xref: /linux/fs/bcachefs/bset.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcachefs.h"
10 #include "btree_cache.h"
11 #include "bset.h"
12 #include "eytzinger.h"
13 #include "trace.h"
14 #include "util.h"
15 
16 #include <asm/unaligned.h>
17 #include <linux/console.h>
18 #include <linux/random.h>
19 #include <linux/prefetch.h>
20 
21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
22 						  struct btree *);
23 
24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
25 {
26 	unsigned n = ARRAY_SIZE(iter->data);
27 
28 	while (n && __btree_node_iter_set_end(iter, n - 1))
29 		--n;
30 
31 	return n;
32 }
33 
34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
35 {
36 	return bch2_bkey_to_bset_inlined(b, k);
37 }
38 
39 /*
40  * There are never duplicate live keys in the btree - but including keys that
41  * have been flagged as deleted (and will be cleaned up later) we _will_ see
42  * duplicates.
43  *
44  * Thus the sort order is: usual key comparison first, but for keys that compare
45  * equal the deleted key(s) come first, and the (at most one) live version comes
46  * last.
47  *
48  * The main reason for this is insertion: to handle overwrites, we first iterate
49  * over keys that compare equal to our insert key, and then insert immediately
50  * prior to the first key greater than the key we're inserting - our insert
51  * position will be after all keys that compare equal to our insert key, which
52  * by the time we actually do the insert will all be deleted.
53  */
54 
55 void bch2_dump_bset(struct bch_fs *c, struct btree *b,
56 		    struct bset *i, unsigned set)
57 {
58 	struct bkey_packed *_k, *_n;
59 	struct bkey uk, n;
60 	struct bkey_s_c k;
61 	struct printbuf buf = PRINTBUF;
62 
63 	if (!i->u64s)
64 		return;
65 
66 	for (_k = i->start;
67 	     _k < vstruct_last(i);
68 	     _k = _n) {
69 		_n = bkey_p_next(_k);
70 
71 		if (!_k->u64s) {
72 			printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set,
73 			       _k->_data - i->_data);
74 			break;
75 		}
76 
77 		k = bkey_disassemble(b, _k, &uk);
78 
79 		printbuf_reset(&buf);
80 		if (c)
81 			bch2_bkey_val_to_text(&buf, c, k);
82 		else
83 			bch2_bkey_to_text(&buf, k.k);
84 		printk(KERN_ERR "block %u key %5zu: %s\n", set,
85 		       _k->_data - i->_data, buf.buf);
86 
87 		if (_n == vstruct_last(i))
88 			continue;
89 
90 		n = bkey_unpack_key(b, _n);
91 
92 		if (bpos_lt(n.p, k.k->p)) {
93 			printk(KERN_ERR "Key skipped backwards\n");
94 			continue;
95 		}
96 
97 		if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p))
98 			printk(KERN_ERR "Duplicate keys\n");
99 	}
100 
101 	printbuf_exit(&buf);
102 }
103 
104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
105 {
106 	console_lock();
107 	for_each_bset(b, t)
108 		bch2_dump_bset(c, b, bset(b, t), t - b->set);
109 	console_unlock();
110 }
111 
112 void bch2_dump_btree_node_iter(struct btree *b,
113 			      struct btree_node_iter *iter)
114 {
115 	struct btree_node_iter_set *set;
116 	struct printbuf buf = PRINTBUF;
117 
118 	printk(KERN_ERR "btree node iter with %u/%u sets:\n",
119 	       __btree_node_iter_used(iter), b->nsets);
120 
121 	btree_node_iter_for_each(iter, set) {
122 		struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
123 		struct bset_tree *t = bch2_bkey_to_bset(b, k);
124 		struct bkey uk = bkey_unpack_key(b, k);
125 
126 		printbuf_reset(&buf);
127 		bch2_bkey_to_text(&buf, &uk);
128 		printk(KERN_ERR "set %zu key %u: %s\n",
129 		       t - b->set, set->k, buf.buf);
130 	}
131 
132 	printbuf_exit(&buf);
133 }
134 
135 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b)
136 {
137 	struct bkey_packed *k;
138 	struct btree_nr_keys nr = {};
139 
140 	for_each_bset(b, t)
141 		bset_tree_for_each_key(b, t, k)
142 			if (!bkey_deleted(k))
143 				btree_keys_account_key_add(&nr, t - b->set, k);
144 	return nr;
145 }
146 
147 #ifdef CONFIG_BCACHEFS_DEBUG
148 
149 void __bch2_verify_btree_nr_keys(struct btree *b)
150 {
151 	struct btree_nr_keys nr = bch2_btree_node_count_keys(b);
152 
153 	BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
154 }
155 
156 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
157 					    struct btree *b)
158 {
159 	struct btree_node_iter iter = *_iter;
160 	const struct bkey_packed *k, *n;
161 
162 	k = bch2_btree_node_iter_peek_all(&iter, b);
163 	__bch2_btree_node_iter_advance(&iter, b);
164 	n = bch2_btree_node_iter_peek_all(&iter, b);
165 
166 	bkey_unpack_key(b, k);
167 
168 	if (n &&
169 	    bkey_iter_cmp(b, k, n) > 0) {
170 		struct btree_node_iter_set *set;
171 		struct bkey ku = bkey_unpack_key(b, k);
172 		struct bkey nu = bkey_unpack_key(b, n);
173 		struct printbuf buf1 = PRINTBUF;
174 		struct printbuf buf2 = PRINTBUF;
175 
176 		bch2_dump_btree_node(NULL, b);
177 		bch2_bkey_to_text(&buf1, &ku);
178 		bch2_bkey_to_text(&buf2, &nu);
179 		printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
180 		       buf1.buf, buf2.buf);
181 		printk(KERN_ERR "iter was:");
182 
183 		btree_node_iter_for_each(_iter, set) {
184 			struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k);
185 			struct bset_tree *t = bch2_bkey_to_bset(b, k2);
186 			printk(" [%zi %zi]", t - b->set,
187 			       k2->_data - bset(b, t)->_data);
188 		}
189 		panic("\n");
190 	}
191 }
192 
193 void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
194 				 struct btree *b)
195 {
196 	struct btree_node_iter_set *set, *s2;
197 	struct bkey_packed *k, *p;
198 
199 	if (bch2_btree_node_iter_end(iter))
200 		return;
201 
202 	/* Verify no duplicates: */
203 	btree_node_iter_for_each(iter, set) {
204 		BUG_ON(set->k > set->end);
205 		btree_node_iter_for_each(iter, s2)
206 			BUG_ON(set != s2 && set->end == s2->end);
207 	}
208 
209 	/* Verify that set->end is correct: */
210 	btree_node_iter_for_each(iter, set) {
211 		for_each_bset(b, t)
212 			if (set->end == t->end_offset) {
213 				BUG_ON(set->k < btree_bkey_first_offset(t) ||
214 				       set->k >= t->end_offset);
215 				goto found;
216 			}
217 		BUG();
218 found:
219 		do {} while (0);
220 	}
221 
222 	/* Verify iterator is sorted: */
223 	btree_node_iter_for_each(iter, set)
224 		BUG_ON(set != iter->data &&
225 		       btree_node_iter_cmp(b, set[-1], set[0]) > 0);
226 
227 	k = bch2_btree_node_iter_peek_all(iter, b);
228 
229 	for_each_bset(b, t) {
230 		if (iter->data[0].end == t->end_offset)
231 			continue;
232 
233 		p = bch2_bkey_prev_all(b, t,
234 			bch2_btree_node_iter_bset_pos(iter, b, t));
235 
236 		BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
237 	}
238 }
239 
240 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
241 			    struct bkey_packed *insert, unsigned clobber_u64s)
242 {
243 	struct bset_tree *t = bch2_bkey_to_bset(b, where);
244 	struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
245 	struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s);
246 	struct printbuf buf1 = PRINTBUF;
247 	struct printbuf buf2 = PRINTBUF;
248 #if 0
249 	BUG_ON(prev &&
250 	       bkey_iter_cmp(b, prev, insert) > 0);
251 #else
252 	if (prev &&
253 	    bkey_iter_cmp(b, prev, insert) > 0) {
254 		struct bkey k1 = bkey_unpack_key(b, prev);
255 		struct bkey k2 = bkey_unpack_key(b, insert);
256 
257 		bch2_dump_btree_node(NULL, b);
258 		bch2_bkey_to_text(&buf1, &k1);
259 		bch2_bkey_to_text(&buf2, &k2);
260 
261 		panic("prev > insert:\n"
262 		      "prev    key %s\n"
263 		      "insert  key %s\n",
264 		      buf1.buf, buf2.buf);
265 	}
266 #endif
267 #if 0
268 	BUG_ON(next != btree_bkey_last(b, t) &&
269 	       bkey_iter_cmp(b, insert, next) > 0);
270 #else
271 	if (next != btree_bkey_last(b, t) &&
272 	    bkey_iter_cmp(b, insert, next) > 0) {
273 		struct bkey k1 = bkey_unpack_key(b, insert);
274 		struct bkey k2 = bkey_unpack_key(b, next);
275 
276 		bch2_dump_btree_node(NULL, b);
277 		bch2_bkey_to_text(&buf1, &k1);
278 		bch2_bkey_to_text(&buf2, &k2);
279 
280 		panic("insert > next:\n"
281 		      "insert  key %s\n"
282 		      "next    key %s\n",
283 		      buf1.buf, buf2.buf);
284 	}
285 #endif
286 }
287 
288 #else
289 
290 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
291 						   struct btree *b) {}
292 
293 #endif
294 
295 /* Auxiliary search trees */
296 
297 #define BFLOAT_FAILED_UNPACKED	U8_MAX
298 #define BFLOAT_FAILED		U8_MAX
299 
300 struct bkey_float {
301 	u8		exponent;
302 	u8		key_offset;
303 	u16		mantissa;
304 };
305 #define BKEY_MANTISSA_BITS	16
306 
307 static unsigned bkey_float_byte_offset(unsigned idx)
308 {
309 	return idx * sizeof(struct bkey_float);
310 }
311 
312 struct ro_aux_tree {
313 	u8			nothing[0];
314 	struct bkey_float	f[];
315 };
316 
317 struct rw_aux_tree {
318 	u16		offset;
319 	struct bpos	k;
320 };
321 
322 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
323 {
324 	BUG_ON(t->aux_data_offset == U16_MAX);
325 
326 	switch (bset_aux_tree_type(t)) {
327 	case BSET_NO_AUX_TREE:
328 		return t->aux_data_offset;
329 	case BSET_RO_AUX_TREE:
330 		return t->aux_data_offset +
331 			DIV_ROUND_UP(t->size * sizeof(struct bkey_float) +
332 				     t->size * sizeof(u8), 8);
333 	case BSET_RW_AUX_TREE:
334 		return t->aux_data_offset +
335 			DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
336 	default:
337 		BUG();
338 	}
339 }
340 
341 static unsigned bset_aux_tree_buf_start(const struct btree *b,
342 					const struct bset_tree *t)
343 {
344 	return t == b->set
345 		? DIV_ROUND_UP(b->unpack_fn_len, 8)
346 		: bset_aux_tree_buf_end(t - 1);
347 }
348 
349 static void *__aux_tree_base(const struct btree *b,
350 			     const struct bset_tree *t)
351 {
352 	return b->aux_data + t->aux_data_offset * 8;
353 }
354 
355 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
356 					    const struct bset_tree *t)
357 {
358 	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
359 
360 	return __aux_tree_base(b, t);
361 }
362 
363 static u8 *ro_aux_tree_prev(const struct btree *b,
364 			    const struct bset_tree *t)
365 {
366 	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
367 
368 	return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size);
369 }
370 
371 static struct bkey_float *bkey_float(const struct btree *b,
372 				     const struct bset_tree *t,
373 				     unsigned idx)
374 {
375 	return ro_aux_tree_base(b, t)->f + idx;
376 }
377 
378 static void bset_aux_tree_verify(struct btree *b)
379 {
380 #ifdef CONFIG_BCACHEFS_DEBUG
381 	for_each_bset(b, t) {
382 		if (t->aux_data_offset == U16_MAX)
383 			continue;
384 
385 		BUG_ON(t != b->set &&
386 		       t[-1].aux_data_offset == U16_MAX);
387 
388 		BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
389 		BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
390 		BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
391 	}
392 #endif
393 }
394 
395 void bch2_btree_keys_init(struct btree *b)
396 {
397 	unsigned i;
398 
399 	b->nsets		= 0;
400 	memset(&b->nr, 0, sizeof(b->nr));
401 
402 	for (i = 0; i < MAX_BSETS; i++)
403 		b->set[i].data_offset = U16_MAX;
404 
405 	bch2_bset_set_no_aux_tree(b, b->set);
406 }
407 
408 /* Binary tree stuff for auxiliary search trees */
409 
410 /*
411  * Cacheline/offset <-> bkey pointer arithmetic:
412  *
413  * t->tree is a binary search tree in an array; each node corresponds to a key
414  * in one cacheline in t->set (BSET_CACHELINE bytes).
415  *
416  * This means we don't have to store the full index of the key that a node in
417  * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
418  * then bkey_float->m gives us the offset within that cacheline, in units of 8
419  * bytes.
420  *
421  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
422  * make this work.
423  *
424  * To construct the bfloat for an arbitrary key we need to know what the key
425  * immediately preceding it is: we have to check if the two keys differ in the
426  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
427  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
428  */
429 
430 static inline void *bset_cacheline(const struct btree *b,
431 				   const struct bset_tree *t,
432 				   unsigned cacheline)
433 {
434 	return (void *) round_down((unsigned long) btree_bkey_first(b, t),
435 				   L1_CACHE_BYTES) +
436 		cacheline * BSET_CACHELINE;
437 }
438 
439 static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
440 					     const struct bset_tree *t,
441 					     unsigned cacheline,
442 					     unsigned offset)
443 {
444 	return bset_cacheline(b, t, cacheline) + offset * 8;
445 }
446 
447 static unsigned bkey_to_cacheline(const struct btree *b,
448 				  const struct bset_tree *t,
449 				  const struct bkey_packed *k)
450 {
451 	return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
452 }
453 
454 static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
455 					  const struct bset_tree *t,
456 					  unsigned cacheline,
457 					  const struct bkey_packed *k)
458 {
459 	return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
460 }
461 
462 static unsigned bkey_to_cacheline_offset(const struct btree *b,
463 					 const struct bset_tree *t,
464 					 unsigned cacheline,
465 					 const struct bkey_packed *k)
466 {
467 	size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
468 
469 	EBUG_ON(m > U8_MAX);
470 	return m;
471 }
472 
473 static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
474 					       const struct bset_tree *t,
475 					       unsigned j)
476 {
477 	return cacheline_to_bkey(b, t,
478 			__eytzinger1_to_inorder(j, t->size - 1, t->extra),
479 			bkey_float(b, t, j)->key_offset);
480 }
481 
482 static struct bkey_packed *tree_to_prev_bkey(const struct btree *b,
483 					     const struct bset_tree *t,
484 					     unsigned j)
485 {
486 	unsigned prev_u64s = ro_aux_tree_prev(b, t)[j];
487 
488 	return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s);
489 }
490 
491 static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
492 				       const struct bset_tree *t)
493 {
494 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
495 
496 	return __aux_tree_base(b, t);
497 }
498 
499 /*
500  * For the write set - the one we're currently inserting keys into - we don't
501  * maintain a full search tree, we just keep a simple lookup table in t->prev.
502  */
503 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
504 					  struct bset_tree *t,
505 					  unsigned j)
506 {
507 	return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
508 }
509 
510 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
511 			    unsigned j, struct bkey_packed *k)
512 {
513 	EBUG_ON(k >= btree_bkey_last(b, t));
514 
515 	rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
516 		.offset	= __btree_node_key_to_offset(b, k),
517 		.k	= bkey_unpack_pos(b, k),
518 	};
519 }
520 
521 static void bch2_bset_verify_rw_aux_tree(struct btree *b,
522 					struct bset_tree *t)
523 {
524 	struct bkey_packed *k = btree_bkey_first(b, t);
525 	unsigned j = 0;
526 
527 	if (!bch2_expensive_debug_checks)
528 		return;
529 
530 	BUG_ON(bset_has_ro_aux_tree(t));
531 
532 	if (!bset_has_rw_aux_tree(t))
533 		return;
534 
535 	BUG_ON(t->size < 1);
536 	BUG_ON(rw_aux_to_bkey(b, t, j) != k);
537 
538 	goto start;
539 	while (1) {
540 		if (rw_aux_to_bkey(b, t, j) == k) {
541 			BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k,
542 					bkey_unpack_pos(b, k)));
543 start:
544 			if (++j == t->size)
545 				break;
546 
547 			BUG_ON(rw_aux_tree(b, t)[j].offset <=
548 			       rw_aux_tree(b, t)[j - 1].offset);
549 		}
550 
551 		k = bkey_p_next(k);
552 		BUG_ON(k >= btree_bkey_last(b, t));
553 	}
554 }
555 
556 /* returns idx of first entry >= offset: */
557 static unsigned rw_aux_tree_bsearch(struct btree *b,
558 				    struct bset_tree *t,
559 				    unsigned offset)
560 {
561 	unsigned bset_offs = offset - btree_bkey_first_offset(t);
562 	unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
563 	unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
564 
565 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
566 	EBUG_ON(!t->size);
567 	EBUG_ON(idx > t->size);
568 
569 	while (idx < t->size &&
570 	       rw_aux_tree(b, t)[idx].offset < offset)
571 		idx++;
572 
573 	while (idx &&
574 	       rw_aux_tree(b, t)[idx - 1].offset >= offset)
575 		idx--;
576 
577 	EBUG_ON(idx < t->size &&
578 		rw_aux_tree(b, t)[idx].offset < offset);
579 	EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
580 	EBUG_ON(idx + 1 < t->size &&
581 		rw_aux_tree(b, t)[idx].offset ==
582 		rw_aux_tree(b, t)[idx + 1].offset);
583 
584 	return idx;
585 }
586 
587 static inline unsigned bkey_mantissa(const struct bkey_packed *k,
588 				     const struct bkey_float *f,
589 				     unsigned idx)
590 {
591 	u64 v;
592 
593 	EBUG_ON(!bkey_packed(k));
594 
595 	v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
596 
597 	/*
598 	 * In little endian, we're shifting off low bits (and then the bits we
599 	 * want are at the low end), in big endian we're shifting off high bits
600 	 * (and then the bits we want are at the high end, so we shift them
601 	 * back down):
602 	 */
603 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
604 	v >>= f->exponent & 7;
605 #else
606 	v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
607 #endif
608 	return (u16) v;
609 }
610 
611 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t,
612 					unsigned j,
613 					struct bkey_packed *min_key,
614 					struct bkey_packed *max_key)
615 {
616 	struct bkey_float *f = bkey_float(b, t, j);
617 	struct bkey_packed *m = tree_to_bkey(b, t, j);
618 	struct bkey_packed *l = is_power_of_2(j)
619 		? min_key
620 		: tree_to_prev_bkey(b, t, j >> ffs(j));
621 	struct bkey_packed *r = is_power_of_2(j + 1)
622 		? max_key
623 		: tree_to_bkey(b, t, j >> (ffz(j) + 1));
624 	unsigned mantissa;
625 	int shift, exponent, high_bit;
626 
627 	/*
628 	 * for failed bfloats, the lookup code falls back to comparing against
629 	 * the original key.
630 	 */
631 
632 	if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
633 	    !b->nr_key_bits) {
634 		f->exponent = BFLOAT_FAILED_UNPACKED;
635 		return;
636 	}
637 
638 	/*
639 	 * The greatest differing bit of l and r is the first bit we must
640 	 * include in the bfloat mantissa we're creating in order to do
641 	 * comparisons - that bit always becomes the high bit of
642 	 * bfloat->mantissa, and thus the exponent we're calculating here is
643 	 * the position of what will become the low bit in bfloat->mantissa:
644 	 *
645 	 * Note that this may be negative - we may be running off the low end
646 	 * of the key: we handle this later:
647 	 */
648 	high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
649 		       min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
650 	exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
651 
652 	/*
653 	 * Then we calculate the actual shift value, from the start of the key
654 	 * (k->_data), to get the key bits starting at exponent:
655 	 */
656 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
657 	shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
658 
659 	EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
660 #else
661 	shift = high_bit_offset +
662 		b->nr_key_bits -
663 		exponent -
664 		BKEY_MANTISSA_BITS;
665 
666 	EBUG_ON(shift < KEY_PACKED_BITS_START);
667 #endif
668 	EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
669 
670 	f->exponent = shift;
671 	mantissa = bkey_mantissa(m, f, j);
672 
673 	/*
674 	 * If we've got garbage bits, set them to all 1s - it's legal for the
675 	 * bfloat to compare larger than the original key, but not smaller:
676 	 */
677 	if (exponent < 0)
678 		mantissa |= ~(~0U << -exponent);
679 
680 	f->mantissa = mantissa;
681 }
682 
683 /* bytes remaining - only valid for last bset: */
684 static unsigned __bset_tree_capacity(struct btree *b, const struct bset_tree *t)
685 {
686 	bset_aux_tree_verify(b);
687 
688 	return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
689 }
690 
691 static unsigned bset_ro_tree_capacity(struct btree *b, const struct bset_tree *t)
692 {
693 	return __bset_tree_capacity(b, t) /
694 		(sizeof(struct bkey_float) + sizeof(u8));
695 }
696 
697 static unsigned bset_rw_tree_capacity(struct btree *b, const struct bset_tree *t)
698 {
699 	return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
700 }
701 
702 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
703 {
704 	struct bkey_packed *k;
705 
706 	t->size = 1;
707 	t->extra = BSET_RW_AUX_TREE_VAL;
708 	rw_aux_tree(b, t)[0].offset =
709 		__btree_node_key_to_offset(b, btree_bkey_first(b, t));
710 
711 	bset_tree_for_each_key(b, t, k) {
712 		if (t->size == bset_rw_tree_capacity(b, t))
713 			break;
714 
715 		if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
716 		    L1_CACHE_BYTES)
717 			rw_aux_tree_set(b, t, t->size++, k);
718 	}
719 }
720 
721 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
722 {
723 	struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t);
724 	struct bkey_i min_key, max_key;
725 	unsigned cacheline = 1;
726 
727 	t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
728 		      bset_ro_tree_capacity(b, t));
729 retry:
730 	if (t->size < 2) {
731 		t->size = 0;
732 		t->extra = BSET_NO_AUX_TREE_VAL;
733 		return;
734 	}
735 
736 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
737 
738 	/* First we figure out where the first key in each cacheline is */
739 	eytzinger1_for_each(j, t->size - 1) {
740 		while (bkey_to_cacheline(b, t, k) < cacheline)
741 			prev = k, k = bkey_p_next(k);
742 
743 		if (k >= btree_bkey_last(b, t)) {
744 			/* XXX: this path sucks */
745 			t->size--;
746 			goto retry;
747 		}
748 
749 		ro_aux_tree_prev(b, t)[j] = prev->u64s;
750 		bkey_float(b, t, j)->key_offset =
751 			bkey_to_cacheline_offset(b, t, cacheline++, k);
752 
753 		EBUG_ON(tree_to_prev_bkey(b, t, j) != prev);
754 		EBUG_ON(tree_to_bkey(b, t, j) != k);
755 	}
756 
757 	while (k != btree_bkey_last(b, t))
758 		prev = k, k = bkey_p_next(k);
759 
760 	if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
761 		bkey_init(&min_key.k);
762 		min_key.k.p = b->data->min_key;
763 	}
764 
765 	if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
766 		bkey_init(&max_key.k);
767 		max_key.k.p = b->data->max_key;
768 	}
769 
770 	/* Then we build the tree */
771 	eytzinger1_for_each(j, t->size - 1)
772 		make_bfloat(b, t, j,
773 			    bkey_to_packed(&min_key),
774 			    bkey_to_packed(&max_key));
775 }
776 
777 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
778 {
779 	struct bset_tree *i;
780 
781 	for (i = b->set; i != t; i++)
782 		BUG_ON(bset_has_rw_aux_tree(i));
783 
784 	bch2_bset_set_no_aux_tree(b, t);
785 
786 	/* round up to next cacheline: */
787 	t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
788 				      SMP_CACHE_BYTES / sizeof(u64));
789 
790 	bset_aux_tree_verify(b);
791 }
792 
793 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
794 			     bool writeable)
795 {
796 	if (writeable
797 	    ? bset_has_rw_aux_tree(t)
798 	    : bset_has_ro_aux_tree(t))
799 		return;
800 
801 	bset_alloc_tree(b, t);
802 
803 	if (!__bset_tree_capacity(b, t))
804 		return;
805 
806 	if (writeable)
807 		__build_rw_aux_tree(b, t);
808 	else
809 		__build_ro_aux_tree(b, t);
810 
811 	bset_aux_tree_verify(b);
812 }
813 
814 void bch2_bset_init_first(struct btree *b, struct bset *i)
815 {
816 	struct bset_tree *t;
817 
818 	BUG_ON(b->nsets);
819 
820 	memset(i, 0, sizeof(*i));
821 	get_random_bytes(&i->seq, sizeof(i->seq));
822 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
823 
824 	t = &b->set[b->nsets++];
825 	set_btree_bset(b, t, i);
826 }
827 
828 void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne)
829 {
830 	struct bset *i = &bne->keys;
831 	struct bset_tree *t;
832 
833 	BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b));
834 	BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
835 	BUG_ON(b->nsets >= MAX_BSETS);
836 
837 	memset(i, 0, sizeof(*i));
838 	i->seq = btree_bset_first(b)->seq;
839 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
840 
841 	t = &b->set[b->nsets++];
842 	set_btree_bset(b, t, i);
843 }
844 
845 /*
846  * find _some_ key in the same bset as @k that precedes @k - not necessarily the
847  * immediate predecessor:
848  */
849 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
850 				       struct bkey_packed *k)
851 {
852 	struct bkey_packed *p;
853 	unsigned offset;
854 	int j;
855 
856 	EBUG_ON(k < btree_bkey_first(b, t) ||
857 		k > btree_bkey_last(b, t));
858 
859 	if (k == btree_bkey_first(b, t))
860 		return NULL;
861 
862 	switch (bset_aux_tree_type(t)) {
863 	case BSET_NO_AUX_TREE:
864 		p = btree_bkey_first(b, t);
865 		break;
866 	case BSET_RO_AUX_TREE:
867 		j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
868 
869 		do {
870 			p = j ? tree_to_bkey(b, t,
871 					__inorder_to_eytzinger1(j--,
872 							t->size - 1, t->extra))
873 			      : btree_bkey_first(b, t);
874 		} while (p >= k);
875 		break;
876 	case BSET_RW_AUX_TREE:
877 		offset = __btree_node_key_to_offset(b, k);
878 		j = rw_aux_tree_bsearch(b, t, offset);
879 		p = j ? rw_aux_to_bkey(b, t, j - 1)
880 		      : btree_bkey_first(b, t);
881 		break;
882 	}
883 
884 	return p;
885 }
886 
887 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
888 					  struct bset_tree *t,
889 					  struct bkey_packed *k,
890 					  unsigned min_key_type)
891 {
892 	struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
893 
894 	while ((p = __bkey_prev(b, t, k)) && !ret) {
895 		for (i = p; i != k; i = bkey_p_next(i))
896 			if (i->type >= min_key_type)
897 				ret = i;
898 
899 		k = p;
900 	}
901 
902 	if (bch2_expensive_debug_checks) {
903 		BUG_ON(ret >= orig_k);
904 
905 		for (i = ret
906 			? bkey_p_next(ret)
907 			: btree_bkey_first(b, t);
908 		     i != orig_k;
909 		     i = bkey_p_next(i))
910 			BUG_ON(i->type >= min_key_type);
911 	}
912 
913 	return ret;
914 }
915 
916 /* Insert */
917 
918 static void bch2_bset_fix_lookup_table(struct btree *b,
919 				       struct bset_tree *t,
920 				       struct bkey_packed *_where,
921 				       unsigned clobber_u64s,
922 				       unsigned new_u64s)
923 {
924 	int shift = new_u64s - clobber_u64s;
925 	unsigned l, j, where = __btree_node_key_to_offset(b, _where);
926 
927 	EBUG_ON(bset_has_ro_aux_tree(t));
928 
929 	if (!bset_has_rw_aux_tree(t))
930 		return;
931 
932 	/* returns first entry >= where */
933 	l = rw_aux_tree_bsearch(b, t, where);
934 
935 	if (!l) /* never delete first entry */
936 		l++;
937 	else if (l < t->size &&
938 		 where < t->end_offset &&
939 		 rw_aux_tree(b, t)[l].offset == where)
940 		rw_aux_tree_set(b, t, l++, _where);
941 
942 	/* l now > where */
943 
944 	for (j = l;
945 	     j < t->size &&
946 	     rw_aux_tree(b, t)[j].offset < where + clobber_u64s;
947 	     j++)
948 		;
949 
950 	if (j < t->size &&
951 	    rw_aux_tree(b, t)[j].offset + shift ==
952 	    rw_aux_tree(b, t)[l - 1].offset)
953 		j++;
954 
955 	memmove(&rw_aux_tree(b, t)[l],
956 		&rw_aux_tree(b, t)[j],
957 		(void *) &rw_aux_tree(b, t)[t->size] -
958 		(void *) &rw_aux_tree(b, t)[j]);
959 	t->size -= j - l;
960 
961 	for (j = l; j < t->size; j++)
962 		rw_aux_tree(b, t)[j].offset += shift;
963 
964 	EBUG_ON(l < t->size &&
965 		rw_aux_tree(b, t)[l].offset ==
966 		rw_aux_tree(b, t)[l - 1].offset);
967 
968 	if (t->size < bset_rw_tree_capacity(b, t) &&
969 	    (l < t->size
970 	     ? rw_aux_tree(b, t)[l].offset
971 	     : t->end_offset) -
972 	    rw_aux_tree(b, t)[l - 1].offset >
973 	    L1_CACHE_BYTES / sizeof(u64)) {
974 		struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1);
975 		struct bkey_packed *end = l < t->size
976 			? rw_aux_to_bkey(b, t, l)
977 			: btree_bkey_last(b, t);
978 		struct bkey_packed *k = start;
979 
980 		while (1) {
981 			k = bkey_p_next(k);
982 			if (k == end)
983 				break;
984 
985 			if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
986 				memmove(&rw_aux_tree(b, t)[l + 1],
987 					&rw_aux_tree(b, t)[l],
988 					(void *) &rw_aux_tree(b, t)[t->size] -
989 					(void *) &rw_aux_tree(b, t)[l]);
990 				t->size++;
991 				rw_aux_tree_set(b, t, l, k);
992 				break;
993 			}
994 		}
995 	}
996 
997 	bch2_bset_verify_rw_aux_tree(b, t);
998 	bset_aux_tree_verify(b);
999 }
1000 
1001 void bch2_bset_insert(struct btree *b,
1002 		      struct btree_node_iter *iter,
1003 		      struct bkey_packed *where,
1004 		      struct bkey_i *insert,
1005 		      unsigned clobber_u64s)
1006 {
1007 	struct bkey_format *f = &b->format;
1008 	struct bset_tree *t = bset_tree_last(b);
1009 	struct bkey_packed packed, *src = bkey_to_packed(insert);
1010 
1011 	bch2_bset_verify_rw_aux_tree(b, t);
1012 	bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
1013 
1014 	if (bch2_bkey_pack_key(&packed, &insert->k, f))
1015 		src = &packed;
1016 
1017 	if (!bkey_deleted(&insert->k))
1018 		btree_keys_account_key_add(&b->nr, t - b->set, src);
1019 
1020 	if (src->u64s != clobber_u64s) {
1021 		u64 *src_p = (u64 *) where->_data + clobber_u64s;
1022 		u64 *dst_p = (u64 *) where->_data + src->u64s;
1023 
1024 		EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1025 			(int) clobber_u64s - src->u64s);
1026 
1027 		memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1028 		le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1029 		set_btree_bset_end(b, t);
1030 	}
1031 
1032 	memcpy_u64s_small(where, src,
1033 		    bkeyp_key_u64s(f, src));
1034 	memcpy_u64s(bkeyp_val(f, where), &insert->v,
1035 		    bkeyp_val_u64s(f, src));
1036 
1037 	if (src->u64s != clobber_u64s)
1038 		bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1039 
1040 	bch2_verify_btree_nr_keys(b);
1041 }
1042 
1043 void bch2_bset_delete(struct btree *b,
1044 		      struct bkey_packed *where,
1045 		      unsigned clobber_u64s)
1046 {
1047 	struct bset_tree *t = bset_tree_last(b);
1048 	u64 *src_p = (u64 *) where->_data + clobber_u64s;
1049 	u64 *dst_p = where->_data;
1050 
1051 	bch2_bset_verify_rw_aux_tree(b, t);
1052 
1053 	EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1054 
1055 	memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1056 	le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1057 	set_btree_bset_end(b, t);
1058 
1059 	bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1060 }
1061 
1062 /* Lookup */
1063 
1064 __flatten
1065 static struct bkey_packed *bset_search_write_set(const struct btree *b,
1066 				struct bset_tree *t,
1067 				struct bpos *search)
1068 {
1069 	unsigned l = 0, r = t->size;
1070 
1071 	while (l + 1 != r) {
1072 		unsigned m = (l + r) >> 1;
1073 
1074 		if (bpos_lt(rw_aux_tree(b, t)[m].k, *search))
1075 			l = m;
1076 		else
1077 			r = m;
1078 	}
1079 
1080 	return rw_aux_to_bkey(b, t, l);
1081 }
1082 
1083 static inline void prefetch_four_cachelines(void *p)
1084 {
1085 #ifdef CONFIG_X86_64
1086 	asm("prefetcht0 (-127 + 64 * 0)(%0);"
1087 	    "prefetcht0 (-127 + 64 * 1)(%0);"
1088 	    "prefetcht0 (-127 + 64 * 2)(%0);"
1089 	    "prefetcht0 (-127 + 64 * 3)(%0);"
1090 	    :
1091 	    : "r" (p + 127));
1092 #else
1093 	prefetch(p + L1_CACHE_BYTES * 0);
1094 	prefetch(p + L1_CACHE_BYTES * 1);
1095 	prefetch(p + L1_CACHE_BYTES * 2);
1096 	prefetch(p + L1_CACHE_BYTES * 3);
1097 #endif
1098 }
1099 
1100 static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1101 					      const struct bkey_float *f,
1102 					      unsigned idx)
1103 {
1104 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1105 	unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1106 
1107 	return f->exponent > key_bits_start;
1108 #else
1109 	unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1110 
1111 	return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1112 #endif
1113 }
1114 
1115 __flatten
1116 static struct bkey_packed *bset_search_tree(const struct btree *b,
1117 				const struct bset_tree *t,
1118 				const struct bpos *search,
1119 				const struct bkey_packed *packed_search)
1120 {
1121 	struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1122 	struct bkey_float *f;
1123 	struct bkey_packed *k;
1124 	unsigned inorder, n = 1, l, r;
1125 	int cmp;
1126 
1127 	do {
1128 		if (likely(n << 4 < t->size))
1129 			prefetch(&base->f[n << 4]);
1130 
1131 		f = &base->f[n];
1132 		if (unlikely(f->exponent >= BFLOAT_FAILED))
1133 			goto slowpath;
1134 
1135 		l = f->mantissa;
1136 		r = bkey_mantissa(packed_search, f, n);
1137 
1138 		if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n))
1139 			goto slowpath;
1140 
1141 		n = n * 2 + (l < r);
1142 		continue;
1143 slowpath:
1144 		k = tree_to_bkey(b, t, n);
1145 		cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1146 		if (!cmp)
1147 			return k;
1148 
1149 		n = n * 2 + (cmp < 0);
1150 	} while (n < t->size);
1151 
1152 	inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1153 
1154 	/*
1155 	 * n would have been the node we recursed to - the low bit tells us if
1156 	 * we recursed left or recursed right.
1157 	 */
1158 	if (likely(!(n & 1))) {
1159 		--inorder;
1160 		if (unlikely(!inorder))
1161 			return btree_bkey_first(b, t);
1162 
1163 		f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1164 	}
1165 
1166 	return cacheline_to_bkey(b, t, inorder, f->key_offset);
1167 }
1168 
1169 static __always_inline __flatten
1170 struct bkey_packed *__bch2_bset_search(struct btree *b,
1171 				struct bset_tree *t,
1172 				struct bpos *search,
1173 				const struct bkey_packed *lossy_packed_search)
1174 {
1175 
1176 	/*
1177 	 * First, we search for a cacheline, then lastly we do a linear search
1178 	 * within that cacheline.
1179 	 *
1180 	 * To search for the cacheline, there's three different possibilities:
1181 	 *  * The set is too small to have a search tree, so we just do a linear
1182 	 *    search over the whole set.
1183 	 *  * The set is the one we're currently inserting into; keeping a full
1184 	 *    auxiliary search tree up to date would be too expensive, so we
1185 	 *    use a much simpler lookup table to do a binary search -
1186 	 *    bset_search_write_set().
1187 	 *  * Or we use the auxiliary search tree we constructed earlier -
1188 	 *    bset_search_tree()
1189 	 */
1190 
1191 	switch (bset_aux_tree_type(t)) {
1192 	case BSET_NO_AUX_TREE:
1193 		return btree_bkey_first(b, t);
1194 	case BSET_RW_AUX_TREE:
1195 		return bset_search_write_set(b, t, search);
1196 	case BSET_RO_AUX_TREE:
1197 		return bset_search_tree(b, t, search, lossy_packed_search);
1198 	default:
1199 		BUG();
1200 	}
1201 }
1202 
1203 static __always_inline __flatten
1204 struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1205 				struct bset_tree *t,
1206 				struct bpos *search,
1207 				struct bkey_packed *packed_search,
1208 				const struct bkey_packed *lossy_packed_search,
1209 				struct bkey_packed *m)
1210 {
1211 	if (lossy_packed_search)
1212 		while (m != btree_bkey_last(b, t) &&
1213 		       bkey_iter_cmp_p_or_unp(b, m,
1214 					lossy_packed_search, search) < 0)
1215 			m = bkey_p_next(m);
1216 
1217 	if (!packed_search)
1218 		while (m != btree_bkey_last(b, t) &&
1219 		       bkey_iter_pos_cmp(b, m, search) < 0)
1220 			m = bkey_p_next(m);
1221 
1222 	if (bch2_expensive_debug_checks) {
1223 		struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1224 
1225 		BUG_ON(prev &&
1226 		       bkey_iter_cmp_p_or_unp(b, prev,
1227 					packed_search, search) >= 0);
1228 	}
1229 
1230 	return m;
1231 }
1232 
1233 /* Btree node iterator */
1234 
1235 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1236 			      struct btree *b,
1237 			      const struct bkey_packed *k,
1238 			      const struct bkey_packed *end)
1239 {
1240 	if (k != end) {
1241 		struct btree_node_iter_set *pos;
1242 
1243 		btree_node_iter_for_each(iter, pos)
1244 			;
1245 
1246 		BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1247 		*pos = (struct btree_node_iter_set) {
1248 			__btree_node_key_to_offset(b, k),
1249 			__btree_node_key_to_offset(b, end)
1250 		};
1251 	}
1252 }
1253 
1254 void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1255 			       struct btree *b,
1256 			       const struct bkey_packed *k,
1257 			       const struct bkey_packed *end)
1258 {
1259 	__bch2_btree_node_iter_push(iter, b, k, end);
1260 	bch2_btree_node_iter_sort(iter, b);
1261 }
1262 
1263 noinline __flatten __cold
1264 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1265 			      struct btree *b, struct bpos *search)
1266 {
1267 	struct bkey_packed *k;
1268 
1269 	trace_bkey_pack_pos_fail(search);
1270 
1271 	bch2_btree_node_iter_init_from_start(iter, b);
1272 
1273 	while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1274 	       bkey_iter_pos_cmp(b, k, search) < 0)
1275 		bch2_btree_node_iter_advance(iter, b);
1276 }
1277 
1278 /**
1279  * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a
1280  * given position
1281  *
1282  * @iter:	iterator to initialize
1283  * @b:		btree node to search
1284  * @search:	search key
1285  *
1286  * Main entry point to the lookup code for individual btree nodes:
1287  *
1288  * NOTE:
1289  *
1290  * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1291  * keys. This doesn't matter for most code, but it does matter for lookups.
1292  *
1293  * Some adjacent keys with a string of equal keys:
1294  *	i j k k k k l m
1295  *
1296  * If you search for k, the lookup code isn't guaranteed to return you any
1297  * specific k. The lookup code is conceptually doing a binary search and
1298  * iterating backwards is very expensive so if the pivot happens to land at the
1299  * last k that's what you'll get.
1300  *
1301  * This works out ok, but it's something to be aware of:
1302  *
1303  *  - For non extents, we guarantee that the live key comes last - see
1304  *    btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1305  *    see will only be deleted keys you don't care about.
1306  *
1307  *  - For extents, deleted keys sort last (see the comment at the top of this
1308  *    file). But when you're searching for extents, you actually want the first
1309  *    key strictly greater than your search key - an extent that compares equal
1310  *    to the search key is going to have 0 sectors after the search key.
1311  *
1312  *    But this does mean that we can't just search for
1313  *    bpos_successor(start_of_range) to get the first extent that overlaps with
1314  *    the range we want - if we're unlucky and there's an extent that ends
1315  *    exactly where we searched, then there could be a deleted key at the same
1316  *    position and we'd get that when we search instead of the preceding extent
1317  *    we needed.
1318  *
1319  *    So we've got to search for start_of_range, then after the lookup iterate
1320  *    past any extents that compare equal to the position we searched for.
1321  */
1322 __flatten
1323 void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1324 			       struct btree *b, struct bpos *search)
1325 {
1326 	struct bkey_packed p, *packed_search = NULL;
1327 	struct btree_node_iter_set *pos = iter->data;
1328 	struct bkey_packed *k[MAX_BSETS];
1329 	unsigned i;
1330 
1331 	EBUG_ON(bpos_lt(*search, b->data->min_key));
1332 	EBUG_ON(bpos_gt(*search, b->data->max_key));
1333 	bset_aux_tree_verify(b);
1334 
1335 	memset(iter, 0, sizeof(*iter));
1336 
1337 	switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1338 	case BKEY_PACK_POS_EXACT:
1339 		packed_search = &p;
1340 		break;
1341 	case BKEY_PACK_POS_SMALLER:
1342 		packed_search = NULL;
1343 		break;
1344 	case BKEY_PACK_POS_FAIL:
1345 		btree_node_iter_init_pack_failed(iter, b, search);
1346 		return;
1347 	}
1348 
1349 	for (i = 0; i < b->nsets; i++) {
1350 		k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1351 		prefetch_four_cachelines(k[i]);
1352 	}
1353 
1354 	for (i = 0; i < b->nsets; i++) {
1355 		struct bset_tree *t = b->set + i;
1356 		struct bkey_packed *end = btree_bkey_last(b, t);
1357 
1358 		k[i] = bch2_bset_search_linear(b, t, search,
1359 					       packed_search, &p, k[i]);
1360 		if (k[i] != end)
1361 			*pos++ = (struct btree_node_iter_set) {
1362 				__btree_node_key_to_offset(b, k[i]),
1363 				__btree_node_key_to_offset(b, end)
1364 			};
1365 	}
1366 
1367 	bch2_btree_node_iter_sort(iter, b);
1368 }
1369 
1370 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1371 					  struct btree *b)
1372 {
1373 	memset(iter, 0, sizeof(*iter));
1374 
1375 	for_each_bset(b, t)
1376 		__bch2_btree_node_iter_push(iter, b,
1377 					   btree_bkey_first(b, t),
1378 					   btree_bkey_last(b, t));
1379 	bch2_btree_node_iter_sort(iter, b);
1380 }
1381 
1382 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1383 						  struct btree *b,
1384 						  struct bset_tree *t)
1385 {
1386 	struct btree_node_iter_set *set;
1387 
1388 	btree_node_iter_for_each(iter, set)
1389 		if (set->end == t->end_offset)
1390 			return __btree_node_offset_to_key(b, set->k);
1391 
1392 	return btree_bkey_last(b, t);
1393 }
1394 
1395 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1396 					    struct btree *b,
1397 					    unsigned first)
1398 {
1399 	bool ret;
1400 
1401 	if ((ret = (btree_node_iter_cmp(b,
1402 					iter->data[first],
1403 					iter->data[first + 1]) > 0)))
1404 		swap(iter->data[first], iter->data[first + 1]);
1405 	return ret;
1406 }
1407 
1408 void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1409 			       struct btree *b)
1410 {
1411 	/* unrolled bubble sort: */
1412 
1413 	if (!__btree_node_iter_set_end(iter, 2)) {
1414 		btree_node_iter_sort_two(iter, b, 0);
1415 		btree_node_iter_sort_two(iter, b, 1);
1416 	}
1417 
1418 	if (!__btree_node_iter_set_end(iter, 1))
1419 		btree_node_iter_sort_two(iter, b, 0);
1420 }
1421 
1422 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1423 				   struct btree_node_iter_set *set)
1424 {
1425 	struct btree_node_iter_set *last =
1426 		iter->data + ARRAY_SIZE(iter->data) - 1;
1427 
1428 	memmove(&set[0], &set[1], (void *) last - (void *) set);
1429 	*last = (struct btree_node_iter_set) { 0, 0 };
1430 }
1431 
1432 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1433 						  struct btree *b)
1434 {
1435 	iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1436 
1437 	EBUG_ON(iter->data->k > iter->data->end);
1438 
1439 	if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1440 		/* avoid an expensive memmove call: */
1441 		iter->data[0] = iter->data[1];
1442 		iter->data[1] = iter->data[2];
1443 		iter->data[2] = (struct btree_node_iter_set) { 0, 0 };
1444 		return;
1445 	}
1446 
1447 	if (__btree_node_iter_set_end(iter, 1))
1448 		return;
1449 
1450 	if (!btree_node_iter_sort_two(iter, b, 0))
1451 		return;
1452 
1453 	if (__btree_node_iter_set_end(iter, 2))
1454 		return;
1455 
1456 	btree_node_iter_sort_two(iter, b, 1);
1457 }
1458 
1459 void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1460 				  struct btree *b)
1461 {
1462 	if (bch2_expensive_debug_checks) {
1463 		bch2_btree_node_iter_verify(iter, b);
1464 		bch2_btree_node_iter_next_check(iter, b);
1465 	}
1466 
1467 	__bch2_btree_node_iter_advance(iter, b);
1468 }
1469 
1470 /*
1471  * Expensive:
1472  */
1473 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1474 						  struct btree *b)
1475 {
1476 	struct bkey_packed *k, *prev = NULL;
1477 	struct btree_node_iter_set *set;
1478 	unsigned end = 0;
1479 
1480 	if (bch2_expensive_debug_checks)
1481 		bch2_btree_node_iter_verify(iter, b);
1482 
1483 	for_each_bset(b, t) {
1484 		k = bch2_bkey_prev_all(b, t,
1485 			bch2_btree_node_iter_bset_pos(iter, b, t));
1486 		if (k &&
1487 		    (!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1488 			prev = k;
1489 			end = t->end_offset;
1490 		}
1491 	}
1492 
1493 	if (!prev)
1494 		return NULL;
1495 
1496 	/*
1497 	 * We're manually memmoving instead of just calling sort() to ensure the
1498 	 * prev we picked ends up in slot 0 - sort won't necessarily put it
1499 	 * there because of duplicate deleted keys:
1500 	 */
1501 	btree_node_iter_for_each(iter, set)
1502 		if (set->end == end)
1503 			goto found;
1504 
1505 	BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1506 found:
1507 	BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1508 
1509 	memmove(&iter->data[1],
1510 		&iter->data[0],
1511 		(void *) set - (void *) &iter->data[0]);
1512 
1513 	iter->data[0].k = __btree_node_key_to_offset(b, prev);
1514 	iter->data[0].end = end;
1515 
1516 	if (bch2_expensive_debug_checks)
1517 		bch2_btree_node_iter_verify(iter, b);
1518 	return prev;
1519 }
1520 
1521 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1522 					      struct btree *b)
1523 {
1524 	struct bkey_packed *prev;
1525 
1526 	do {
1527 		prev = bch2_btree_node_iter_prev_all(iter, b);
1528 	} while (prev && bkey_deleted(prev));
1529 
1530 	return prev;
1531 }
1532 
1533 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1534 						 struct btree *b,
1535 						 struct bkey *u)
1536 {
1537 	struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1538 
1539 	return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1540 }
1541 
1542 /* Mergesort */
1543 
1544 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats)
1545 {
1546 	for_each_bset_c(b, t) {
1547 		enum bset_aux_tree_type type = bset_aux_tree_type(t);
1548 		size_t j;
1549 
1550 		stats->sets[type].nr++;
1551 		stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1552 			sizeof(u64);
1553 
1554 		if (bset_has_ro_aux_tree(t)) {
1555 			stats->floats += t->size - 1;
1556 
1557 			for (j = 1; j < t->size; j++)
1558 				stats->failed +=
1559 					bkey_float(b, t, j)->exponent ==
1560 					BFLOAT_FAILED;
1561 		}
1562 	}
1563 }
1564 
1565 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1566 			 struct bkey_packed *k)
1567 {
1568 	struct bset_tree *t = bch2_bkey_to_bset(b, k);
1569 	struct bkey uk;
1570 	unsigned j, inorder;
1571 
1572 	if (!bset_has_ro_aux_tree(t))
1573 		return;
1574 
1575 	inorder = bkey_to_cacheline(b, t, k);
1576 	if (!inorder || inorder >= t->size)
1577 		return;
1578 
1579 	j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1580 	if (k != tree_to_bkey(b, t, j))
1581 		return;
1582 
1583 	switch (bkey_float(b, t, j)->exponent) {
1584 	case BFLOAT_FAILED:
1585 		uk = bkey_unpack_key(b, k);
1586 		prt_printf(out,
1587 		       "    failed unpacked at depth %u\n"
1588 		       "\t",
1589 		       ilog2(j));
1590 		bch2_bpos_to_text(out, uk.p);
1591 		prt_printf(out, "\n");
1592 		break;
1593 	}
1594 }
1595