1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Code for working with individual keys, and sorted sets of keys with in a 4 * btree node 5 * 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcachefs.h" 10 #include "btree_cache.h" 11 #include "bset.h" 12 #include "eytzinger.h" 13 #include "trace.h" 14 #include "util.h" 15 16 #include <linux/unaligned.h> 17 #include <linux/console.h> 18 #include <linux/random.h> 19 #include <linux/prefetch.h> 20 21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *, 22 struct btree *); 23 24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter) 25 { 26 unsigned n = ARRAY_SIZE(iter->data); 27 28 while (n && __btree_node_iter_set_end(iter, n - 1)) 29 --n; 30 31 return n; 32 } 33 34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k) 35 { 36 return bch2_bkey_to_bset_inlined(b, k); 37 } 38 39 /* 40 * There are never duplicate live keys in the btree - but including keys that 41 * have been flagged as deleted (and will be cleaned up later) we _will_ see 42 * duplicates. 43 * 44 * Thus the sort order is: usual key comparison first, but for keys that compare 45 * equal the deleted key(s) come first, and the (at most one) live version comes 46 * last. 47 * 48 * The main reason for this is insertion: to handle overwrites, we first iterate 49 * over keys that compare equal to our insert key, and then insert immediately 50 * prior to the first key greater than the key we're inserting - our insert 51 * position will be after all keys that compare equal to our insert key, which 52 * by the time we actually do the insert will all be deleted. 53 */ 54 55 void bch2_dump_bset(struct bch_fs *c, struct btree *b, 56 struct bset *i, unsigned set) 57 { 58 struct bkey_packed *_k, *_n; 59 struct bkey uk, n; 60 struct bkey_s_c k; 61 struct printbuf buf = PRINTBUF; 62 63 if (!i->u64s) 64 return; 65 66 for (_k = i->start; 67 _k < vstruct_last(i); 68 _k = _n) { 69 _n = bkey_p_next(_k); 70 71 if (!_k->u64s) { 72 printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set, 73 _k->_data - i->_data); 74 break; 75 } 76 77 k = bkey_disassemble(b, _k, &uk); 78 79 printbuf_reset(&buf); 80 if (c) 81 bch2_bkey_val_to_text(&buf, c, k); 82 else 83 bch2_bkey_to_text(&buf, k.k); 84 printk(KERN_ERR "block %u key %5zu: %s\n", set, 85 _k->_data - i->_data, buf.buf); 86 87 if (_n == vstruct_last(i)) 88 continue; 89 90 n = bkey_unpack_key(b, _n); 91 92 if (bpos_lt(n.p, k.k->p)) { 93 printk(KERN_ERR "Key skipped backwards\n"); 94 continue; 95 } 96 97 if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p)) 98 printk(KERN_ERR "Duplicate keys\n"); 99 } 100 101 printbuf_exit(&buf); 102 } 103 104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b) 105 { 106 console_lock(); 107 for_each_bset(b, t) 108 bch2_dump_bset(c, b, bset(b, t), t - b->set); 109 console_unlock(); 110 } 111 112 void bch2_dump_btree_node_iter(struct btree *b, 113 struct btree_node_iter *iter) 114 { 115 struct btree_node_iter_set *set; 116 struct printbuf buf = PRINTBUF; 117 118 printk(KERN_ERR "btree node iter with %u/%u sets:\n", 119 __btree_node_iter_used(iter), b->nsets); 120 121 btree_node_iter_for_each(iter, set) { 122 struct bkey_packed *k = __btree_node_offset_to_key(b, set->k); 123 struct bset_tree *t = bch2_bkey_to_bset(b, k); 124 struct bkey uk = bkey_unpack_key(b, k); 125 126 printbuf_reset(&buf); 127 bch2_bkey_to_text(&buf, &uk); 128 printk(KERN_ERR "set %zu key %u: %s\n", 129 t - b->set, set->k, buf.buf); 130 } 131 132 printbuf_exit(&buf); 133 } 134 135 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b) 136 { 137 struct bkey_packed *k; 138 struct btree_nr_keys nr = {}; 139 140 for_each_bset(b, t) 141 bset_tree_for_each_key(b, t, k) 142 if (!bkey_deleted(k)) 143 btree_keys_account_key_add(&nr, t - b->set, k); 144 return nr; 145 } 146 147 #ifdef CONFIG_BCACHEFS_DEBUG 148 149 void __bch2_verify_btree_nr_keys(struct btree *b) 150 { 151 struct btree_nr_keys nr = bch2_btree_node_count_keys(b); 152 153 BUG_ON(memcmp(&nr, &b->nr, sizeof(nr))); 154 } 155 156 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter, 157 struct btree *b) 158 { 159 struct btree_node_iter iter = *_iter; 160 const struct bkey_packed *k, *n; 161 162 k = bch2_btree_node_iter_peek_all(&iter, b); 163 __bch2_btree_node_iter_advance(&iter, b); 164 n = bch2_btree_node_iter_peek_all(&iter, b); 165 166 bkey_unpack_key(b, k); 167 168 if (n && 169 bkey_iter_cmp(b, k, n) > 0) { 170 struct btree_node_iter_set *set; 171 struct bkey ku = bkey_unpack_key(b, k); 172 struct bkey nu = bkey_unpack_key(b, n); 173 struct printbuf buf1 = PRINTBUF; 174 struct printbuf buf2 = PRINTBUF; 175 176 bch2_dump_btree_node(NULL, b); 177 bch2_bkey_to_text(&buf1, &ku); 178 bch2_bkey_to_text(&buf2, &nu); 179 printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n", 180 buf1.buf, buf2.buf); 181 printk(KERN_ERR "iter was:"); 182 183 btree_node_iter_for_each(_iter, set) { 184 struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k); 185 struct bset_tree *t = bch2_bkey_to_bset(b, k2); 186 printk(" [%zi %zi]", t - b->set, 187 k2->_data - bset(b, t)->_data); 188 } 189 panic("\n"); 190 } 191 } 192 193 void bch2_btree_node_iter_verify(struct btree_node_iter *iter, 194 struct btree *b) 195 { 196 struct btree_node_iter_set *set, *s2; 197 struct bkey_packed *k, *p; 198 199 if (bch2_btree_node_iter_end(iter)) 200 return; 201 202 /* Verify no duplicates: */ 203 btree_node_iter_for_each(iter, set) { 204 BUG_ON(set->k > set->end); 205 btree_node_iter_for_each(iter, s2) 206 BUG_ON(set != s2 && set->end == s2->end); 207 } 208 209 /* Verify that set->end is correct: */ 210 btree_node_iter_for_each(iter, set) { 211 for_each_bset(b, t) 212 if (set->end == t->end_offset) { 213 BUG_ON(set->k < btree_bkey_first_offset(t) || 214 set->k >= t->end_offset); 215 goto found; 216 } 217 BUG(); 218 found: 219 do {} while (0); 220 } 221 222 /* Verify iterator is sorted: */ 223 btree_node_iter_for_each(iter, set) 224 BUG_ON(set != iter->data && 225 btree_node_iter_cmp(b, set[-1], set[0]) > 0); 226 227 k = bch2_btree_node_iter_peek_all(iter, b); 228 229 for_each_bset(b, t) { 230 if (iter->data[0].end == t->end_offset) 231 continue; 232 233 p = bch2_bkey_prev_all(b, t, 234 bch2_btree_node_iter_bset_pos(iter, b, t)); 235 236 BUG_ON(p && bkey_iter_cmp(b, k, p) < 0); 237 } 238 } 239 240 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where, 241 struct bkey_packed *insert, unsigned clobber_u64s) 242 { 243 struct bset_tree *t = bch2_bkey_to_bset(b, where); 244 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where); 245 struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s); 246 struct printbuf buf1 = PRINTBUF; 247 struct printbuf buf2 = PRINTBUF; 248 #if 0 249 BUG_ON(prev && 250 bkey_iter_cmp(b, prev, insert) > 0); 251 #else 252 if (prev && 253 bkey_iter_cmp(b, prev, insert) > 0) { 254 struct bkey k1 = bkey_unpack_key(b, prev); 255 struct bkey k2 = bkey_unpack_key(b, insert); 256 257 bch2_dump_btree_node(NULL, b); 258 bch2_bkey_to_text(&buf1, &k1); 259 bch2_bkey_to_text(&buf2, &k2); 260 261 panic("prev > insert:\n" 262 "prev key %s\n" 263 "insert key %s\n", 264 buf1.buf, buf2.buf); 265 } 266 #endif 267 #if 0 268 BUG_ON(next != btree_bkey_last(b, t) && 269 bkey_iter_cmp(b, insert, next) > 0); 270 #else 271 if (next != btree_bkey_last(b, t) && 272 bkey_iter_cmp(b, insert, next) > 0) { 273 struct bkey k1 = bkey_unpack_key(b, insert); 274 struct bkey k2 = bkey_unpack_key(b, next); 275 276 bch2_dump_btree_node(NULL, b); 277 bch2_bkey_to_text(&buf1, &k1); 278 bch2_bkey_to_text(&buf2, &k2); 279 280 panic("insert > next:\n" 281 "insert key %s\n" 282 "next key %s\n", 283 buf1.buf, buf2.buf); 284 } 285 #endif 286 } 287 288 #else 289 290 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter, 291 struct btree *b) {} 292 293 #endif 294 295 /* Auxiliary search trees */ 296 297 #define BFLOAT_FAILED_UNPACKED U8_MAX 298 #define BFLOAT_FAILED U8_MAX 299 300 struct bkey_float { 301 u8 exponent; 302 u8 key_offset; 303 u16 mantissa; 304 }; 305 #define BKEY_MANTISSA_BITS 16 306 307 struct ro_aux_tree { 308 u8 nothing[0]; 309 struct bkey_float f[]; 310 }; 311 312 struct rw_aux_tree { 313 u16 offset; 314 struct bpos k; 315 }; 316 317 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t) 318 { 319 BUG_ON(t->aux_data_offset == U16_MAX); 320 321 switch (bset_aux_tree_type(t)) { 322 case BSET_NO_AUX_TREE: 323 return t->aux_data_offset; 324 case BSET_RO_AUX_TREE: 325 return t->aux_data_offset + 326 DIV_ROUND_UP(t->size * sizeof(struct bkey_float), 8); 327 case BSET_RW_AUX_TREE: 328 return t->aux_data_offset + 329 DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8); 330 default: 331 BUG(); 332 } 333 } 334 335 static unsigned bset_aux_tree_buf_start(const struct btree *b, 336 const struct bset_tree *t) 337 { 338 return t == b->set 339 ? DIV_ROUND_UP(b->unpack_fn_len, 8) 340 : bset_aux_tree_buf_end(t - 1); 341 } 342 343 static void *__aux_tree_base(const struct btree *b, 344 const struct bset_tree *t) 345 { 346 return b->aux_data + t->aux_data_offset * 8; 347 } 348 349 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b, 350 const struct bset_tree *t) 351 { 352 EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); 353 354 return __aux_tree_base(b, t); 355 } 356 357 static struct bkey_float *bkey_float(const struct btree *b, 358 const struct bset_tree *t, 359 unsigned idx) 360 { 361 return ro_aux_tree_base(b, t)->f + idx; 362 } 363 364 static void bset_aux_tree_verify(struct btree *b) 365 { 366 #ifdef CONFIG_BCACHEFS_DEBUG 367 for_each_bset(b, t) { 368 if (t->aux_data_offset == U16_MAX) 369 continue; 370 371 BUG_ON(t != b->set && 372 t[-1].aux_data_offset == U16_MAX); 373 374 BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t)); 375 BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b)); 376 BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b)); 377 } 378 #endif 379 } 380 381 void bch2_btree_keys_init(struct btree *b) 382 { 383 unsigned i; 384 385 b->nsets = 0; 386 memset(&b->nr, 0, sizeof(b->nr)); 387 388 for (i = 0; i < MAX_BSETS; i++) 389 b->set[i].data_offset = U16_MAX; 390 391 bch2_bset_set_no_aux_tree(b, b->set); 392 } 393 394 /* Binary tree stuff for auxiliary search trees */ 395 396 /* 397 * Cacheline/offset <-> bkey pointer arithmetic: 398 * 399 * t->tree is a binary search tree in an array; each node corresponds to a key 400 * in one cacheline in t->set (BSET_CACHELINE bytes). 401 * 402 * This means we don't have to store the full index of the key that a node in 403 * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and 404 * then bkey_float->m gives us the offset within that cacheline, in units of 8 405 * bytes. 406 * 407 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 408 * make this work. 409 * 410 * To construct the bfloat for an arbitrary key we need to know what the key 411 * immediately preceding it is: we have to check if the two keys differ in the 412 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 413 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 414 */ 415 416 static inline void *bset_cacheline(const struct btree *b, 417 const struct bset_tree *t, 418 unsigned cacheline) 419 { 420 return (void *) round_down((unsigned long) btree_bkey_first(b, t), 421 L1_CACHE_BYTES) + 422 cacheline * BSET_CACHELINE; 423 } 424 425 static struct bkey_packed *cacheline_to_bkey(const struct btree *b, 426 const struct bset_tree *t, 427 unsigned cacheline, 428 unsigned offset) 429 { 430 return bset_cacheline(b, t, cacheline) + offset * 8; 431 } 432 433 static unsigned bkey_to_cacheline(const struct btree *b, 434 const struct bset_tree *t, 435 const struct bkey_packed *k) 436 { 437 return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE; 438 } 439 440 static ssize_t __bkey_to_cacheline_offset(const struct btree *b, 441 const struct bset_tree *t, 442 unsigned cacheline, 443 const struct bkey_packed *k) 444 { 445 return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline); 446 } 447 448 static unsigned bkey_to_cacheline_offset(const struct btree *b, 449 const struct bset_tree *t, 450 unsigned cacheline, 451 const struct bkey_packed *k) 452 { 453 size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k); 454 455 EBUG_ON(m > U8_MAX); 456 return m; 457 } 458 459 static inline struct bkey_packed *tree_to_bkey(const struct btree *b, 460 const struct bset_tree *t, 461 unsigned j) 462 { 463 return cacheline_to_bkey(b, t, 464 __eytzinger1_to_inorder(j, t->size - 1, t->extra), 465 bkey_float(b, t, j)->key_offset); 466 } 467 468 static struct rw_aux_tree *rw_aux_tree(const struct btree *b, 469 const struct bset_tree *t) 470 { 471 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); 472 473 return __aux_tree_base(b, t); 474 } 475 476 /* 477 * For the write set - the one we're currently inserting keys into - we don't 478 * maintain a full search tree, we just keep a simple lookup table in t->prev. 479 */ 480 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b, 481 struct bset_tree *t, 482 unsigned j) 483 { 484 return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset); 485 } 486 487 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t, 488 unsigned j, struct bkey_packed *k) 489 { 490 EBUG_ON(k >= btree_bkey_last(b, t)); 491 492 rw_aux_tree(b, t)[j] = (struct rw_aux_tree) { 493 .offset = __btree_node_key_to_offset(b, k), 494 .k = bkey_unpack_pos(b, k), 495 }; 496 } 497 498 static void bch2_bset_verify_rw_aux_tree(struct btree *b, 499 struct bset_tree *t) 500 { 501 struct bkey_packed *k = btree_bkey_first(b, t); 502 unsigned j = 0; 503 504 if (!bch2_expensive_debug_checks) 505 return; 506 507 BUG_ON(bset_has_ro_aux_tree(t)); 508 509 if (!bset_has_rw_aux_tree(t)) 510 return; 511 512 BUG_ON(t->size < 1); 513 BUG_ON(rw_aux_to_bkey(b, t, j) != k); 514 515 goto start; 516 while (1) { 517 if (rw_aux_to_bkey(b, t, j) == k) { 518 BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k, 519 bkey_unpack_pos(b, k))); 520 start: 521 if (++j == t->size) 522 break; 523 524 BUG_ON(rw_aux_tree(b, t)[j].offset <= 525 rw_aux_tree(b, t)[j - 1].offset); 526 } 527 528 k = bkey_p_next(k); 529 BUG_ON(k >= btree_bkey_last(b, t)); 530 } 531 } 532 533 /* returns idx of first entry >= offset: */ 534 static unsigned rw_aux_tree_bsearch(struct btree *b, 535 struct bset_tree *t, 536 unsigned offset) 537 { 538 unsigned bset_offs = offset - btree_bkey_first_offset(t); 539 unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t); 540 unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0; 541 542 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); 543 EBUG_ON(!t->size); 544 EBUG_ON(idx > t->size); 545 546 while (idx < t->size && 547 rw_aux_tree(b, t)[idx].offset < offset) 548 idx++; 549 550 while (idx && 551 rw_aux_tree(b, t)[idx - 1].offset >= offset) 552 idx--; 553 554 EBUG_ON(idx < t->size && 555 rw_aux_tree(b, t)[idx].offset < offset); 556 EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset); 557 EBUG_ON(idx + 1 < t->size && 558 rw_aux_tree(b, t)[idx].offset == 559 rw_aux_tree(b, t)[idx + 1].offset); 560 561 return idx; 562 } 563 564 static inline unsigned bkey_mantissa(const struct bkey_packed *k, 565 const struct bkey_float *f) 566 { 567 u64 v; 568 569 EBUG_ON(!bkey_packed(k)); 570 571 v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3))); 572 573 /* 574 * In little endian, we're shifting off low bits (and then the bits we 575 * want are at the low end), in big endian we're shifting off high bits 576 * (and then the bits we want are at the high end, so we shift them 577 * back down): 578 */ 579 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 580 v >>= f->exponent & 7; 581 #else 582 v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS; 583 #endif 584 return (u16) v; 585 } 586 587 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t, 588 unsigned j, 589 struct bkey_packed *min_key, 590 struct bkey_packed *max_key) 591 { 592 struct bkey_float *f = bkey_float(b, t, j); 593 struct bkey_packed *m = tree_to_bkey(b, t, j); 594 struct bkey_packed *l = is_power_of_2(j) 595 ? min_key 596 : tree_to_bkey(b, t, j >> ffs(j)); 597 struct bkey_packed *r = is_power_of_2(j + 1) 598 ? max_key 599 : tree_to_bkey(b, t, j >> (ffz(j) + 1)); 600 unsigned mantissa; 601 int shift, exponent, high_bit; 602 603 /* 604 * for failed bfloats, the lookup code falls back to comparing against 605 * the original key. 606 */ 607 608 if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) || 609 !b->nr_key_bits) { 610 f->exponent = BFLOAT_FAILED_UNPACKED; 611 return; 612 } 613 614 /* 615 * The greatest differing bit of l and r is the first bit we must 616 * include in the bfloat mantissa we're creating in order to do 617 * comparisons - that bit always becomes the high bit of 618 * bfloat->mantissa, and thus the exponent we're calculating here is 619 * the position of what will become the low bit in bfloat->mantissa: 620 * 621 * Note that this may be negative - we may be running off the low end 622 * of the key: we handle this later: 623 */ 624 high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r), 625 min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1); 626 exponent = high_bit - (BKEY_MANTISSA_BITS - 1); 627 628 /* 629 * Then we calculate the actual shift value, from the start of the key 630 * (k->_data), to get the key bits starting at exponent: 631 */ 632 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 633 shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent; 634 635 EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64); 636 #else 637 shift = high_bit_offset + 638 b->nr_key_bits - 639 exponent - 640 BKEY_MANTISSA_BITS; 641 642 EBUG_ON(shift < KEY_PACKED_BITS_START); 643 #endif 644 EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED); 645 646 f->exponent = shift; 647 mantissa = bkey_mantissa(m, f); 648 649 /* 650 * If we've got garbage bits, set them to all 1s - it's legal for the 651 * bfloat to compare larger than the original key, but not smaller: 652 */ 653 if (exponent < 0) 654 mantissa |= ~(~0U << -exponent); 655 656 f->mantissa = mantissa; 657 } 658 659 /* bytes remaining - only valid for last bset: */ 660 static unsigned __bset_tree_capacity(struct btree *b, const struct bset_tree *t) 661 { 662 bset_aux_tree_verify(b); 663 664 return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64); 665 } 666 667 static unsigned bset_ro_tree_capacity(struct btree *b, const struct bset_tree *t) 668 { 669 return __bset_tree_capacity(b, t) / sizeof(struct bkey_float); 670 } 671 672 static unsigned bset_rw_tree_capacity(struct btree *b, const struct bset_tree *t) 673 { 674 return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree); 675 } 676 677 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t) 678 { 679 struct bkey_packed *k; 680 681 t->size = 1; 682 t->extra = BSET_RW_AUX_TREE_VAL; 683 rw_aux_tree(b, t)[0].offset = 684 __btree_node_key_to_offset(b, btree_bkey_first(b, t)); 685 686 bset_tree_for_each_key(b, t, k) { 687 if (t->size == bset_rw_tree_capacity(b, t)) 688 break; 689 690 if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) > 691 L1_CACHE_BYTES) 692 rw_aux_tree_set(b, t, t->size++, k); 693 } 694 } 695 696 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t) 697 { 698 struct bkey_packed *k = btree_bkey_first(b, t); 699 struct bkey_i min_key, max_key; 700 unsigned cacheline = 1; 701 702 t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)), 703 bset_ro_tree_capacity(b, t)); 704 retry: 705 if (t->size < 2) { 706 t->size = 0; 707 t->extra = BSET_NO_AUX_TREE_VAL; 708 return; 709 } 710 711 t->extra = eytzinger1_extra(t->size - 1); 712 713 /* First we figure out where the first key in each cacheline is */ 714 eytzinger1_for_each(j, t->size - 1) { 715 while (bkey_to_cacheline(b, t, k) < cacheline) 716 k = bkey_p_next(k); 717 718 if (k >= btree_bkey_last(b, t)) { 719 /* XXX: this path sucks */ 720 t->size--; 721 goto retry; 722 } 723 724 bkey_float(b, t, j)->key_offset = 725 bkey_to_cacheline_offset(b, t, cacheline++, k); 726 727 EBUG_ON(tree_to_bkey(b, t, j) != k); 728 } 729 730 if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) { 731 bkey_init(&min_key.k); 732 min_key.k.p = b->data->min_key; 733 } 734 735 if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) { 736 bkey_init(&max_key.k); 737 max_key.k.p = b->data->max_key; 738 } 739 740 /* Then we build the tree */ 741 eytzinger1_for_each(j, t->size - 1) 742 make_bfloat(b, t, j, 743 bkey_to_packed(&min_key), 744 bkey_to_packed(&max_key)); 745 } 746 747 static void bset_alloc_tree(struct btree *b, struct bset_tree *t) 748 { 749 struct bset_tree *i; 750 751 for (i = b->set; i != t; i++) 752 BUG_ON(bset_has_rw_aux_tree(i)); 753 754 bch2_bset_set_no_aux_tree(b, t); 755 756 /* round up to next cacheline: */ 757 t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t), 758 SMP_CACHE_BYTES / sizeof(u64)); 759 760 bset_aux_tree_verify(b); 761 } 762 763 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t, 764 bool writeable) 765 { 766 if (writeable 767 ? bset_has_rw_aux_tree(t) 768 : bset_has_ro_aux_tree(t)) 769 return; 770 771 bset_alloc_tree(b, t); 772 773 if (!__bset_tree_capacity(b, t)) 774 return; 775 776 if (writeable) 777 __build_rw_aux_tree(b, t); 778 else 779 __build_ro_aux_tree(b, t); 780 781 bset_aux_tree_verify(b); 782 } 783 784 void bch2_bset_init_first(struct btree *b, struct bset *i) 785 { 786 struct bset_tree *t; 787 788 BUG_ON(b->nsets); 789 790 memset(i, 0, sizeof(*i)); 791 get_random_bytes(&i->seq, sizeof(i->seq)); 792 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 793 794 t = &b->set[b->nsets++]; 795 set_btree_bset(b, t, i); 796 } 797 798 void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne) 799 { 800 struct bset *i = &bne->keys; 801 struct bset_tree *t; 802 803 BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b)); 804 BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b))); 805 BUG_ON(b->nsets >= MAX_BSETS); 806 807 memset(i, 0, sizeof(*i)); 808 i->seq = btree_bset_first(b)->seq; 809 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); 810 811 t = &b->set[b->nsets++]; 812 set_btree_bset(b, t, i); 813 } 814 815 /* 816 * find _some_ key in the same bset as @k that precedes @k - not necessarily the 817 * immediate predecessor: 818 */ 819 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t, 820 struct bkey_packed *k) 821 { 822 struct bkey_packed *p; 823 unsigned offset; 824 int j; 825 826 EBUG_ON(k < btree_bkey_first(b, t) || 827 k > btree_bkey_last(b, t)); 828 829 if (k == btree_bkey_first(b, t)) 830 return NULL; 831 832 switch (bset_aux_tree_type(t)) { 833 case BSET_NO_AUX_TREE: 834 p = btree_bkey_first(b, t); 835 break; 836 case BSET_RO_AUX_TREE: 837 j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k)); 838 839 do { 840 p = j ? tree_to_bkey(b, t, 841 __inorder_to_eytzinger1(j--, 842 t->size - 1, t->extra)) 843 : btree_bkey_first(b, t); 844 } while (p >= k); 845 break; 846 case BSET_RW_AUX_TREE: 847 offset = __btree_node_key_to_offset(b, k); 848 j = rw_aux_tree_bsearch(b, t, offset); 849 p = j ? rw_aux_to_bkey(b, t, j - 1) 850 : btree_bkey_first(b, t); 851 break; 852 } 853 854 return p; 855 } 856 857 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b, 858 struct bset_tree *t, 859 struct bkey_packed *k, 860 unsigned min_key_type) 861 { 862 struct bkey_packed *p, *i, *ret = NULL, *orig_k = k; 863 864 while ((p = __bkey_prev(b, t, k)) && !ret) { 865 for (i = p; i != k; i = bkey_p_next(i)) 866 if (i->type >= min_key_type) 867 ret = i; 868 869 k = p; 870 } 871 872 if (bch2_expensive_debug_checks) { 873 BUG_ON(ret >= orig_k); 874 875 for (i = ret 876 ? bkey_p_next(ret) 877 : btree_bkey_first(b, t); 878 i != orig_k; 879 i = bkey_p_next(i)) 880 BUG_ON(i->type >= min_key_type); 881 } 882 883 return ret; 884 } 885 886 /* Insert */ 887 888 static void rw_aux_tree_insert_entry(struct btree *b, 889 struct bset_tree *t, 890 unsigned idx) 891 { 892 EBUG_ON(!idx || idx > t->size); 893 struct bkey_packed *start = rw_aux_to_bkey(b, t, idx - 1); 894 struct bkey_packed *end = idx < t->size 895 ? rw_aux_to_bkey(b, t, idx) 896 : btree_bkey_last(b, t); 897 898 if (t->size < bset_rw_tree_capacity(b, t) && 899 (void *) end - (void *) start > L1_CACHE_BYTES) { 900 struct bkey_packed *k = start; 901 902 while (1) { 903 k = bkey_p_next(k); 904 if (k == end) 905 break; 906 907 if ((void *) k - (void *) start >= L1_CACHE_BYTES) { 908 memmove(&rw_aux_tree(b, t)[idx + 1], 909 &rw_aux_tree(b, t)[idx], 910 (void *) &rw_aux_tree(b, t)[t->size] - 911 (void *) &rw_aux_tree(b, t)[idx]); 912 t->size++; 913 rw_aux_tree_set(b, t, idx, k); 914 break; 915 } 916 } 917 } 918 } 919 920 static void bch2_bset_fix_lookup_table(struct btree *b, 921 struct bset_tree *t, 922 struct bkey_packed *_where, 923 unsigned clobber_u64s, 924 unsigned new_u64s) 925 { 926 int shift = new_u64s - clobber_u64s; 927 unsigned idx, j, where = __btree_node_key_to_offset(b, _where); 928 929 EBUG_ON(bset_has_ro_aux_tree(t)); 930 931 if (!bset_has_rw_aux_tree(t)) 932 return; 933 934 if (where > rw_aux_tree(b, t)[t->size - 1].offset) { 935 rw_aux_tree_insert_entry(b, t, t->size); 936 goto verify; 937 } 938 939 /* returns first entry >= where */ 940 idx = rw_aux_tree_bsearch(b, t, where); 941 942 if (rw_aux_tree(b, t)[idx].offset == where) { 943 if (!idx) { /* never delete first entry */ 944 idx++; 945 } else if (where < t->end_offset) { 946 rw_aux_tree_set(b, t, idx++, _where); 947 } else { 948 EBUG_ON(where != t->end_offset); 949 rw_aux_tree_insert_entry(b, t, --t->size); 950 goto verify; 951 } 952 } 953 954 EBUG_ON(idx < t->size && rw_aux_tree(b, t)[idx].offset <= where); 955 if (idx < t->size && 956 rw_aux_tree(b, t)[idx].offset + shift == 957 rw_aux_tree(b, t)[idx - 1].offset) { 958 memmove(&rw_aux_tree(b, t)[idx], 959 &rw_aux_tree(b, t)[idx + 1], 960 (void *) &rw_aux_tree(b, t)[t->size] - 961 (void *) &rw_aux_tree(b, t)[idx + 1]); 962 t->size -= 1; 963 } 964 965 for (j = idx; j < t->size; j++) 966 rw_aux_tree(b, t)[j].offset += shift; 967 968 EBUG_ON(idx < t->size && 969 rw_aux_tree(b, t)[idx].offset == 970 rw_aux_tree(b, t)[idx - 1].offset); 971 972 rw_aux_tree_insert_entry(b, t, idx); 973 974 verify: 975 bch2_bset_verify_rw_aux_tree(b, t); 976 bset_aux_tree_verify(b); 977 } 978 979 void bch2_bset_insert(struct btree *b, 980 struct bkey_packed *where, 981 struct bkey_i *insert, 982 unsigned clobber_u64s) 983 { 984 struct bkey_format *f = &b->format; 985 struct bset_tree *t = bset_tree_last(b); 986 struct bkey_packed packed, *src = bkey_to_packed(insert); 987 988 bch2_bset_verify_rw_aux_tree(b, t); 989 bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s); 990 991 if (bch2_bkey_pack_key(&packed, &insert->k, f)) 992 src = &packed; 993 994 if (!bkey_deleted(&insert->k)) 995 btree_keys_account_key_add(&b->nr, t - b->set, src); 996 997 if (src->u64s != clobber_u64s) { 998 u64 *src_p = (u64 *) where->_data + clobber_u64s; 999 u64 *dst_p = (u64 *) where->_data + src->u64s; 1000 1001 EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) < 1002 (int) clobber_u64s - src->u64s); 1003 1004 memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); 1005 le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s); 1006 set_btree_bset_end(b, t); 1007 } 1008 1009 memcpy_u64s_small(where, src, 1010 bkeyp_key_u64s(f, src)); 1011 memcpy_u64s(bkeyp_val(f, where), &insert->v, 1012 bkeyp_val_u64s(f, src)); 1013 1014 if (src->u64s != clobber_u64s) 1015 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s); 1016 1017 bch2_verify_btree_nr_keys(b); 1018 } 1019 1020 void bch2_bset_delete(struct btree *b, 1021 struct bkey_packed *where, 1022 unsigned clobber_u64s) 1023 { 1024 struct bset_tree *t = bset_tree_last(b); 1025 u64 *src_p = (u64 *) where->_data + clobber_u64s; 1026 u64 *dst_p = where->_data; 1027 1028 bch2_bset_verify_rw_aux_tree(b, t); 1029 1030 EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s); 1031 1032 memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); 1033 le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s); 1034 set_btree_bset_end(b, t); 1035 1036 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0); 1037 } 1038 1039 /* Lookup */ 1040 1041 __flatten 1042 static struct bkey_packed *bset_search_write_set(const struct btree *b, 1043 struct bset_tree *t, 1044 struct bpos *search) 1045 { 1046 unsigned l = 0, r = t->size; 1047 1048 while (l + 1 != r) { 1049 unsigned m = (l + r) >> 1; 1050 1051 if (bpos_lt(rw_aux_tree(b, t)[m].k, *search)) 1052 l = m; 1053 else 1054 r = m; 1055 } 1056 1057 return rw_aux_to_bkey(b, t, l); 1058 } 1059 1060 static inline void prefetch_four_cachelines(void *p) 1061 { 1062 #ifdef CONFIG_X86_64 1063 asm("prefetcht0 (-127 + 64 * 0)(%0);" 1064 "prefetcht0 (-127 + 64 * 1)(%0);" 1065 "prefetcht0 (-127 + 64 * 2)(%0);" 1066 "prefetcht0 (-127 + 64 * 3)(%0);" 1067 : 1068 : "r" (p + 127)); 1069 #else 1070 prefetch(p + L1_CACHE_BYTES * 0); 1071 prefetch(p + L1_CACHE_BYTES * 1); 1072 prefetch(p + L1_CACHE_BYTES * 2); 1073 prefetch(p + L1_CACHE_BYTES * 3); 1074 #endif 1075 } 1076 1077 static inline bool bkey_mantissa_bits_dropped(const struct btree *b, 1078 const struct bkey_float *f) 1079 { 1080 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1081 unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits; 1082 1083 return f->exponent > key_bits_start; 1084 #else 1085 unsigned key_bits_end = high_bit_offset + b->nr_key_bits; 1086 1087 return f->exponent + BKEY_MANTISSA_BITS < key_bits_end; 1088 #endif 1089 } 1090 1091 __flatten 1092 static struct bkey_packed *bset_search_tree(const struct btree *b, 1093 const struct bset_tree *t, 1094 const struct bpos *search, 1095 const struct bkey_packed *packed_search) 1096 { 1097 struct ro_aux_tree *base = ro_aux_tree_base(b, t); 1098 struct bkey_float *f; 1099 struct bkey_packed *k; 1100 unsigned inorder, n = 1, l, r; 1101 int cmp; 1102 1103 do { 1104 if (likely(n << 4 < t->size)) 1105 prefetch(&base->f[n << 4]); 1106 1107 f = &base->f[n]; 1108 if (unlikely(f->exponent >= BFLOAT_FAILED)) 1109 goto slowpath; 1110 1111 l = f->mantissa; 1112 r = bkey_mantissa(packed_search, f); 1113 1114 if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f)) 1115 goto slowpath; 1116 1117 n = n * 2 + (l < r); 1118 continue; 1119 slowpath: 1120 k = tree_to_bkey(b, t, n); 1121 cmp = bkey_cmp_p_or_unp(b, k, packed_search, search); 1122 if (!cmp) 1123 return k; 1124 1125 n = n * 2 + (cmp < 0); 1126 } while (n < t->size); 1127 1128 inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra); 1129 1130 /* 1131 * n would have been the node we recursed to - the low bit tells us if 1132 * we recursed left or recursed right. 1133 */ 1134 if (likely(!(n & 1))) { 1135 --inorder; 1136 if (unlikely(!inorder)) 1137 return btree_bkey_first(b, t); 1138 1139 f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)]; 1140 } 1141 1142 return cacheline_to_bkey(b, t, inorder, f->key_offset); 1143 } 1144 1145 static __always_inline __flatten 1146 struct bkey_packed *__bch2_bset_search(struct btree *b, 1147 struct bset_tree *t, 1148 struct bpos *search, 1149 const struct bkey_packed *lossy_packed_search) 1150 { 1151 1152 /* 1153 * First, we search for a cacheline, then lastly we do a linear search 1154 * within that cacheline. 1155 * 1156 * To search for the cacheline, there's three different possibilities: 1157 * * The set is too small to have a search tree, so we just do a linear 1158 * search over the whole set. 1159 * * The set is the one we're currently inserting into; keeping a full 1160 * auxiliary search tree up to date would be too expensive, so we 1161 * use a much simpler lookup table to do a binary search - 1162 * bset_search_write_set(). 1163 * * Or we use the auxiliary search tree we constructed earlier - 1164 * bset_search_tree() 1165 */ 1166 1167 switch (bset_aux_tree_type(t)) { 1168 case BSET_NO_AUX_TREE: 1169 return btree_bkey_first(b, t); 1170 case BSET_RW_AUX_TREE: 1171 return bset_search_write_set(b, t, search); 1172 case BSET_RO_AUX_TREE: 1173 return bset_search_tree(b, t, search, lossy_packed_search); 1174 default: 1175 BUG(); 1176 } 1177 } 1178 1179 static __always_inline __flatten 1180 struct bkey_packed *bch2_bset_search_linear(struct btree *b, 1181 struct bset_tree *t, 1182 struct bpos *search, 1183 struct bkey_packed *packed_search, 1184 const struct bkey_packed *lossy_packed_search, 1185 struct bkey_packed *m) 1186 { 1187 if (lossy_packed_search) 1188 while (m != btree_bkey_last(b, t) && 1189 bkey_iter_cmp_p_or_unp(b, m, 1190 lossy_packed_search, search) < 0) 1191 m = bkey_p_next(m); 1192 1193 if (!packed_search) 1194 while (m != btree_bkey_last(b, t) && 1195 bkey_iter_pos_cmp(b, m, search) < 0) 1196 m = bkey_p_next(m); 1197 1198 if (bch2_expensive_debug_checks) { 1199 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m); 1200 1201 BUG_ON(prev && 1202 bkey_iter_cmp_p_or_unp(b, prev, 1203 packed_search, search) >= 0); 1204 } 1205 1206 return m; 1207 } 1208 1209 /* Btree node iterator */ 1210 1211 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter, 1212 struct btree *b, 1213 const struct bkey_packed *k, 1214 const struct bkey_packed *end) 1215 { 1216 if (k != end) { 1217 struct btree_node_iter_set *pos; 1218 1219 btree_node_iter_for_each(iter, pos) 1220 ; 1221 1222 BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data)); 1223 *pos = (struct btree_node_iter_set) { 1224 __btree_node_key_to_offset(b, k), 1225 __btree_node_key_to_offset(b, end) 1226 }; 1227 } 1228 } 1229 1230 void bch2_btree_node_iter_push(struct btree_node_iter *iter, 1231 struct btree *b, 1232 const struct bkey_packed *k, 1233 const struct bkey_packed *end) 1234 { 1235 __bch2_btree_node_iter_push(iter, b, k, end); 1236 bch2_btree_node_iter_sort(iter, b); 1237 } 1238 1239 noinline __flatten __cold 1240 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter, 1241 struct btree *b, struct bpos *search) 1242 { 1243 struct bkey_packed *k; 1244 1245 trace_bkey_pack_pos_fail(search); 1246 1247 bch2_btree_node_iter_init_from_start(iter, b); 1248 1249 while ((k = bch2_btree_node_iter_peek(iter, b)) && 1250 bkey_iter_pos_cmp(b, k, search) < 0) 1251 bch2_btree_node_iter_advance(iter, b); 1252 } 1253 1254 /** 1255 * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a 1256 * given position 1257 * 1258 * @iter: iterator to initialize 1259 * @b: btree node to search 1260 * @search: search key 1261 * 1262 * Main entry point to the lookup code for individual btree nodes: 1263 * 1264 * NOTE: 1265 * 1266 * When you don't filter out deleted keys, btree nodes _do_ contain duplicate 1267 * keys. This doesn't matter for most code, but it does matter for lookups. 1268 * 1269 * Some adjacent keys with a string of equal keys: 1270 * i j k k k k l m 1271 * 1272 * If you search for k, the lookup code isn't guaranteed to return you any 1273 * specific k. The lookup code is conceptually doing a binary search and 1274 * iterating backwards is very expensive so if the pivot happens to land at the 1275 * last k that's what you'll get. 1276 * 1277 * This works out ok, but it's something to be aware of: 1278 * 1279 * - For non extents, we guarantee that the live key comes last - see 1280 * btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't 1281 * see will only be deleted keys you don't care about. 1282 * 1283 * - For extents, deleted keys sort last (see the comment at the top of this 1284 * file). But when you're searching for extents, you actually want the first 1285 * key strictly greater than your search key - an extent that compares equal 1286 * to the search key is going to have 0 sectors after the search key. 1287 * 1288 * But this does mean that we can't just search for 1289 * bpos_successor(start_of_range) to get the first extent that overlaps with 1290 * the range we want - if we're unlucky and there's an extent that ends 1291 * exactly where we searched, then there could be a deleted key at the same 1292 * position and we'd get that when we search instead of the preceding extent 1293 * we needed. 1294 * 1295 * So we've got to search for start_of_range, then after the lookup iterate 1296 * past any extents that compare equal to the position we searched for. 1297 */ 1298 __flatten 1299 void bch2_btree_node_iter_init(struct btree_node_iter *iter, 1300 struct btree *b, struct bpos *search) 1301 { 1302 struct bkey_packed p, *packed_search = NULL; 1303 struct btree_node_iter_set *pos = iter->data; 1304 struct bkey_packed *k[MAX_BSETS]; 1305 unsigned i; 1306 1307 EBUG_ON(bpos_lt(*search, b->data->min_key)); 1308 EBUG_ON(bpos_gt(*search, b->data->max_key)); 1309 bset_aux_tree_verify(b); 1310 1311 memset(iter, 0, sizeof(*iter)); 1312 1313 switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) { 1314 case BKEY_PACK_POS_EXACT: 1315 packed_search = &p; 1316 break; 1317 case BKEY_PACK_POS_SMALLER: 1318 packed_search = NULL; 1319 break; 1320 case BKEY_PACK_POS_FAIL: 1321 btree_node_iter_init_pack_failed(iter, b, search); 1322 return; 1323 } 1324 1325 for (i = 0; i < b->nsets; i++) { 1326 k[i] = __bch2_bset_search(b, b->set + i, search, &p); 1327 prefetch_four_cachelines(k[i]); 1328 } 1329 1330 for (i = 0; i < b->nsets; i++) { 1331 struct bset_tree *t = b->set + i; 1332 struct bkey_packed *end = btree_bkey_last(b, t); 1333 1334 k[i] = bch2_bset_search_linear(b, t, search, 1335 packed_search, &p, k[i]); 1336 if (k[i] != end) 1337 *pos++ = (struct btree_node_iter_set) { 1338 __btree_node_key_to_offset(b, k[i]), 1339 __btree_node_key_to_offset(b, end) 1340 }; 1341 } 1342 1343 bch2_btree_node_iter_sort(iter, b); 1344 } 1345 1346 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter, 1347 struct btree *b) 1348 { 1349 memset(iter, 0, sizeof(*iter)); 1350 1351 for_each_bset(b, t) 1352 __bch2_btree_node_iter_push(iter, b, 1353 btree_bkey_first(b, t), 1354 btree_bkey_last(b, t)); 1355 bch2_btree_node_iter_sort(iter, b); 1356 } 1357 1358 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter, 1359 struct btree *b, 1360 struct bset_tree *t) 1361 { 1362 struct btree_node_iter_set *set; 1363 1364 btree_node_iter_for_each(iter, set) 1365 if (set->end == t->end_offset) 1366 return __btree_node_offset_to_key(b, set->k); 1367 1368 return btree_bkey_last(b, t); 1369 } 1370 1371 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter, 1372 struct btree *b, 1373 unsigned first) 1374 { 1375 bool ret; 1376 1377 if ((ret = (btree_node_iter_cmp(b, 1378 iter->data[first], 1379 iter->data[first + 1]) > 0))) 1380 swap(iter->data[first], iter->data[first + 1]); 1381 return ret; 1382 } 1383 1384 void bch2_btree_node_iter_sort(struct btree_node_iter *iter, 1385 struct btree *b) 1386 { 1387 /* unrolled bubble sort: */ 1388 1389 if (!__btree_node_iter_set_end(iter, 2)) { 1390 btree_node_iter_sort_two(iter, b, 0); 1391 btree_node_iter_sort_two(iter, b, 1); 1392 } 1393 1394 if (!__btree_node_iter_set_end(iter, 1)) 1395 btree_node_iter_sort_two(iter, b, 0); 1396 } 1397 1398 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter, 1399 struct btree_node_iter_set *set) 1400 { 1401 struct btree_node_iter_set *last = 1402 iter->data + ARRAY_SIZE(iter->data) - 1; 1403 1404 memmove(&set[0], &set[1], (void *) last - (void *) set); 1405 *last = (struct btree_node_iter_set) { 0, 0 }; 1406 } 1407 1408 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter, 1409 struct btree *b) 1410 { 1411 iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s; 1412 1413 EBUG_ON(iter->data->k > iter->data->end); 1414 1415 if (unlikely(__btree_node_iter_set_end(iter, 0))) { 1416 /* avoid an expensive memmove call: */ 1417 iter->data[0] = iter->data[1]; 1418 iter->data[1] = iter->data[2]; 1419 iter->data[2] = (struct btree_node_iter_set) { 0, 0 }; 1420 return; 1421 } 1422 1423 if (__btree_node_iter_set_end(iter, 1)) 1424 return; 1425 1426 if (!btree_node_iter_sort_two(iter, b, 0)) 1427 return; 1428 1429 if (__btree_node_iter_set_end(iter, 2)) 1430 return; 1431 1432 btree_node_iter_sort_two(iter, b, 1); 1433 } 1434 1435 void bch2_btree_node_iter_advance(struct btree_node_iter *iter, 1436 struct btree *b) 1437 { 1438 if (bch2_expensive_debug_checks) { 1439 bch2_btree_node_iter_verify(iter, b); 1440 bch2_btree_node_iter_next_check(iter, b); 1441 } 1442 1443 __bch2_btree_node_iter_advance(iter, b); 1444 } 1445 1446 /* 1447 * Expensive: 1448 */ 1449 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter, 1450 struct btree *b) 1451 { 1452 struct bkey_packed *k, *prev = NULL; 1453 struct btree_node_iter_set *set; 1454 unsigned end = 0; 1455 1456 if (bch2_expensive_debug_checks) 1457 bch2_btree_node_iter_verify(iter, b); 1458 1459 for_each_bset(b, t) { 1460 k = bch2_bkey_prev_all(b, t, 1461 bch2_btree_node_iter_bset_pos(iter, b, t)); 1462 if (k && 1463 (!prev || bkey_iter_cmp(b, k, prev) > 0)) { 1464 prev = k; 1465 end = t->end_offset; 1466 } 1467 } 1468 1469 if (!prev) 1470 return NULL; 1471 1472 /* 1473 * We're manually memmoving instead of just calling sort() to ensure the 1474 * prev we picked ends up in slot 0 - sort won't necessarily put it 1475 * there because of duplicate deleted keys: 1476 */ 1477 btree_node_iter_for_each(iter, set) 1478 if (set->end == end) 1479 goto found; 1480 1481 BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]); 1482 found: 1483 BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data)); 1484 1485 memmove(&iter->data[1], 1486 &iter->data[0], 1487 (void *) set - (void *) &iter->data[0]); 1488 1489 iter->data[0].k = __btree_node_key_to_offset(b, prev); 1490 iter->data[0].end = end; 1491 1492 if (bch2_expensive_debug_checks) 1493 bch2_btree_node_iter_verify(iter, b); 1494 return prev; 1495 } 1496 1497 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter, 1498 struct btree *b) 1499 { 1500 struct bkey_packed *prev; 1501 1502 do { 1503 prev = bch2_btree_node_iter_prev_all(iter, b); 1504 } while (prev && bkey_deleted(prev)); 1505 1506 return prev; 1507 } 1508 1509 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter, 1510 struct btree *b, 1511 struct bkey *u) 1512 { 1513 struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b); 1514 1515 return k ? bkey_disassemble(b, k, u) : bkey_s_c_null; 1516 } 1517 1518 /* Mergesort */ 1519 1520 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats) 1521 { 1522 for_each_bset_c(b, t) { 1523 enum bset_aux_tree_type type = bset_aux_tree_type(t); 1524 size_t j; 1525 1526 stats->sets[type].nr++; 1527 stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) * 1528 sizeof(u64); 1529 1530 if (bset_has_ro_aux_tree(t)) { 1531 stats->floats += t->size - 1; 1532 1533 for (j = 1; j < t->size; j++) 1534 stats->failed += 1535 bkey_float(b, t, j)->exponent == 1536 BFLOAT_FAILED; 1537 } 1538 } 1539 } 1540 1541 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b, 1542 struct bkey_packed *k) 1543 { 1544 struct bset_tree *t = bch2_bkey_to_bset(b, k); 1545 struct bkey uk; 1546 unsigned j, inorder; 1547 1548 if (!bset_has_ro_aux_tree(t)) 1549 return; 1550 1551 inorder = bkey_to_cacheline(b, t, k); 1552 if (!inorder || inorder >= t->size) 1553 return; 1554 1555 j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra); 1556 if (k != tree_to_bkey(b, t, j)) 1557 return; 1558 1559 switch (bkey_float(b, t, j)->exponent) { 1560 case BFLOAT_FAILED: 1561 uk = bkey_unpack_key(b, k); 1562 prt_printf(out, 1563 " failed unpacked at depth %u\n" 1564 "\t", 1565 ilog2(j)); 1566 bch2_bpos_to_text(out, uk.p); 1567 prt_printf(out, "\n"); 1568 break; 1569 } 1570 } 1571