1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Code for working with individual keys, and sorted sets of keys with in a 4 * btree node 5 * 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcachefs.h" 10 #include "btree_cache.h" 11 #include "bset.h" 12 #include "eytzinger.h" 13 #include "trace.h" 14 #include "util.h" 15 16 #include <asm/unaligned.h> 17 #include <linux/console.h> 18 #include <linux/random.h> 19 #include <linux/prefetch.h> 20 21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *, 22 struct btree *); 23 24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter) 25 { 26 unsigned n = ARRAY_SIZE(iter->data); 27 28 while (n && __btree_node_iter_set_end(iter, n - 1)) 29 --n; 30 31 return n; 32 } 33 34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k) 35 { 36 return bch2_bkey_to_bset_inlined(b, k); 37 } 38 39 /* 40 * There are never duplicate live keys in the btree - but including keys that 41 * have been flagged as deleted (and will be cleaned up later) we _will_ see 42 * duplicates. 43 * 44 * Thus the sort order is: usual key comparison first, but for keys that compare 45 * equal the deleted key(s) come first, and the (at most one) live version comes 46 * last. 47 * 48 * The main reason for this is insertion: to handle overwrites, we first iterate 49 * over keys that compare equal to our insert key, and then insert immediately 50 * prior to the first key greater than the key we're inserting - our insert 51 * position will be after all keys that compare equal to our insert key, which 52 * by the time we actually do the insert will all be deleted. 53 */ 54 55 void bch2_dump_bset(struct bch_fs *c, struct btree *b, 56 struct bset *i, unsigned set) 57 { 58 struct bkey_packed *_k, *_n; 59 struct bkey uk, n; 60 struct bkey_s_c k; 61 struct printbuf buf = PRINTBUF; 62 63 if (!i->u64s) 64 return; 65 66 for (_k = i->start; 67 _k < vstruct_last(i); 68 _k = _n) { 69 _n = bkey_p_next(_k); 70 71 if (!_k->u64s) { 72 printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set, 73 _k->_data - i->_data); 74 break; 75 } 76 77 k = bkey_disassemble(b, _k, &uk); 78 79 printbuf_reset(&buf); 80 if (c) 81 bch2_bkey_val_to_text(&buf, c, k); 82 else 83 bch2_bkey_to_text(&buf, k.k); 84 printk(KERN_ERR "block %u key %5zu: %s\n", set, 85 _k->_data - i->_data, buf.buf); 86 87 if (_n == vstruct_last(i)) 88 continue; 89 90 n = bkey_unpack_key(b, _n); 91 92 if (bpos_lt(n.p, k.k->p)) { 93 printk(KERN_ERR "Key skipped backwards\n"); 94 continue; 95 } 96 97 if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p)) 98 printk(KERN_ERR "Duplicate keys\n"); 99 } 100 101 printbuf_exit(&buf); 102 } 103 104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b) 105 { 106 struct bset_tree *t; 107 108 console_lock(); 109 for_each_bset(b, t) 110 bch2_dump_bset(c, b, bset(b, t), t - b->set); 111 console_unlock(); 112 } 113 114 void bch2_dump_btree_node_iter(struct btree *b, 115 struct btree_node_iter *iter) 116 { 117 struct btree_node_iter_set *set; 118 struct printbuf buf = PRINTBUF; 119 120 printk(KERN_ERR "btree node iter with %u/%u sets:\n", 121 __btree_node_iter_used(iter), b->nsets); 122 123 btree_node_iter_for_each(iter, set) { 124 struct bkey_packed *k = __btree_node_offset_to_key(b, set->k); 125 struct bset_tree *t = bch2_bkey_to_bset(b, k); 126 struct bkey uk = bkey_unpack_key(b, k); 127 128 printbuf_reset(&buf); 129 bch2_bkey_to_text(&buf, &uk); 130 printk(KERN_ERR "set %zu key %u: %s\n", 131 t - b->set, set->k, buf.buf); 132 } 133 134 printbuf_exit(&buf); 135 } 136 137 #ifdef CONFIG_BCACHEFS_DEBUG 138 139 void __bch2_verify_btree_nr_keys(struct btree *b) 140 { 141 struct bset_tree *t; 142 struct bkey_packed *k; 143 struct btree_nr_keys nr = { 0 }; 144 145 for_each_bset(b, t) 146 bset_tree_for_each_key(b, t, k) 147 if (!bkey_deleted(k)) 148 btree_keys_account_key_add(&nr, t - b->set, k); 149 150 BUG_ON(memcmp(&nr, &b->nr, sizeof(nr))); 151 } 152 153 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter, 154 struct btree *b) 155 { 156 struct btree_node_iter iter = *_iter; 157 const struct bkey_packed *k, *n; 158 159 k = bch2_btree_node_iter_peek_all(&iter, b); 160 __bch2_btree_node_iter_advance(&iter, b); 161 n = bch2_btree_node_iter_peek_all(&iter, b); 162 163 bkey_unpack_key(b, k); 164 165 if (n && 166 bkey_iter_cmp(b, k, n) > 0) { 167 struct btree_node_iter_set *set; 168 struct bkey ku = bkey_unpack_key(b, k); 169 struct bkey nu = bkey_unpack_key(b, n); 170 struct printbuf buf1 = PRINTBUF; 171 struct printbuf buf2 = PRINTBUF; 172 173 bch2_dump_btree_node(NULL, b); 174 bch2_bkey_to_text(&buf1, &ku); 175 bch2_bkey_to_text(&buf2, &nu); 176 printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n", 177 buf1.buf, buf2.buf); 178 printk(KERN_ERR "iter was:"); 179 180 btree_node_iter_for_each(_iter, set) { 181 struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k); 182 struct bset_tree *t = bch2_bkey_to_bset(b, k2); 183 printk(" [%zi %zi]", t - b->set, 184 k2->_data - bset(b, t)->_data); 185 } 186 panic("\n"); 187 } 188 } 189 190 void bch2_btree_node_iter_verify(struct btree_node_iter *iter, 191 struct btree *b) 192 { 193 struct btree_node_iter_set *set, *s2; 194 struct bkey_packed *k, *p; 195 struct bset_tree *t; 196 197 if (bch2_btree_node_iter_end(iter)) 198 return; 199 200 /* Verify no duplicates: */ 201 btree_node_iter_for_each(iter, set) { 202 BUG_ON(set->k > set->end); 203 btree_node_iter_for_each(iter, s2) 204 BUG_ON(set != s2 && set->end == s2->end); 205 } 206 207 /* Verify that set->end is correct: */ 208 btree_node_iter_for_each(iter, set) { 209 for_each_bset(b, t) 210 if (set->end == t->end_offset) 211 goto found; 212 BUG(); 213 found: 214 BUG_ON(set->k < btree_bkey_first_offset(t) || 215 set->k >= t->end_offset); 216 } 217 218 /* Verify iterator is sorted: */ 219 btree_node_iter_for_each(iter, set) 220 BUG_ON(set != iter->data && 221 btree_node_iter_cmp(b, set[-1], set[0]) > 0); 222 223 k = bch2_btree_node_iter_peek_all(iter, b); 224 225 for_each_bset(b, t) { 226 if (iter->data[0].end == t->end_offset) 227 continue; 228 229 p = bch2_bkey_prev_all(b, t, 230 bch2_btree_node_iter_bset_pos(iter, b, t)); 231 232 BUG_ON(p && bkey_iter_cmp(b, k, p) < 0); 233 } 234 } 235 236 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where, 237 struct bkey_packed *insert, unsigned clobber_u64s) 238 { 239 struct bset_tree *t = bch2_bkey_to_bset(b, where); 240 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where); 241 struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s); 242 struct printbuf buf1 = PRINTBUF; 243 struct printbuf buf2 = PRINTBUF; 244 #if 0 245 BUG_ON(prev && 246 bkey_iter_cmp(b, prev, insert) > 0); 247 #else 248 if (prev && 249 bkey_iter_cmp(b, prev, insert) > 0) { 250 struct bkey k1 = bkey_unpack_key(b, prev); 251 struct bkey k2 = bkey_unpack_key(b, insert); 252 253 bch2_dump_btree_node(NULL, b); 254 bch2_bkey_to_text(&buf1, &k1); 255 bch2_bkey_to_text(&buf2, &k2); 256 257 panic("prev > insert:\n" 258 "prev key %s\n" 259 "insert key %s\n", 260 buf1.buf, buf2.buf); 261 } 262 #endif 263 #if 0 264 BUG_ON(next != btree_bkey_last(b, t) && 265 bkey_iter_cmp(b, insert, next) > 0); 266 #else 267 if (next != btree_bkey_last(b, t) && 268 bkey_iter_cmp(b, insert, next) > 0) { 269 struct bkey k1 = bkey_unpack_key(b, insert); 270 struct bkey k2 = bkey_unpack_key(b, next); 271 272 bch2_dump_btree_node(NULL, b); 273 bch2_bkey_to_text(&buf1, &k1); 274 bch2_bkey_to_text(&buf2, &k2); 275 276 panic("insert > next:\n" 277 "insert key %s\n" 278 "next key %s\n", 279 buf1.buf, buf2.buf); 280 } 281 #endif 282 } 283 284 #else 285 286 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter, 287 struct btree *b) {} 288 289 #endif 290 291 /* Auxiliary search trees */ 292 293 #define BFLOAT_FAILED_UNPACKED U8_MAX 294 #define BFLOAT_FAILED U8_MAX 295 296 struct bkey_float { 297 u8 exponent; 298 u8 key_offset; 299 u16 mantissa; 300 }; 301 #define BKEY_MANTISSA_BITS 16 302 303 static unsigned bkey_float_byte_offset(unsigned idx) 304 { 305 return idx * sizeof(struct bkey_float); 306 } 307 308 struct ro_aux_tree { 309 u8 nothing[0]; 310 struct bkey_float f[]; 311 }; 312 313 struct rw_aux_tree { 314 u16 offset; 315 struct bpos k; 316 }; 317 318 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t) 319 { 320 BUG_ON(t->aux_data_offset == U16_MAX); 321 322 switch (bset_aux_tree_type(t)) { 323 case BSET_NO_AUX_TREE: 324 return t->aux_data_offset; 325 case BSET_RO_AUX_TREE: 326 return t->aux_data_offset + 327 DIV_ROUND_UP(t->size * sizeof(struct bkey_float) + 328 t->size * sizeof(u8), 8); 329 case BSET_RW_AUX_TREE: 330 return t->aux_data_offset + 331 DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8); 332 default: 333 BUG(); 334 } 335 } 336 337 static unsigned bset_aux_tree_buf_start(const struct btree *b, 338 const struct bset_tree *t) 339 { 340 return t == b->set 341 ? DIV_ROUND_UP(b->unpack_fn_len, 8) 342 : bset_aux_tree_buf_end(t - 1); 343 } 344 345 static void *__aux_tree_base(const struct btree *b, 346 const struct bset_tree *t) 347 { 348 return b->aux_data + t->aux_data_offset * 8; 349 } 350 351 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b, 352 const struct bset_tree *t) 353 { 354 EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); 355 356 return __aux_tree_base(b, t); 357 } 358 359 static u8 *ro_aux_tree_prev(const struct btree *b, 360 const struct bset_tree *t) 361 { 362 EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); 363 364 return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size); 365 } 366 367 static struct bkey_float *bkey_float(const struct btree *b, 368 const struct bset_tree *t, 369 unsigned idx) 370 { 371 return ro_aux_tree_base(b, t)->f + idx; 372 } 373 374 static void bset_aux_tree_verify(const struct btree *b) 375 { 376 #ifdef CONFIG_BCACHEFS_DEBUG 377 const struct bset_tree *t; 378 379 for_each_bset(b, t) { 380 if (t->aux_data_offset == U16_MAX) 381 continue; 382 383 BUG_ON(t != b->set && 384 t[-1].aux_data_offset == U16_MAX); 385 386 BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t)); 387 BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b)); 388 BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b)); 389 } 390 #endif 391 } 392 393 void bch2_btree_keys_init(struct btree *b) 394 { 395 unsigned i; 396 397 b->nsets = 0; 398 memset(&b->nr, 0, sizeof(b->nr)); 399 400 for (i = 0; i < MAX_BSETS; i++) 401 b->set[i].data_offset = U16_MAX; 402 403 bch2_bset_set_no_aux_tree(b, b->set); 404 } 405 406 /* Binary tree stuff for auxiliary search trees */ 407 408 /* 409 * Cacheline/offset <-> bkey pointer arithmetic: 410 * 411 * t->tree is a binary search tree in an array; each node corresponds to a key 412 * in one cacheline in t->set (BSET_CACHELINE bytes). 413 * 414 * This means we don't have to store the full index of the key that a node in 415 * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and 416 * then bkey_float->m gives us the offset within that cacheline, in units of 8 417 * bytes. 418 * 419 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 420 * make this work. 421 * 422 * To construct the bfloat for an arbitrary key we need to know what the key 423 * immediately preceding it is: we have to check if the two keys differ in the 424 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 425 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 426 */ 427 428 static inline void *bset_cacheline(const struct btree *b, 429 const struct bset_tree *t, 430 unsigned cacheline) 431 { 432 return (void *) round_down((unsigned long) btree_bkey_first(b, t), 433 L1_CACHE_BYTES) + 434 cacheline * BSET_CACHELINE; 435 } 436 437 static struct bkey_packed *cacheline_to_bkey(const struct btree *b, 438 const struct bset_tree *t, 439 unsigned cacheline, 440 unsigned offset) 441 { 442 return bset_cacheline(b, t, cacheline) + offset * 8; 443 } 444 445 static unsigned bkey_to_cacheline(const struct btree *b, 446 const struct bset_tree *t, 447 const struct bkey_packed *k) 448 { 449 return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE; 450 } 451 452 static ssize_t __bkey_to_cacheline_offset(const struct btree *b, 453 const struct bset_tree *t, 454 unsigned cacheline, 455 const struct bkey_packed *k) 456 { 457 return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline); 458 } 459 460 static unsigned bkey_to_cacheline_offset(const struct btree *b, 461 const struct bset_tree *t, 462 unsigned cacheline, 463 const struct bkey_packed *k) 464 { 465 size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k); 466 467 EBUG_ON(m > U8_MAX); 468 return m; 469 } 470 471 static inline struct bkey_packed *tree_to_bkey(const struct btree *b, 472 const struct bset_tree *t, 473 unsigned j) 474 { 475 return cacheline_to_bkey(b, t, 476 __eytzinger1_to_inorder(j, t->size - 1, t->extra), 477 bkey_float(b, t, j)->key_offset); 478 } 479 480 static struct bkey_packed *tree_to_prev_bkey(const struct btree *b, 481 const struct bset_tree *t, 482 unsigned j) 483 { 484 unsigned prev_u64s = ro_aux_tree_prev(b, t)[j]; 485 486 return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s); 487 } 488 489 static struct rw_aux_tree *rw_aux_tree(const struct btree *b, 490 const struct bset_tree *t) 491 { 492 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); 493 494 return __aux_tree_base(b, t); 495 } 496 497 /* 498 * For the write set - the one we're currently inserting keys into - we don't 499 * maintain a full search tree, we just keep a simple lookup table in t->prev. 500 */ 501 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b, 502 struct bset_tree *t, 503 unsigned j) 504 { 505 return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset); 506 } 507 508 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t, 509 unsigned j, struct bkey_packed *k) 510 { 511 EBUG_ON(k >= btree_bkey_last(b, t)); 512 513 rw_aux_tree(b, t)[j] = (struct rw_aux_tree) { 514 .offset = __btree_node_key_to_offset(b, k), 515 .k = bkey_unpack_pos(b, k), 516 }; 517 } 518 519 static void bch2_bset_verify_rw_aux_tree(struct btree *b, 520 struct bset_tree *t) 521 { 522 struct bkey_packed *k = btree_bkey_first(b, t); 523 unsigned j = 0; 524 525 if (!bch2_expensive_debug_checks) 526 return; 527 528 BUG_ON(bset_has_ro_aux_tree(t)); 529 530 if (!bset_has_rw_aux_tree(t)) 531 return; 532 533 BUG_ON(t->size < 1); 534 BUG_ON(rw_aux_to_bkey(b, t, j) != k); 535 536 goto start; 537 while (1) { 538 if (rw_aux_to_bkey(b, t, j) == k) { 539 BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k, 540 bkey_unpack_pos(b, k))); 541 start: 542 if (++j == t->size) 543 break; 544 545 BUG_ON(rw_aux_tree(b, t)[j].offset <= 546 rw_aux_tree(b, t)[j - 1].offset); 547 } 548 549 k = bkey_p_next(k); 550 BUG_ON(k >= btree_bkey_last(b, t)); 551 } 552 } 553 554 /* returns idx of first entry >= offset: */ 555 static unsigned rw_aux_tree_bsearch(struct btree *b, 556 struct bset_tree *t, 557 unsigned offset) 558 { 559 unsigned bset_offs = offset - btree_bkey_first_offset(t); 560 unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t); 561 unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0; 562 563 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); 564 EBUG_ON(!t->size); 565 EBUG_ON(idx > t->size); 566 567 while (idx < t->size && 568 rw_aux_tree(b, t)[idx].offset < offset) 569 idx++; 570 571 while (idx && 572 rw_aux_tree(b, t)[idx - 1].offset >= offset) 573 idx--; 574 575 EBUG_ON(idx < t->size && 576 rw_aux_tree(b, t)[idx].offset < offset); 577 EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset); 578 EBUG_ON(idx + 1 < t->size && 579 rw_aux_tree(b, t)[idx].offset == 580 rw_aux_tree(b, t)[idx + 1].offset); 581 582 return idx; 583 } 584 585 static inline unsigned bkey_mantissa(const struct bkey_packed *k, 586 const struct bkey_float *f, 587 unsigned idx) 588 { 589 u64 v; 590 591 EBUG_ON(!bkey_packed(k)); 592 593 v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3))); 594 595 /* 596 * In little endian, we're shifting off low bits (and then the bits we 597 * want are at the low end), in big endian we're shifting off high bits 598 * (and then the bits we want are at the high end, so we shift them 599 * back down): 600 */ 601 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 602 v >>= f->exponent & 7; 603 #else 604 v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS; 605 #endif 606 return (u16) v; 607 } 608 609 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t, 610 unsigned j, 611 struct bkey_packed *min_key, 612 struct bkey_packed *max_key) 613 { 614 struct bkey_float *f = bkey_float(b, t, j); 615 struct bkey_packed *m = tree_to_bkey(b, t, j); 616 struct bkey_packed *l = is_power_of_2(j) 617 ? min_key 618 : tree_to_prev_bkey(b, t, j >> ffs(j)); 619 struct bkey_packed *r = is_power_of_2(j + 1) 620 ? max_key 621 : tree_to_bkey(b, t, j >> (ffz(j) + 1)); 622 unsigned mantissa; 623 int shift, exponent, high_bit; 624 625 /* 626 * for failed bfloats, the lookup code falls back to comparing against 627 * the original key. 628 */ 629 630 if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) || 631 !b->nr_key_bits) { 632 f->exponent = BFLOAT_FAILED_UNPACKED; 633 return; 634 } 635 636 /* 637 * The greatest differing bit of l and r is the first bit we must 638 * include in the bfloat mantissa we're creating in order to do 639 * comparisons - that bit always becomes the high bit of 640 * bfloat->mantissa, and thus the exponent we're calculating here is 641 * the position of what will become the low bit in bfloat->mantissa: 642 * 643 * Note that this may be negative - we may be running off the low end 644 * of the key: we handle this later: 645 */ 646 high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r), 647 min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1); 648 exponent = high_bit - (BKEY_MANTISSA_BITS - 1); 649 650 /* 651 * Then we calculate the actual shift value, from the start of the key 652 * (k->_data), to get the key bits starting at exponent: 653 */ 654 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 655 shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent; 656 657 EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64); 658 #else 659 shift = high_bit_offset + 660 b->nr_key_bits - 661 exponent - 662 BKEY_MANTISSA_BITS; 663 664 EBUG_ON(shift < KEY_PACKED_BITS_START); 665 #endif 666 EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED); 667 668 f->exponent = shift; 669 mantissa = bkey_mantissa(m, f, j); 670 671 /* 672 * If we've got garbage bits, set them to all 1s - it's legal for the 673 * bfloat to compare larger than the original key, but not smaller: 674 */ 675 if (exponent < 0) 676 mantissa |= ~(~0U << -exponent); 677 678 f->mantissa = mantissa; 679 } 680 681 /* bytes remaining - only valid for last bset: */ 682 static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t) 683 { 684 bset_aux_tree_verify(b); 685 686 return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64); 687 } 688 689 static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t) 690 { 691 return __bset_tree_capacity(b, t) / 692 (sizeof(struct bkey_float) + sizeof(u8)); 693 } 694 695 static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t) 696 { 697 return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree); 698 } 699 700 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t) 701 { 702 struct bkey_packed *k; 703 704 t->size = 1; 705 t->extra = BSET_RW_AUX_TREE_VAL; 706 rw_aux_tree(b, t)[0].offset = 707 __btree_node_key_to_offset(b, btree_bkey_first(b, t)); 708 709 bset_tree_for_each_key(b, t, k) { 710 if (t->size == bset_rw_tree_capacity(b, t)) 711 break; 712 713 if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) > 714 L1_CACHE_BYTES) 715 rw_aux_tree_set(b, t, t->size++, k); 716 } 717 } 718 719 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t) 720 { 721 struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t); 722 struct bkey_i min_key, max_key; 723 unsigned cacheline = 1; 724 725 t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)), 726 bset_ro_tree_capacity(b, t)); 727 retry: 728 if (t->size < 2) { 729 t->size = 0; 730 t->extra = BSET_NO_AUX_TREE_VAL; 731 return; 732 } 733 734 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; 735 736 /* First we figure out where the first key in each cacheline is */ 737 eytzinger1_for_each(j, t->size - 1) { 738 while (bkey_to_cacheline(b, t, k) < cacheline) 739 prev = k, k = bkey_p_next(k); 740 741 if (k >= btree_bkey_last(b, t)) { 742 /* XXX: this path sucks */ 743 t->size--; 744 goto retry; 745 } 746 747 ro_aux_tree_prev(b, t)[j] = prev->u64s; 748 bkey_float(b, t, j)->key_offset = 749 bkey_to_cacheline_offset(b, t, cacheline++, k); 750 751 EBUG_ON(tree_to_prev_bkey(b, t, j) != prev); 752 EBUG_ON(tree_to_bkey(b, t, j) != k); 753 } 754 755 while (k != btree_bkey_last(b, t)) 756 prev = k, k = bkey_p_next(k); 757 758 if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) { 759 bkey_init(&min_key.k); 760 min_key.k.p = b->data->min_key; 761 } 762 763 if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) { 764 bkey_init(&max_key.k); 765 max_key.k.p = b->data->max_key; 766 } 767 768 /* Then we build the tree */ 769 eytzinger1_for_each(j, t->size - 1) 770 make_bfloat(b, t, j, 771 bkey_to_packed(&min_key), 772 bkey_to_packed(&max_key)); 773 } 774 775 static void bset_alloc_tree(struct btree *b, struct bset_tree *t) 776 { 777 struct bset_tree *i; 778 779 for (i = b->set; i != t; i++) 780 BUG_ON(bset_has_rw_aux_tree(i)); 781 782 bch2_bset_set_no_aux_tree(b, t); 783 784 /* round up to next cacheline: */ 785 t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t), 786 SMP_CACHE_BYTES / sizeof(u64)); 787 788 bset_aux_tree_verify(b); 789 } 790 791 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t, 792 bool writeable) 793 { 794 if (writeable 795 ? bset_has_rw_aux_tree(t) 796 : bset_has_ro_aux_tree(t)) 797 return; 798 799 bset_alloc_tree(b, t); 800 801 if (!__bset_tree_capacity(b, t)) 802 return; 803 804 if (writeable) 805 __build_rw_aux_tree(b, t); 806 else 807 __build_ro_aux_tree(b, t); 808 809 bset_aux_tree_verify(b); 810 } 811 812 void bch2_bset_init_first(struct btree *b, struct bset *i) 813 { 814 struct bset_tree *t; 815 816 BUG_ON(b->nsets); 817 818 memset(i, 0, sizeof(*i)); 819 get_random_bytes(&i->seq, sizeof(i->seq)); 820 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 821 822 t = &b->set[b->nsets++]; 823 set_btree_bset(b, t, i); 824 } 825 826 void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne) 827 { 828 struct bset *i = &bne->keys; 829 struct bset_tree *t; 830 831 BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b)); 832 BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b))); 833 BUG_ON(b->nsets >= MAX_BSETS); 834 835 memset(i, 0, sizeof(*i)); 836 i->seq = btree_bset_first(b)->seq; 837 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 838 839 t = &b->set[b->nsets++]; 840 set_btree_bset(b, t, i); 841 } 842 843 /* 844 * find _some_ key in the same bset as @k that precedes @k - not necessarily the 845 * immediate predecessor: 846 */ 847 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t, 848 struct bkey_packed *k) 849 { 850 struct bkey_packed *p; 851 unsigned offset; 852 int j; 853 854 EBUG_ON(k < btree_bkey_first(b, t) || 855 k > btree_bkey_last(b, t)); 856 857 if (k == btree_bkey_first(b, t)) 858 return NULL; 859 860 switch (bset_aux_tree_type(t)) { 861 case BSET_NO_AUX_TREE: 862 p = btree_bkey_first(b, t); 863 break; 864 case BSET_RO_AUX_TREE: 865 j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k)); 866 867 do { 868 p = j ? tree_to_bkey(b, t, 869 __inorder_to_eytzinger1(j--, 870 t->size - 1, t->extra)) 871 : btree_bkey_first(b, t); 872 } while (p >= k); 873 break; 874 case BSET_RW_AUX_TREE: 875 offset = __btree_node_key_to_offset(b, k); 876 j = rw_aux_tree_bsearch(b, t, offset); 877 p = j ? rw_aux_to_bkey(b, t, j - 1) 878 : btree_bkey_first(b, t); 879 break; 880 } 881 882 return p; 883 } 884 885 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b, 886 struct bset_tree *t, 887 struct bkey_packed *k, 888 unsigned min_key_type) 889 { 890 struct bkey_packed *p, *i, *ret = NULL, *orig_k = k; 891 892 while ((p = __bkey_prev(b, t, k)) && !ret) { 893 for (i = p; i != k; i = bkey_p_next(i)) 894 if (i->type >= min_key_type) 895 ret = i; 896 897 k = p; 898 } 899 900 if (bch2_expensive_debug_checks) { 901 BUG_ON(ret >= orig_k); 902 903 for (i = ret 904 ? bkey_p_next(ret) 905 : btree_bkey_first(b, t); 906 i != orig_k; 907 i = bkey_p_next(i)) 908 BUG_ON(i->type >= min_key_type); 909 } 910 911 return ret; 912 } 913 914 /* Insert */ 915 916 static void bch2_bset_fix_lookup_table(struct btree *b, 917 struct bset_tree *t, 918 struct bkey_packed *_where, 919 unsigned clobber_u64s, 920 unsigned new_u64s) 921 { 922 int shift = new_u64s - clobber_u64s; 923 unsigned l, j, where = __btree_node_key_to_offset(b, _where); 924 925 EBUG_ON(bset_has_ro_aux_tree(t)); 926 927 if (!bset_has_rw_aux_tree(t)) 928 return; 929 930 /* returns first entry >= where */ 931 l = rw_aux_tree_bsearch(b, t, where); 932 933 if (!l) /* never delete first entry */ 934 l++; 935 else if (l < t->size && 936 where < t->end_offset && 937 rw_aux_tree(b, t)[l].offset == where) 938 rw_aux_tree_set(b, t, l++, _where); 939 940 /* l now > where */ 941 942 for (j = l; 943 j < t->size && 944 rw_aux_tree(b, t)[j].offset < where + clobber_u64s; 945 j++) 946 ; 947 948 if (j < t->size && 949 rw_aux_tree(b, t)[j].offset + shift == 950 rw_aux_tree(b, t)[l - 1].offset) 951 j++; 952 953 memmove(&rw_aux_tree(b, t)[l], 954 &rw_aux_tree(b, t)[j], 955 (void *) &rw_aux_tree(b, t)[t->size] - 956 (void *) &rw_aux_tree(b, t)[j]); 957 t->size -= j - l; 958 959 for (j = l; j < t->size; j++) 960 rw_aux_tree(b, t)[j].offset += shift; 961 962 EBUG_ON(l < t->size && 963 rw_aux_tree(b, t)[l].offset == 964 rw_aux_tree(b, t)[l - 1].offset); 965 966 if (t->size < bset_rw_tree_capacity(b, t) && 967 (l < t->size 968 ? rw_aux_tree(b, t)[l].offset 969 : t->end_offset) - 970 rw_aux_tree(b, t)[l - 1].offset > 971 L1_CACHE_BYTES / sizeof(u64)) { 972 struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1); 973 struct bkey_packed *end = l < t->size 974 ? rw_aux_to_bkey(b, t, l) 975 : btree_bkey_last(b, t); 976 struct bkey_packed *k = start; 977 978 while (1) { 979 k = bkey_p_next(k); 980 if (k == end) 981 break; 982 983 if ((void *) k - (void *) start >= L1_CACHE_BYTES) { 984 memmove(&rw_aux_tree(b, t)[l + 1], 985 &rw_aux_tree(b, t)[l], 986 (void *) &rw_aux_tree(b, t)[t->size] - 987 (void *) &rw_aux_tree(b, t)[l]); 988 t->size++; 989 rw_aux_tree_set(b, t, l, k); 990 break; 991 } 992 } 993 } 994 995 bch2_bset_verify_rw_aux_tree(b, t); 996 bset_aux_tree_verify(b); 997 } 998 999 void bch2_bset_insert(struct btree *b, 1000 struct btree_node_iter *iter, 1001 struct bkey_packed *where, 1002 struct bkey_i *insert, 1003 unsigned clobber_u64s) 1004 { 1005 struct bkey_format *f = &b->format; 1006 struct bset_tree *t = bset_tree_last(b); 1007 struct bkey_packed packed, *src = bkey_to_packed(insert); 1008 1009 bch2_bset_verify_rw_aux_tree(b, t); 1010 bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s); 1011 1012 if (bch2_bkey_pack_key(&packed, &insert->k, f)) 1013 src = &packed; 1014 1015 if (!bkey_deleted(&insert->k)) 1016 btree_keys_account_key_add(&b->nr, t - b->set, src); 1017 1018 if (src->u64s != clobber_u64s) { 1019 u64 *src_p = (u64 *) where->_data + clobber_u64s; 1020 u64 *dst_p = (u64 *) where->_data + src->u64s; 1021 1022 EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) < 1023 (int) clobber_u64s - src->u64s); 1024 1025 memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); 1026 le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s); 1027 set_btree_bset_end(b, t); 1028 } 1029 1030 memcpy_u64s_small(where, src, 1031 bkeyp_key_u64s(f, src)); 1032 memcpy_u64s(bkeyp_val(f, where), &insert->v, 1033 bkeyp_val_u64s(f, src)); 1034 1035 if (src->u64s != clobber_u64s) 1036 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s); 1037 1038 bch2_verify_btree_nr_keys(b); 1039 } 1040 1041 void bch2_bset_delete(struct btree *b, 1042 struct bkey_packed *where, 1043 unsigned clobber_u64s) 1044 { 1045 struct bset_tree *t = bset_tree_last(b); 1046 u64 *src_p = (u64 *) where->_data + clobber_u64s; 1047 u64 *dst_p = where->_data; 1048 1049 bch2_bset_verify_rw_aux_tree(b, t); 1050 1051 EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s); 1052 1053 memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); 1054 le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s); 1055 set_btree_bset_end(b, t); 1056 1057 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0); 1058 } 1059 1060 /* Lookup */ 1061 1062 __flatten 1063 static struct bkey_packed *bset_search_write_set(const struct btree *b, 1064 struct bset_tree *t, 1065 struct bpos *search) 1066 { 1067 unsigned l = 0, r = t->size; 1068 1069 while (l + 1 != r) { 1070 unsigned m = (l + r) >> 1; 1071 1072 if (bpos_lt(rw_aux_tree(b, t)[m].k, *search)) 1073 l = m; 1074 else 1075 r = m; 1076 } 1077 1078 return rw_aux_to_bkey(b, t, l); 1079 } 1080 1081 static inline void prefetch_four_cachelines(void *p) 1082 { 1083 #ifdef CONFIG_X86_64 1084 asm("prefetcht0 (-127 + 64 * 0)(%0);" 1085 "prefetcht0 (-127 + 64 * 1)(%0);" 1086 "prefetcht0 (-127 + 64 * 2)(%0);" 1087 "prefetcht0 (-127 + 64 * 3)(%0);" 1088 : 1089 : "r" (p + 127)); 1090 #else 1091 prefetch(p + L1_CACHE_BYTES * 0); 1092 prefetch(p + L1_CACHE_BYTES * 1); 1093 prefetch(p + L1_CACHE_BYTES * 2); 1094 prefetch(p + L1_CACHE_BYTES * 3); 1095 #endif 1096 } 1097 1098 static inline bool bkey_mantissa_bits_dropped(const struct btree *b, 1099 const struct bkey_float *f, 1100 unsigned idx) 1101 { 1102 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1103 unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits; 1104 1105 return f->exponent > key_bits_start; 1106 #else 1107 unsigned key_bits_end = high_bit_offset + b->nr_key_bits; 1108 1109 return f->exponent + BKEY_MANTISSA_BITS < key_bits_end; 1110 #endif 1111 } 1112 1113 __flatten 1114 static struct bkey_packed *bset_search_tree(const struct btree *b, 1115 const struct bset_tree *t, 1116 const struct bpos *search, 1117 const struct bkey_packed *packed_search) 1118 { 1119 struct ro_aux_tree *base = ro_aux_tree_base(b, t); 1120 struct bkey_float *f; 1121 struct bkey_packed *k; 1122 unsigned inorder, n = 1, l, r; 1123 int cmp; 1124 1125 do { 1126 if (likely(n << 4 < t->size)) 1127 prefetch(&base->f[n << 4]); 1128 1129 f = &base->f[n]; 1130 if (unlikely(f->exponent >= BFLOAT_FAILED)) 1131 goto slowpath; 1132 1133 l = f->mantissa; 1134 r = bkey_mantissa(packed_search, f, n); 1135 1136 if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n)) 1137 goto slowpath; 1138 1139 n = n * 2 + (l < r); 1140 continue; 1141 slowpath: 1142 k = tree_to_bkey(b, t, n); 1143 cmp = bkey_cmp_p_or_unp(b, k, packed_search, search); 1144 if (!cmp) 1145 return k; 1146 1147 n = n * 2 + (cmp < 0); 1148 } while (n < t->size); 1149 1150 inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra); 1151 1152 /* 1153 * n would have been the node we recursed to - the low bit tells us if 1154 * we recursed left or recursed right. 1155 */ 1156 if (likely(!(n & 1))) { 1157 --inorder; 1158 if (unlikely(!inorder)) 1159 return btree_bkey_first(b, t); 1160 1161 f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)]; 1162 } 1163 1164 return cacheline_to_bkey(b, t, inorder, f->key_offset); 1165 } 1166 1167 static __always_inline __flatten 1168 struct bkey_packed *__bch2_bset_search(struct btree *b, 1169 struct bset_tree *t, 1170 struct bpos *search, 1171 const struct bkey_packed *lossy_packed_search) 1172 { 1173 1174 /* 1175 * First, we search for a cacheline, then lastly we do a linear search 1176 * within that cacheline. 1177 * 1178 * To search for the cacheline, there's three different possibilities: 1179 * * The set is too small to have a search tree, so we just do a linear 1180 * search over the whole set. 1181 * * The set is the one we're currently inserting into; keeping a full 1182 * auxiliary search tree up to date would be too expensive, so we 1183 * use a much simpler lookup table to do a binary search - 1184 * bset_search_write_set(). 1185 * * Or we use the auxiliary search tree we constructed earlier - 1186 * bset_search_tree() 1187 */ 1188 1189 switch (bset_aux_tree_type(t)) { 1190 case BSET_NO_AUX_TREE: 1191 return btree_bkey_first(b, t); 1192 case BSET_RW_AUX_TREE: 1193 return bset_search_write_set(b, t, search); 1194 case BSET_RO_AUX_TREE: 1195 return bset_search_tree(b, t, search, lossy_packed_search); 1196 default: 1197 BUG(); 1198 } 1199 } 1200 1201 static __always_inline __flatten 1202 struct bkey_packed *bch2_bset_search_linear(struct btree *b, 1203 struct bset_tree *t, 1204 struct bpos *search, 1205 struct bkey_packed *packed_search, 1206 const struct bkey_packed *lossy_packed_search, 1207 struct bkey_packed *m) 1208 { 1209 if (lossy_packed_search) 1210 while (m != btree_bkey_last(b, t) && 1211 bkey_iter_cmp_p_or_unp(b, m, 1212 lossy_packed_search, search) < 0) 1213 m = bkey_p_next(m); 1214 1215 if (!packed_search) 1216 while (m != btree_bkey_last(b, t) && 1217 bkey_iter_pos_cmp(b, m, search) < 0) 1218 m = bkey_p_next(m); 1219 1220 if (bch2_expensive_debug_checks) { 1221 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m); 1222 1223 BUG_ON(prev && 1224 bkey_iter_cmp_p_or_unp(b, prev, 1225 packed_search, search) >= 0); 1226 } 1227 1228 return m; 1229 } 1230 1231 /* Btree node iterator */ 1232 1233 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter, 1234 struct btree *b, 1235 const struct bkey_packed *k, 1236 const struct bkey_packed *end) 1237 { 1238 if (k != end) { 1239 struct btree_node_iter_set *pos; 1240 1241 btree_node_iter_for_each(iter, pos) 1242 ; 1243 1244 BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data)); 1245 *pos = (struct btree_node_iter_set) { 1246 __btree_node_key_to_offset(b, k), 1247 __btree_node_key_to_offset(b, end) 1248 }; 1249 } 1250 } 1251 1252 void bch2_btree_node_iter_push(struct btree_node_iter *iter, 1253 struct btree *b, 1254 const struct bkey_packed *k, 1255 const struct bkey_packed *end) 1256 { 1257 __bch2_btree_node_iter_push(iter, b, k, end); 1258 bch2_btree_node_iter_sort(iter, b); 1259 } 1260 1261 noinline __flatten __cold 1262 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter, 1263 struct btree *b, struct bpos *search) 1264 { 1265 struct bkey_packed *k; 1266 1267 trace_bkey_pack_pos_fail(search); 1268 1269 bch2_btree_node_iter_init_from_start(iter, b); 1270 1271 while ((k = bch2_btree_node_iter_peek(iter, b)) && 1272 bkey_iter_pos_cmp(b, k, search) < 0) 1273 bch2_btree_node_iter_advance(iter, b); 1274 } 1275 1276 /** 1277 * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a 1278 * given position 1279 * 1280 * @iter: iterator to initialize 1281 * @b: btree node to search 1282 * @search: search key 1283 * 1284 * Main entry point to the lookup code for individual btree nodes: 1285 * 1286 * NOTE: 1287 * 1288 * When you don't filter out deleted keys, btree nodes _do_ contain duplicate 1289 * keys. This doesn't matter for most code, but it does matter for lookups. 1290 * 1291 * Some adjacent keys with a string of equal keys: 1292 * i j k k k k l m 1293 * 1294 * If you search for k, the lookup code isn't guaranteed to return you any 1295 * specific k. The lookup code is conceptually doing a binary search and 1296 * iterating backwards is very expensive so if the pivot happens to land at the 1297 * last k that's what you'll get. 1298 * 1299 * This works out ok, but it's something to be aware of: 1300 * 1301 * - For non extents, we guarantee that the live key comes last - see 1302 * btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't 1303 * see will only be deleted keys you don't care about. 1304 * 1305 * - For extents, deleted keys sort last (see the comment at the top of this 1306 * file). But when you're searching for extents, you actually want the first 1307 * key strictly greater than your search key - an extent that compares equal 1308 * to the search key is going to have 0 sectors after the search key. 1309 * 1310 * But this does mean that we can't just search for 1311 * bpos_successor(start_of_range) to get the first extent that overlaps with 1312 * the range we want - if we're unlucky and there's an extent that ends 1313 * exactly where we searched, then there could be a deleted key at the same 1314 * position and we'd get that when we search instead of the preceding extent 1315 * we needed. 1316 * 1317 * So we've got to search for start_of_range, then after the lookup iterate 1318 * past any extents that compare equal to the position we searched for. 1319 */ 1320 __flatten 1321 void bch2_btree_node_iter_init(struct btree_node_iter *iter, 1322 struct btree *b, struct bpos *search) 1323 { 1324 struct bkey_packed p, *packed_search = NULL; 1325 struct btree_node_iter_set *pos = iter->data; 1326 struct bkey_packed *k[MAX_BSETS]; 1327 unsigned i; 1328 1329 EBUG_ON(bpos_lt(*search, b->data->min_key)); 1330 EBUG_ON(bpos_gt(*search, b->data->max_key)); 1331 bset_aux_tree_verify(b); 1332 1333 memset(iter, 0, sizeof(*iter)); 1334 1335 switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) { 1336 case BKEY_PACK_POS_EXACT: 1337 packed_search = &p; 1338 break; 1339 case BKEY_PACK_POS_SMALLER: 1340 packed_search = NULL; 1341 break; 1342 case BKEY_PACK_POS_FAIL: 1343 btree_node_iter_init_pack_failed(iter, b, search); 1344 return; 1345 } 1346 1347 for (i = 0; i < b->nsets; i++) { 1348 k[i] = __bch2_bset_search(b, b->set + i, search, &p); 1349 prefetch_four_cachelines(k[i]); 1350 } 1351 1352 for (i = 0; i < b->nsets; i++) { 1353 struct bset_tree *t = b->set + i; 1354 struct bkey_packed *end = btree_bkey_last(b, t); 1355 1356 k[i] = bch2_bset_search_linear(b, t, search, 1357 packed_search, &p, k[i]); 1358 if (k[i] != end) 1359 *pos++ = (struct btree_node_iter_set) { 1360 __btree_node_key_to_offset(b, k[i]), 1361 __btree_node_key_to_offset(b, end) 1362 }; 1363 } 1364 1365 bch2_btree_node_iter_sort(iter, b); 1366 } 1367 1368 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter, 1369 struct btree *b) 1370 { 1371 struct bset_tree *t; 1372 1373 memset(iter, 0, sizeof(*iter)); 1374 1375 for_each_bset(b, t) 1376 __bch2_btree_node_iter_push(iter, b, 1377 btree_bkey_first(b, t), 1378 btree_bkey_last(b, t)); 1379 bch2_btree_node_iter_sort(iter, b); 1380 } 1381 1382 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter, 1383 struct btree *b, 1384 struct bset_tree *t) 1385 { 1386 struct btree_node_iter_set *set; 1387 1388 btree_node_iter_for_each(iter, set) 1389 if (set->end == t->end_offset) 1390 return __btree_node_offset_to_key(b, set->k); 1391 1392 return btree_bkey_last(b, t); 1393 } 1394 1395 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter, 1396 struct btree *b, 1397 unsigned first) 1398 { 1399 bool ret; 1400 1401 if ((ret = (btree_node_iter_cmp(b, 1402 iter->data[first], 1403 iter->data[first + 1]) > 0))) 1404 swap(iter->data[first], iter->data[first + 1]); 1405 return ret; 1406 } 1407 1408 void bch2_btree_node_iter_sort(struct btree_node_iter *iter, 1409 struct btree *b) 1410 { 1411 /* unrolled bubble sort: */ 1412 1413 if (!__btree_node_iter_set_end(iter, 2)) { 1414 btree_node_iter_sort_two(iter, b, 0); 1415 btree_node_iter_sort_two(iter, b, 1); 1416 } 1417 1418 if (!__btree_node_iter_set_end(iter, 1)) 1419 btree_node_iter_sort_two(iter, b, 0); 1420 } 1421 1422 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter, 1423 struct btree_node_iter_set *set) 1424 { 1425 struct btree_node_iter_set *last = 1426 iter->data + ARRAY_SIZE(iter->data) - 1; 1427 1428 memmove(&set[0], &set[1], (void *) last - (void *) set); 1429 *last = (struct btree_node_iter_set) { 0, 0 }; 1430 } 1431 1432 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter, 1433 struct btree *b) 1434 { 1435 iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s; 1436 1437 EBUG_ON(iter->data->k > iter->data->end); 1438 1439 if (unlikely(__btree_node_iter_set_end(iter, 0))) { 1440 /* avoid an expensive memmove call: */ 1441 iter->data[0] = iter->data[1]; 1442 iter->data[1] = iter->data[2]; 1443 iter->data[2] = (struct btree_node_iter_set) { 0, 0 }; 1444 return; 1445 } 1446 1447 if (__btree_node_iter_set_end(iter, 1)) 1448 return; 1449 1450 if (!btree_node_iter_sort_two(iter, b, 0)) 1451 return; 1452 1453 if (__btree_node_iter_set_end(iter, 2)) 1454 return; 1455 1456 btree_node_iter_sort_two(iter, b, 1); 1457 } 1458 1459 void bch2_btree_node_iter_advance(struct btree_node_iter *iter, 1460 struct btree *b) 1461 { 1462 if (bch2_expensive_debug_checks) { 1463 bch2_btree_node_iter_verify(iter, b); 1464 bch2_btree_node_iter_next_check(iter, b); 1465 } 1466 1467 __bch2_btree_node_iter_advance(iter, b); 1468 } 1469 1470 /* 1471 * Expensive: 1472 */ 1473 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter, 1474 struct btree *b) 1475 { 1476 struct bkey_packed *k, *prev = NULL; 1477 struct btree_node_iter_set *set; 1478 struct bset_tree *t; 1479 unsigned end = 0; 1480 1481 if (bch2_expensive_debug_checks) 1482 bch2_btree_node_iter_verify(iter, b); 1483 1484 for_each_bset(b, t) { 1485 k = bch2_bkey_prev_all(b, t, 1486 bch2_btree_node_iter_bset_pos(iter, b, t)); 1487 if (k && 1488 (!prev || bkey_iter_cmp(b, k, prev) > 0)) { 1489 prev = k; 1490 end = t->end_offset; 1491 } 1492 } 1493 1494 if (!prev) 1495 return NULL; 1496 1497 /* 1498 * We're manually memmoving instead of just calling sort() to ensure the 1499 * prev we picked ends up in slot 0 - sort won't necessarily put it 1500 * there because of duplicate deleted keys: 1501 */ 1502 btree_node_iter_for_each(iter, set) 1503 if (set->end == end) 1504 goto found; 1505 1506 BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]); 1507 found: 1508 BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data)); 1509 1510 memmove(&iter->data[1], 1511 &iter->data[0], 1512 (void *) set - (void *) &iter->data[0]); 1513 1514 iter->data[0].k = __btree_node_key_to_offset(b, prev); 1515 iter->data[0].end = end; 1516 1517 if (bch2_expensive_debug_checks) 1518 bch2_btree_node_iter_verify(iter, b); 1519 return prev; 1520 } 1521 1522 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter, 1523 struct btree *b) 1524 { 1525 struct bkey_packed *prev; 1526 1527 do { 1528 prev = bch2_btree_node_iter_prev_all(iter, b); 1529 } while (prev && bkey_deleted(prev)); 1530 1531 return prev; 1532 } 1533 1534 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter, 1535 struct btree *b, 1536 struct bkey *u) 1537 { 1538 struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b); 1539 1540 return k ? bkey_disassemble(b, k, u) : bkey_s_c_null; 1541 } 1542 1543 /* Mergesort */ 1544 1545 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats) 1546 { 1547 const struct bset_tree *t; 1548 1549 for_each_bset(b, t) { 1550 enum bset_aux_tree_type type = bset_aux_tree_type(t); 1551 size_t j; 1552 1553 stats->sets[type].nr++; 1554 stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) * 1555 sizeof(u64); 1556 1557 if (bset_has_ro_aux_tree(t)) { 1558 stats->floats += t->size - 1; 1559 1560 for (j = 1; j < t->size; j++) 1561 stats->failed += 1562 bkey_float(b, t, j)->exponent == 1563 BFLOAT_FAILED; 1564 } 1565 } 1566 } 1567 1568 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b, 1569 struct bkey_packed *k) 1570 { 1571 struct bset_tree *t = bch2_bkey_to_bset(b, k); 1572 struct bkey uk; 1573 unsigned j, inorder; 1574 1575 if (!bset_has_ro_aux_tree(t)) 1576 return; 1577 1578 inorder = bkey_to_cacheline(b, t, k); 1579 if (!inorder || inorder >= t->size) 1580 return; 1581 1582 j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra); 1583 if (k != tree_to_bkey(b, t, j)) 1584 return; 1585 1586 switch (bkey_float(b, t, j)->exponent) { 1587 case BFLOAT_FAILED: 1588 uk = bkey_unpack_key(b, k); 1589 prt_printf(out, 1590 " failed unpacked at depth %u\n" 1591 "\t", 1592 ilog2(j)); 1593 bch2_bpos_to_text(out, uk.p); 1594 prt_printf(out, "\n"); 1595 break; 1596 } 1597 } 1598