xref: /linux/fs/bcachefs/bset.c (revision 53ed0af4964229595b60594b35334d006d411ef0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcachefs.h"
10 #include "btree_cache.h"
11 #include "bset.h"
12 #include "eytzinger.h"
13 #include "trace.h"
14 #include "util.h"
15 
16 #include <asm/unaligned.h>
17 #include <linux/console.h>
18 #include <linux/random.h>
19 #include <linux/prefetch.h>
20 
21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
22 						  struct btree *);
23 
24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
25 {
26 	unsigned n = ARRAY_SIZE(iter->data);
27 
28 	while (n && __btree_node_iter_set_end(iter, n - 1))
29 		--n;
30 
31 	return n;
32 }
33 
34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
35 {
36 	return bch2_bkey_to_bset_inlined(b, k);
37 }
38 
39 /*
40  * There are never duplicate live keys in the btree - but including keys that
41  * have been flagged as deleted (and will be cleaned up later) we _will_ see
42  * duplicates.
43  *
44  * Thus the sort order is: usual key comparison first, but for keys that compare
45  * equal the deleted key(s) come first, and the (at most one) live version comes
46  * last.
47  *
48  * The main reason for this is insertion: to handle overwrites, we first iterate
49  * over keys that compare equal to our insert key, and then insert immediately
50  * prior to the first key greater than the key we're inserting - our insert
51  * position will be after all keys that compare equal to our insert key, which
52  * by the time we actually do the insert will all be deleted.
53  */
54 
55 void bch2_dump_bset(struct bch_fs *c, struct btree *b,
56 		    struct bset *i, unsigned set)
57 {
58 	struct bkey_packed *_k, *_n;
59 	struct bkey uk, n;
60 	struct bkey_s_c k;
61 	struct printbuf buf = PRINTBUF;
62 
63 	if (!i->u64s)
64 		return;
65 
66 	for (_k = i->start;
67 	     _k < vstruct_last(i);
68 	     _k = _n) {
69 		_n = bkey_p_next(_k);
70 
71 		if (!_k->u64s) {
72 			printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set,
73 			       _k->_data - i->_data);
74 			break;
75 		}
76 
77 		k = bkey_disassemble(b, _k, &uk);
78 
79 		printbuf_reset(&buf);
80 		if (c)
81 			bch2_bkey_val_to_text(&buf, c, k);
82 		else
83 			bch2_bkey_to_text(&buf, k.k);
84 		printk(KERN_ERR "block %u key %5zu: %s\n", set,
85 		       _k->_data - i->_data, buf.buf);
86 
87 		if (_n == vstruct_last(i))
88 			continue;
89 
90 		n = bkey_unpack_key(b, _n);
91 
92 		if (bpos_lt(n.p, k.k->p)) {
93 			printk(KERN_ERR "Key skipped backwards\n");
94 			continue;
95 		}
96 
97 		if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p))
98 			printk(KERN_ERR "Duplicate keys\n");
99 	}
100 
101 	printbuf_exit(&buf);
102 }
103 
104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
105 {
106 	struct bset_tree *t;
107 
108 	console_lock();
109 	for_each_bset(b, t)
110 		bch2_dump_bset(c, b, bset(b, t), t - b->set);
111 	console_unlock();
112 }
113 
114 void bch2_dump_btree_node_iter(struct btree *b,
115 			      struct btree_node_iter *iter)
116 {
117 	struct btree_node_iter_set *set;
118 	struct printbuf buf = PRINTBUF;
119 
120 	printk(KERN_ERR "btree node iter with %u/%u sets:\n",
121 	       __btree_node_iter_used(iter), b->nsets);
122 
123 	btree_node_iter_for_each(iter, set) {
124 		struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
125 		struct bset_tree *t = bch2_bkey_to_bset(b, k);
126 		struct bkey uk = bkey_unpack_key(b, k);
127 
128 		printbuf_reset(&buf);
129 		bch2_bkey_to_text(&buf, &uk);
130 		printk(KERN_ERR "set %zu key %u: %s\n",
131 		       t - b->set, set->k, buf.buf);
132 	}
133 
134 	printbuf_exit(&buf);
135 }
136 
137 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b)
138 {
139 	struct bset_tree *t;
140 	struct bkey_packed *k;
141 	struct btree_nr_keys nr = {};
142 
143 	for_each_bset(b, t)
144 		bset_tree_for_each_key(b, t, k)
145 			if (!bkey_deleted(k))
146 				btree_keys_account_key_add(&nr, t - b->set, k);
147 	return nr;
148 }
149 
150 #ifdef CONFIG_BCACHEFS_DEBUG
151 
152 void __bch2_verify_btree_nr_keys(struct btree *b)
153 {
154 	struct btree_nr_keys nr = bch2_btree_node_count_keys(b);
155 
156 	BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
157 }
158 
159 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
160 					    struct btree *b)
161 {
162 	struct btree_node_iter iter = *_iter;
163 	const struct bkey_packed *k, *n;
164 
165 	k = bch2_btree_node_iter_peek_all(&iter, b);
166 	__bch2_btree_node_iter_advance(&iter, b);
167 	n = bch2_btree_node_iter_peek_all(&iter, b);
168 
169 	bkey_unpack_key(b, k);
170 
171 	if (n &&
172 	    bkey_iter_cmp(b, k, n) > 0) {
173 		struct btree_node_iter_set *set;
174 		struct bkey ku = bkey_unpack_key(b, k);
175 		struct bkey nu = bkey_unpack_key(b, n);
176 		struct printbuf buf1 = PRINTBUF;
177 		struct printbuf buf2 = PRINTBUF;
178 
179 		bch2_dump_btree_node(NULL, b);
180 		bch2_bkey_to_text(&buf1, &ku);
181 		bch2_bkey_to_text(&buf2, &nu);
182 		printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
183 		       buf1.buf, buf2.buf);
184 		printk(KERN_ERR "iter was:");
185 
186 		btree_node_iter_for_each(_iter, set) {
187 			struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k);
188 			struct bset_tree *t = bch2_bkey_to_bset(b, k2);
189 			printk(" [%zi %zi]", t - b->set,
190 			       k2->_data - bset(b, t)->_data);
191 		}
192 		panic("\n");
193 	}
194 }
195 
196 void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
197 				 struct btree *b)
198 {
199 	struct btree_node_iter_set *set, *s2;
200 	struct bkey_packed *k, *p;
201 	struct bset_tree *t;
202 
203 	if (bch2_btree_node_iter_end(iter))
204 		return;
205 
206 	/* Verify no duplicates: */
207 	btree_node_iter_for_each(iter, set) {
208 		BUG_ON(set->k > set->end);
209 		btree_node_iter_for_each(iter, s2)
210 			BUG_ON(set != s2 && set->end == s2->end);
211 	}
212 
213 	/* Verify that set->end is correct: */
214 	btree_node_iter_for_each(iter, set) {
215 		for_each_bset(b, t)
216 			if (set->end == t->end_offset)
217 				goto found;
218 		BUG();
219 found:
220 		BUG_ON(set->k < btree_bkey_first_offset(t) ||
221 		       set->k >= t->end_offset);
222 	}
223 
224 	/* Verify iterator is sorted: */
225 	btree_node_iter_for_each(iter, set)
226 		BUG_ON(set != iter->data &&
227 		       btree_node_iter_cmp(b, set[-1], set[0]) > 0);
228 
229 	k = bch2_btree_node_iter_peek_all(iter, b);
230 
231 	for_each_bset(b, t) {
232 		if (iter->data[0].end == t->end_offset)
233 			continue;
234 
235 		p = bch2_bkey_prev_all(b, t,
236 			bch2_btree_node_iter_bset_pos(iter, b, t));
237 
238 		BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
239 	}
240 }
241 
242 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
243 			    struct bkey_packed *insert, unsigned clobber_u64s)
244 {
245 	struct bset_tree *t = bch2_bkey_to_bset(b, where);
246 	struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
247 	struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s);
248 	struct printbuf buf1 = PRINTBUF;
249 	struct printbuf buf2 = PRINTBUF;
250 #if 0
251 	BUG_ON(prev &&
252 	       bkey_iter_cmp(b, prev, insert) > 0);
253 #else
254 	if (prev &&
255 	    bkey_iter_cmp(b, prev, insert) > 0) {
256 		struct bkey k1 = bkey_unpack_key(b, prev);
257 		struct bkey k2 = bkey_unpack_key(b, insert);
258 
259 		bch2_dump_btree_node(NULL, b);
260 		bch2_bkey_to_text(&buf1, &k1);
261 		bch2_bkey_to_text(&buf2, &k2);
262 
263 		panic("prev > insert:\n"
264 		      "prev    key %s\n"
265 		      "insert  key %s\n",
266 		      buf1.buf, buf2.buf);
267 	}
268 #endif
269 #if 0
270 	BUG_ON(next != btree_bkey_last(b, t) &&
271 	       bkey_iter_cmp(b, insert, next) > 0);
272 #else
273 	if (next != btree_bkey_last(b, t) &&
274 	    bkey_iter_cmp(b, insert, next) > 0) {
275 		struct bkey k1 = bkey_unpack_key(b, insert);
276 		struct bkey k2 = bkey_unpack_key(b, next);
277 
278 		bch2_dump_btree_node(NULL, b);
279 		bch2_bkey_to_text(&buf1, &k1);
280 		bch2_bkey_to_text(&buf2, &k2);
281 
282 		panic("insert > next:\n"
283 		      "insert  key %s\n"
284 		      "next    key %s\n",
285 		      buf1.buf, buf2.buf);
286 	}
287 #endif
288 }
289 
290 #else
291 
292 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
293 						   struct btree *b) {}
294 
295 #endif
296 
297 /* Auxiliary search trees */
298 
299 #define BFLOAT_FAILED_UNPACKED	U8_MAX
300 #define BFLOAT_FAILED		U8_MAX
301 
302 struct bkey_float {
303 	u8		exponent;
304 	u8		key_offset;
305 	u16		mantissa;
306 };
307 #define BKEY_MANTISSA_BITS	16
308 
309 static unsigned bkey_float_byte_offset(unsigned idx)
310 {
311 	return idx * sizeof(struct bkey_float);
312 }
313 
314 struct ro_aux_tree {
315 	u8			nothing[0];
316 	struct bkey_float	f[];
317 };
318 
319 struct rw_aux_tree {
320 	u16		offset;
321 	struct bpos	k;
322 };
323 
324 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
325 {
326 	BUG_ON(t->aux_data_offset == U16_MAX);
327 
328 	switch (bset_aux_tree_type(t)) {
329 	case BSET_NO_AUX_TREE:
330 		return t->aux_data_offset;
331 	case BSET_RO_AUX_TREE:
332 		return t->aux_data_offset +
333 			DIV_ROUND_UP(t->size * sizeof(struct bkey_float) +
334 				     t->size * sizeof(u8), 8);
335 	case BSET_RW_AUX_TREE:
336 		return t->aux_data_offset +
337 			DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
338 	default:
339 		BUG();
340 	}
341 }
342 
343 static unsigned bset_aux_tree_buf_start(const struct btree *b,
344 					const struct bset_tree *t)
345 {
346 	return t == b->set
347 		? DIV_ROUND_UP(b->unpack_fn_len, 8)
348 		: bset_aux_tree_buf_end(t - 1);
349 }
350 
351 static void *__aux_tree_base(const struct btree *b,
352 			     const struct bset_tree *t)
353 {
354 	return b->aux_data + t->aux_data_offset * 8;
355 }
356 
357 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
358 					    const struct bset_tree *t)
359 {
360 	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
361 
362 	return __aux_tree_base(b, t);
363 }
364 
365 static u8 *ro_aux_tree_prev(const struct btree *b,
366 			    const struct bset_tree *t)
367 {
368 	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
369 
370 	return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size);
371 }
372 
373 static struct bkey_float *bkey_float(const struct btree *b,
374 				     const struct bset_tree *t,
375 				     unsigned idx)
376 {
377 	return ro_aux_tree_base(b, t)->f + idx;
378 }
379 
380 static void bset_aux_tree_verify(const struct btree *b)
381 {
382 #ifdef CONFIG_BCACHEFS_DEBUG
383 	const struct bset_tree *t;
384 
385 	for_each_bset(b, t) {
386 		if (t->aux_data_offset == U16_MAX)
387 			continue;
388 
389 		BUG_ON(t != b->set &&
390 		       t[-1].aux_data_offset == U16_MAX);
391 
392 		BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
393 		BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
394 		BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
395 	}
396 #endif
397 }
398 
399 void bch2_btree_keys_init(struct btree *b)
400 {
401 	unsigned i;
402 
403 	b->nsets		= 0;
404 	memset(&b->nr, 0, sizeof(b->nr));
405 
406 	for (i = 0; i < MAX_BSETS; i++)
407 		b->set[i].data_offset = U16_MAX;
408 
409 	bch2_bset_set_no_aux_tree(b, b->set);
410 }
411 
412 /* Binary tree stuff for auxiliary search trees */
413 
414 /*
415  * Cacheline/offset <-> bkey pointer arithmetic:
416  *
417  * t->tree is a binary search tree in an array; each node corresponds to a key
418  * in one cacheline in t->set (BSET_CACHELINE bytes).
419  *
420  * This means we don't have to store the full index of the key that a node in
421  * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
422  * then bkey_float->m gives us the offset within that cacheline, in units of 8
423  * bytes.
424  *
425  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
426  * make this work.
427  *
428  * To construct the bfloat for an arbitrary key we need to know what the key
429  * immediately preceding it is: we have to check if the two keys differ in the
430  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
431  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
432  */
433 
434 static inline void *bset_cacheline(const struct btree *b,
435 				   const struct bset_tree *t,
436 				   unsigned cacheline)
437 {
438 	return (void *) round_down((unsigned long) btree_bkey_first(b, t),
439 				   L1_CACHE_BYTES) +
440 		cacheline * BSET_CACHELINE;
441 }
442 
443 static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
444 					     const struct bset_tree *t,
445 					     unsigned cacheline,
446 					     unsigned offset)
447 {
448 	return bset_cacheline(b, t, cacheline) + offset * 8;
449 }
450 
451 static unsigned bkey_to_cacheline(const struct btree *b,
452 				  const struct bset_tree *t,
453 				  const struct bkey_packed *k)
454 {
455 	return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
456 }
457 
458 static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
459 					  const struct bset_tree *t,
460 					  unsigned cacheline,
461 					  const struct bkey_packed *k)
462 {
463 	return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
464 }
465 
466 static unsigned bkey_to_cacheline_offset(const struct btree *b,
467 					 const struct bset_tree *t,
468 					 unsigned cacheline,
469 					 const struct bkey_packed *k)
470 {
471 	size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
472 
473 	EBUG_ON(m > U8_MAX);
474 	return m;
475 }
476 
477 static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
478 					       const struct bset_tree *t,
479 					       unsigned j)
480 {
481 	return cacheline_to_bkey(b, t,
482 			__eytzinger1_to_inorder(j, t->size - 1, t->extra),
483 			bkey_float(b, t, j)->key_offset);
484 }
485 
486 static struct bkey_packed *tree_to_prev_bkey(const struct btree *b,
487 					     const struct bset_tree *t,
488 					     unsigned j)
489 {
490 	unsigned prev_u64s = ro_aux_tree_prev(b, t)[j];
491 
492 	return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s);
493 }
494 
495 static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
496 				       const struct bset_tree *t)
497 {
498 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
499 
500 	return __aux_tree_base(b, t);
501 }
502 
503 /*
504  * For the write set - the one we're currently inserting keys into - we don't
505  * maintain a full search tree, we just keep a simple lookup table in t->prev.
506  */
507 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
508 					  struct bset_tree *t,
509 					  unsigned j)
510 {
511 	return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
512 }
513 
514 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
515 			    unsigned j, struct bkey_packed *k)
516 {
517 	EBUG_ON(k >= btree_bkey_last(b, t));
518 
519 	rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
520 		.offset	= __btree_node_key_to_offset(b, k),
521 		.k	= bkey_unpack_pos(b, k),
522 	};
523 }
524 
525 static void bch2_bset_verify_rw_aux_tree(struct btree *b,
526 					struct bset_tree *t)
527 {
528 	struct bkey_packed *k = btree_bkey_first(b, t);
529 	unsigned j = 0;
530 
531 	if (!bch2_expensive_debug_checks)
532 		return;
533 
534 	BUG_ON(bset_has_ro_aux_tree(t));
535 
536 	if (!bset_has_rw_aux_tree(t))
537 		return;
538 
539 	BUG_ON(t->size < 1);
540 	BUG_ON(rw_aux_to_bkey(b, t, j) != k);
541 
542 	goto start;
543 	while (1) {
544 		if (rw_aux_to_bkey(b, t, j) == k) {
545 			BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k,
546 					bkey_unpack_pos(b, k)));
547 start:
548 			if (++j == t->size)
549 				break;
550 
551 			BUG_ON(rw_aux_tree(b, t)[j].offset <=
552 			       rw_aux_tree(b, t)[j - 1].offset);
553 		}
554 
555 		k = bkey_p_next(k);
556 		BUG_ON(k >= btree_bkey_last(b, t));
557 	}
558 }
559 
560 /* returns idx of first entry >= offset: */
561 static unsigned rw_aux_tree_bsearch(struct btree *b,
562 				    struct bset_tree *t,
563 				    unsigned offset)
564 {
565 	unsigned bset_offs = offset - btree_bkey_first_offset(t);
566 	unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
567 	unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
568 
569 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
570 	EBUG_ON(!t->size);
571 	EBUG_ON(idx > t->size);
572 
573 	while (idx < t->size &&
574 	       rw_aux_tree(b, t)[idx].offset < offset)
575 		idx++;
576 
577 	while (idx &&
578 	       rw_aux_tree(b, t)[idx - 1].offset >= offset)
579 		idx--;
580 
581 	EBUG_ON(idx < t->size &&
582 		rw_aux_tree(b, t)[idx].offset < offset);
583 	EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
584 	EBUG_ON(idx + 1 < t->size &&
585 		rw_aux_tree(b, t)[idx].offset ==
586 		rw_aux_tree(b, t)[idx + 1].offset);
587 
588 	return idx;
589 }
590 
591 static inline unsigned bkey_mantissa(const struct bkey_packed *k,
592 				     const struct bkey_float *f,
593 				     unsigned idx)
594 {
595 	u64 v;
596 
597 	EBUG_ON(!bkey_packed(k));
598 
599 	v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
600 
601 	/*
602 	 * In little endian, we're shifting off low bits (and then the bits we
603 	 * want are at the low end), in big endian we're shifting off high bits
604 	 * (and then the bits we want are at the high end, so we shift them
605 	 * back down):
606 	 */
607 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
608 	v >>= f->exponent & 7;
609 #else
610 	v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
611 #endif
612 	return (u16) v;
613 }
614 
615 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t,
616 					unsigned j,
617 					struct bkey_packed *min_key,
618 					struct bkey_packed *max_key)
619 {
620 	struct bkey_float *f = bkey_float(b, t, j);
621 	struct bkey_packed *m = tree_to_bkey(b, t, j);
622 	struct bkey_packed *l = is_power_of_2(j)
623 		? min_key
624 		: tree_to_prev_bkey(b, t, j >> ffs(j));
625 	struct bkey_packed *r = is_power_of_2(j + 1)
626 		? max_key
627 		: tree_to_bkey(b, t, j >> (ffz(j) + 1));
628 	unsigned mantissa;
629 	int shift, exponent, high_bit;
630 
631 	/*
632 	 * for failed bfloats, the lookup code falls back to comparing against
633 	 * the original key.
634 	 */
635 
636 	if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
637 	    !b->nr_key_bits) {
638 		f->exponent = BFLOAT_FAILED_UNPACKED;
639 		return;
640 	}
641 
642 	/*
643 	 * The greatest differing bit of l and r is the first bit we must
644 	 * include in the bfloat mantissa we're creating in order to do
645 	 * comparisons - that bit always becomes the high bit of
646 	 * bfloat->mantissa, and thus the exponent we're calculating here is
647 	 * the position of what will become the low bit in bfloat->mantissa:
648 	 *
649 	 * Note that this may be negative - we may be running off the low end
650 	 * of the key: we handle this later:
651 	 */
652 	high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
653 		       min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
654 	exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
655 
656 	/*
657 	 * Then we calculate the actual shift value, from the start of the key
658 	 * (k->_data), to get the key bits starting at exponent:
659 	 */
660 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
661 	shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
662 
663 	EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
664 #else
665 	shift = high_bit_offset +
666 		b->nr_key_bits -
667 		exponent -
668 		BKEY_MANTISSA_BITS;
669 
670 	EBUG_ON(shift < KEY_PACKED_BITS_START);
671 #endif
672 	EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
673 
674 	f->exponent = shift;
675 	mantissa = bkey_mantissa(m, f, j);
676 
677 	/*
678 	 * If we've got garbage bits, set them to all 1s - it's legal for the
679 	 * bfloat to compare larger than the original key, but not smaller:
680 	 */
681 	if (exponent < 0)
682 		mantissa |= ~(~0U << -exponent);
683 
684 	f->mantissa = mantissa;
685 }
686 
687 /* bytes remaining - only valid for last bset: */
688 static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t)
689 {
690 	bset_aux_tree_verify(b);
691 
692 	return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
693 }
694 
695 static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t)
696 {
697 	return __bset_tree_capacity(b, t) /
698 		(sizeof(struct bkey_float) + sizeof(u8));
699 }
700 
701 static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t)
702 {
703 	return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
704 }
705 
706 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
707 {
708 	struct bkey_packed *k;
709 
710 	t->size = 1;
711 	t->extra = BSET_RW_AUX_TREE_VAL;
712 	rw_aux_tree(b, t)[0].offset =
713 		__btree_node_key_to_offset(b, btree_bkey_first(b, t));
714 
715 	bset_tree_for_each_key(b, t, k) {
716 		if (t->size == bset_rw_tree_capacity(b, t))
717 			break;
718 
719 		if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
720 		    L1_CACHE_BYTES)
721 			rw_aux_tree_set(b, t, t->size++, k);
722 	}
723 }
724 
725 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
726 {
727 	struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t);
728 	struct bkey_i min_key, max_key;
729 	unsigned cacheline = 1;
730 
731 	t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
732 		      bset_ro_tree_capacity(b, t));
733 retry:
734 	if (t->size < 2) {
735 		t->size = 0;
736 		t->extra = BSET_NO_AUX_TREE_VAL;
737 		return;
738 	}
739 
740 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
741 
742 	/* First we figure out where the first key in each cacheline is */
743 	eytzinger1_for_each(j, t->size - 1) {
744 		while (bkey_to_cacheline(b, t, k) < cacheline)
745 			prev = k, k = bkey_p_next(k);
746 
747 		if (k >= btree_bkey_last(b, t)) {
748 			/* XXX: this path sucks */
749 			t->size--;
750 			goto retry;
751 		}
752 
753 		ro_aux_tree_prev(b, t)[j] = prev->u64s;
754 		bkey_float(b, t, j)->key_offset =
755 			bkey_to_cacheline_offset(b, t, cacheline++, k);
756 
757 		EBUG_ON(tree_to_prev_bkey(b, t, j) != prev);
758 		EBUG_ON(tree_to_bkey(b, t, j) != k);
759 	}
760 
761 	while (k != btree_bkey_last(b, t))
762 		prev = k, k = bkey_p_next(k);
763 
764 	if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
765 		bkey_init(&min_key.k);
766 		min_key.k.p = b->data->min_key;
767 	}
768 
769 	if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
770 		bkey_init(&max_key.k);
771 		max_key.k.p = b->data->max_key;
772 	}
773 
774 	/* Then we build the tree */
775 	eytzinger1_for_each(j, t->size - 1)
776 		make_bfloat(b, t, j,
777 			    bkey_to_packed(&min_key),
778 			    bkey_to_packed(&max_key));
779 }
780 
781 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
782 {
783 	struct bset_tree *i;
784 
785 	for (i = b->set; i != t; i++)
786 		BUG_ON(bset_has_rw_aux_tree(i));
787 
788 	bch2_bset_set_no_aux_tree(b, t);
789 
790 	/* round up to next cacheline: */
791 	t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
792 				      SMP_CACHE_BYTES / sizeof(u64));
793 
794 	bset_aux_tree_verify(b);
795 }
796 
797 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
798 			     bool writeable)
799 {
800 	if (writeable
801 	    ? bset_has_rw_aux_tree(t)
802 	    : bset_has_ro_aux_tree(t))
803 		return;
804 
805 	bset_alloc_tree(b, t);
806 
807 	if (!__bset_tree_capacity(b, t))
808 		return;
809 
810 	if (writeable)
811 		__build_rw_aux_tree(b, t);
812 	else
813 		__build_ro_aux_tree(b, t);
814 
815 	bset_aux_tree_verify(b);
816 }
817 
818 void bch2_bset_init_first(struct btree *b, struct bset *i)
819 {
820 	struct bset_tree *t;
821 
822 	BUG_ON(b->nsets);
823 
824 	memset(i, 0, sizeof(*i));
825 	get_random_bytes(&i->seq, sizeof(i->seq));
826 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
827 
828 	t = &b->set[b->nsets++];
829 	set_btree_bset(b, t, i);
830 }
831 
832 void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne)
833 {
834 	struct bset *i = &bne->keys;
835 	struct bset_tree *t;
836 
837 	BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b));
838 	BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
839 	BUG_ON(b->nsets >= MAX_BSETS);
840 
841 	memset(i, 0, sizeof(*i));
842 	i->seq = btree_bset_first(b)->seq;
843 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
844 
845 	t = &b->set[b->nsets++];
846 	set_btree_bset(b, t, i);
847 }
848 
849 /*
850  * find _some_ key in the same bset as @k that precedes @k - not necessarily the
851  * immediate predecessor:
852  */
853 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
854 				       struct bkey_packed *k)
855 {
856 	struct bkey_packed *p;
857 	unsigned offset;
858 	int j;
859 
860 	EBUG_ON(k < btree_bkey_first(b, t) ||
861 		k > btree_bkey_last(b, t));
862 
863 	if (k == btree_bkey_first(b, t))
864 		return NULL;
865 
866 	switch (bset_aux_tree_type(t)) {
867 	case BSET_NO_AUX_TREE:
868 		p = btree_bkey_first(b, t);
869 		break;
870 	case BSET_RO_AUX_TREE:
871 		j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
872 
873 		do {
874 			p = j ? tree_to_bkey(b, t,
875 					__inorder_to_eytzinger1(j--,
876 							t->size - 1, t->extra))
877 			      : btree_bkey_first(b, t);
878 		} while (p >= k);
879 		break;
880 	case BSET_RW_AUX_TREE:
881 		offset = __btree_node_key_to_offset(b, k);
882 		j = rw_aux_tree_bsearch(b, t, offset);
883 		p = j ? rw_aux_to_bkey(b, t, j - 1)
884 		      : btree_bkey_first(b, t);
885 		break;
886 	}
887 
888 	return p;
889 }
890 
891 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
892 					  struct bset_tree *t,
893 					  struct bkey_packed *k,
894 					  unsigned min_key_type)
895 {
896 	struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
897 
898 	while ((p = __bkey_prev(b, t, k)) && !ret) {
899 		for (i = p; i != k; i = bkey_p_next(i))
900 			if (i->type >= min_key_type)
901 				ret = i;
902 
903 		k = p;
904 	}
905 
906 	if (bch2_expensive_debug_checks) {
907 		BUG_ON(ret >= orig_k);
908 
909 		for (i = ret
910 			? bkey_p_next(ret)
911 			: btree_bkey_first(b, t);
912 		     i != orig_k;
913 		     i = bkey_p_next(i))
914 			BUG_ON(i->type >= min_key_type);
915 	}
916 
917 	return ret;
918 }
919 
920 /* Insert */
921 
922 static void bch2_bset_fix_lookup_table(struct btree *b,
923 				       struct bset_tree *t,
924 				       struct bkey_packed *_where,
925 				       unsigned clobber_u64s,
926 				       unsigned new_u64s)
927 {
928 	int shift = new_u64s - clobber_u64s;
929 	unsigned l, j, where = __btree_node_key_to_offset(b, _where);
930 
931 	EBUG_ON(bset_has_ro_aux_tree(t));
932 
933 	if (!bset_has_rw_aux_tree(t))
934 		return;
935 
936 	/* returns first entry >= where */
937 	l = rw_aux_tree_bsearch(b, t, where);
938 
939 	if (!l) /* never delete first entry */
940 		l++;
941 	else if (l < t->size &&
942 		 where < t->end_offset &&
943 		 rw_aux_tree(b, t)[l].offset == where)
944 		rw_aux_tree_set(b, t, l++, _where);
945 
946 	/* l now > where */
947 
948 	for (j = l;
949 	     j < t->size &&
950 	     rw_aux_tree(b, t)[j].offset < where + clobber_u64s;
951 	     j++)
952 		;
953 
954 	if (j < t->size &&
955 	    rw_aux_tree(b, t)[j].offset + shift ==
956 	    rw_aux_tree(b, t)[l - 1].offset)
957 		j++;
958 
959 	memmove(&rw_aux_tree(b, t)[l],
960 		&rw_aux_tree(b, t)[j],
961 		(void *) &rw_aux_tree(b, t)[t->size] -
962 		(void *) &rw_aux_tree(b, t)[j]);
963 	t->size -= j - l;
964 
965 	for (j = l; j < t->size; j++)
966 		rw_aux_tree(b, t)[j].offset += shift;
967 
968 	EBUG_ON(l < t->size &&
969 		rw_aux_tree(b, t)[l].offset ==
970 		rw_aux_tree(b, t)[l - 1].offset);
971 
972 	if (t->size < bset_rw_tree_capacity(b, t) &&
973 	    (l < t->size
974 	     ? rw_aux_tree(b, t)[l].offset
975 	     : t->end_offset) -
976 	    rw_aux_tree(b, t)[l - 1].offset >
977 	    L1_CACHE_BYTES / sizeof(u64)) {
978 		struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1);
979 		struct bkey_packed *end = l < t->size
980 			? rw_aux_to_bkey(b, t, l)
981 			: btree_bkey_last(b, t);
982 		struct bkey_packed *k = start;
983 
984 		while (1) {
985 			k = bkey_p_next(k);
986 			if (k == end)
987 				break;
988 
989 			if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
990 				memmove(&rw_aux_tree(b, t)[l + 1],
991 					&rw_aux_tree(b, t)[l],
992 					(void *) &rw_aux_tree(b, t)[t->size] -
993 					(void *) &rw_aux_tree(b, t)[l]);
994 				t->size++;
995 				rw_aux_tree_set(b, t, l, k);
996 				break;
997 			}
998 		}
999 	}
1000 
1001 	bch2_bset_verify_rw_aux_tree(b, t);
1002 	bset_aux_tree_verify(b);
1003 }
1004 
1005 void bch2_bset_insert(struct btree *b,
1006 		      struct btree_node_iter *iter,
1007 		      struct bkey_packed *where,
1008 		      struct bkey_i *insert,
1009 		      unsigned clobber_u64s)
1010 {
1011 	struct bkey_format *f = &b->format;
1012 	struct bset_tree *t = bset_tree_last(b);
1013 	struct bkey_packed packed, *src = bkey_to_packed(insert);
1014 
1015 	bch2_bset_verify_rw_aux_tree(b, t);
1016 	bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
1017 
1018 	if (bch2_bkey_pack_key(&packed, &insert->k, f))
1019 		src = &packed;
1020 
1021 	if (!bkey_deleted(&insert->k))
1022 		btree_keys_account_key_add(&b->nr, t - b->set, src);
1023 
1024 	if (src->u64s != clobber_u64s) {
1025 		u64 *src_p = (u64 *) where->_data + clobber_u64s;
1026 		u64 *dst_p = (u64 *) where->_data + src->u64s;
1027 
1028 		EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1029 			(int) clobber_u64s - src->u64s);
1030 
1031 		memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1032 		le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1033 		set_btree_bset_end(b, t);
1034 	}
1035 
1036 	memcpy_u64s_small(where, src,
1037 		    bkeyp_key_u64s(f, src));
1038 	memcpy_u64s(bkeyp_val(f, where), &insert->v,
1039 		    bkeyp_val_u64s(f, src));
1040 
1041 	if (src->u64s != clobber_u64s)
1042 		bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1043 
1044 	bch2_verify_btree_nr_keys(b);
1045 }
1046 
1047 void bch2_bset_delete(struct btree *b,
1048 		      struct bkey_packed *where,
1049 		      unsigned clobber_u64s)
1050 {
1051 	struct bset_tree *t = bset_tree_last(b);
1052 	u64 *src_p = (u64 *) where->_data + clobber_u64s;
1053 	u64 *dst_p = where->_data;
1054 
1055 	bch2_bset_verify_rw_aux_tree(b, t);
1056 
1057 	EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1058 
1059 	memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1060 	le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1061 	set_btree_bset_end(b, t);
1062 
1063 	bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1064 }
1065 
1066 /* Lookup */
1067 
1068 __flatten
1069 static struct bkey_packed *bset_search_write_set(const struct btree *b,
1070 				struct bset_tree *t,
1071 				struct bpos *search)
1072 {
1073 	unsigned l = 0, r = t->size;
1074 
1075 	while (l + 1 != r) {
1076 		unsigned m = (l + r) >> 1;
1077 
1078 		if (bpos_lt(rw_aux_tree(b, t)[m].k, *search))
1079 			l = m;
1080 		else
1081 			r = m;
1082 	}
1083 
1084 	return rw_aux_to_bkey(b, t, l);
1085 }
1086 
1087 static inline void prefetch_four_cachelines(void *p)
1088 {
1089 #ifdef CONFIG_X86_64
1090 	asm("prefetcht0 (-127 + 64 * 0)(%0);"
1091 	    "prefetcht0 (-127 + 64 * 1)(%0);"
1092 	    "prefetcht0 (-127 + 64 * 2)(%0);"
1093 	    "prefetcht0 (-127 + 64 * 3)(%0);"
1094 	    :
1095 	    : "r" (p + 127));
1096 #else
1097 	prefetch(p + L1_CACHE_BYTES * 0);
1098 	prefetch(p + L1_CACHE_BYTES * 1);
1099 	prefetch(p + L1_CACHE_BYTES * 2);
1100 	prefetch(p + L1_CACHE_BYTES * 3);
1101 #endif
1102 }
1103 
1104 static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1105 					      const struct bkey_float *f,
1106 					      unsigned idx)
1107 {
1108 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1109 	unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1110 
1111 	return f->exponent > key_bits_start;
1112 #else
1113 	unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1114 
1115 	return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1116 #endif
1117 }
1118 
1119 __flatten
1120 static struct bkey_packed *bset_search_tree(const struct btree *b,
1121 				const struct bset_tree *t,
1122 				const struct bpos *search,
1123 				const struct bkey_packed *packed_search)
1124 {
1125 	struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1126 	struct bkey_float *f;
1127 	struct bkey_packed *k;
1128 	unsigned inorder, n = 1, l, r;
1129 	int cmp;
1130 
1131 	do {
1132 		if (likely(n << 4 < t->size))
1133 			prefetch(&base->f[n << 4]);
1134 
1135 		f = &base->f[n];
1136 		if (unlikely(f->exponent >= BFLOAT_FAILED))
1137 			goto slowpath;
1138 
1139 		l = f->mantissa;
1140 		r = bkey_mantissa(packed_search, f, n);
1141 
1142 		if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n))
1143 			goto slowpath;
1144 
1145 		n = n * 2 + (l < r);
1146 		continue;
1147 slowpath:
1148 		k = tree_to_bkey(b, t, n);
1149 		cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1150 		if (!cmp)
1151 			return k;
1152 
1153 		n = n * 2 + (cmp < 0);
1154 	} while (n < t->size);
1155 
1156 	inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1157 
1158 	/*
1159 	 * n would have been the node we recursed to - the low bit tells us if
1160 	 * we recursed left or recursed right.
1161 	 */
1162 	if (likely(!(n & 1))) {
1163 		--inorder;
1164 		if (unlikely(!inorder))
1165 			return btree_bkey_first(b, t);
1166 
1167 		f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1168 	}
1169 
1170 	return cacheline_to_bkey(b, t, inorder, f->key_offset);
1171 }
1172 
1173 static __always_inline __flatten
1174 struct bkey_packed *__bch2_bset_search(struct btree *b,
1175 				struct bset_tree *t,
1176 				struct bpos *search,
1177 				const struct bkey_packed *lossy_packed_search)
1178 {
1179 
1180 	/*
1181 	 * First, we search for a cacheline, then lastly we do a linear search
1182 	 * within that cacheline.
1183 	 *
1184 	 * To search for the cacheline, there's three different possibilities:
1185 	 *  * The set is too small to have a search tree, so we just do a linear
1186 	 *    search over the whole set.
1187 	 *  * The set is the one we're currently inserting into; keeping a full
1188 	 *    auxiliary search tree up to date would be too expensive, so we
1189 	 *    use a much simpler lookup table to do a binary search -
1190 	 *    bset_search_write_set().
1191 	 *  * Or we use the auxiliary search tree we constructed earlier -
1192 	 *    bset_search_tree()
1193 	 */
1194 
1195 	switch (bset_aux_tree_type(t)) {
1196 	case BSET_NO_AUX_TREE:
1197 		return btree_bkey_first(b, t);
1198 	case BSET_RW_AUX_TREE:
1199 		return bset_search_write_set(b, t, search);
1200 	case BSET_RO_AUX_TREE:
1201 		return bset_search_tree(b, t, search, lossy_packed_search);
1202 	default:
1203 		BUG();
1204 	}
1205 }
1206 
1207 static __always_inline __flatten
1208 struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1209 				struct bset_tree *t,
1210 				struct bpos *search,
1211 				struct bkey_packed *packed_search,
1212 				const struct bkey_packed *lossy_packed_search,
1213 				struct bkey_packed *m)
1214 {
1215 	if (lossy_packed_search)
1216 		while (m != btree_bkey_last(b, t) &&
1217 		       bkey_iter_cmp_p_or_unp(b, m,
1218 					lossy_packed_search, search) < 0)
1219 			m = bkey_p_next(m);
1220 
1221 	if (!packed_search)
1222 		while (m != btree_bkey_last(b, t) &&
1223 		       bkey_iter_pos_cmp(b, m, search) < 0)
1224 			m = bkey_p_next(m);
1225 
1226 	if (bch2_expensive_debug_checks) {
1227 		struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1228 
1229 		BUG_ON(prev &&
1230 		       bkey_iter_cmp_p_or_unp(b, prev,
1231 					packed_search, search) >= 0);
1232 	}
1233 
1234 	return m;
1235 }
1236 
1237 /* Btree node iterator */
1238 
1239 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1240 			      struct btree *b,
1241 			      const struct bkey_packed *k,
1242 			      const struct bkey_packed *end)
1243 {
1244 	if (k != end) {
1245 		struct btree_node_iter_set *pos;
1246 
1247 		btree_node_iter_for_each(iter, pos)
1248 			;
1249 
1250 		BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1251 		*pos = (struct btree_node_iter_set) {
1252 			__btree_node_key_to_offset(b, k),
1253 			__btree_node_key_to_offset(b, end)
1254 		};
1255 	}
1256 }
1257 
1258 void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1259 			       struct btree *b,
1260 			       const struct bkey_packed *k,
1261 			       const struct bkey_packed *end)
1262 {
1263 	__bch2_btree_node_iter_push(iter, b, k, end);
1264 	bch2_btree_node_iter_sort(iter, b);
1265 }
1266 
1267 noinline __flatten __cold
1268 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1269 			      struct btree *b, struct bpos *search)
1270 {
1271 	struct bkey_packed *k;
1272 
1273 	trace_bkey_pack_pos_fail(search);
1274 
1275 	bch2_btree_node_iter_init_from_start(iter, b);
1276 
1277 	while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1278 	       bkey_iter_pos_cmp(b, k, search) < 0)
1279 		bch2_btree_node_iter_advance(iter, b);
1280 }
1281 
1282 /**
1283  * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a
1284  * given position
1285  *
1286  * @iter:	iterator to initialize
1287  * @b:		btree node to search
1288  * @search:	search key
1289  *
1290  * Main entry point to the lookup code for individual btree nodes:
1291  *
1292  * NOTE:
1293  *
1294  * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1295  * keys. This doesn't matter for most code, but it does matter for lookups.
1296  *
1297  * Some adjacent keys with a string of equal keys:
1298  *	i j k k k k l m
1299  *
1300  * If you search for k, the lookup code isn't guaranteed to return you any
1301  * specific k. The lookup code is conceptually doing a binary search and
1302  * iterating backwards is very expensive so if the pivot happens to land at the
1303  * last k that's what you'll get.
1304  *
1305  * This works out ok, but it's something to be aware of:
1306  *
1307  *  - For non extents, we guarantee that the live key comes last - see
1308  *    btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1309  *    see will only be deleted keys you don't care about.
1310  *
1311  *  - For extents, deleted keys sort last (see the comment at the top of this
1312  *    file). But when you're searching for extents, you actually want the first
1313  *    key strictly greater than your search key - an extent that compares equal
1314  *    to the search key is going to have 0 sectors after the search key.
1315  *
1316  *    But this does mean that we can't just search for
1317  *    bpos_successor(start_of_range) to get the first extent that overlaps with
1318  *    the range we want - if we're unlucky and there's an extent that ends
1319  *    exactly where we searched, then there could be a deleted key at the same
1320  *    position and we'd get that when we search instead of the preceding extent
1321  *    we needed.
1322  *
1323  *    So we've got to search for start_of_range, then after the lookup iterate
1324  *    past any extents that compare equal to the position we searched for.
1325  */
1326 __flatten
1327 void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1328 			       struct btree *b, struct bpos *search)
1329 {
1330 	struct bkey_packed p, *packed_search = NULL;
1331 	struct btree_node_iter_set *pos = iter->data;
1332 	struct bkey_packed *k[MAX_BSETS];
1333 	unsigned i;
1334 
1335 	EBUG_ON(bpos_lt(*search, b->data->min_key));
1336 	EBUG_ON(bpos_gt(*search, b->data->max_key));
1337 	bset_aux_tree_verify(b);
1338 
1339 	memset(iter, 0, sizeof(*iter));
1340 
1341 	switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1342 	case BKEY_PACK_POS_EXACT:
1343 		packed_search = &p;
1344 		break;
1345 	case BKEY_PACK_POS_SMALLER:
1346 		packed_search = NULL;
1347 		break;
1348 	case BKEY_PACK_POS_FAIL:
1349 		btree_node_iter_init_pack_failed(iter, b, search);
1350 		return;
1351 	}
1352 
1353 	for (i = 0; i < b->nsets; i++) {
1354 		k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1355 		prefetch_four_cachelines(k[i]);
1356 	}
1357 
1358 	for (i = 0; i < b->nsets; i++) {
1359 		struct bset_tree *t = b->set + i;
1360 		struct bkey_packed *end = btree_bkey_last(b, t);
1361 
1362 		k[i] = bch2_bset_search_linear(b, t, search,
1363 					       packed_search, &p, k[i]);
1364 		if (k[i] != end)
1365 			*pos++ = (struct btree_node_iter_set) {
1366 				__btree_node_key_to_offset(b, k[i]),
1367 				__btree_node_key_to_offset(b, end)
1368 			};
1369 	}
1370 
1371 	bch2_btree_node_iter_sort(iter, b);
1372 }
1373 
1374 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1375 					  struct btree *b)
1376 {
1377 	struct bset_tree *t;
1378 
1379 	memset(iter, 0, sizeof(*iter));
1380 
1381 	for_each_bset(b, t)
1382 		__bch2_btree_node_iter_push(iter, b,
1383 					   btree_bkey_first(b, t),
1384 					   btree_bkey_last(b, t));
1385 	bch2_btree_node_iter_sort(iter, b);
1386 }
1387 
1388 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1389 						  struct btree *b,
1390 						  struct bset_tree *t)
1391 {
1392 	struct btree_node_iter_set *set;
1393 
1394 	btree_node_iter_for_each(iter, set)
1395 		if (set->end == t->end_offset)
1396 			return __btree_node_offset_to_key(b, set->k);
1397 
1398 	return btree_bkey_last(b, t);
1399 }
1400 
1401 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1402 					    struct btree *b,
1403 					    unsigned first)
1404 {
1405 	bool ret;
1406 
1407 	if ((ret = (btree_node_iter_cmp(b,
1408 					iter->data[first],
1409 					iter->data[first + 1]) > 0)))
1410 		swap(iter->data[first], iter->data[first + 1]);
1411 	return ret;
1412 }
1413 
1414 void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1415 			       struct btree *b)
1416 {
1417 	/* unrolled bubble sort: */
1418 
1419 	if (!__btree_node_iter_set_end(iter, 2)) {
1420 		btree_node_iter_sort_two(iter, b, 0);
1421 		btree_node_iter_sort_two(iter, b, 1);
1422 	}
1423 
1424 	if (!__btree_node_iter_set_end(iter, 1))
1425 		btree_node_iter_sort_two(iter, b, 0);
1426 }
1427 
1428 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1429 				   struct btree_node_iter_set *set)
1430 {
1431 	struct btree_node_iter_set *last =
1432 		iter->data + ARRAY_SIZE(iter->data) - 1;
1433 
1434 	memmove(&set[0], &set[1], (void *) last - (void *) set);
1435 	*last = (struct btree_node_iter_set) { 0, 0 };
1436 }
1437 
1438 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1439 						  struct btree *b)
1440 {
1441 	iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1442 
1443 	EBUG_ON(iter->data->k > iter->data->end);
1444 
1445 	if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1446 		/* avoid an expensive memmove call: */
1447 		iter->data[0] = iter->data[1];
1448 		iter->data[1] = iter->data[2];
1449 		iter->data[2] = (struct btree_node_iter_set) { 0, 0 };
1450 		return;
1451 	}
1452 
1453 	if (__btree_node_iter_set_end(iter, 1))
1454 		return;
1455 
1456 	if (!btree_node_iter_sort_two(iter, b, 0))
1457 		return;
1458 
1459 	if (__btree_node_iter_set_end(iter, 2))
1460 		return;
1461 
1462 	btree_node_iter_sort_two(iter, b, 1);
1463 }
1464 
1465 void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1466 				  struct btree *b)
1467 {
1468 	if (bch2_expensive_debug_checks) {
1469 		bch2_btree_node_iter_verify(iter, b);
1470 		bch2_btree_node_iter_next_check(iter, b);
1471 	}
1472 
1473 	__bch2_btree_node_iter_advance(iter, b);
1474 }
1475 
1476 /*
1477  * Expensive:
1478  */
1479 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1480 						  struct btree *b)
1481 {
1482 	struct bkey_packed *k, *prev = NULL;
1483 	struct btree_node_iter_set *set;
1484 	struct bset_tree *t;
1485 	unsigned end = 0;
1486 
1487 	if (bch2_expensive_debug_checks)
1488 		bch2_btree_node_iter_verify(iter, b);
1489 
1490 	for_each_bset(b, t) {
1491 		k = bch2_bkey_prev_all(b, t,
1492 			bch2_btree_node_iter_bset_pos(iter, b, t));
1493 		if (k &&
1494 		    (!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1495 			prev = k;
1496 			end = t->end_offset;
1497 		}
1498 	}
1499 
1500 	if (!prev)
1501 		return NULL;
1502 
1503 	/*
1504 	 * We're manually memmoving instead of just calling sort() to ensure the
1505 	 * prev we picked ends up in slot 0 - sort won't necessarily put it
1506 	 * there because of duplicate deleted keys:
1507 	 */
1508 	btree_node_iter_for_each(iter, set)
1509 		if (set->end == end)
1510 			goto found;
1511 
1512 	BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1513 found:
1514 	BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1515 
1516 	memmove(&iter->data[1],
1517 		&iter->data[0],
1518 		(void *) set - (void *) &iter->data[0]);
1519 
1520 	iter->data[0].k = __btree_node_key_to_offset(b, prev);
1521 	iter->data[0].end = end;
1522 
1523 	if (bch2_expensive_debug_checks)
1524 		bch2_btree_node_iter_verify(iter, b);
1525 	return prev;
1526 }
1527 
1528 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1529 					      struct btree *b)
1530 {
1531 	struct bkey_packed *prev;
1532 
1533 	do {
1534 		prev = bch2_btree_node_iter_prev_all(iter, b);
1535 	} while (prev && bkey_deleted(prev));
1536 
1537 	return prev;
1538 }
1539 
1540 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1541 						 struct btree *b,
1542 						 struct bkey *u)
1543 {
1544 	struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1545 
1546 	return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1547 }
1548 
1549 /* Mergesort */
1550 
1551 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats)
1552 {
1553 	const struct bset_tree *t;
1554 
1555 	for_each_bset(b, t) {
1556 		enum bset_aux_tree_type type = bset_aux_tree_type(t);
1557 		size_t j;
1558 
1559 		stats->sets[type].nr++;
1560 		stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1561 			sizeof(u64);
1562 
1563 		if (bset_has_ro_aux_tree(t)) {
1564 			stats->floats += t->size - 1;
1565 
1566 			for (j = 1; j < t->size; j++)
1567 				stats->failed +=
1568 					bkey_float(b, t, j)->exponent ==
1569 					BFLOAT_FAILED;
1570 		}
1571 	}
1572 }
1573 
1574 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1575 			 struct bkey_packed *k)
1576 {
1577 	struct bset_tree *t = bch2_bkey_to_bset(b, k);
1578 	struct bkey uk;
1579 	unsigned j, inorder;
1580 
1581 	if (!bset_has_ro_aux_tree(t))
1582 		return;
1583 
1584 	inorder = bkey_to_cacheline(b, t, k);
1585 	if (!inorder || inorder >= t->size)
1586 		return;
1587 
1588 	j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1589 	if (k != tree_to_bkey(b, t, j))
1590 		return;
1591 
1592 	switch (bkey_float(b, t, j)->exponent) {
1593 	case BFLOAT_FAILED:
1594 		uk = bkey_unpack_key(b, k);
1595 		prt_printf(out,
1596 		       "    failed unpacked at depth %u\n"
1597 		       "\t",
1598 		       ilog2(j));
1599 		bch2_bpos_to_text(out, uk.p);
1600 		prt_printf(out, "\n");
1601 		break;
1602 	}
1603 }
1604