xref: /linux/fs/bcachefs/bset.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcachefs.h"
10 #include "btree_cache.h"
11 #include "bset.h"
12 #include "eytzinger.h"
13 #include "trace.h"
14 #include "util.h"
15 
16 #include <linux/unaligned.h>
17 #include <linux/console.h>
18 #include <linux/random.h>
19 #include <linux/prefetch.h>
20 
21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
22 						  struct btree *);
23 
24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
25 {
26 	unsigned n = ARRAY_SIZE(iter->data);
27 
28 	while (n && __btree_node_iter_set_end(iter, n - 1))
29 		--n;
30 
31 	return n;
32 }
33 
34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
35 {
36 	return bch2_bkey_to_bset_inlined(b, k);
37 }
38 
39 /*
40  * There are never duplicate live keys in the btree - but including keys that
41  * have been flagged as deleted (and will be cleaned up later) we _will_ see
42  * duplicates.
43  *
44  * Thus the sort order is: usual key comparison first, but for keys that compare
45  * equal the deleted key(s) come first, and the (at most one) live version comes
46  * last.
47  *
48  * The main reason for this is insertion: to handle overwrites, we first iterate
49  * over keys that compare equal to our insert key, and then insert immediately
50  * prior to the first key greater than the key we're inserting - our insert
51  * position will be after all keys that compare equal to our insert key, which
52  * by the time we actually do the insert will all be deleted.
53  */
54 
55 void bch2_dump_bset(struct bch_fs *c, struct btree *b,
56 		    struct bset *i, unsigned set)
57 {
58 	struct bkey_packed *_k, *_n;
59 	struct bkey uk, n;
60 	struct bkey_s_c k;
61 	struct printbuf buf = PRINTBUF;
62 
63 	if (!i->u64s)
64 		return;
65 
66 	for (_k = i->start;
67 	     _k < vstruct_last(i);
68 	     _k = _n) {
69 		_n = bkey_p_next(_k);
70 
71 		if (!_k->u64s) {
72 			printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set,
73 			       _k->_data - i->_data);
74 			break;
75 		}
76 
77 		k = bkey_disassemble(b, _k, &uk);
78 
79 		printbuf_reset(&buf);
80 		if (c)
81 			bch2_bkey_val_to_text(&buf, c, k);
82 		else
83 			bch2_bkey_to_text(&buf, k.k);
84 		printk(KERN_ERR "block %u key %5zu: %s\n", set,
85 		       _k->_data - i->_data, buf.buf);
86 
87 		if (_n == vstruct_last(i))
88 			continue;
89 
90 		n = bkey_unpack_key(b, _n);
91 
92 		if (bpos_lt(n.p, k.k->p)) {
93 			printk(KERN_ERR "Key skipped backwards\n");
94 			continue;
95 		}
96 
97 		if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p))
98 			printk(KERN_ERR "Duplicate keys\n");
99 	}
100 
101 	printbuf_exit(&buf);
102 }
103 
104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
105 {
106 	console_lock();
107 	for_each_bset(b, t)
108 		bch2_dump_bset(c, b, bset(b, t), t - b->set);
109 	console_unlock();
110 }
111 
112 void bch2_dump_btree_node_iter(struct btree *b,
113 			      struct btree_node_iter *iter)
114 {
115 	struct btree_node_iter_set *set;
116 	struct printbuf buf = PRINTBUF;
117 
118 	printk(KERN_ERR "btree node iter with %u/%u sets:\n",
119 	       __btree_node_iter_used(iter), b->nsets);
120 
121 	btree_node_iter_for_each(iter, set) {
122 		struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
123 		struct bset_tree *t = bch2_bkey_to_bset(b, k);
124 		struct bkey uk = bkey_unpack_key(b, k);
125 
126 		printbuf_reset(&buf);
127 		bch2_bkey_to_text(&buf, &uk);
128 		printk(KERN_ERR "set %zu key %u: %s\n",
129 		       t - b->set, set->k, buf.buf);
130 	}
131 
132 	printbuf_exit(&buf);
133 }
134 
135 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b)
136 {
137 	struct bkey_packed *k;
138 	struct btree_nr_keys nr = {};
139 
140 	for_each_bset(b, t)
141 		bset_tree_for_each_key(b, t, k)
142 			if (!bkey_deleted(k))
143 				btree_keys_account_key_add(&nr, t - b->set, k);
144 	return nr;
145 }
146 
147 #ifdef CONFIG_BCACHEFS_DEBUG
148 
149 void __bch2_verify_btree_nr_keys(struct btree *b)
150 {
151 	struct btree_nr_keys nr = bch2_btree_node_count_keys(b);
152 
153 	BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
154 }
155 
156 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
157 					    struct btree *b)
158 {
159 	struct btree_node_iter iter = *_iter;
160 	const struct bkey_packed *k, *n;
161 
162 	k = bch2_btree_node_iter_peek_all(&iter, b);
163 	__bch2_btree_node_iter_advance(&iter, b);
164 	n = bch2_btree_node_iter_peek_all(&iter, b);
165 
166 	bkey_unpack_key(b, k);
167 
168 	if (n &&
169 	    bkey_iter_cmp(b, k, n) > 0) {
170 		struct btree_node_iter_set *set;
171 		struct bkey ku = bkey_unpack_key(b, k);
172 		struct bkey nu = bkey_unpack_key(b, n);
173 		struct printbuf buf1 = PRINTBUF;
174 		struct printbuf buf2 = PRINTBUF;
175 
176 		bch2_dump_btree_node(NULL, b);
177 		bch2_bkey_to_text(&buf1, &ku);
178 		bch2_bkey_to_text(&buf2, &nu);
179 		printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
180 		       buf1.buf, buf2.buf);
181 		printk(KERN_ERR "iter was:");
182 
183 		btree_node_iter_for_each(_iter, set) {
184 			struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k);
185 			struct bset_tree *t = bch2_bkey_to_bset(b, k2);
186 			printk(" [%zi %zi]", t - b->set,
187 			       k2->_data - bset(b, t)->_data);
188 		}
189 		panic("\n");
190 	}
191 }
192 
193 void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
194 				 struct btree *b)
195 {
196 	struct btree_node_iter_set *set, *s2;
197 	struct bkey_packed *k, *p;
198 
199 	if (bch2_btree_node_iter_end(iter))
200 		return;
201 
202 	/* Verify no duplicates: */
203 	btree_node_iter_for_each(iter, set) {
204 		BUG_ON(set->k > set->end);
205 		btree_node_iter_for_each(iter, s2)
206 			BUG_ON(set != s2 && set->end == s2->end);
207 	}
208 
209 	/* Verify that set->end is correct: */
210 	btree_node_iter_for_each(iter, set) {
211 		for_each_bset(b, t)
212 			if (set->end == t->end_offset) {
213 				BUG_ON(set->k < btree_bkey_first_offset(t) ||
214 				       set->k >= t->end_offset);
215 				goto found;
216 			}
217 		BUG();
218 found:
219 		do {} while (0);
220 	}
221 
222 	/* Verify iterator is sorted: */
223 	btree_node_iter_for_each(iter, set)
224 		BUG_ON(set != iter->data &&
225 		       btree_node_iter_cmp(b, set[-1], set[0]) > 0);
226 
227 	k = bch2_btree_node_iter_peek_all(iter, b);
228 
229 	for_each_bset(b, t) {
230 		if (iter->data[0].end == t->end_offset)
231 			continue;
232 
233 		p = bch2_bkey_prev_all(b, t,
234 			bch2_btree_node_iter_bset_pos(iter, b, t));
235 
236 		BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
237 	}
238 }
239 
240 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
241 			    struct bkey_packed *insert, unsigned clobber_u64s)
242 {
243 	struct bset_tree *t = bch2_bkey_to_bset(b, where);
244 	struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
245 	struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s);
246 	struct printbuf buf1 = PRINTBUF;
247 	struct printbuf buf2 = PRINTBUF;
248 #if 0
249 	BUG_ON(prev &&
250 	       bkey_iter_cmp(b, prev, insert) > 0);
251 #else
252 	if (prev &&
253 	    bkey_iter_cmp(b, prev, insert) > 0) {
254 		struct bkey k1 = bkey_unpack_key(b, prev);
255 		struct bkey k2 = bkey_unpack_key(b, insert);
256 
257 		bch2_dump_btree_node(NULL, b);
258 		bch2_bkey_to_text(&buf1, &k1);
259 		bch2_bkey_to_text(&buf2, &k2);
260 
261 		panic("prev > insert:\n"
262 		      "prev    key %s\n"
263 		      "insert  key %s\n",
264 		      buf1.buf, buf2.buf);
265 	}
266 #endif
267 #if 0
268 	BUG_ON(next != btree_bkey_last(b, t) &&
269 	       bkey_iter_cmp(b, insert, next) > 0);
270 #else
271 	if (next != btree_bkey_last(b, t) &&
272 	    bkey_iter_cmp(b, insert, next) > 0) {
273 		struct bkey k1 = bkey_unpack_key(b, insert);
274 		struct bkey k2 = bkey_unpack_key(b, next);
275 
276 		bch2_dump_btree_node(NULL, b);
277 		bch2_bkey_to_text(&buf1, &k1);
278 		bch2_bkey_to_text(&buf2, &k2);
279 
280 		panic("insert > next:\n"
281 		      "insert  key %s\n"
282 		      "next    key %s\n",
283 		      buf1.buf, buf2.buf);
284 	}
285 #endif
286 }
287 
288 #else
289 
290 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
291 						   struct btree *b) {}
292 
293 #endif
294 
295 /* Auxiliary search trees */
296 
297 #define BFLOAT_FAILED_UNPACKED	U8_MAX
298 #define BFLOAT_FAILED		U8_MAX
299 
300 struct bkey_float {
301 	u8		exponent;
302 	u8		key_offset;
303 	u16		mantissa;
304 };
305 #define BKEY_MANTISSA_BITS	16
306 
307 struct ro_aux_tree {
308 	u8			nothing[0];
309 	struct bkey_float	f[];
310 };
311 
312 struct rw_aux_tree {
313 	u16		offset;
314 	struct bpos	k;
315 };
316 
317 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
318 {
319 	BUG_ON(t->aux_data_offset == U16_MAX);
320 
321 	switch (bset_aux_tree_type(t)) {
322 	case BSET_NO_AUX_TREE:
323 		return t->aux_data_offset;
324 	case BSET_RO_AUX_TREE:
325 		return t->aux_data_offset +
326 			DIV_ROUND_UP(t->size * sizeof(struct bkey_float), 8);
327 	case BSET_RW_AUX_TREE:
328 		return t->aux_data_offset +
329 			DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
330 	default:
331 		BUG();
332 	}
333 }
334 
335 static unsigned bset_aux_tree_buf_start(const struct btree *b,
336 					const struct bset_tree *t)
337 {
338 	return t == b->set
339 		? DIV_ROUND_UP(b->unpack_fn_len, 8)
340 		: bset_aux_tree_buf_end(t - 1);
341 }
342 
343 static void *__aux_tree_base(const struct btree *b,
344 			     const struct bset_tree *t)
345 {
346 	return b->aux_data + t->aux_data_offset * 8;
347 }
348 
349 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
350 					    const struct bset_tree *t)
351 {
352 	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
353 
354 	return __aux_tree_base(b, t);
355 }
356 
357 static struct bkey_float *bkey_float(const struct btree *b,
358 				     const struct bset_tree *t,
359 				     unsigned idx)
360 {
361 	return ro_aux_tree_base(b, t)->f + idx;
362 }
363 
364 static void bset_aux_tree_verify(struct btree *b)
365 {
366 #ifdef CONFIG_BCACHEFS_DEBUG
367 	for_each_bset(b, t) {
368 		if (t->aux_data_offset == U16_MAX)
369 			continue;
370 
371 		BUG_ON(t != b->set &&
372 		       t[-1].aux_data_offset == U16_MAX);
373 
374 		BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
375 		BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
376 		BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
377 	}
378 #endif
379 }
380 
381 void bch2_btree_keys_init(struct btree *b)
382 {
383 	unsigned i;
384 
385 	b->nsets		= 0;
386 	memset(&b->nr, 0, sizeof(b->nr));
387 
388 	for (i = 0; i < MAX_BSETS; i++)
389 		b->set[i].data_offset = U16_MAX;
390 
391 	bch2_bset_set_no_aux_tree(b, b->set);
392 }
393 
394 /* Binary tree stuff for auxiliary search trees */
395 
396 /*
397  * Cacheline/offset <-> bkey pointer arithmetic:
398  *
399  * t->tree is a binary search tree in an array; each node corresponds to a key
400  * in one cacheline in t->set (BSET_CACHELINE bytes).
401  *
402  * This means we don't have to store the full index of the key that a node in
403  * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
404  * then bkey_float->m gives us the offset within that cacheline, in units of 8
405  * bytes.
406  *
407  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
408  * make this work.
409  *
410  * To construct the bfloat for an arbitrary key we need to know what the key
411  * immediately preceding it is: we have to check if the two keys differ in the
412  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
413  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
414  */
415 
416 static inline void *bset_cacheline(const struct btree *b,
417 				   const struct bset_tree *t,
418 				   unsigned cacheline)
419 {
420 	return (void *) round_down((unsigned long) btree_bkey_first(b, t),
421 				   L1_CACHE_BYTES) +
422 		cacheline * BSET_CACHELINE;
423 }
424 
425 static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
426 					     const struct bset_tree *t,
427 					     unsigned cacheline,
428 					     unsigned offset)
429 {
430 	return bset_cacheline(b, t, cacheline) + offset * 8;
431 }
432 
433 static unsigned bkey_to_cacheline(const struct btree *b,
434 				  const struct bset_tree *t,
435 				  const struct bkey_packed *k)
436 {
437 	return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
438 }
439 
440 static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
441 					  const struct bset_tree *t,
442 					  unsigned cacheline,
443 					  const struct bkey_packed *k)
444 {
445 	return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
446 }
447 
448 static unsigned bkey_to_cacheline_offset(const struct btree *b,
449 					 const struct bset_tree *t,
450 					 unsigned cacheline,
451 					 const struct bkey_packed *k)
452 {
453 	size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
454 
455 	EBUG_ON(m > U8_MAX);
456 	return m;
457 }
458 
459 static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
460 					       const struct bset_tree *t,
461 					       unsigned j)
462 {
463 	return cacheline_to_bkey(b, t,
464 			__eytzinger1_to_inorder(j, t->size - 1, t->extra),
465 			bkey_float(b, t, j)->key_offset);
466 }
467 
468 static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
469 				       const struct bset_tree *t)
470 {
471 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
472 
473 	return __aux_tree_base(b, t);
474 }
475 
476 /*
477  * For the write set - the one we're currently inserting keys into - we don't
478  * maintain a full search tree, we just keep a simple lookup table in t->prev.
479  */
480 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
481 					  struct bset_tree *t,
482 					  unsigned j)
483 {
484 	return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
485 }
486 
487 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
488 			    unsigned j, struct bkey_packed *k)
489 {
490 	EBUG_ON(k >= btree_bkey_last(b, t));
491 
492 	rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
493 		.offset	= __btree_node_key_to_offset(b, k),
494 		.k	= bkey_unpack_pos(b, k),
495 	};
496 }
497 
498 static void bch2_bset_verify_rw_aux_tree(struct btree *b,
499 					struct bset_tree *t)
500 {
501 	struct bkey_packed *k = btree_bkey_first(b, t);
502 	unsigned j = 0;
503 
504 	if (!bch2_expensive_debug_checks)
505 		return;
506 
507 	BUG_ON(bset_has_ro_aux_tree(t));
508 
509 	if (!bset_has_rw_aux_tree(t))
510 		return;
511 
512 	BUG_ON(t->size < 1);
513 	BUG_ON(rw_aux_to_bkey(b, t, j) != k);
514 
515 	goto start;
516 	while (1) {
517 		if (rw_aux_to_bkey(b, t, j) == k) {
518 			BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k,
519 					bkey_unpack_pos(b, k)));
520 start:
521 			if (++j == t->size)
522 				break;
523 
524 			BUG_ON(rw_aux_tree(b, t)[j].offset <=
525 			       rw_aux_tree(b, t)[j - 1].offset);
526 		}
527 
528 		k = bkey_p_next(k);
529 		BUG_ON(k >= btree_bkey_last(b, t));
530 	}
531 }
532 
533 /* returns idx of first entry >= offset: */
534 static unsigned rw_aux_tree_bsearch(struct btree *b,
535 				    struct bset_tree *t,
536 				    unsigned offset)
537 {
538 	unsigned bset_offs = offset - btree_bkey_first_offset(t);
539 	unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
540 	unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
541 
542 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
543 	EBUG_ON(!t->size);
544 	EBUG_ON(idx > t->size);
545 
546 	while (idx < t->size &&
547 	       rw_aux_tree(b, t)[idx].offset < offset)
548 		idx++;
549 
550 	while (idx &&
551 	       rw_aux_tree(b, t)[idx - 1].offset >= offset)
552 		idx--;
553 
554 	EBUG_ON(idx < t->size &&
555 		rw_aux_tree(b, t)[idx].offset < offset);
556 	EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
557 	EBUG_ON(idx + 1 < t->size &&
558 		rw_aux_tree(b, t)[idx].offset ==
559 		rw_aux_tree(b, t)[idx + 1].offset);
560 
561 	return idx;
562 }
563 
564 static inline unsigned bkey_mantissa(const struct bkey_packed *k,
565 				     const struct bkey_float *f)
566 {
567 	u64 v;
568 
569 	EBUG_ON(!bkey_packed(k));
570 
571 	v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
572 
573 	/*
574 	 * In little endian, we're shifting off low bits (and then the bits we
575 	 * want are at the low end), in big endian we're shifting off high bits
576 	 * (and then the bits we want are at the high end, so we shift them
577 	 * back down):
578 	 */
579 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
580 	v >>= f->exponent & 7;
581 #else
582 	v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
583 #endif
584 	return (u16) v;
585 }
586 
587 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t,
588 					unsigned j,
589 					struct bkey_packed *min_key,
590 					struct bkey_packed *max_key)
591 {
592 	struct bkey_float *f = bkey_float(b, t, j);
593 	struct bkey_packed *m = tree_to_bkey(b, t, j);
594 	struct bkey_packed *l = is_power_of_2(j)
595 		? min_key
596 		: tree_to_bkey(b, t, j >> ffs(j));
597 	struct bkey_packed *r = is_power_of_2(j + 1)
598 		? max_key
599 		: tree_to_bkey(b, t, j >> (ffz(j) + 1));
600 	unsigned mantissa;
601 	int shift, exponent, high_bit;
602 
603 	/*
604 	 * for failed bfloats, the lookup code falls back to comparing against
605 	 * the original key.
606 	 */
607 
608 	if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
609 	    !b->nr_key_bits) {
610 		f->exponent = BFLOAT_FAILED_UNPACKED;
611 		return;
612 	}
613 
614 	/*
615 	 * The greatest differing bit of l and r is the first bit we must
616 	 * include in the bfloat mantissa we're creating in order to do
617 	 * comparisons - that bit always becomes the high bit of
618 	 * bfloat->mantissa, and thus the exponent we're calculating here is
619 	 * the position of what will become the low bit in bfloat->mantissa:
620 	 *
621 	 * Note that this may be negative - we may be running off the low end
622 	 * of the key: we handle this later:
623 	 */
624 	high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
625 		       min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
626 	exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
627 
628 	/*
629 	 * Then we calculate the actual shift value, from the start of the key
630 	 * (k->_data), to get the key bits starting at exponent:
631 	 */
632 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
633 	shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
634 
635 	EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
636 #else
637 	shift = high_bit_offset +
638 		b->nr_key_bits -
639 		exponent -
640 		BKEY_MANTISSA_BITS;
641 
642 	EBUG_ON(shift < KEY_PACKED_BITS_START);
643 #endif
644 	EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
645 
646 	f->exponent = shift;
647 	mantissa = bkey_mantissa(m, f);
648 
649 	/*
650 	 * If we've got garbage bits, set them to all 1s - it's legal for the
651 	 * bfloat to compare larger than the original key, but not smaller:
652 	 */
653 	if (exponent < 0)
654 		mantissa |= ~(~0U << -exponent);
655 
656 	f->mantissa = mantissa;
657 }
658 
659 /* bytes remaining - only valid for last bset: */
660 static unsigned __bset_tree_capacity(struct btree *b, const struct bset_tree *t)
661 {
662 	bset_aux_tree_verify(b);
663 
664 	return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
665 }
666 
667 static unsigned bset_ro_tree_capacity(struct btree *b, const struct bset_tree *t)
668 {
669 	return __bset_tree_capacity(b, t) / sizeof(struct bkey_float);
670 }
671 
672 static unsigned bset_rw_tree_capacity(struct btree *b, const struct bset_tree *t)
673 {
674 	return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
675 }
676 
677 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
678 {
679 	struct bkey_packed *k;
680 
681 	t->size = 1;
682 	t->extra = BSET_RW_AUX_TREE_VAL;
683 	rw_aux_tree(b, t)[0].offset =
684 		__btree_node_key_to_offset(b, btree_bkey_first(b, t));
685 
686 	bset_tree_for_each_key(b, t, k) {
687 		if (t->size == bset_rw_tree_capacity(b, t))
688 			break;
689 
690 		if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
691 		    L1_CACHE_BYTES)
692 			rw_aux_tree_set(b, t, t->size++, k);
693 	}
694 }
695 
696 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
697 {
698 	struct bkey_packed *k = btree_bkey_first(b, t);
699 	struct bkey_i min_key, max_key;
700 	unsigned cacheline = 1;
701 
702 	t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
703 		      bset_ro_tree_capacity(b, t));
704 retry:
705 	if (t->size < 2) {
706 		t->size = 0;
707 		t->extra = BSET_NO_AUX_TREE_VAL;
708 		return;
709 	}
710 
711 	t->extra = eytzinger1_extra(t->size - 1);
712 
713 	/* First we figure out where the first key in each cacheline is */
714 	eytzinger1_for_each(j, t->size - 1) {
715 		while (bkey_to_cacheline(b, t, k) < cacheline)
716 			k = bkey_p_next(k);
717 
718 		if (k >= btree_bkey_last(b, t)) {
719 			/* XXX: this path sucks */
720 			t->size--;
721 			goto retry;
722 		}
723 
724 		bkey_float(b, t, j)->key_offset =
725 			bkey_to_cacheline_offset(b, t, cacheline++, k);
726 
727 		EBUG_ON(tree_to_bkey(b, t, j) != k);
728 	}
729 
730 	if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
731 		bkey_init(&min_key.k);
732 		min_key.k.p = b->data->min_key;
733 	}
734 
735 	if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
736 		bkey_init(&max_key.k);
737 		max_key.k.p = b->data->max_key;
738 	}
739 
740 	/* Then we build the tree */
741 	eytzinger1_for_each(j, t->size - 1)
742 		make_bfloat(b, t, j,
743 			    bkey_to_packed(&min_key),
744 			    bkey_to_packed(&max_key));
745 }
746 
747 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
748 {
749 	struct bset_tree *i;
750 
751 	for (i = b->set; i != t; i++)
752 		BUG_ON(bset_has_rw_aux_tree(i));
753 
754 	bch2_bset_set_no_aux_tree(b, t);
755 
756 	/* round up to next cacheline: */
757 	t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
758 				      SMP_CACHE_BYTES / sizeof(u64));
759 
760 	bset_aux_tree_verify(b);
761 }
762 
763 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
764 			     bool writeable)
765 {
766 	if (writeable
767 	    ? bset_has_rw_aux_tree(t)
768 	    : bset_has_ro_aux_tree(t))
769 		return;
770 
771 	bset_alloc_tree(b, t);
772 
773 	if (!__bset_tree_capacity(b, t))
774 		return;
775 
776 	if (writeable)
777 		__build_rw_aux_tree(b, t);
778 	else
779 		__build_ro_aux_tree(b, t);
780 
781 	bset_aux_tree_verify(b);
782 }
783 
784 void bch2_bset_init_first(struct btree *b, struct bset *i)
785 {
786 	struct bset_tree *t;
787 
788 	BUG_ON(b->nsets);
789 
790 	memset(i, 0, sizeof(*i));
791 	get_random_bytes(&i->seq, sizeof(i->seq));
792 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
793 
794 	t = &b->set[b->nsets++];
795 	set_btree_bset(b, t, i);
796 }
797 
798 void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne)
799 {
800 	struct bset *i = &bne->keys;
801 	struct bset_tree *t;
802 
803 	BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b));
804 	BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
805 	BUG_ON(b->nsets >= MAX_BSETS);
806 
807 	memset(i, 0, sizeof(*i));
808 	i->seq = btree_bset_first(b)->seq;
809 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
810 
811 	t = &b->set[b->nsets++];
812 	set_btree_bset(b, t, i);
813 }
814 
815 /*
816  * find _some_ key in the same bset as @k that precedes @k - not necessarily the
817  * immediate predecessor:
818  */
819 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
820 				       struct bkey_packed *k)
821 {
822 	struct bkey_packed *p;
823 	unsigned offset;
824 	int j;
825 
826 	EBUG_ON(k < btree_bkey_first(b, t) ||
827 		k > btree_bkey_last(b, t));
828 
829 	if (k == btree_bkey_first(b, t))
830 		return NULL;
831 
832 	switch (bset_aux_tree_type(t)) {
833 	case BSET_NO_AUX_TREE:
834 		p = btree_bkey_first(b, t);
835 		break;
836 	case BSET_RO_AUX_TREE:
837 		j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
838 
839 		do {
840 			p = j ? tree_to_bkey(b, t,
841 					__inorder_to_eytzinger1(j--,
842 							t->size - 1, t->extra))
843 			      : btree_bkey_first(b, t);
844 		} while (p >= k);
845 		break;
846 	case BSET_RW_AUX_TREE:
847 		offset = __btree_node_key_to_offset(b, k);
848 		j = rw_aux_tree_bsearch(b, t, offset);
849 		p = j ? rw_aux_to_bkey(b, t, j - 1)
850 		      : btree_bkey_first(b, t);
851 		break;
852 	}
853 
854 	return p;
855 }
856 
857 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
858 					  struct bset_tree *t,
859 					  struct bkey_packed *k,
860 					  unsigned min_key_type)
861 {
862 	struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
863 
864 	while ((p = __bkey_prev(b, t, k)) && !ret) {
865 		for (i = p; i != k; i = bkey_p_next(i))
866 			if (i->type >= min_key_type)
867 				ret = i;
868 
869 		k = p;
870 	}
871 
872 	if (bch2_expensive_debug_checks) {
873 		BUG_ON(ret >= orig_k);
874 
875 		for (i = ret
876 			? bkey_p_next(ret)
877 			: btree_bkey_first(b, t);
878 		     i != orig_k;
879 		     i = bkey_p_next(i))
880 			BUG_ON(i->type >= min_key_type);
881 	}
882 
883 	return ret;
884 }
885 
886 /* Insert */
887 
888 static void rw_aux_tree_insert_entry(struct btree *b,
889 				     struct bset_tree *t,
890 				     unsigned idx)
891 {
892 	EBUG_ON(!idx || idx > t->size);
893 	struct bkey_packed *start = rw_aux_to_bkey(b, t, idx - 1);
894 	struct bkey_packed *end = idx < t->size
895 				  ? rw_aux_to_bkey(b, t, idx)
896 				  : btree_bkey_last(b, t);
897 
898 	if (t->size < bset_rw_tree_capacity(b, t) &&
899 	    (void *) end - (void *) start > L1_CACHE_BYTES) {
900 		struct bkey_packed *k = start;
901 
902 		while (1) {
903 			k = bkey_p_next(k);
904 			if (k == end)
905 				break;
906 
907 			if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
908 				memmove(&rw_aux_tree(b, t)[idx + 1],
909 					&rw_aux_tree(b, t)[idx],
910 					(void *) &rw_aux_tree(b, t)[t->size] -
911 					(void *) &rw_aux_tree(b, t)[idx]);
912 				t->size++;
913 				rw_aux_tree_set(b, t, idx, k);
914 				break;
915 			}
916 		}
917 	}
918 }
919 
920 static void bch2_bset_fix_lookup_table(struct btree *b,
921 				       struct bset_tree *t,
922 				       struct bkey_packed *_where,
923 				       unsigned clobber_u64s,
924 				       unsigned new_u64s)
925 {
926 	int shift = new_u64s - clobber_u64s;
927 	unsigned idx, j, where = __btree_node_key_to_offset(b, _where);
928 
929 	EBUG_ON(bset_has_ro_aux_tree(t));
930 
931 	if (!bset_has_rw_aux_tree(t))
932 		return;
933 
934 	if (where > rw_aux_tree(b, t)[t->size - 1].offset) {
935 		rw_aux_tree_insert_entry(b, t, t->size);
936 		goto verify;
937 	}
938 
939 	/* returns first entry >= where */
940 	idx = rw_aux_tree_bsearch(b, t, where);
941 
942 	if (rw_aux_tree(b, t)[idx].offset == where) {
943 		if (!idx) { /* never delete first entry */
944 			idx++;
945 		} else if (where < t->end_offset) {
946 			rw_aux_tree_set(b, t, idx++, _where);
947 		} else {
948 			EBUG_ON(where != t->end_offset);
949 			rw_aux_tree_insert_entry(b, t, --t->size);
950 			goto verify;
951 		}
952 	}
953 
954 	EBUG_ON(idx < t->size && rw_aux_tree(b, t)[idx].offset <= where);
955 	if (idx < t->size &&
956 	    rw_aux_tree(b, t)[idx].offset + shift ==
957 	    rw_aux_tree(b, t)[idx - 1].offset) {
958 		memmove(&rw_aux_tree(b, t)[idx],
959 			&rw_aux_tree(b, t)[idx + 1],
960 			(void *) &rw_aux_tree(b, t)[t->size] -
961 			(void *) &rw_aux_tree(b, t)[idx + 1]);
962 		t->size -= 1;
963 	}
964 
965 	for (j = idx; j < t->size; j++)
966 		rw_aux_tree(b, t)[j].offset += shift;
967 
968 	EBUG_ON(idx < t->size &&
969 		rw_aux_tree(b, t)[idx].offset ==
970 		rw_aux_tree(b, t)[idx - 1].offset);
971 
972 	rw_aux_tree_insert_entry(b, t, idx);
973 
974 verify:
975 	bch2_bset_verify_rw_aux_tree(b, t);
976 	bset_aux_tree_verify(b);
977 }
978 
979 void bch2_bset_insert(struct btree *b,
980 		      struct bkey_packed *where,
981 		      struct bkey_i *insert,
982 		      unsigned clobber_u64s)
983 {
984 	struct bkey_format *f = &b->format;
985 	struct bset_tree *t = bset_tree_last(b);
986 	struct bkey_packed packed, *src = bkey_to_packed(insert);
987 
988 	bch2_bset_verify_rw_aux_tree(b, t);
989 	bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
990 
991 	if (bch2_bkey_pack_key(&packed, &insert->k, f))
992 		src = &packed;
993 
994 	if (!bkey_deleted(&insert->k))
995 		btree_keys_account_key_add(&b->nr, t - b->set, src);
996 
997 	if (src->u64s != clobber_u64s) {
998 		u64 *src_p = (u64 *) where->_data + clobber_u64s;
999 		u64 *dst_p = (u64 *) where->_data + src->u64s;
1000 
1001 		EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1002 			(int) clobber_u64s - src->u64s);
1003 
1004 		memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1005 		le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1006 		set_btree_bset_end(b, t);
1007 	}
1008 
1009 	memcpy_u64s_small(where, src,
1010 		    bkeyp_key_u64s(f, src));
1011 	memcpy_u64s(bkeyp_val(f, where), &insert->v,
1012 		    bkeyp_val_u64s(f, src));
1013 
1014 	if (src->u64s != clobber_u64s)
1015 		bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1016 
1017 	bch2_verify_btree_nr_keys(b);
1018 }
1019 
1020 void bch2_bset_delete(struct btree *b,
1021 		      struct bkey_packed *where,
1022 		      unsigned clobber_u64s)
1023 {
1024 	struct bset_tree *t = bset_tree_last(b);
1025 	u64 *src_p = (u64 *) where->_data + clobber_u64s;
1026 	u64 *dst_p = where->_data;
1027 
1028 	bch2_bset_verify_rw_aux_tree(b, t);
1029 
1030 	EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1031 
1032 	memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1033 	le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1034 	set_btree_bset_end(b, t);
1035 
1036 	bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1037 }
1038 
1039 /* Lookup */
1040 
1041 __flatten
1042 static struct bkey_packed *bset_search_write_set(const struct btree *b,
1043 				struct bset_tree *t,
1044 				struct bpos *search)
1045 {
1046 	unsigned l = 0, r = t->size;
1047 
1048 	while (l + 1 != r) {
1049 		unsigned m = (l + r) >> 1;
1050 
1051 		if (bpos_lt(rw_aux_tree(b, t)[m].k, *search))
1052 			l = m;
1053 		else
1054 			r = m;
1055 	}
1056 
1057 	return rw_aux_to_bkey(b, t, l);
1058 }
1059 
1060 static inline void prefetch_four_cachelines(void *p)
1061 {
1062 #ifdef CONFIG_X86_64
1063 	asm("prefetcht0 (-127 + 64 * 0)(%0);"
1064 	    "prefetcht0 (-127 + 64 * 1)(%0);"
1065 	    "prefetcht0 (-127 + 64 * 2)(%0);"
1066 	    "prefetcht0 (-127 + 64 * 3)(%0);"
1067 	    :
1068 	    : "r" (p + 127));
1069 #else
1070 	prefetch(p + L1_CACHE_BYTES * 0);
1071 	prefetch(p + L1_CACHE_BYTES * 1);
1072 	prefetch(p + L1_CACHE_BYTES * 2);
1073 	prefetch(p + L1_CACHE_BYTES * 3);
1074 #endif
1075 }
1076 
1077 static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1078 					      const struct bkey_float *f)
1079 {
1080 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1081 	unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1082 
1083 	return f->exponent > key_bits_start;
1084 #else
1085 	unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1086 
1087 	return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1088 #endif
1089 }
1090 
1091 __flatten
1092 static struct bkey_packed *bset_search_tree(const struct btree *b,
1093 				const struct bset_tree *t,
1094 				const struct bpos *search,
1095 				const struct bkey_packed *packed_search)
1096 {
1097 	struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1098 	struct bkey_float *f;
1099 	struct bkey_packed *k;
1100 	unsigned inorder, n = 1, l, r;
1101 	int cmp;
1102 
1103 	do {
1104 		if (likely(n << 4 < t->size))
1105 			prefetch(&base->f[n << 4]);
1106 
1107 		f = &base->f[n];
1108 		if (unlikely(f->exponent >= BFLOAT_FAILED))
1109 			goto slowpath;
1110 
1111 		l = f->mantissa;
1112 		r = bkey_mantissa(packed_search, f);
1113 
1114 		if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f))
1115 			goto slowpath;
1116 
1117 		n = n * 2 + (l < r);
1118 		continue;
1119 slowpath:
1120 		k = tree_to_bkey(b, t, n);
1121 		cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1122 		if (!cmp)
1123 			return k;
1124 
1125 		n = n * 2 + (cmp < 0);
1126 	} while (n < t->size);
1127 
1128 	inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1129 
1130 	/*
1131 	 * n would have been the node we recursed to - the low bit tells us if
1132 	 * we recursed left or recursed right.
1133 	 */
1134 	if (likely(!(n & 1))) {
1135 		--inorder;
1136 		if (unlikely(!inorder))
1137 			return btree_bkey_first(b, t);
1138 
1139 		f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1140 	}
1141 
1142 	return cacheline_to_bkey(b, t, inorder, f->key_offset);
1143 }
1144 
1145 static __always_inline __flatten
1146 struct bkey_packed *__bch2_bset_search(struct btree *b,
1147 				struct bset_tree *t,
1148 				struct bpos *search,
1149 				const struct bkey_packed *lossy_packed_search)
1150 {
1151 
1152 	/*
1153 	 * First, we search for a cacheline, then lastly we do a linear search
1154 	 * within that cacheline.
1155 	 *
1156 	 * To search for the cacheline, there's three different possibilities:
1157 	 *  * The set is too small to have a search tree, so we just do a linear
1158 	 *    search over the whole set.
1159 	 *  * The set is the one we're currently inserting into; keeping a full
1160 	 *    auxiliary search tree up to date would be too expensive, so we
1161 	 *    use a much simpler lookup table to do a binary search -
1162 	 *    bset_search_write_set().
1163 	 *  * Or we use the auxiliary search tree we constructed earlier -
1164 	 *    bset_search_tree()
1165 	 */
1166 
1167 	switch (bset_aux_tree_type(t)) {
1168 	case BSET_NO_AUX_TREE:
1169 		return btree_bkey_first(b, t);
1170 	case BSET_RW_AUX_TREE:
1171 		return bset_search_write_set(b, t, search);
1172 	case BSET_RO_AUX_TREE:
1173 		return bset_search_tree(b, t, search, lossy_packed_search);
1174 	default:
1175 		BUG();
1176 	}
1177 }
1178 
1179 static __always_inline __flatten
1180 struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1181 				struct bset_tree *t,
1182 				struct bpos *search,
1183 				struct bkey_packed *packed_search,
1184 				const struct bkey_packed *lossy_packed_search,
1185 				struct bkey_packed *m)
1186 {
1187 	if (lossy_packed_search)
1188 		while (m != btree_bkey_last(b, t) &&
1189 		       bkey_iter_cmp_p_or_unp(b, m,
1190 					lossy_packed_search, search) < 0)
1191 			m = bkey_p_next(m);
1192 
1193 	if (!packed_search)
1194 		while (m != btree_bkey_last(b, t) &&
1195 		       bkey_iter_pos_cmp(b, m, search) < 0)
1196 			m = bkey_p_next(m);
1197 
1198 	if (bch2_expensive_debug_checks) {
1199 		struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1200 
1201 		BUG_ON(prev &&
1202 		       bkey_iter_cmp_p_or_unp(b, prev,
1203 					packed_search, search) >= 0);
1204 	}
1205 
1206 	return m;
1207 }
1208 
1209 /* Btree node iterator */
1210 
1211 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1212 			      struct btree *b,
1213 			      const struct bkey_packed *k,
1214 			      const struct bkey_packed *end)
1215 {
1216 	if (k != end) {
1217 		struct btree_node_iter_set *pos;
1218 
1219 		btree_node_iter_for_each(iter, pos)
1220 			;
1221 
1222 		BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1223 		*pos = (struct btree_node_iter_set) {
1224 			__btree_node_key_to_offset(b, k),
1225 			__btree_node_key_to_offset(b, end)
1226 		};
1227 	}
1228 }
1229 
1230 void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1231 			       struct btree *b,
1232 			       const struct bkey_packed *k,
1233 			       const struct bkey_packed *end)
1234 {
1235 	__bch2_btree_node_iter_push(iter, b, k, end);
1236 	bch2_btree_node_iter_sort(iter, b);
1237 }
1238 
1239 noinline __flatten __cold
1240 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1241 			      struct btree *b, struct bpos *search)
1242 {
1243 	struct bkey_packed *k;
1244 
1245 	trace_bkey_pack_pos_fail(search);
1246 
1247 	bch2_btree_node_iter_init_from_start(iter, b);
1248 
1249 	while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1250 	       bkey_iter_pos_cmp(b, k, search) < 0)
1251 		bch2_btree_node_iter_advance(iter, b);
1252 }
1253 
1254 /**
1255  * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a
1256  * given position
1257  *
1258  * @iter:	iterator to initialize
1259  * @b:		btree node to search
1260  * @search:	search key
1261  *
1262  * Main entry point to the lookup code for individual btree nodes:
1263  *
1264  * NOTE:
1265  *
1266  * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1267  * keys. This doesn't matter for most code, but it does matter for lookups.
1268  *
1269  * Some adjacent keys with a string of equal keys:
1270  *	i j k k k k l m
1271  *
1272  * If you search for k, the lookup code isn't guaranteed to return you any
1273  * specific k. The lookup code is conceptually doing a binary search and
1274  * iterating backwards is very expensive so if the pivot happens to land at the
1275  * last k that's what you'll get.
1276  *
1277  * This works out ok, but it's something to be aware of:
1278  *
1279  *  - For non extents, we guarantee that the live key comes last - see
1280  *    btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1281  *    see will only be deleted keys you don't care about.
1282  *
1283  *  - For extents, deleted keys sort last (see the comment at the top of this
1284  *    file). But when you're searching for extents, you actually want the first
1285  *    key strictly greater than your search key - an extent that compares equal
1286  *    to the search key is going to have 0 sectors after the search key.
1287  *
1288  *    But this does mean that we can't just search for
1289  *    bpos_successor(start_of_range) to get the first extent that overlaps with
1290  *    the range we want - if we're unlucky and there's an extent that ends
1291  *    exactly where we searched, then there could be a deleted key at the same
1292  *    position and we'd get that when we search instead of the preceding extent
1293  *    we needed.
1294  *
1295  *    So we've got to search for start_of_range, then after the lookup iterate
1296  *    past any extents that compare equal to the position we searched for.
1297  */
1298 __flatten
1299 void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1300 			       struct btree *b, struct bpos *search)
1301 {
1302 	struct bkey_packed p, *packed_search = NULL;
1303 	struct btree_node_iter_set *pos = iter->data;
1304 	struct bkey_packed *k[MAX_BSETS];
1305 	unsigned i;
1306 
1307 	EBUG_ON(bpos_lt(*search, b->data->min_key));
1308 	EBUG_ON(bpos_gt(*search, b->data->max_key));
1309 	bset_aux_tree_verify(b);
1310 
1311 	memset(iter, 0, sizeof(*iter));
1312 
1313 	switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1314 	case BKEY_PACK_POS_EXACT:
1315 		packed_search = &p;
1316 		break;
1317 	case BKEY_PACK_POS_SMALLER:
1318 		packed_search = NULL;
1319 		break;
1320 	case BKEY_PACK_POS_FAIL:
1321 		btree_node_iter_init_pack_failed(iter, b, search);
1322 		return;
1323 	}
1324 
1325 	for (i = 0; i < b->nsets; i++) {
1326 		k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1327 		prefetch_four_cachelines(k[i]);
1328 	}
1329 
1330 	for (i = 0; i < b->nsets; i++) {
1331 		struct bset_tree *t = b->set + i;
1332 		struct bkey_packed *end = btree_bkey_last(b, t);
1333 
1334 		k[i] = bch2_bset_search_linear(b, t, search,
1335 					       packed_search, &p, k[i]);
1336 		if (k[i] != end)
1337 			*pos++ = (struct btree_node_iter_set) {
1338 				__btree_node_key_to_offset(b, k[i]),
1339 				__btree_node_key_to_offset(b, end)
1340 			};
1341 	}
1342 
1343 	bch2_btree_node_iter_sort(iter, b);
1344 }
1345 
1346 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1347 					  struct btree *b)
1348 {
1349 	memset(iter, 0, sizeof(*iter));
1350 
1351 	for_each_bset(b, t)
1352 		__bch2_btree_node_iter_push(iter, b,
1353 					   btree_bkey_first(b, t),
1354 					   btree_bkey_last(b, t));
1355 	bch2_btree_node_iter_sort(iter, b);
1356 }
1357 
1358 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1359 						  struct btree *b,
1360 						  struct bset_tree *t)
1361 {
1362 	struct btree_node_iter_set *set;
1363 
1364 	btree_node_iter_for_each(iter, set)
1365 		if (set->end == t->end_offset)
1366 			return __btree_node_offset_to_key(b, set->k);
1367 
1368 	return btree_bkey_last(b, t);
1369 }
1370 
1371 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1372 					    struct btree *b,
1373 					    unsigned first)
1374 {
1375 	bool ret;
1376 
1377 	if ((ret = (btree_node_iter_cmp(b,
1378 					iter->data[first],
1379 					iter->data[first + 1]) > 0)))
1380 		swap(iter->data[first], iter->data[first + 1]);
1381 	return ret;
1382 }
1383 
1384 void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1385 			       struct btree *b)
1386 {
1387 	/* unrolled bubble sort: */
1388 
1389 	if (!__btree_node_iter_set_end(iter, 2)) {
1390 		btree_node_iter_sort_two(iter, b, 0);
1391 		btree_node_iter_sort_two(iter, b, 1);
1392 	}
1393 
1394 	if (!__btree_node_iter_set_end(iter, 1))
1395 		btree_node_iter_sort_two(iter, b, 0);
1396 }
1397 
1398 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1399 				   struct btree_node_iter_set *set)
1400 {
1401 	struct btree_node_iter_set *last =
1402 		iter->data + ARRAY_SIZE(iter->data) - 1;
1403 
1404 	memmove(&set[0], &set[1], (void *) last - (void *) set);
1405 	*last = (struct btree_node_iter_set) { 0, 0 };
1406 }
1407 
1408 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1409 						  struct btree *b)
1410 {
1411 	iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1412 
1413 	EBUG_ON(iter->data->k > iter->data->end);
1414 
1415 	if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1416 		/* avoid an expensive memmove call: */
1417 		iter->data[0] = iter->data[1];
1418 		iter->data[1] = iter->data[2];
1419 		iter->data[2] = (struct btree_node_iter_set) { 0, 0 };
1420 		return;
1421 	}
1422 
1423 	if (__btree_node_iter_set_end(iter, 1))
1424 		return;
1425 
1426 	if (!btree_node_iter_sort_two(iter, b, 0))
1427 		return;
1428 
1429 	if (__btree_node_iter_set_end(iter, 2))
1430 		return;
1431 
1432 	btree_node_iter_sort_two(iter, b, 1);
1433 }
1434 
1435 void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1436 				  struct btree *b)
1437 {
1438 	if (bch2_expensive_debug_checks) {
1439 		bch2_btree_node_iter_verify(iter, b);
1440 		bch2_btree_node_iter_next_check(iter, b);
1441 	}
1442 
1443 	__bch2_btree_node_iter_advance(iter, b);
1444 }
1445 
1446 /*
1447  * Expensive:
1448  */
1449 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1450 						  struct btree *b)
1451 {
1452 	struct bkey_packed *k, *prev = NULL;
1453 	struct btree_node_iter_set *set;
1454 	unsigned end = 0;
1455 
1456 	if (bch2_expensive_debug_checks)
1457 		bch2_btree_node_iter_verify(iter, b);
1458 
1459 	for_each_bset(b, t) {
1460 		k = bch2_bkey_prev_all(b, t,
1461 			bch2_btree_node_iter_bset_pos(iter, b, t));
1462 		if (k &&
1463 		    (!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1464 			prev = k;
1465 			end = t->end_offset;
1466 		}
1467 	}
1468 
1469 	if (!prev)
1470 		return NULL;
1471 
1472 	/*
1473 	 * We're manually memmoving instead of just calling sort() to ensure the
1474 	 * prev we picked ends up in slot 0 - sort won't necessarily put it
1475 	 * there because of duplicate deleted keys:
1476 	 */
1477 	btree_node_iter_for_each(iter, set)
1478 		if (set->end == end)
1479 			goto found;
1480 
1481 	BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1482 found:
1483 	BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1484 
1485 	memmove(&iter->data[1],
1486 		&iter->data[0],
1487 		(void *) set - (void *) &iter->data[0]);
1488 
1489 	iter->data[0].k = __btree_node_key_to_offset(b, prev);
1490 	iter->data[0].end = end;
1491 
1492 	if (bch2_expensive_debug_checks)
1493 		bch2_btree_node_iter_verify(iter, b);
1494 	return prev;
1495 }
1496 
1497 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1498 					      struct btree *b)
1499 {
1500 	struct bkey_packed *prev;
1501 
1502 	do {
1503 		prev = bch2_btree_node_iter_prev_all(iter, b);
1504 	} while (prev && bkey_deleted(prev));
1505 
1506 	return prev;
1507 }
1508 
1509 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1510 						 struct btree *b,
1511 						 struct bkey *u)
1512 {
1513 	struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1514 
1515 	return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1516 }
1517 
1518 /* Mergesort */
1519 
1520 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats)
1521 {
1522 	for_each_bset_c(b, t) {
1523 		enum bset_aux_tree_type type = bset_aux_tree_type(t);
1524 		size_t j;
1525 
1526 		stats->sets[type].nr++;
1527 		stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1528 			sizeof(u64);
1529 
1530 		if (bset_has_ro_aux_tree(t)) {
1531 			stats->floats += t->size - 1;
1532 
1533 			for (j = 1; j < t->size; j++)
1534 				stats->failed +=
1535 					bkey_float(b, t, j)->exponent ==
1536 					BFLOAT_FAILED;
1537 		}
1538 	}
1539 }
1540 
1541 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1542 			 struct bkey_packed *k)
1543 {
1544 	struct bset_tree *t = bch2_bkey_to_bset(b, k);
1545 	struct bkey uk;
1546 	unsigned j, inorder;
1547 
1548 	if (!bset_has_ro_aux_tree(t))
1549 		return;
1550 
1551 	inorder = bkey_to_cacheline(b, t, k);
1552 	if (!inorder || inorder >= t->size)
1553 		return;
1554 
1555 	j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1556 	if (k != tree_to_bkey(b, t, j))
1557 		return;
1558 
1559 	switch (bkey_float(b, t, j)->exponent) {
1560 	case BFLOAT_FAILED:
1561 		uk = bkey_unpack_key(b, k);
1562 		prt_printf(out,
1563 		       "    failed unpacked at depth %u\n"
1564 		       "\t",
1565 		       ilog2(j));
1566 		bch2_bpos_to_text(out, uk.p);
1567 		prt_printf(out, "\n");
1568 		break;
1569 	}
1570 }
1571