1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Code for working with individual keys, and sorted sets of keys with in a 4 * btree node 5 * 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcachefs.h" 10 #include "btree_cache.h" 11 #include "bset.h" 12 #include "eytzinger.h" 13 #include "trace.h" 14 #include "util.h" 15 16 #include <asm/unaligned.h> 17 #include <linux/console.h> 18 #include <linux/random.h> 19 #include <linux/prefetch.h> 20 21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *, 22 struct btree *); 23 24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter) 25 { 26 unsigned n = ARRAY_SIZE(iter->data); 27 28 while (n && __btree_node_iter_set_end(iter, n - 1)) 29 --n; 30 31 return n; 32 } 33 34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k) 35 { 36 return bch2_bkey_to_bset_inlined(b, k); 37 } 38 39 /* 40 * There are never duplicate live keys in the btree - but including keys that 41 * have been flagged as deleted (and will be cleaned up later) we _will_ see 42 * duplicates. 43 * 44 * Thus the sort order is: usual key comparison first, but for keys that compare 45 * equal the deleted key(s) come first, and the (at most one) live version comes 46 * last. 47 * 48 * The main reason for this is insertion: to handle overwrites, we first iterate 49 * over keys that compare equal to our insert key, and then insert immediately 50 * prior to the first key greater than the key we're inserting - our insert 51 * position will be after all keys that compare equal to our insert key, which 52 * by the time we actually do the insert will all be deleted. 53 */ 54 55 void bch2_dump_bset(struct bch_fs *c, struct btree *b, 56 struct bset *i, unsigned set) 57 { 58 struct bkey_packed *_k, *_n; 59 struct bkey uk, n; 60 struct bkey_s_c k; 61 struct printbuf buf = PRINTBUF; 62 63 if (!i->u64s) 64 return; 65 66 for (_k = i->start; 67 _k < vstruct_last(i); 68 _k = _n) { 69 _n = bkey_p_next(_k); 70 71 if (!_k->u64s) { 72 printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set, 73 _k->_data - i->_data); 74 break; 75 } 76 77 k = bkey_disassemble(b, _k, &uk); 78 79 printbuf_reset(&buf); 80 if (c) 81 bch2_bkey_val_to_text(&buf, c, k); 82 else 83 bch2_bkey_to_text(&buf, k.k); 84 printk(KERN_ERR "block %u key %5zu: %s\n", set, 85 _k->_data - i->_data, buf.buf); 86 87 if (_n == vstruct_last(i)) 88 continue; 89 90 n = bkey_unpack_key(b, _n); 91 92 if (bpos_lt(n.p, k.k->p)) { 93 printk(KERN_ERR "Key skipped backwards\n"); 94 continue; 95 } 96 97 if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p)) 98 printk(KERN_ERR "Duplicate keys\n"); 99 } 100 101 printbuf_exit(&buf); 102 } 103 104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b) 105 { 106 struct bset_tree *t; 107 108 console_lock(); 109 for_each_bset(b, t) 110 bch2_dump_bset(c, b, bset(b, t), t - b->set); 111 console_unlock(); 112 } 113 114 void bch2_dump_btree_node_iter(struct btree *b, 115 struct btree_node_iter *iter) 116 { 117 struct btree_node_iter_set *set; 118 struct printbuf buf = PRINTBUF; 119 120 printk(KERN_ERR "btree node iter with %u/%u sets:\n", 121 __btree_node_iter_used(iter), b->nsets); 122 123 btree_node_iter_for_each(iter, set) { 124 struct bkey_packed *k = __btree_node_offset_to_key(b, set->k); 125 struct bset_tree *t = bch2_bkey_to_bset(b, k); 126 struct bkey uk = bkey_unpack_key(b, k); 127 128 printbuf_reset(&buf); 129 bch2_bkey_to_text(&buf, &uk); 130 printk(KERN_ERR "set %zu key %u: %s\n", 131 t - b->set, set->k, buf.buf); 132 } 133 134 printbuf_exit(&buf); 135 } 136 137 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b) 138 { 139 struct bset_tree *t; 140 struct bkey_packed *k; 141 struct btree_nr_keys nr = {}; 142 143 for_each_bset(b, t) 144 bset_tree_for_each_key(b, t, k) 145 if (!bkey_deleted(k)) 146 btree_keys_account_key_add(&nr, t - b->set, k); 147 return nr; 148 } 149 150 #ifdef CONFIG_BCACHEFS_DEBUG 151 152 void __bch2_verify_btree_nr_keys(struct btree *b) 153 { 154 struct btree_nr_keys nr = bch2_btree_node_count_keys(b); 155 156 BUG_ON(memcmp(&nr, &b->nr, sizeof(nr))); 157 } 158 159 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter, 160 struct btree *b) 161 { 162 struct btree_node_iter iter = *_iter; 163 const struct bkey_packed *k, *n; 164 165 k = bch2_btree_node_iter_peek_all(&iter, b); 166 __bch2_btree_node_iter_advance(&iter, b); 167 n = bch2_btree_node_iter_peek_all(&iter, b); 168 169 bkey_unpack_key(b, k); 170 171 if (n && 172 bkey_iter_cmp(b, k, n) > 0) { 173 struct btree_node_iter_set *set; 174 struct bkey ku = bkey_unpack_key(b, k); 175 struct bkey nu = bkey_unpack_key(b, n); 176 struct printbuf buf1 = PRINTBUF; 177 struct printbuf buf2 = PRINTBUF; 178 179 bch2_dump_btree_node(NULL, b); 180 bch2_bkey_to_text(&buf1, &ku); 181 bch2_bkey_to_text(&buf2, &nu); 182 printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n", 183 buf1.buf, buf2.buf); 184 printk(KERN_ERR "iter was:"); 185 186 btree_node_iter_for_each(_iter, set) { 187 struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k); 188 struct bset_tree *t = bch2_bkey_to_bset(b, k2); 189 printk(" [%zi %zi]", t - b->set, 190 k2->_data - bset(b, t)->_data); 191 } 192 panic("\n"); 193 } 194 } 195 196 void bch2_btree_node_iter_verify(struct btree_node_iter *iter, 197 struct btree *b) 198 { 199 struct btree_node_iter_set *set, *s2; 200 struct bkey_packed *k, *p; 201 struct bset_tree *t; 202 203 if (bch2_btree_node_iter_end(iter)) 204 return; 205 206 /* Verify no duplicates: */ 207 btree_node_iter_for_each(iter, set) { 208 BUG_ON(set->k > set->end); 209 btree_node_iter_for_each(iter, s2) 210 BUG_ON(set != s2 && set->end == s2->end); 211 } 212 213 /* Verify that set->end is correct: */ 214 btree_node_iter_for_each(iter, set) { 215 for_each_bset(b, t) 216 if (set->end == t->end_offset) 217 goto found; 218 BUG(); 219 found: 220 BUG_ON(set->k < btree_bkey_first_offset(t) || 221 set->k >= t->end_offset); 222 } 223 224 /* Verify iterator is sorted: */ 225 btree_node_iter_for_each(iter, set) 226 BUG_ON(set != iter->data && 227 btree_node_iter_cmp(b, set[-1], set[0]) > 0); 228 229 k = bch2_btree_node_iter_peek_all(iter, b); 230 231 for_each_bset(b, t) { 232 if (iter->data[0].end == t->end_offset) 233 continue; 234 235 p = bch2_bkey_prev_all(b, t, 236 bch2_btree_node_iter_bset_pos(iter, b, t)); 237 238 BUG_ON(p && bkey_iter_cmp(b, k, p) < 0); 239 } 240 } 241 242 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where, 243 struct bkey_packed *insert, unsigned clobber_u64s) 244 { 245 struct bset_tree *t = bch2_bkey_to_bset(b, where); 246 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where); 247 struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s); 248 struct printbuf buf1 = PRINTBUF; 249 struct printbuf buf2 = PRINTBUF; 250 #if 0 251 BUG_ON(prev && 252 bkey_iter_cmp(b, prev, insert) > 0); 253 #else 254 if (prev && 255 bkey_iter_cmp(b, prev, insert) > 0) { 256 struct bkey k1 = bkey_unpack_key(b, prev); 257 struct bkey k2 = bkey_unpack_key(b, insert); 258 259 bch2_dump_btree_node(NULL, b); 260 bch2_bkey_to_text(&buf1, &k1); 261 bch2_bkey_to_text(&buf2, &k2); 262 263 panic("prev > insert:\n" 264 "prev key %s\n" 265 "insert key %s\n", 266 buf1.buf, buf2.buf); 267 } 268 #endif 269 #if 0 270 BUG_ON(next != btree_bkey_last(b, t) && 271 bkey_iter_cmp(b, insert, next) > 0); 272 #else 273 if (next != btree_bkey_last(b, t) && 274 bkey_iter_cmp(b, insert, next) > 0) { 275 struct bkey k1 = bkey_unpack_key(b, insert); 276 struct bkey k2 = bkey_unpack_key(b, next); 277 278 bch2_dump_btree_node(NULL, b); 279 bch2_bkey_to_text(&buf1, &k1); 280 bch2_bkey_to_text(&buf2, &k2); 281 282 panic("insert > next:\n" 283 "insert key %s\n" 284 "next key %s\n", 285 buf1.buf, buf2.buf); 286 } 287 #endif 288 } 289 290 #else 291 292 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter, 293 struct btree *b) {} 294 295 #endif 296 297 /* Auxiliary search trees */ 298 299 #define BFLOAT_FAILED_UNPACKED U8_MAX 300 #define BFLOAT_FAILED U8_MAX 301 302 struct bkey_float { 303 u8 exponent; 304 u8 key_offset; 305 u16 mantissa; 306 }; 307 #define BKEY_MANTISSA_BITS 16 308 309 static unsigned bkey_float_byte_offset(unsigned idx) 310 { 311 return idx * sizeof(struct bkey_float); 312 } 313 314 struct ro_aux_tree { 315 u8 nothing[0]; 316 struct bkey_float f[]; 317 }; 318 319 struct rw_aux_tree { 320 u16 offset; 321 struct bpos k; 322 }; 323 324 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t) 325 { 326 BUG_ON(t->aux_data_offset == U16_MAX); 327 328 switch (bset_aux_tree_type(t)) { 329 case BSET_NO_AUX_TREE: 330 return t->aux_data_offset; 331 case BSET_RO_AUX_TREE: 332 return t->aux_data_offset + 333 DIV_ROUND_UP(t->size * sizeof(struct bkey_float) + 334 t->size * sizeof(u8), 8); 335 case BSET_RW_AUX_TREE: 336 return t->aux_data_offset + 337 DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8); 338 default: 339 BUG(); 340 } 341 } 342 343 static unsigned bset_aux_tree_buf_start(const struct btree *b, 344 const struct bset_tree *t) 345 { 346 return t == b->set 347 ? DIV_ROUND_UP(b->unpack_fn_len, 8) 348 : bset_aux_tree_buf_end(t - 1); 349 } 350 351 static void *__aux_tree_base(const struct btree *b, 352 const struct bset_tree *t) 353 { 354 return b->aux_data + t->aux_data_offset * 8; 355 } 356 357 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b, 358 const struct bset_tree *t) 359 { 360 EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); 361 362 return __aux_tree_base(b, t); 363 } 364 365 static u8 *ro_aux_tree_prev(const struct btree *b, 366 const struct bset_tree *t) 367 { 368 EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); 369 370 return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size); 371 } 372 373 static struct bkey_float *bkey_float(const struct btree *b, 374 const struct bset_tree *t, 375 unsigned idx) 376 { 377 return ro_aux_tree_base(b, t)->f + idx; 378 } 379 380 static void bset_aux_tree_verify(const struct btree *b) 381 { 382 #ifdef CONFIG_BCACHEFS_DEBUG 383 const struct bset_tree *t; 384 385 for_each_bset(b, t) { 386 if (t->aux_data_offset == U16_MAX) 387 continue; 388 389 BUG_ON(t != b->set && 390 t[-1].aux_data_offset == U16_MAX); 391 392 BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t)); 393 BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b)); 394 BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b)); 395 } 396 #endif 397 } 398 399 void bch2_btree_keys_init(struct btree *b) 400 { 401 unsigned i; 402 403 b->nsets = 0; 404 memset(&b->nr, 0, sizeof(b->nr)); 405 406 for (i = 0; i < MAX_BSETS; i++) 407 b->set[i].data_offset = U16_MAX; 408 409 bch2_bset_set_no_aux_tree(b, b->set); 410 } 411 412 /* Binary tree stuff for auxiliary search trees */ 413 414 /* 415 * Cacheline/offset <-> bkey pointer arithmetic: 416 * 417 * t->tree is a binary search tree in an array; each node corresponds to a key 418 * in one cacheline in t->set (BSET_CACHELINE bytes). 419 * 420 * This means we don't have to store the full index of the key that a node in 421 * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and 422 * then bkey_float->m gives us the offset within that cacheline, in units of 8 423 * bytes. 424 * 425 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 426 * make this work. 427 * 428 * To construct the bfloat for an arbitrary key we need to know what the key 429 * immediately preceding it is: we have to check if the two keys differ in the 430 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 431 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 432 */ 433 434 static inline void *bset_cacheline(const struct btree *b, 435 const struct bset_tree *t, 436 unsigned cacheline) 437 { 438 return (void *) round_down((unsigned long) btree_bkey_first(b, t), 439 L1_CACHE_BYTES) + 440 cacheline * BSET_CACHELINE; 441 } 442 443 static struct bkey_packed *cacheline_to_bkey(const struct btree *b, 444 const struct bset_tree *t, 445 unsigned cacheline, 446 unsigned offset) 447 { 448 return bset_cacheline(b, t, cacheline) + offset * 8; 449 } 450 451 static unsigned bkey_to_cacheline(const struct btree *b, 452 const struct bset_tree *t, 453 const struct bkey_packed *k) 454 { 455 return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE; 456 } 457 458 static ssize_t __bkey_to_cacheline_offset(const struct btree *b, 459 const struct bset_tree *t, 460 unsigned cacheline, 461 const struct bkey_packed *k) 462 { 463 return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline); 464 } 465 466 static unsigned bkey_to_cacheline_offset(const struct btree *b, 467 const struct bset_tree *t, 468 unsigned cacheline, 469 const struct bkey_packed *k) 470 { 471 size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k); 472 473 EBUG_ON(m > U8_MAX); 474 return m; 475 } 476 477 static inline struct bkey_packed *tree_to_bkey(const struct btree *b, 478 const struct bset_tree *t, 479 unsigned j) 480 { 481 return cacheline_to_bkey(b, t, 482 __eytzinger1_to_inorder(j, t->size - 1, t->extra), 483 bkey_float(b, t, j)->key_offset); 484 } 485 486 static struct bkey_packed *tree_to_prev_bkey(const struct btree *b, 487 const struct bset_tree *t, 488 unsigned j) 489 { 490 unsigned prev_u64s = ro_aux_tree_prev(b, t)[j]; 491 492 return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s); 493 } 494 495 static struct rw_aux_tree *rw_aux_tree(const struct btree *b, 496 const struct bset_tree *t) 497 { 498 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); 499 500 return __aux_tree_base(b, t); 501 } 502 503 /* 504 * For the write set - the one we're currently inserting keys into - we don't 505 * maintain a full search tree, we just keep a simple lookup table in t->prev. 506 */ 507 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b, 508 struct bset_tree *t, 509 unsigned j) 510 { 511 return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset); 512 } 513 514 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t, 515 unsigned j, struct bkey_packed *k) 516 { 517 EBUG_ON(k >= btree_bkey_last(b, t)); 518 519 rw_aux_tree(b, t)[j] = (struct rw_aux_tree) { 520 .offset = __btree_node_key_to_offset(b, k), 521 .k = bkey_unpack_pos(b, k), 522 }; 523 } 524 525 static void bch2_bset_verify_rw_aux_tree(struct btree *b, 526 struct bset_tree *t) 527 { 528 struct bkey_packed *k = btree_bkey_first(b, t); 529 unsigned j = 0; 530 531 if (!bch2_expensive_debug_checks) 532 return; 533 534 BUG_ON(bset_has_ro_aux_tree(t)); 535 536 if (!bset_has_rw_aux_tree(t)) 537 return; 538 539 BUG_ON(t->size < 1); 540 BUG_ON(rw_aux_to_bkey(b, t, j) != k); 541 542 goto start; 543 while (1) { 544 if (rw_aux_to_bkey(b, t, j) == k) { 545 BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k, 546 bkey_unpack_pos(b, k))); 547 start: 548 if (++j == t->size) 549 break; 550 551 BUG_ON(rw_aux_tree(b, t)[j].offset <= 552 rw_aux_tree(b, t)[j - 1].offset); 553 } 554 555 k = bkey_p_next(k); 556 BUG_ON(k >= btree_bkey_last(b, t)); 557 } 558 } 559 560 /* returns idx of first entry >= offset: */ 561 static unsigned rw_aux_tree_bsearch(struct btree *b, 562 struct bset_tree *t, 563 unsigned offset) 564 { 565 unsigned bset_offs = offset - btree_bkey_first_offset(t); 566 unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t); 567 unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0; 568 569 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); 570 EBUG_ON(!t->size); 571 EBUG_ON(idx > t->size); 572 573 while (idx < t->size && 574 rw_aux_tree(b, t)[idx].offset < offset) 575 idx++; 576 577 while (idx && 578 rw_aux_tree(b, t)[idx - 1].offset >= offset) 579 idx--; 580 581 EBUG_ON(idx < t->size && 582 rw_aux_tree(b, t)[idx].offset < offset); 583 EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset); 584 EBUG_ON(idx + 1 < t->size && 585 rw_aux_tree(b, t)[idx].offset == 586 rw_aux_tree(b, t)[idx + 1].offset); 587 588 return idx; 589 } 590 591 static inline unsigned bkey_mantissa(const struct bkey_packed *k, 592 const struct bkey_float *f, 593 unsigned idx) 594 { 595 u64 v; 596 597 EBUG_ON(!bkey_packed(k)); 598 599 v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3))); 600 601 /* 602 * In little endian, we're shifting off low bits (and then the bits we 603 * want are at the low end), in big endian we're shifting off high bits 604 * (and then the bits we want are at the high end, so we shift them 605 * back down): 606 */ 607 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 608 v >>= f->exponent & 7; 609 #else 610 v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS; 611 #endif 612 return (u16) v; 613 } 614 615 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t, 616 unsigned j, 617 struct bkey_packed *min_key, 618 struct bkey_packed *max_key) 619 { 620 struct bkey_float *f = bkey_float(b, t, j); 621 struct bkey_packed *m = tree_to_bkey(b, t, j); 622 struct bkey_packed *l = is_power_of_2(j) 623 ? min_key 624 : tree_to_prev_bkey(b, t, j >> ffs(j)); 625 struct bkey_packed *r = is_power_of_2(j + 1) 626 ? max_key 627 : tree_to_bkey(b, t, j >> (ffz(j) + 1)); 628 unsigned mantissa; 629 int shift, exponent, high_bit; 630 631 /* 632 * for failed bfloats, the lookup code falls back to comparing against 633 * the original key. 634 */ 635 636 if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) || 637 !b->nr_key_bits) { 638 f->exponent = BFLOAT_FAILED_UNPACKED; 639 return; 640 } 641 642 /* 643 * The greatest differing bit of l and r is the first bit we must 644 * include in the bfloat mantissa we're creating in order to do 645 * comparisons - that bit always becomes the high bit of 646 * bfloat->mantissa, and thus the exponent we're calculating here is 647 * the position of what will become the low bit in bfloat->mantissa: 648 * 649 * Note that this may be negative - we may be running off the low end 650 * of the key: we handle this later: 651 */ 652 high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r), 653 min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1); 654 exponent = high_bit - (BKEY_MANTISSA_BITS - 1); 655 656 /* 657 * Then we calculate the actual shift value, from the start of the key 658 * (k->_data), to get the key bits starting at exponent: 659 */ 660 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 661 shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent; 662 663 EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64); 664 #else 665 shift = high_bit_offset + 666 b->nr_key_bits - 667 exponent - 668 BKEY_MANTISSA_BITS; 669 670 EBUG_ON(shift < KEY_PACKED_BITS_START); 671 #endif 672 EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED); 673 674 f->exponent = shift; 675 mantissa = bkey_mantissa(m, f, j); 676 677 /* 678 * If we've got garbage bits, set them to all 1s - it's legal for the 679 * bfloat to compare larger than the original key, but not smaller: 680 */ 681 if (exponent < 0) 682 mantissa |= ~(~0U << -exponent); 683 684 f->mantissa = mantissa; 685 } 686 687 /* bytes remaining - only valid for last bset: */ 688 static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t) 689 { 690 bset_aux_tree_verify(b); 691 692 return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64); 693 } 694 695 static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t) 696 { 697 return __bset_tree_capacity(b, t) / 698 (sizeof(struct bkey_float) + sizeof(u8)); 699 } 700 701 static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t) 702 { 703 return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree); 704 } 705 706 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t) 707 { 708 struct bkey_packed *k; 709 710 t->size = 1; 711 t->extra = BSET_RW_AUX_TREE_VAL; 712 rw_aux_tree(b, t)[0].offset = 713 __btree_node_key_to_offset(b, btree_bkey_first(b, t)); 714 715 bset_tree_for_each_key(b, t, k) { 716 if (t->size == bset_rw_tree_capacity(b, t)) 717 break; 718 719 if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) > 720 L1_CACHE_BYTES) 721 rw_aux_tree_set(b, t, t->size++, k); 722 } 723 } 724 725 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t) 726 { 727 struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t); 728 struct bkey_i min_key, max_key; 729 unsigned cacheline = 1; 730 731 t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)), 732 bset_ro_tree_capacity(b, t)); 733 retry: 734 if (t->size < 2) { 735 t->size = 0; 736 t->extra = BSET_NO_AUX_TREE_VAL; 737 return; 738 } 739 740 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; 741 742 /* First we figure out where the first key in each cacheline is */ 743 eytzinger1_for_each(j, t->size - 1) { 744 while (bkey_to_cacheline(b, t, k) < cacheline) 745 prev = k, k = bkey_p_next(k); 746 747 if (k >= btree_bkey_last(b, t)) { 748 /* XXX: this path sucks */ 749 t->size--; 750 goto retry; 751 } 752 753 ro_aux_tree_prev(b, t)[j] = prev->u64s; 754 bkey_float(b, t, j)->key_offset = 755 bkey_to_cacheline_offset(b, t, cacheline++, k); 756 757 EBUG_ON(tree_to_prev_bkey(b, t, j) != prev); 758 EBUG_ON(tree_to_bkey(b, t, j) != k); 759 } 760 761 while (k != btree_bkey_last(b, t)) 762 prev = k, k = bkey_p_next(k); 763 764 if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) { 765 bkey_init(&min_key.k); 766 min_key.k.p = b->data->min_key; 767 } 768 769 if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) { 770 bkey_init(&max_key.k); 771 max_key.k.p = b->data->max_key; 772 } 773 774 /* Then we build the tree */ 775 eytzinger1_for_each(j, t->size - 1) 776 make_bfloat(b, t, j, 777 bkey_to_packed(&min_key), 778 bkey_to_packed(&max_key)); 779 } 780 781 static void bset_alloc_tree(struct btree *b, struct bset_tree *t) 782 { 783 struct bset_tree *i; 784 785 for (i = b->set; i != t; i++) 786 BUG_ON(bset_has_rw_aux_tree(i)); 787 788 bch2_bset_set_no_aux_tree(b, t); 789 790 /* round up to next cacheline: */ 791 t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t), 792 SMP_CACHE_BYTES / sizeof(u64)); 793 794 bset_aux_tree_verify(b); 795 } 796 797 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t, 798 bool writeable) 799 { 800 if (writeable 801 ? bset_has_rw_aux_tree(t) 802 : bset_has_ro_aux_tree(t)) 803 return; 804 805 bset_alloc_tree(b, t); 806 807 if (!__bset_tree_capacity(b, t)) 808 return; 809 810 if (writeable) 811 __build_rw_aux_tree(b, t); 812 else 813 __build_ro_aux_tree(b, t); 814 815 bset_aux_tree_verify(b); 816 } 817 818 void bch2_bset_init_first(struct btree *b, struct bset *i) 819 { 820 struct bset_tree *t; 821 822 BUG_ON(b->nsets); 823 824 memset(i, 0, sizeof(*i)); 825 get_random_bytes(&i->seq, sizeof(i->seq)); 826 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 827 828 t = &b->set[b->nsets++]; 829 set_btree_bset(b, t, i); 830 } 831 832 void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne) 833 { 834 struct bset *i = &bne->keys; 835 struct bset_tree *t; 836 837 BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b)); 838 BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b))); 839 BUG_ON(b->nsets >= MAX_BSETS); 840 841 memset(i, 0, sizeof(*i)); 842 i->seq = btree_bset_first(b)->seq; 843 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 844 845 t = &b->set[b->nsets++]; 846 set_btree_bset(b, t, i); 847 } 848 849 /* 850 * find _some_ key in the same bset as @k that precedes @k - not necessarily the 851 * immediate predecessor: 852 */ 853 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t, 854 struct bkey_packed *k) 855 { 856 struct bkey_packed *p; 857 unsigned offset; 858 int j; 859 860 EBUG_ON(k < btree_bkey_first(b, t) || 861 k > btree_bkey_last(b, t)); 862 863 if (k == btree_bkey_first(b, t)) 864 return NULL; 865 866 switch (bset_aux_tree_type(t)) { 867 case BSET_NO_AUX_TREE: 868 p = btree_bkey_first(b, t); 869 break; 870 case BSET_RO_AUX_TREE: 871 j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k)); 872 873 do { 874 p = j ? tree_to_bkey(b, t, 875 __inorder_to_eytzinger1(j--, 876 t->size - 1, t->extra)) 877 : btree_bkey_first(b, t); 878 } while (p >= k); 879 break; 880 case BSET_RW_AUX_TREE: 881 offset = __btree_node_key_to_offset(b, k); 882 j = rw_aux_tree_bsearch(b, t, offset); 883 p = j ? rw_aux_to_bkey(b, t, j - 1) 884 : btree_bkey_first(b, t); 885 break; 886 } 887 888 return p; 889 } 890 891 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b, 892 struct bset_tree *t, 893 struct bkey_packed *k, 894 unsigned min_key_type) 895 { 896 struct bkey_packed *p, *i, *ret = NULL, *orig_k = k; 897 898 while ((p = __bkey_prev(b, t, k)) && !ret) { 899 for (i = p; i != k; i = bkey_p_next(i)) 900 if (i->type >= min_key_type) 901 ret = i; 902 903 k = p; 904 } 905 906 if (bch2_expensive_debug_checks) { 907 BUG_ON(ret >= orig_k); 908 909 for (i = ret 910 ? bkey_p_next(ret) 911 : btree_bkey_first(b, t); 912 i != orig_k; 913 i = bkey_p_next(i)) 914 BUG_ON(i->type >= min_key_type); 915 } 916 917 return ret; 918 } 919 920 /* Insert */ 921 922 static void bch2_bset_fix_lookup_table(struct btree *b, 923 struct bset_tree *t, 924 struct bkey_packed *_where, 925 unsigned clobber_u64s, 926 unsigned new_u64s) 927 { 928 int shift = new_u64s - clobber_u64s; 929 unsigned l, j, where = __btree_node_key_to_offset(b, _where); 930 931 EBUG_ON(bset_has_ro_aux_tree(t)); 932 933 if (!bset_has_rw_aux_tree(t)) 934 return; 935 936 /* returns first entry >= where */ 937 l = rw_aux_tree_bsearch(b, t, where); 938 939 if (!l) /* never delete first entry */ 940 l++; 941 else if (l < t->size && 942 where < t->end_offset && 943 rw_aux_tree(b, t)[l].offset == where) 944 rw_aux_tree_set(b, t, l++, _where); 945 946 /* l now > where */ 947 948 for (j = l; 949 j < t->size && 950 rw_aux_tree(b, t)[j].offset < where + clobber_u64s; 951 j++) 952 ; 953 954 if (j < t->size && 955 rw_aux_tree(b, t)[j].offset + shift == 956 rw_aux_tree(b, t)[l - 1].offset) 957 j++; 958 959 memmove(&rw_aux_tree(b, t)[l], 960 &rw_aux_tree(b, t)[j], 961 (void *) &rw_aux_tree(b, t)[t->size] - 962 (void *) &rw_aux_tree(b, t)[j]); 963 t->size -= j - l; 964 965 for (j = l; j < t->size; j++) 966 rw_aux_tree(b, t)[j].offset += shift; 967 968 EBUG_ON(l < t->size && 969 rw_aux_tree(b, t)[l].offset == 970 rw_aux_tree(b, t)[l - 1].offset); 971 972 if (t->size < bset_rw_tree_capacity(b, t) && 973 (l < t->size 974 ? rw_aux_tree(b, t)[l].offset 975 : t->end_offset) - 976 rw_aux_tree(b, t)[l - 1].offset > 977 L1_CACHE_BYTES / sizeof(u64)) { 978 struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1); 979 struct bkey_packed *end = l < t->size 980 ? rw_aux_to_bkey(b, t, l) 981 : btree_bkey_last(b, t); 982 struct bkey_packed *k = start; 983 984 while (1) { 985 k = bkey_p_next(k); 986 if (k == end) 987 break; 988 989 if ((void *) k - (void *) start >= L1_CACHE_BYTES) { 990 memmove(&rw_aux_tree(b, t)[l + 1], 991 &rw_aux_tree(b, t)[l], 992 (void *) &rw_aux_tree(b, t)[t->size] - 993 (void *) &rw_aux_tree(b, t)[l]); 994 t->size++; 995 rw_aux_tree_set(b, t, l, k); 996 break; 997 } 998 } 999 } 1000 1001 bch2_bset_verify_rw_aux_tree(b, t); 1002 bset_aux_tree_verify(b); 1003 } 1004 1005 void bch2_bset_insert(struct btree *b, 1006 struct btree_node_iter *iter, 1007 struct bkey_packed *where, 1008 struct bkey_i *insert, 1009 unsigned clobber_u64s) 1010 { 1011 struct bkey_format *f = &b->format; 1012 struct bset_tree *t = bset_tree_last(b); 1013 struct bkey_packed packed, *src = bkey_to_packed(insert); 1014 1015 bch2_bset_verify_rw_aux_tree(b, t); 1016 bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s); 1017 1018 if (bch2_bkey_pack_key(&packed, &insert->k, f)) 1019 src = &packed; 1020 1021 if (!bkey_deleted(&insert->k)) 1022 btree_keys_account_key_add(&b->nr, t - b->set, src); 1023 1024 if (src->u64s != clobber_u64s) { 1025 u64 *src_p = (u64 *) where->_data + clobber_u64s; 1026 u64 *dst_p = (u64 *) where->_data + src->u64s; 1027 1028 EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) < 1029 (int) clobber_u64s - src->u64s); 1030 1031 memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); 1032 le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s); 1033 set_btree_bset_end(b, t); 1034 } 1035 1036 memcpy_u64s_small(where, src, 1037 bkeyp_key_u64s(f, src)); 1038 memcpy_u64s(bkeyp_val(f, where), &insert->v, 1039 bkeyp_val_u64s(f, src)); 1040 1041 if (src->u64s != clobber_u64s) 1042 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s); 1043 1044 bch2_verify_btree_nr_keys(b); 1045 } 1046 1047 void bch2_bset_delete(struct btree *b, 1048 struct bkey_packed *where, 1049 unsigned clobber_u64s) 1050 { 1051 struct bset_tree *t = bset_tree_last(b); 1052 u64 *src_p = (u64 *) where->_data + clobber_u64s; 1053 u64 *dst_p = where->_data; 1054 1055 bch2_bset_verify_rw_aux_tree(b, t); 1056 1057 EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s); 1058 1059 memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); 1060 le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s); 1061 set_btree_bset_end(b, t); 1062 1063 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0); 1064 } 1065 1066 /* Lookup */ 1067 1068 __flatten 1069 static struct bkey_packed *bset_search_write_set(const struct btree *b, 1070 struct bset_tree *t, 1071 struct bpos *search) 1072 { 1073 unsigned l = 0, r = t->size; 1074 1075 while (l + 1 != r) { 1076 unsigned m = (l + r) >> 1; 1077 1078 if (bpos_lt(rw_aux_tree(b, t)[m].k, *search)) 1079 l = m; 1080 else 1081 r = m; 1082 } 1083 1084 return rw_aux_to_bkey(b, t, l); 1085 } 1086 1087 static inline void prefetch_four_cachelines(void *p) 1088 { 1089 #ifdef CONFIG_X86_64 1090 asm("prefetcht0 (-127 + 64 * 0)(%0);" 1091 "prefetcht0 (-127 + 64 * 1)(%0);" 1092 "prefetcht0 (-127 + 64 * 2)(%0);" 1093 "prefetcht0 (-127 + 64 * 3)(%0);" 1094 : 1095 : "r" (p + 127)); 1096 #else 1097 prefetch(p + L1_CACHE_BYTES * 0); 1098 prefetch(p + L1_CACHE_BYTES * 1); 1099 prefetch(p + L1_CACHE_BYTES * 2); 1100 prefetch(p + L1_CACHE_BYTES * 3); 1101 #endif 1102 } 1103 1104 static inline bool bkey_mantissa_bits_dropped(const struct btree *b, 1105 const struct bkey_float *f, 1106 unsigned idx) 1107 { 1108 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1109 unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits; 1110 1111 return f->exponent > key_bits_start; 1112 #else 1113 unsigned key_bits_end = high_bit_offset + b->nr_key_bits; 1114 1115 return f->exponent + BKEY_MANTISSA_BITS < key_bits_end; 1116 #endif 1117 } 1118 1119 __flatten 1120 static struct bkey_packed *bset_search_tree(const struct btree *b, 1121 const struct bset_tree *t, 1122 const struct bpos *search, 1123 const struct bkey_packed *packed_search) 1124 { 1125 struct ro_aux_tree *base = ro_aux_tree_base(b, t); 1126 struct bkey_float *f; 1127 struct bkey_packed *k; 1128 unsigned inorder, n = 1, l, r; 1129 int cmp; 1130 1131 do { 1132 if (likely(n << 4 < t->size)) 1133 prefetch(&base->f[n << 4]); 1134 1135 f = &base->f[n]; 1136 if (unlikely(f->exponent >= BFLOAT_FAILED)) 1137 goto slowpath; 1138 1139 l = f->mantissa; 1140 r = bkey_mantissa(packed_search, f, n); 1141 1142 if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n)) 1143 goto slowpath; 1144 1145 n = n * 2 + (l < r); 1146 continue; 1147 slowpath: 1148 k = tree_to_bkey(b, t, n); 1149 cmp = bkey_cmp_p_or_unp(b, k, packed_search, search); 1150 if (!cmp) 1151 return k; 1152 1153 n = n * 2 + (cmp < 0); 1154 } while (n < t->size); 1155 1156 inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra); 1157 1158 /* 1159 * n would have been the node we recursed to - the low bit tells us if 1160 * we recursed left or recursed right. 1161 */ 1162 if (likely(!(n & 1))) { 1163 --inorder; 1164 if (unlikely(!inorder)) 1165 return btree_bkey_first(b, t); 1166 1167 f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)]; 1168 } 1169 1170 return cacheline_to_bkey(b, t, inorder, f->key_offset); 1171 } 1172 1173 static __always_inline __flatten 1174 struct bkey_packed *__bch2_bset_search(struct btree *b, 1175 struct bset_tree *t, 1176 struct bpos *search, 1177 const struct bkey_packed *lossy_packed_search) 1178 { 1179 1180 /* 1181 * First, we search for a cacheline, then lastly we do a linear search 1182 * within that cacheline. 1183 * 1184 * To search for the cacheline, there's three different possibilities: 1185 * * The set is too small to have a search tree, so we just do a linear 1186 * search over the whole set. 1187 * * The set is the one we're currently inserting into; keeping a full 1188 * auxiliary search tree up to date would be too expensive, so we 1189 * use a much simpler lookup table to do a binary search - 1190 * bset_search_write_set(). 1191 * * Or we use the auxiliary search tree we constructed earlier - 1192 * bset_search_tree() 1193 */ 1194 1195 switch (bset_aux_tree_type(t)) { 1196 case BSET_NO_AUX_TREE: 1197 return btree_bkey_first(b, t); 1198 case BSET_RW_AUX_TREE: 1199 return bset_search_write_set(b, t, search); 1200 case BSET_RO_AUX_TREE: 1201 return bset_search_tree(b, t, search, lossy_packed_search); 1202 default: 1203 BUG(); 1204 } 1205 } 1206 1207 static __always_inline __flatten 1208 struct bkey_packed *bch2_bset_search_linear(struct btree *b, 1209 struct bset_tree *t, 1210 struct bpos *search, 1211 struct bkey_packed *packed_search, 1212 const struct bkey_packed *lossy_packed_search, 1213 struct bkey_packed *m) 1214 { 1215 if (lossy_packed_search) 1216 while (m != btree_bkey_last(b, t) && 1217 bkey_iter_cmp_p_or_unp(b, m, 1218 lossy_packed_search, search) < 0) 1219 m = bkey_p_next(m); 1220 1221 if (!packed_search) 1222 while (m != btree_bkey_last(b, t) && 1223 bkey_iter_pos_cmp(b, m, search) < 0) 1224 m = bkey_p_next(m); 1225 1226 if (bch2_expensive_debug_checks) { 1227 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m); 1228 1229 BUG_ON(prev && 1230 bkey_iter_cmp_p_or_unp(b, prev, 1231 packed_search, search) >= 0); 1232 } 1233 1234 return m; 1235 } 1236 1237 /* Btree node iterator */ 1238 1239 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter, 1240 struct btree *b, 1241 const struct bkey_packed *k, 1242 const struct bkey_packed *end) 1243 { 1244 if (k != end) { 1245 struct btree_node_iter_set *pos; 1246 1247 btree_node_iter_for_each(iter, pos) 1248 ; 1249 1250 BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data)); 1251 *pos = (struct btree_node_iter_set) { 1252 __btree_node_key_to_offset(b, k), 1253 __btree_node_key_to_offset(b, end) 1254 }; 1255 } 1256 } 1257 1258 void bch2_btree_node_iter_push(struct btree_node_iter *iter, 1259 struct btree *b, 1260 const struct bkey_packed *k, 1261 const struct bkey_packed *end) 1262 { 1263 __bch2_btree_node_iter_push(iter, b, k, end); 1264 bch2_btree_node_iter_sort(iter, b); 1265 } 1266 1267 noinline __flatten __cold 1268 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter, 1269 struct btree *b, struct bpos *search) 1270 { 1271 struct bkey_packed *k; 1272 1273 trace_bkey_pack_pos_fail(search); 1274 1275 bch2_btree_node_iter_init_from_start(iter, b); 1276 1277 while ((k = bch2_btree_node_iter_peek(iter, b)) && 1278 bkey_iter_pos_cmp(b, k, search) < 0) 1279 bch2_btree_node_iter_advance(iter, b); 1280 } 1281 1282 /** 1283 * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a 1284 * given position 1285 * 1286 * @iter: iterator to initialize 1287 * @b: btree node to search 1288 * @search: search key 1289 * 1290 * Main entry point to the lookup code for individual btree nodes: 1291 * 1292 * NOTE: 1293 * 1294 * When you don't filter out deleted keys, btree nodes _do_ contain duplicate 1295 * keys. This doesn't matter for most code, but it does matter for lookups. 1296 * 1297 * Some adjacent keys with a string of equal keys: 1298 * i j k k k k l m 1299 * 1300 * If you search for k, the lookup code isn't guaranteed to return you any 1301 * specific k. The lookup code is conceptually doing a binary search and 1302 * iterating backwards is very expensive so if the pivot happens to land at the 1303 * last k that's what you'll get. 1304 * 1305 * This works out ok, but it's something to be aware of: 1306 * 1307 * - For non extents, we guarantee that the live key comes last - see 1308 * btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't 1309 * see will only be deleted keys you don't care about. 1310 * 1311 * - For extents, deleted keys sort last (see the comment at the top of this 1312 * file). But when you're searching for extents, you actually want the first 1313 * key strictly greater than your search key - an extent that compares equal 1314 * to the search key is going to have 0 sectors after the search key. 1315 * 1316 * But this does mean that we can't just search for 1317 * bpos_successor(start_of_range) to get the first extent that overlaps with 1318 * the range we want - if we're unlucky and there's an extent that ends 1319 * exactly where we searched, then there could be a deleted key at the same 1320 * position and we'd get that when we search instead of the preceding extent 1321 * we needed. 1322 * 1323 * So we've got to search for start_of_range, then after the lookup iterate 1324 * past any extents that compare equal to the position we searched for. 1325 */ 1326 __flatten 1327 void bch2_btree_node_iter_init(struct btree_node_iter *iter, 1328 struct btree *b, struct bpos *search) 1329 { 1330 struct bkey_packed p, *packed_search = NULL; 1331 struct btree_node_iter_set *pos = iter->data; 1332 struct bkey_packed *k[MAX_BSETS]; 1333 unsigned i; 1334 1335 EBUG_ON(bpos_lt(*search, b->data->min_key)); 1336 EBUG_ON(bpos_gt(*search, b->data->max_key)); 1337 bset_aux_tree_verify(b); 1338 1339 memset(iter, 0, sizeof(*iter)); 1340 1341 switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) { 1342 case BKEY_PACK_POS_EXACT: 1343 packed_search = &p; 1344 break; 1345 case BKEY_PACK_POS_SMALLER: 1346 packed_search = NULL; 1347 break; 1348 case BKEY_PACK_POS_FAIL: 1349 btree_node_iter_init_pack_failed(iter, b, search); 1350 return; 1351 } 1352 1353 for (i = 0; i < b->nsets; i++) { 1354 k[i] = __bch2_bset_search(b, b->set + i, search, &p); 1355 prefetch_four_cachelines(k[i]); 1356 } 1357 1358 for (i = 0; i < b->nsets; i++) { 1359 struct bset_tree *t = b->set + i; 1360 struct bkey_packed *end = btree_bkey_last(b, t); 1361 1362 k[i] = bch2_bset_search_linear(b, t, search, 1363 packed_search, &p, k[i]); 1364 if (k[i] != end) 1365 *pos++ = (struct btree_node_iter_set) { 1366 __btree_node_key_to_offset(b, k[i]), 1367 __btree_node_key_to_offset(b, end) 1368 }; 1369 } 1370 1371 bch2_btree_node_iter_sort(iter, b); 1372 } 1373 1374 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter, 1375 struct btree *b) 1376 { 1377 struct bset_tree *t; 1378 1379 memset(iter, 0, sizeof(*iter)); 1380 1381 for_each_bset(b, t) 1382 __bch2_btree_node_iter_push(iter, b, 1383 btree_bkey_first(b, t), 1384 btree_bkey_last(b, t)); 1385 bch2_btree_node_iter_sort(iter, b); 1386 } 1387 1388 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter, 1389 struct btree *b, 1390 struct bset_tree *t) 1391 { 1392 struct btree_node_iter_set *set; 1393 1394 btree_node_iter_for_each(iter, set) 1395 if (set->end == t->end_offset) 1396 return __btree_node_offset_to_key(b, set->k); 1397 1398 return btree_bkey_last(b, t); 1399 } 1400 1401 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter, 1402 struct btree *b, 1403 unsigned first) 1404 { 1405 bool ret; 1406 1407 if ((ret = (btree_node_iter_cmp(b, 1408 iter->data[first], 1409 iter->data[first + 1]) > 0))) 1410 swap(iter->data[first], iter->data[first + 1]); 1411 return ret; 1412 } 1413 1414 void bch2_btree_node_iter_sort(struct btree_node_iter *iter, 1415 struct btree *b) 1416 { 1417 /* unrolled bubble sort: */ 1418 1419 if (!__btree_node_iter_set_end(iter, 2)) { 1420 btree_node_iter_sort_two(iter, b, 0); 1421 btree_node_iter_sort_two(iter, b, 1); 1422 } 1423 1424 if (!__btree_node_iter_set_end(iter, 1)) 1425 btree_node_iter_sort_two(iter, b, 0); 1426 } 1427 1428 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter, 1429 struct btree_node_iter_set *set) 1430 { 1431 struct btree_node_iter_set *last = 1432 iter->data + ARRAY_SIZE(iter->data) - 1; 1433 1434 memmove(&set[0], &set[1], (void *) last - (void *) set); 1435 *last = (struct btree_node_iter_set) { 0, 0 }; 1436 } 1437 1438 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter, 1439 struct btree *b) 1440 { 1441 iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s; 1442 1443 EBUG_ON(iter->data->k > iter->data->end); 1444 1445 if (unlikely(__btree_node_iter_set_end(iter, 0))) { 1446 /* avoid an expensive memmove call: */ 1447 iter->data[0] = iter->data[1]; 1448 iter->data[1] = iter->data[2]; 1449 iter->data[2] = (struct btree_node_iter_set) { 0, 0 }; 1450 return; 1451 } 1452 1453 if (__btree_node_iter_set_end(iter, 1)) 1454 return; 1455 1456 if (!btree_node_iter_sort_two(iter, b, 0)) 1457 return; 1458 1459 if (__btree_node_iter_set_end(iter, 2)) 1460 return; 1461 1462 btree_node_iter_sort_two(iter, b, 1); 1463 } 1464 1465 void bch2_btree_node_iter_advance(struct btree_node_iter *iter, 1466 struct btree *b) 1467 { 1468 if (bch2_expensive_debug_checks) { 1469 bch2_btree_node_iter_verify(iter, b); 1470 bch2_btree_node_iter_next_check(iter, b); 1471 } 1472 1473 __bch2_btree_node_iter_advance(iter, b); 1474 } 1475 1476 /* 1477 * Expensive: 1478 */ 1479 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter, 1480 struct btree *b) 1481 { 1482 struct bkey_packed *k, *prev = NULL; 1483 struct btree_node_iter_set *set; 1484 struct bset_tree *t; 1485 unsigned end = 0; 1486 1487 if (bch2_expensive_debug_checks) 1488 bch2_btree_node_iter_verify(iter, b); 1489 1490 for_each_bset(b, t) { 1491 k = bch2_bkey_prev_all(b, t, 1492 bch2_btree_node_iter_bset_pos(iter, b, t)); 1493 if (k && 1494 (!prev || bkey_iter_cmp(b, k, prev) > 0)) { 1495 prev = k; 1496 end = t->end_offset; 1497 } 1498 } 1499 1500 if (!prev) 1501 return NULL; 1502 1503 /* 1504 * We're manually memmoving instead of just calling sort() to ensure the 1505 * prev we picked ends up in slot 0 - sort won't necessarily put it 1506 * there because of duplicate deleted keys: 1507 */ 1508 btree_node_iter_for_each(iter, set) 1509 if (set->end == end) 1510 goto found; 1511 1512 BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]); 1513 found: 1514 BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data)); 1515 1516 memmove(&iter->data[1], 1517 &iter->data[0], 1518 (void *) set - (void *) &iter->data[0]); 1519 1520 iter->data[0].k = __btree_node_key_to_offset(b, prev); 1521 iter->data[0].end = end; 1522 1523 if (bch2_expensive_debug_checks) 1524 bch2_btree_node_iter_verify(iter, b); 1525 return prev; 1526 } 1527 1528 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter, 1529 struct btree *b) 1530 { 1531 struct bkey_packed *prev; 1532 1533 do { 1534 prev = bch2_btree_node_iter_prev_all(iter, b); 1535 } while (prev && bkey_deleted(prev)); 1536 1537 return prev; 1538 } 1539 1540 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter, 1541 struct btree *b, 1542 struct bkey *u) 1543 { 1544 struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b); 1545 1546 return k ? bkey_disassemble(b, k, u) : bkey_s_c_null; 1547 } 1548 1549 /* Mergesort */ 1550 1551 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats) 1552 { 1553 const struct bset_tree *t; 1554 1555 for_each_bset(b, t) { 1556 enum bset_aux_tree_type type = bset_aux_tree_type(t); 1557 size_t j; 1558 1559 stats->sets[type].nr++; 1560 stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) * 1561 sizeof(u64); 1562 1563 if (bset_has_ro_aux_tree(t)) { 1564 stats->floats += t->size - 1; 1565 1566 for (j = 1; j < t->size; j++) 1567 stats->failed += 1568 bkey_float(b, t, j)->exponent == 1569 BFLOAT_FAILED; 1570 } 1571 } 1572 } 1573 1574 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b, 1575 struct bkey_packed *k) 1576 { 1577 struct bset_tree *t = bch2_bkey_to_bset(b, k); 1578 struct bkey uk; 1579 unsigned j, inorder; 1580 1581 if (!bset_has_ro_aux_tree(t)) 1582 return; 1583 1584 inorder = bkey_to_cacheline(b, t, k); 1585 if (!inorder || inorder >= t->size) 1586 return; 1587 1588 j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra); 1589 if (k != tree_to_bkey(b, t, j)) 1590 return; 1591 1592 switch (bkey_float(b, t, j)->exponent) { 1593 case BFLOAT_FAILED: 1594 uk = bkey_unpack_key(b, k); 1595 prt_printf(out, 1596 " failed unpacked at depth %u\n" 1597 "\t", 1598 ilog2(j)); 1599 bch2_bpos_to_text(out, uk.p); 1600 prt_printf(out, "\n"); 1601 break; 1602 } 1603 } 1604