)
504 {
505 	EBUG_ON(k >= btree_bkey_last(b, t));
506 
507 	rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
508 		.offset	= __btree_node_key_to_offset(b, k),
509 		.k	= bkey_unpack_pos(b, k),
510 	};
511 }
512 
513 static void bch2_bset_verify_rw_aux_tree(struct btree *b,
514 					struct bset_tree *t)
515 {
516 	struct bkey_packed *k = btree_bkey_first(b, t);
517 	unsigned j = 0;
518 
519 	if (!bch2_expensive_debug_checks)
520 		return;
521 
522 	BUG_ON(bset_has_ro_aux_tree(t));
523 
524 	if (!bset_has_rw_aux_tree(t))
525 		return;
526 
527 	BUG_ON(t->size < 1);
528 	BUG_ON(rw_aux_to_bkey(b, t, j) != k);
529 
530 	goto start;
531 	while (1) {
532 		if (rw_aux_to_bkey(b, t, j) == k) {
533 			BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k,
534 					bkey_unpack_pos(b, k)));
535 start:
536 			if (++j == t->size)
537 				break;
538 
539 			BUG_ON(rw_aux_tree(b, t)[j].offset <=
540 			       rw_aux_tree(b, t)[j - 1].offset);
541 		}
542 
543 		k = bkey_p_next(k);
544 		BUG_ON(k >= btree_bkey_last(b, t));
545 	}
546 }
547 
548 /* returns idx of first entry >= offset: */
549 static unsigned rw_aux_tree_bsearch(struct btree *b,
550 				    struct bset_tree *t,
551 				    unsigned offset)
552 {
553 	unsigned bset_offs = offset - btree_bkey_first_offset(t);
554 	unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
555 	unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
556 
557 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
558 	EBUG_ON(!t->size);
559 	EBUG_ON(idx > t->size);
560 
561 	while (idx < t->size &&
562 	       rw_aux_tree(b, t)[idx].offset < offset)
563 		idx++;
564 
565 	while (idx &&
566 	       rw_aux_tree(b, t)[idx - 1].offset >= offset)
567 		idx--;
568 
569 	EBUG_ON(idx < t->size &&
570 		rw_aux_tree(b, t)[idx].offset < offset);
571 	EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
572 	EBUG_ON(idx + 1 < t->size &&
573 		rw_aux_tree(b, t)[idx].offset ==
574 		rw_aux_tree(b, t)[idx + 1].offset);
575 
576 	return idx;
577 }
578 
579 static inline unsigned bkey_mantissa(const struct bkey_packed *k,
580 				     const struct bkey_float *f,
581 				     unsigned idx)
582 {
583 	u64 v;
584 
585 	EBUG_ON(!bkey_packed(k));
586 
587 	v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
588 
589 	/*
590 	 * In little endian, we're shifting off low bits (and then the bits we
591 	 * want are at the low end), in big endian we're shifting off high bits
592 	 * (and then the bits we want are at the high end, so we shift them
593 	 * back down):
594 	 */
595 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
596 	v >>= f->exponent & 7;
597 #else
598 	v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
599 #endif
600 	return (u16) v;
601 }
602 
603 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t,
604 					unsigned j,
605 					struct bkey_packed *min_key,
606 					struct bkey_packed *max_key)
607 {
608 	struct bkey_float *f = bkey_float(b, t, j);
609 	struct bkey_packed *m = tree_to_bkey(b, t, j);
610 	struct bkey_packed *l = is_power_of_2(j)
611 		? min_key
612 		: tree_to_prev_bkey(b, t, j >> ffs(j));
613 	struct bkey_packed *r = is_power_of_2(j + 1)
614 		? max_key
615 		: tree_to_bkey(b, t, j >> (ffz(j) + 1));
616 	unsigned mantissa;
617 	int shift, exponent, high_bit;
618 
619 	/*
620 	 * for failed bfloats, the lookup code falls back to comparing against
621 	 * the original key.
622 	 */
623 
624 	if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
625 	    !b->nr_key_bits) {
626 		f->exponent = BFLOAT_FAILED_UNPACKED;
627 		return;
628 	}
629 
630 	/*
631 	 * The greatest differing bit of l and r is the first bit we must
632 	 * include in the bfloat mantissa we're creating in order to do
633 	 * comparisons - that bit always becomes the high bit of
634 	 * bfloat->mantissa, and thus the exponent we're calculating here is
635 	 * the position of what will become the low bit in bfloat->mantissa:
636 	 *
637 	 * Note that this may be negative - we may be running off the low end
638 	 * of the key: we handle this later:
639 	 */
640 	high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
641 		       min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
642 	exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
643 
644 	/*
645 	 * Then we calculate the actual shift value, from the start of the key
646 	 * (k->_data), to get the key bits starting at exponent:
647 	 */
648 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
649 	shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
650 
651 	EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
652 #else
653 	shift = high_bit_offset +
654 		b->nr_key_bits -
655 		exponent -
656 		BKEY_MANTISSA_BITS;
657 
658 	EBUG_ON(shift < KEY_PACKED_BITS_START);
659 #endif
660 	EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
661 
662 	f->exponent = shift;
663 	mantissa = bkey_mantissa(m, f, j);
664 
665 	/*
666 	 * If we've got garbage bits, set them to all 1s - it's legal for the
667 	 * bfloat to compare larger than the original key, but not smaller:
668 	 */
669 	if (exponent < 0)
670 		mantissa |= ~(~0U << -exponent);
671 
672 	f->mantissa = mantissa;
673 }
674 
675 /* bytes remaining - only valid for last bset: */
676 static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t)
677 {
678 	bset_aux_tree_verify(b);
679 
680 	return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
681 }
682 
683 static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t)
684 {
685 	return __bset_tree_capacity(b, t) /
686 		(sizeof(struct bkey_float) + sizeof(u8));
687 }
688 
689 static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t)
690 {
691 	return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
692 }
693 
694 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
695 {
696 	struct bkey_packed *k;
697 
698 	t->size = 1;
699 	t->extra = BSET_RW_AUX_TREE_VAL;
700 	rw_aux_tree(b, t)[0].offset =
701 		__btree_node_key_to_offset(b, btree_bkey_first(b, t));
702 
703 	bset_tree_for_each_key(b, t, k) {
704 		if (t->size == bset_rw_tree_capacity(b, t))
705 			break;
706 
707 		if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
708 		    L1_CACHE_BYTES)
709 			rw_aux_tree_set(b, t, t->size++, k);
710 	}
711 }
712 
713 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
714 {
715 	struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t);
716 	struct bkey_i min_key, max_key;
717 	unsigned j, cacheline = 1;
718 
719 	t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
720 		      bset_ro_tree_capacity(b, t));
721 retry:
722 	if (t->size < 2) {
723 		t->size = 0;
724 		t->extra = BSET_NO_AUX_TREE_VAL;
725 		return;
726 	}
727 
728 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
729 
730 	/* First we figure out where the first key in each cacheline is */
731 	eytzinger1_for_each(j, t->size - 1) {
732 		while (bkey_to_cacheline(b, t, k) < cacheline)
733 			prev = k, k = bkey_p_next(k);
734 
735 		if (k >= btree_bkey_last(b, t)) {
736 			/* XXX: this path sucks */
737 			t->size--;
738 			goto retry;
739 		}
740 
741 		ro_aux_tree_prev(b, t)[j] = prev->u64s;
742 		bkey_float(b, t, j)->key_offset =
743 			bkey_to_cacheline_offset(b, t, cacheline++, k);
744 
745 		EBUG_ON(tree_to_prev_bkey(b, t, j) != prev);
746 		EBUG_ON(tree_to_bkey(b, t, j) != k);
747 	}
748 
749 	while (k != btree_bkey_last(b, t))
750 		prev = k, k = bkey_p_next(k);
751 
752 	if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
753 		bkey_init(&min_key.k);
754 		min_key.k.p = b->data->min_key;
755 	}
756 
757 	if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
758 		bkey_init(&max_key.k);
759 		max_key.k.p = b->data->max_key;
760 	}
761 
762 	/* Then we build the tree */
763 	eytzinger1_for_each(j, t->size - 1)
764 		make_bfloat(b, t, j,
765 			    bkey_to_packed(&min_key),
766 			    bkey_to_packed(&max_key));
767 }
768 
769 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
770 {
771 	struct bset_tree *i;
772 
773 	for (i = b->set; i != t; i++)
774 		BUG_ON(bset_has_rw_aux_tree(i));
775 
776 	bch2_bset_set_no_aux_tree(b, t);
777 
778 	/* round up to next cacheline: */
779 	t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
780 				      SMP_CACHE_BYTES / sizeof(u64));
781 
782 	bset_aux_tree_verify(b);
783 }
784 
785 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
786 			     bool writeable)
787 {
788 	if (writeable
789 	    ? bset_has_rw_aux_tree(t)
790 	    : bset_has_ro_aux_tree(t))
791 		return;
792 
793 	bset_alloc_tree(b, t);
794 
795 	if (!__bset_tree_capacity(b, t))
796 		return;
797 
798 	if (writeable)
799 		__build_rw_aux_tree(b, t);
800 	else
801 		__build_ro_aux_tree(b, t);
802 
803 	bset_aux_tree_verify(b);
804 }
805 
806 void bch2_bset_init_first(struct btree *b, struct bset *i)
807 {
808 	struct bset_tree *t;
809 
810 	BUG_ON(b->nsets);
811 
812 	memset(i, 0, sizeof(*i));
813 	get_random_bytes(&i->seq, sizeof(i->seq));
814 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
815 
816 	t = &b->set[b->nsets++];
817 	set_btree_bset(b, t, i);
818 }
819 
820 void bch2_bset_init_next(struct bch_fs *c, struct btree *b,
821 			 struct btree_node_entry *bne)
822 {
823 	struct bset *i = &bne->keys;
824 	struct bset_tree *t;
825 
826 	BUG_ON(bset_byte_offset(b, bne) >= btree_bytes(c));
827 	BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
828 	BUG_ON(b->nsets >= MAX_BSETS);
829 
830 	memset(i, 0, sizeof(*i));
831 	i->seq = btree_bset_first(b)->seq;
832 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
833 
834 	t = &b->set[b->nsets++];
835 	set_btree_bset(b, t, i);
836 }
837 
838 /*
839  * find _some_ key in the same bset as @k that precedes @k - not necessarily the
840  * immediate predecessor:
841  */
842 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
843 				       struct bkey_packed *k)
844 {
845 	struct bkey_packed *p;
846 	unsigned offset;
847 	int j;
848 
849 	EBUG_ON(k < btree_bkey_first(b, t) ||
850 		k > btree_bkey_last(b, t));
851 
852 	if (k == btree_bkey_first(b, t))
853 		return NULL;
854 
855 	switch (bset_aux_tree_type(t)) {
856 	case BSET_NO_AUX_TREE:
857 		p = btree_bkey_first(b, t);
858 		break;
859 	case BSET_RO_AUX_TREE:
860 		j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
861 
862 		do {
863 			p = j ? tree_to_bkey(b, t,
864 					__inorder_to_eytzinger1(j--,
865 							t->size - 1, t->extra))
866 			      : btree_bkey_first(b, t);
867 		} while (p >= k);
868 		break;
869 	case BSET_RW_AUX_TREE:
870 		offset = __btree_node_key_to_offset(b, k);
871 		j = rw_aux_tree_bsearch(b, t, offset);
872 		p = j ? rw_aux_to_bkey(b, t, j - 1)
873 		      : btree_bkey_first(b, t);
874 		break;
875 	}
876 
877 	return p;
878 }
879 
880 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
881 					  struct bset_tree *t,
882 					  struct bkey_packed *k,
883 					  unsigned min_key_type)
884 {
885 	struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
886 
887 	while ((p = __bkey_prev(b, t, k)) && !ret) {
888 		for (i = p; i != k; i = bkey_p_next(i))
889 			if (i->type >= min_key_type)
890 				ret = i;
891 
892 		k = p;
893 	}
894 
895 	if (bch2_expensive_debug_checks) {
896 		BUG_ON(ret >= orig_k);
897 
898 		for (i = ret
899 			? bkey_p_next(ret)
900 			: btree_bkey_first(b, t);
901 		     i != orig_k;
902 		     i = bkey_p_next(i))
903 			BUG_ON(i->type >= min_key_type);
904 	}
905 
906 	return ret;
907 }
908 
909 /* Insert */
910 
911 static void bch2_bset_fix_lookup_table(struct btree *b,
912 				       struct bset_tree *t,
913 				       struct bkey_packed *_where,
914 				       unsigned clobber_u64s,
915 				       unsigned new_u64s)
916 {
917 	int shift = new_u64s - clobber_u64s;
918 	unsigned l, j, where = __btree_node_key_to_offset(b, _where);
919 
920 	EBUG_ON(bset_has_ro_aux_tree(t));
921 
922 	if (!bset_has_rw_aux_tree(t))
923 		return;
924 
925 	/* returns first entry >= where */
926 	l = rw_aux_tree_bsearch(b, t, where);
927 
928 	if (!l) /* never delete first entry */
929 		l++;
930 	else if (l < t->size &&
931 		 where < t->end_offset &&
932 		 rw_aux_tree(b, t)[l].offset == where)
933 		rw_aux_tree_set(b, t, l++, _where);
934 
935 	/* l now > where */
936 
937 	for (j = l;
938 	     j < t->size &&
939 	     rw_aux_tree(b, t)[j].offset < where + clobber_u64s;
940 	     j++)
941 		;
942 
943 	if (j < t->size &&
944 	    rw_aux_tree(b, t)[j].offset + shift ==
945 	    rw_aux_tree(b, t)[l - 1].offset)
946 		j++;
947 
948 	memmove(&rw_aux_tree(b, t)[l],
949 		&rw_aux_tree(b, t)[j],
950 		(void *) &rw_aux_tree(b, t)[t->size] -
951 		(void *) &rw_aux_tree(b, t)[j]);
952 	t->size -= j - l;
953 
954 	for (j = l; j < t->size; j++)
955 		rw_aux_tree(b, t)[j].offset += shift;
956 
957 	EBUG_ON(l < t->size &&
958 		rw_aux_tree(b, t)[l].offset ==
959 		rw_aux_tree(b, t)[l - 1].offset);
960 
961 	if (t->size < bset_rw_tree_capacity(b, t) &&
962 	    (l < t->size
963 	     ? rw_aux_tree(b, t)[l].offset
964 	     : t->end_offset) -
965 	    rw_aux_tree(b, t)[l - 1].offset >
966 	    L1_CACHE_BYTES / sizeof(u64)) {
967 		struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1);
968 		struct bkey_packed *end = l < t->size
969 			? rw_aux_to_bkey(b, t, l)
970 			: btree_bkey_last(b, t);
971 		struct bkey_packed *k = start;
972 
973 		while (1) {
974 			k = bkey_p_next(k);
975 			if (k == end)
976 				break;
977 
978 			if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
979 				memmove(&rw_aux_tree(b, t)[l + 1],
980 					&rw_aux_tree(b, t)[l],
981 					(void *) &rw_aux_tree(b, t)[t->size] -
982 					(void *) &rw_aux_tree(b, t)[l]);
983 				t->size++;
984 				rw_aux_tree_set(b, t, l, k);
985 				break;
986 			}
987 		}
988 	}
989 
990 	bch2_bset_verify_rw_aux_tree(b, t);
991 	bset_aux_tree_verify(b);
992 }
993 
994 void bch2_bset_insert(struct btree *b,
995 		      struct btree_node_iter *iter,
996 		      struct bkey_packed *where,
997 		      struct bkey_i *insert,
998 		      unsigned clobber_u64s)
999 {
1000 	struct bkey_format *f = &b->format;
1001 	struct bset_tree *t = bset_tree_last(b);
1002 	struct bkey_packed packed, *src = bkey_to_packed(insert);
1003 
1004 	bch2_bset_verify_rw_aux_tree(b, t);
1005 	bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
1006 
1007 	if (bch2_bkey_pack_key(&packed, &insert->k, f))
1008 		src = &packed;
1009 
1010 	if (!bkey_deleted(&insert->k))
1011 		btree_keys_account_key_add(&b->nr, t - b->set, src);
1012 
1013 	if (src->u64s != clobber_u64s) {
1014 		u64 *src_p = (u64 *) where->_data + clobber_u64s;
1015 		u64 *dst_p = (u64 *) where->_data + src->u64s;
1016 
1017 		EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1018 			(int) clobber_u64s - src->u64s);
1019 
1020 		memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1021 		le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1022 		set_btree_bset_end(b, t);
1023 	}
1024 
1025 	memcpy_u64s_small(where, src,
1026 		    bkeyp_key_u64s(f, src));
1027 	memcpy_u64s(bkeyp_val(f, where), &insert->v,
1028 		    bkeyp_val_u64s(f, src));
1029 
1030 	if (src->u64s != clobber_u64s)
1031 		bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1032 
1033 	bch2_verify_btree_nr_keys(b);
1034 }
1035 
1036 void bch2_bset_delete(struct btree *b,
1037 		      struct bkey_packed *where,
1038 		      unsigned clobber_u64s)
1039 {
1040 	struct bset_tree *t = bset_tree_last(b);
1041 	u64 *src_p = (u64 *) where->_data + clobber_u64s;
1042 	u64 *dst_p = where->_data;
1043 
1044 	bch2_bset_verify_rw_aux_tree(b, t);
1045 
1046 	EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1047 
1048 	memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1049 	le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1050 	set_btree_bset_end(b, t);
1051 
1052 	bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1053 }
1054 
1055 /* Lookup */
1056 
1057 __flatten
1058 static struct bkey_packed *bset_search_write_set(const struct btree *b,
1059 				struct bset_tree *t,
1060 				struct bpos *search)
1061 {
1062 	unsigned l = 0, r = t->size;
1063 
1064 	while (l + 1 != r) {
1065 		unsigned m = (l + r) >> 1;
1066 
1067 		if (bpos_lt(rw_aux_tree(b, t)[m].k, *search))
1068 			l = m;
1069 		else
1070 			r = m;
1071 	}
1072 
1073 	return rw_aux_to_bkey(b, t, l);
1074 }
1075 
1076 static inline void prefetch_four_cachelines(void *p)
1077 {
1078 #ifdef CONFIG_X86_64
1079 	asm("prefetcht0 (-127 + 64 * 0)(%0);"
1080 	    "prefetcht0 (-127 + 64 * 1)(%0);"
1081 	    "prefetcht0 (-127 + 64 * 2)(%0);"
1082 	    "prefetcht0 (-127 + 64 * 3)(%0);"
1083 	    :
1084 	    : "r" (p + 127));
1085 #else
1086 	prefetch(p + L1_CACHE_BYTES * 0);
1087 	prefetch(p + L1_CACHE_BYTES * 1);
1088 	prefetch(p + L1_CACHE_BYTES * 2);
1089 	prefetch(p + L1_CACHE_BYTES * 3);
1090 #endif
1091 }
1092 
1093 static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1094 					      const struct bkey_float *f,
1095 					      unsigned idx)
1096 {
1097 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1098 	unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1099 
1100 	return f->exponent > key_bits_start;
1101 #else
1102 	unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1103 
1104 	return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1105 #endif
1106 }
1107 
1108 __flatten
1109 static struct bkey_packed *bset_search_tree(const struct btree *b,
1110 				const struct bset_tree *t,
1111 				const struct bpos *search,
1112 				const struct bkey_packed *packed_search)
1113 {
1114 	struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1115 	struct bkey_float *f;
1116 	struct bkey_packed *k;
1117 	unsigned inorder, n = 1, l, r;
1118 	int cmp;
1119 
1120 	do {
1121 		if (likely(n << 4 < t->size))
1122 			prefetch(&base->f[n << 4]);
1123 
1124 		f = &base->f[n];
1125 		if (unlikely(f->exponent >= BFLOAT_FAILED))
1126 			goto slowpath;
1127 
1128 		l = f->mantissa;
1129 		r = bkey_mantissa(packed_search, f, n);
1130 
1131 		if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n))
1132 			goto slowpath;
1133 
1134 		n = n * 2 + (l < r);
1135 		continue;
1136 slowpath:
1137 		k = tree_to_bkey(b, t, n);
1138 		cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1139 		if (!cmp)
1140 			return k;
1141 
1142 		n = n * 2 + (cmp < 0);
1143 	} while (n < t->size);
1144 
1145 	inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1146 
1147 	/*
1148 	 * n would have been the node we recursed to - the low bit tells us if
1149 	 * we recursed left or recursed right.
1150 	 */
1151 	if (likely(!(n & 1))) {
1152 		--inorder;
1153 		if (unlikely(!inorder))
1154 			return btree_bkey_first(b, t);
1155 
1156 		f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1157 	}
1158 
1159 	return cacheline_to_bkey(b, t, inorder, f->key_offset);
1160 }
1161 
1162 static __always_inline __flatten
1163 struct bkey_packed *__bch2_bset_search(struct btree *b,
1164 				struct bset_tree *t,
1165 				struct bpos *search,
1166 				const struct bkey_packed *lossy_packed_search)
1167 {
1168 
1169 	/*
1170 	 * First, we search for a cacheline, then lastly we do a linear search
1171 	 * within that cacheline.
1172 	 *
1173 	 * To search for the cacheline, there's three different possibilities:
1174 	 *  * The set is too small to have a search tree, so we just do a linear
1175 	 *    search over the whole set.
1176 	 *  * The set is the one we're currently inserting into; keeping a full
1177 	 *    auxiliary search tree up to date would be too expensive, so we
1178 	 *    use a much simpler lookup table to do a binary search -
1179 	 *    bset_search_write_set().
1180 	 *  * Or we use the auxiliary search tree we constructed earlier -
1181 	 *    bset_search_tree()
1182 	 */
1183 
1184 	switch (bset_aux_tree_type(t)) {
1185 	case BSET_NO_AUX_TREE:
1186 		return btree_bkey_first(b, t);
1187 	case BSET_RW_AUX_TREE:
1188 		return bset_search_write_set(b, t, search);
1189 	case BSET_RO_AUX_TREE:
1190 		return bset_search_tree(b, t, search, lossy_packed_search);
1191 	default:
1192 		BUG();
1193 	}
1194 }
1195 
1196 static __always_inline __flatten
1197 struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1198 				struct bset_tree *t,
1199 				struct bpos *search,
1200 				struct bkey_packed *packed_search,
1201 				const struct bkey_packed *lossy_packed_search,
1202 				struct bkey_packed *m)
1203 {
1204 	if (lossy_packed_search)
1205 		while (m != btree_bkey_last(b, t) &&
1206 		       bkey_iter_cmp_p_or_unp(b, m,
1207 					lossy_packed_search, search) < 0)
1208 			m = bkey_p_next(m);
1209 
1210 	if (!packed_search)
1211 		while (m != btree_bkey_last(b, t) &&
1212 		       bkey_iter_pos_cmp(b, m, search) < 0)
1213 			m = bkey_p_next(m);
1214 
1215 	if (bch2_expensive_debug_checks) {
1216 		struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1217 
1218 		BUG_ON(prev &&
1219 		       bkey_iter_cmp_p_or_unp(b, prev,
1220 					packed_search, search) >= 0);
1221 	}
1222 
1223 	return m;
1224 }
1225 
1226 /* Btree node iterator */
1227 
1228 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1229 			      struct btree *b,
1230 			      const struct bkey_packed *k,
1231 			      const struct bkey_packed *end)
1232 {
1233 	if (k != end) {
1234 		struct btree_node_iter_set *pos;
1235 
1236 		btree_node_iter_for_each(iter, pos)
1237 			;
1238 
1239 		BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1240 		*pos = (struct btree_node_iter_set) {
1241 			__btree_node_key_to_offset(b, k),
1242 			__btree_node_key_to_offset(b, end)
1243 		};
1244 	}
1245 }
1246 
1247 void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1248 			       struct btree *b,
1249 			       const struct bkey_packed *k,
1250 			       const struct bkey_packed *end)
1251 {
1252 	__bch2_btree_node_iter_push(iter, b, k, end);
1253 	bch2_btree_node_iter_sort(iter, b);
1254 }
1255 
1256 noinline __flatten __cold
1257 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1258 			      struct btree *b, struct bpos *search)
1259 {
1260 	struct bkey_packed *k;
1261 
1262 	trace_bkey_pack_pos_fail(search);
1263 
1264 	bch2_btree_node_iter_init_from_start(iter, b);
1265 
1266 	while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1267 	       bkey_iter_pos_cmp(b, k, search) < 0)
1268 		bch2_btree_node_iter_advance(iter, b);
1269 }
1270 
1271 /**
1272  * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a
1273  * given position
1274  *
1275  * @iter:	iterator to initialize
1276  * @b:		btree node to search
1277  * @search:	search key
1278  *
1279  * Main entry point to the lookup code for individual btree nodes:
1280  *
1281  * NOTE:
1282  *
1283  * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1284  * keys. This doesn't matter for most code, but it does matter for lookups.
1285  *
1286  * Some adjacent keys with a string of equal keys:
1287  *	i j k k k k l m
1288  *
1289  * If you search for k, the lookup code isn't guaranteed to return you any
1290  * specific k. The lookup code is conceptually doing a binary search and
1291  * iterating backwards is very expensive so if the pivot happens to land at the
1292  * last k that's what you'll get.
1293  *
1294  * This works out ok, but it's something to be aware of:
1295  *
1296  *  - For non extents, we guarantee that the live key comes last - see
1297  *    btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1298  *    see will only be deleted keys you don't care about.
1299  *
1300  *  - For extents, deleted keys sort last (see the comment at the top of this
1301  *    file). But when you're searching for extents, you actually want the first
1302  *    key strictly greater than your search key - an extent that compares equal
1303  *    to the search key is going to have 0 sectors after the search key.
1304  *
1305  *    But this does mean that we can't just search for
1306  *    bpos_successor(start_of_range) to get the first extent that overlaps with
1307  *    the range we want - if we're unlucky and there's an extent that ends
1308  *    exactly where we searched, then there could be a deleted key at the same
1309  *    position and we'd get that when we search instead of the preceding extent
1310  *    we needed.
1311  *
1312  *    So we've got to search for start_of_range, then after the lookup iterate
1313  *    past any extents that compare equal to the position we searched for.
1314  */
1315 __flatten
1316 void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1317 			       struct btree *b, struct bpos *search)
1318 {
1319 	struct bkey_packed p, *packed_search = NULL;
1320 	struct btree_node_iter_set *pos = iter->data;
1321 	struct bkey_packed *k[MAX_BSETS];
1322 	unsigned i;
1323 
1324 	EBUG_ON(bpos_lt(*search, b->data->min_key));
1325 	EBUG_ON(bpos_gt(*search, b->data->max_key));
1326 	bset_aux_tree_verify(b);
1327 
1328 	memset(iter, 0, sizeof(*iter));
1329 
1330 	switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1331 	case BKEY_PACK_POS_EXACT:
1332 		packed_search = &p;
1333 		break;
1334 	case BKEY_PACK_POS_SMALLER:
1335 		packed_search = NULL;
1336 		break;
1337 	case BKEY_PACK_POS_FAIL:
1338 		btree_node_iter_init_pack_failed(iter, b, search);
1339 		return;
1340 	}
1341 
1342 	for (i = 0; i < b->nsets; i++) {
1343 		k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1344 		prefetch_four_cachelines(k[i]);
1345 	}
1346 
1347 	for (i = 0; i < b->nsets; i++) {
1348 		struct bset_tree *t = b->set + i;
1349 		struct bkey_packed *end = btree_bkey_last(b, t);
1350 
1351 		k[i] = bch2_bset_search_linear(b, t, search,
1352 					       packed_search, &p, k[i]);
1353 		if (k[i] != end)
1354 			*pos++ = (struct btree_node_iter_set) {
1355 				__btree_node_key_to_offset(b, k[i]),
1356 				__btree_node_key_to_offset(b, end)
1357 			};
1358 	}
1359 
1360 	bch2_btree_node_iter_sort(iter, b);
1361 }
1362 
1363 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1364 					  struct btree *b)
1365 {
1366 	struct bset_tree *t;
1367 
1368 	memset(iter, 0, sizeof(*iter));
1369 
1370 	for_each_bset(b, t)
1371 		__bch2_btree_node_iter_push(iter, b,
1372 					   btree_bkey_first(b, t),
1373 					   btree_bkey_last(b, t));
1374 	bch2_btree_node_iter_sort(iter, b);
1375 }
1376 
1377 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1378 						  struct btree *b,
1379 						  struct bset_tree *t)
1380 {
1381 	struct btree_node_iter_set *set;
1382 
1383 	btree_node_iter_for_each(iter, set)
1384 		if (set->end == t->end_offset)
1385 			return __btree_node_offset_to_key(b, set->k);
1386 
1387 	return btree_bkey_last(b, t);
1388 }
1389 
1390 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1391 					    struct btree *b,
1392 					    unsigned first)
1393 {
1394 	bool ret;
1395 
1396 	if ((ret = (btree_node_iter_cmp(b,
1397 					iter->data[first],
1398 					iter->data[first + 1]) > 0)))
1399 		swap(iter->data[first], iter->data[first + 1]);
1400 	return ret;
1401 }
1402 
1403 void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1404 			       struct btree *b)
1405 {
1406 	/* unrolled bubble sort: */
1407 
1408 	if (!__btree_node_iter_set_end(iter, 2)) {
1409 		btree_node_iter_sort_two(iter, b, 0);
1410 		btree_node_iter_sort_two(iter, b, 1);
1411 	}
1412 
1413 	if (!__btree_node_iter_set_end(iter, 1))
1414 		btree_node_iter_sort_two(iter, b, 0);
1415 }
1416 
1417 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1418 				   struct btree_node_iter_set *set)
1419 {
1420 	struct btree_node_iter_set *last =
1421 		iter->data + ARRAY_SIZE(iter->data) - 1;
1422 
1423 	memmove(&set[0], &set[1], (void *) last - (void *) set);
1424 	*last = (struct btree_node_iter_set) { 0, 0 };
1425 }
1426 
1427 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1428 						  struct btree *b)
1429 {
1430 	iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1431 
1432 	EBUG_ON(iter->data->k > iter->data->end);
1433 
1434 	if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1435 		/* avoid an expensive memmove call: */
1436 		iter->data[0] = iter->data[1];
1437 		iter->data[1] = iter->data[2];
1438 		iter->data[2] = (struct btree_node_iter_set) { 0, 0 };
1439 		return;
1440 	}
1441 
1442 	if (__btree_node_iter_set_end(iter, 1))
1443 		return;
1444 
1445 	if (!btree_node_iter_sort_two(iter, b, 0))
1446 		return;
1447 
1448 	if (__btree_node_iter_set_end(iter, 2))
1449 		return;
1450 
1451 	btree_node_iter_sort_two(iter, b, 1);
1452 }
1453 
1454 void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1455 				  struct btree *b)
1456 {
1457 	if (bch2_expensive_debug_checks) {
1458 		bch2_btree_node_iter_verify(iter, b);
1459 		bch2_btree_node_iter_next_check(iter, b);
1460 	}
1461 
1462 	__bch2_btree_node_iter_advance(iter, b);
1463 }
1464 
1465 /*
1466  * Expensive:
1467  */
1468 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1469 						  struct btree *b)
1470 {
1471 	struct bkey_packed *k, *prev = NULL;
1472 	struct btree_node_iter_set *set;
1473 	struct bset_tree *t;
1474 	unsigned end = 0;
1475 
1476 	if (bch2_expensive_debug_checks)
1477 		bch2_btree_node_iter_verify(iter, b);
1478 
1479 	for_each_bset(b, t) {
1480 		k = bch2_bkey_prev_all(b, t,
1481 			bch2_btree_node_iter_bset_pos(iter, b, t));
1482 		if (k &&
1483 		    (!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1484 			prev = k;
1485 			end = t->end_offset;
1486 		}
1487 	}
1488 
1489 	if (!prev)
1490 		return NULL;
1491 
1492 	/*
1493 	 * We're manually memmoving instead of just calling sort() to ensure the
1494 	 * prev we picked ends up in slot 0 - sort won't necessarily put it
1495 	 * there because of duplicate deleted keys:
1496 	 */
1497 	btree_node_iter_for_each(iter, set)
1498 		if (set->end == end)
1499 			goto found;
1500 
1501 	BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1502 found:
1503 	BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1504 
1505 	memmove(&iter->data[1],
1506 		&iter->data[0],
1507 		(void *) set - (void *) &iter->data[0]);
1508 
1509 	iter->data[0].k = __btree_node_key_to_offset(b, prev);
1510 	iter->data[0].end = end;
1511 
1512 	if (bch2_expensive_debug_checks)
1513 		bch2_btree_node_iter_verify(iter, b);
1514 	return prev;
1515 }
1516 
1517 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1518 					      struct btree *b)
1519 {
1520 	struct bkey_packed *prev;
1521 
1522 	do {
1523 		prev = bch2_btree_node_iter_prev_all(iter, b);
1524 	} while (prev && bkey_deleted(prev));
1525 
1526 	return prev;
1527 }
1528 
1529 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1530 						 struct btree *b,
1531 						 struct bkey *u)
1532 {
1533 	struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1534 
1535 	return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1536 }
1537 
1538 /* Mergesort */
1539 
1540 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats)
1541 {
1542 	const struct bset_tree *t;
1543 
1544 	for_each_bset(b, t) {
1545 		enum bset_aux_tree_type type = bset_aux_tree_type(t);
1546 		size_t j;
1547 
1548 		stats->sets[type].nr++;
1549 		stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1550 			sizeof(u64);
1551 
1552 		if (bset_has_ro_aux_tree(t)) {
1553 			stats->floats += t->size - 1;
1554 
1555 			for (j = 1; j < t->size; j++)
1556 				stats->failed +=
1557 					bkey_float(b, t, j)->exponent ==
1558 					BFLOAT_FAILED;
1559 		}
1560 	}
1561 }
1562 
1563 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1564 			 struct bkey_packed *k)
1565 {
1566 	struct bset_tree *t = bch2_bkey_to_bset(b, k);
1567 	struct bkey uk;
1568 	unsigned j, inorder;
1569 
1570 	if (!bset_has_ro_aux_tree(t))
1571 		return;
1572 
1573 	inorder = bkey_to_cacheline(b, t, k);
1574 	if (!inorder || inorder >= t->size)
1575 		return;
1576 
1577 	j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1578 	if (k != tree_to_bkey(b, t, j))
1579 		return;
1580 
1581 	switch (bkey_float(b, t, j)->exponent) {
1582 	case BFLOAT_FAILED:
1583 		uk = bkey_unpack_key(b, k);
1584 		prt_printf(out,
1585 		       "    failed unpacked at depth %u\n"
1586 		       "\t",
1587 		       ilog2(j));
1588 		bch2_bpos_to_text(out, uk.p);
1589 		prt_printf(out, "\n");
1590 		break;
1591 	}
1592 }
1593