1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_FORMAT_H 3 #define _BCACHEFS_FORMAT_H 4 5 /* 6 * bcachefs on disk data structures 7 * 8 * OVERVIEW: 9 * 10 * There are three main types of on disk data structures in bcachefs (this is 11 * reduced from 5 in bcache) 12 * 13 * - superblock 14 * - journal 15 * - btree 16 * 17 * The btree is the primary structure; most metadata exists as keys in the 18 * various btrees. There are only a small number of btrees, they're not 19 * sharded - we have one btree for extents, another for inodes, et cetera. 20 * 21 * SUPERBLOCK: 22 * 23 * The superblock contains the location of the journal, the list of devices in 24 * the filesystem, and in general any metadata we need in order to decide 25 * whether we can start a filesystem or prior to reading the journal/btree 26 * roots. 27 * 28 * The superblock is extensible, and most of the contents of the superblock are 29 * in variable length, type tagged fields; see struct bch_sb_field. 30 * 31 * Backup superblocks do not reside in a fixed location; also, superblocks do 32 * not have a fixed size. To locate backup superblocks we have struct 33 * bch_sb_layout; we store a copy of this inside every superblock, and also 34 * before the first superblock. 35 * 36 * JOURNAL: 37 * 38 * The journal primarily records btree updates in the order they occurred; 39 * journal replay consists of just iterating over all the keys in the open 40 * journal entries and re-inserting them into the btrees. 41 * 42 * The journal also contains entry types for the btree roots, and blacklisted 43 * journal sequence numbers (see journal_seq_blacklist.c). 44 * 45 * BTREE: 46 * 47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically 48 * 128k-256k) and log structured. We use struct btree_node for writing the first 49 * entry in a given node (offset 0), and struct btree_node_entry for all 50 * subsequent writes. 51 * 52 * After the header, btree node entries contain a list of keys in sorted order. 53 * Values are stored inline with the keys; since values are variable length (and 54 * keys effectively are variable length too, due to packing) we can't do random 55 * access without building up additional in memory tables in the btree node read 56 * path. 57 * 58 * BTREE KEYS (struct bkey): 59 * 60 * The various btrees share a common format for the key - so as to avoid 61 * switching in fastpath lookup/comparison code - but define their own 62 * structures for the key values. 63 * 64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max 65 * size is just under 2k. The common part also contains a type tag for the 66 * value, and a format field indicating whether the key is packed or not (and 67 * also meant to allow adding new key fields in the future, if desired). 68 * 69 * bkeys, when stored within a btree node, may also be packed. In that case, the 70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can 71 * be generous with field sizes in the common part of the key format (64 bit 72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. 73 */ 74 75 #include <asm/types.h> 76 #include <asm/byteorder.h> 77 #include <linux/kernel.h> 78 #include <linux/uuid.h> 79 #include "vstructs.h" 80 81 #ifdef __KERNEL__ 82 typedef uuid_t __uuid_t; 83 #endif 84 85 #define BITMASK(name, type, field, offset, end) \ 86 static const __maybe_unused unsigned name##_OFFSET = offset; \ 87 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 88 \ 89 static inline __u64 name(const type *k) \ 90 { \ 91 return (k->field >> offset) & ~(~0ULL << (end - offset)); \ 92 } \ 93 \ 94 static inline void SET_##name(type *k, __u64 v) \ 95 { \ 96 k->field &= ~(~(~0ULL << (end - offset)) << offset); \ 97 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \ 98 } 99 100 #define LE_BITMASK(_bits, name, type, field, offset, end) \ 101 static const __maybe_unused unsigned name##_OFFSET = offset; \ 102 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 103 static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\ 104 \ 105 static inline __u64 name(const type *k) \ 106 { \ 107 return (__le##_bits##_to_cpu(k->field) >> offset) & \ 108 ~(~0ULL << (end - offset)); \ 109 } \ 110 \ 111 static inline void SET_##name(type *k, __u64 v) \ 112 { \ 113 __u##_bits new = __le##_bits##_to_cpu(k->field); \ 114 \ 115 new &= ~(~(~0ULL << (end - offset)) << offset); \ 116 new |= (v & ~(~0ULL << (end - offset))) << offset; \ 117 k->field = __cpu_to_le##_bits(new); \ 118 } 119 120 #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) 121 #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) 122 #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) 123 124 struct bkey_format { 125 __u8 key_u64s; 126 __u8 nr_fields; 127 /* One unused slot for now: */ 128 __u8 bits_per_field[6]; 129 __le64 field_offset[6]; 130 }; 131 132 /* Btree keys - all units are in sectors */ 133 134 struct bpos { 135 /* 136 * Word order matches machine byte order - btree code treats a bpos as a 137 * single large integer, for search/comparison purposes 138 * 139 * Note that wherever a bpos is embedded in another on disk data 140 * structure, it has to be byte swabbed when reading in metadata that 141 * wasn't written in native endian order: 142 */ 143 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 144 __u32 snapshot; 145 __u64 offset; 146 __u64 inode; 147 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 148 __u64 inode; 149 __u64 offset; /* Points to end of extent - sectors */ 150 __u32 snapshot; 151 #else 152 #error edit for your odd byteorder. 153 #endif 154 } __packed 155 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 156 __aligned(4) 157 #endif 158 ; 159 160 #define KEY_INODE_MAX ((__u64)~0ULL) 161 #define KEY_OFFSET_MAX ((__u64)~0ULL) 162 #define KEY_SNAPSHOT_MAX ((__u32)~0U) 163 #define KEY_SIZE_MAX ((__u32)~0U) 164 165 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot) 166 { 167 return (struct bpos) { 168 .inode = inode, 169 .offset = offset, 170 .snapshot = snapshot, 171 }; 172 } 173 174 #define POS_MIN SPOS(0, 0, 0) 175 #define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0) 176 #define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX) 177 #define POS(_inode, _offset) SPOS(_inode, _offset, 0) 178 179 /* Empty placeholder struct, for container_of() */ 180 struct bch_val { 181 __u64 __nothing[0]; 182 }; 183 184 struct bversion { 185 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 186 __u64 lo; 187 __u32 hi; 188 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 189 __u32 hi; 190 __u64 lo; 191 #endif 192 } __packed __aligned(4); 193 194 struct bkey { 195 /* Size of combined key and value, in u64s */ 196 __u8 u64s; 197 198 /* Format of key (0 for format local to btree node) */ 199 #if defined(__LITTLE_ENDIAN_BITFIELD) 200 __u8 format:7, 201 needs_whiteout:1; 202 #elif defined (__BIG_ENDIAN_BITFIELD) 203 __u8 needs_whiteout:1, 204 format:7; 205 #else 206 #error edit for your odd byteorder. 207 #endif 208 209 /* Type of the value */ 210 __u8 type; 211 212 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 213 __u8 pad[1]; 214 215 struct bversion version; 216 __u32 size; /* extent size, in sectors */ 217 struct bpos p; 218 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 219 struct bpos p; 220 __u32 size; /* extent size, in sectors */ 221 struct bversion version; 222 223 __u8 pad[1]; 224 #endif 225 } __packed __aligned(8); 226 227 struct bkey_packed { 228 __u64 _data[0]; 229 230 /* Size of combined key and value, in u64s */ 231 __u8 u64s; 232 233 /* Format of key (0 for format local to btree node) */ 234 235 /* 236 * XXX: next incompat on disk format change, switch format and 237 * needs_whiteout - bkey_packed() will be cheaper if format is the high 238 * bits of the bitfield 239 */ 240 #if defined(__LITTLE_ENDIAN_BITFIELD) 241 __u8 format:7, 242 needs_whiteout:1; 243 #elif defined (__BIG_ENDIAN_BITFIELD) 244 __u8 needs_whiteout:1, 245 format:7; 246 #endif 247 248 /* Type of the value */ 249 __u8 type; 250 __u8 key_start[0]; 251 252 /* 253 * We copy bkeys with struct assignment in various places, and while 254 * that shouldn't be done with packed bkeys we can't disallow it in C, 255 * and it's legal to cast a bkey to a bkey_packed - so padding it out 256 * to the same size as struct bkey should hopefully be safest. 257 */ 258 __u8 pad[sizeof(struct bkey) - 3]; 259 } __packed __aligned(8); 260 261 typedef struct { 262 __le64 lo; 263 __le64 hi; 264 } bch_le128; 265 266 #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) 267 #define BKEY_U64s_MAX U8_MAX 268 #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) 269 270 #define KEY_PACKED_BITS_START 24 271 272 #define KEY_FORMAT_LOCAL_BTREE 0 273 #define KEY_FORMAT_CURRENT 1 274 275 enum bch_bkey_fields { 276 BKEY_FIELD_INODE, 277 BKEY_FIELD_OFFSET, 278 BKEY_FIELD_SNAPSHOT, 279 BKEY_FIELD_SIZE, 280 BKEY_FIELD_VERSION_HI, 281 BKEY_FIELD_VERSION_LO, 282 BKEY_NR_FIELDS, 283 }; 284 285 #define bkey_format_field(name, field) \ 286 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) 287 288 #define BKEY_FORMAT_CURRENT \ 289 ((struct bkey_format) { \ 290 .key_u64s = BKEY_U64s, \ 291 .nr_fields = BKEY_NR_FIELDS, \ 292 .bits_per_field = { \ 293 bkey_format_field(INODE, p.inode), \ 294 bkey_format_field(OFFSET, p.offset), \ 295 bkey_format_field(SNAPSHOT, p.snapshot), \ 296 bkey_format_field(SIZE, size), \ 297 bkey_format_field(VERSION_HI, version.hi), \ 298 bkey_format_field(VERSION_LO, version.lo), \ 299 }, \ 300 }) 301 302 /* bkey with inline value */ 303 struct bkey_i { 304 __u64 _data[0]; 305 306 struct bkey k; 307 struct bch_val v; 308 }; 309 310 #define POS_KEY(_pos) \ 311 ((struct bkey) { \ 312 .u64s = BKEY_U64s, \ 313 .format = KEY_FORMAT_CURRENT, \ 314 .p = _pos, \ 315 }) 316 317 #define KEY(_inode, _offset, _size) \ 318 ((struct bkey) { \ 319 .u64s = BKEY_U64s, \ 320 .format = KEY_FORMAT_CURRENT, \ 321 .p = POS(_inode, _offset), \ 322 .size = _size, \ 323 }) 324 325 static inline void bkey_init(struct bkey *k) 326 { 327 *k = KEY(0, 0, 0); 328 } 329 330 #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) 331 332 #define __BKEY_PADDED(key, pad) \ 333 struct bkey_i key; __u64 key ## _pad[pad] 334 335 /* 336 * - DELETED keys are used internally to mark keys that should be ignored but 337 * override keys in composition order. Their version number is ignored. 338 * 339 * - DISCARDED keys indicate that the data is all 0s because it has been 340 * discarded. DISCARDs may have a version; if the version is nonzero the key 341 * will be persistent, otherwise the key will be dropped whenever the btree 342 * node is rewritten (like DELETED keys). 343 * 344 * - ERROR: any read of the data returns a read error, as the data was lost due 345 * to a failing device. Like DISCARDED keys, they can be removed (overridden) 346 * by new writes or cluster-wide GC. Node repair can also overwrite them with 347 * the same or a more recent version number, but not with an older version 348 * number. 349 * 350 * - WHITEOUT: for hash table btrees 351 */ 352 #define BCH_BKEY_TYPES() \ 353 x(deleted, 0) \ 354 x(whiteout, 1) \ 355 x(error, 2) \ 356 x(cookie, 3) \ 357 x(hash_whiteout, 4) \ 358 x(btree_ptr, 5) \ 359 x(extent, 6) \ 360 x(reservation, 7) \ 361 x(inode, 8) \ 362 x(inode_generation, 9) \ 363 x(dirent, 10) \ 364 x(xattr, 11) \ 365 x(alloc, 12) \ 366 x(quota, 13) \ 367 x(stripe, 14) \ 368 x(reflink_p, 15) \ 369 x(reflink_v, 16) \ 370 x(inline_data, 17) \ 371 x(btree_ptr_v2, 18) \ 372 x(indirect_inline_data, 19) \ 373 x(alloc_v2, 20) \ 374 x(subvolume, 21) \ 375 x(snapshot, 22) \ 376 x(inode_v2, 23) \ 377 x(alloc_v3, 24) \ 378 x(set, 25) \ 379 x(lru, 26) \ 380 x(alloc_v4, 27) \ 381 x(backpointer, 28) \ 382 x(inode_v3, 29) \ 383 x(bucket_gens, 30) \ 384 x(snapshot_tree, 31) \ 385 x(logged_op_truncate, 32) \ 386 x(logged_op_finsert, 33) 387 388 enum bch_bkey_type { 389 #define x(name, nr) KEY_TYPE_##name = nr, 390 BCH_BKEY_TYPES() 391 #undef x 392 KEY_TYPE_MAX, 393 }; 394 395 struct bch_deleted { 396 struct bch_val v; 397 }; 398 399 struct bch_whiteout { 400 struct bch_val v; 401 }; 402 403 struct bch_error { 404 struct bch_val v; 405 }; 406 407 struct bch_cookie { 408 struct bch_val v; 409 __le64 cookie; 410 }; 411 412 struct bch_hash_whiteout { 413 struct bch_val v; 414 }; 415 416 struct bch_set { 417 struct bch_val v; 418 }; 419 420 /* 128 bits, sufficient for cryptographic MACs: */ 421 struct bch_csum { 422 __le64 lo; 423 __le64 hi; 424 } __packed __aligned(8); 425 426 struct bch_backpointer { 427 struct bch_val v; 428 __u8 btree_id; 429 __u8 level; 430 __u8 data_type; 431 __u64 bucket_offset:40; 432 __u32 bucket_len; 433 struct bpos pos; 434 } __packed __aligned(8); 435 436 /* LRU btree: */ 437 438 struct bch_lru { 439 struct bch_val v; 440 __le64 idx; 441 } __packed __aligned(8); 442 443 #define LRU_ID_STRIPES (1U << 16) 444 445 /* Optional/variable size superblock sections: */ 446 447 struct bch_sb_field { 448 __u64 _data[0]; 449 __le32 u64s; 450 __le32 type; 451 }; 452 453 #define BCH_SB_FIELDS() \ 454 x(journal, 0) \ 455 x(members_v1, 1) \ 456 x(crypt, 2) \ 457 x(replicas_v0, 3) \ 458 x(quota, 4) \ 459 x(disk_groups, 5) \ 460 x(clean, 6) \ 461 x(replicas, 7) \ 462 x(journal_seq_blacklist, 8) \ 463 x(journal_v2, 9) \ 464 x(counters, 10) \ 465 x(members_v2, 11) \ 466 x(errors, 12) \ 467 x(ext, 13) \ 468 x(downgrade, 14) 469 470 #include "alloc_background_format.h" 471 #include "extents_format.h" 472 #include "reflink_format.h" 473 #include "ec_format.h" 474 #include "inode_format.h" 475 #include "dirent_format.h" 476 #include "xattr_format.h" 477 #include "quota_format.h" 478 #include "logged_ops_format.h" 479 #include "snapshot_format.h" 480 #include "subvolume_format.h" 481 #include "sb-counters_format.h" 482 483 enum bch_sb_field_type { 484 #define x(f, nr) BCH_SB_FIELD_##f = nr, 485 BCH_SB_FIELDS() 486 #undef x 487 BCH_SB_FIELD_NR 488 }; 489 490 /* 491 * Most superblock fields are replicated in all device's superblocks - a few are 492 * not: 493 */ 494 #define BCH_SINGLE_DEVICE_SB_FIELDS \ 495 ((1U << BCH_SB_FIELD_journal)| \ 496 (1U << BCH_SB_FIELD_journal_v2)) 497 498 /* BCH_SB_FIELD_journal: */ 499 500 struct bch_sb_field_journal { 501 struct bch_sb_field field; 502 __le64 buckets[]; 503 }; 504 505 struct bch_sb_field_journal_v2 { 506 struct bch_sb_field field; 507 508 struct bch_sb_field_journal_v2_entry { 509 __le64 start; 510 __le64 nr; 511 } d[]; 512 }; 513 514 /* BCH_SB_FIELD_members_v1: */ 515 516 #define BCH_MIN_NR_NBUCKETS (1 << 6) 517 518 #define BCH_IOPS_MEASUREMENTS() \ 519 x(seqread, 0) \ 520 x(seqwrite, 1) \ 521 x(randread, 2) \ 522 x(randwrite, 3) 523 524 enum bch_iops_measurement { 525 #define x(t, n) BCH_IOPS_##t = n, 526 BCH_IOPS_MEASUREMENTS() 527 #undef x 528 BCH_IOPS_NR 529 }; 530 531 #define BCH_MEMBER_ERROR_TYPES() \ 532 x(read, 0) \ 533 x(write, 1) \ 534 x(checksum, 2) 535 536 enum bch_member_error_type { 537 #define x(t, n) BCH_MEMBER_ERROR_##t = n, 538 BCH_MEMBER_ERROR_TYPES() 539 #undef x 540 BCH_MEMBER_ERROR_NR 541 }; 542 543 struct bch_member { 544 __uuid_t uuid; 545 __le64 nbuckets; /* device size */ 546 __le16 first_bucket; /* index of first bucket used */ 547 __le16 bucket_size; /* sectors */ 548 __le32 pad; 549 __le64 last_mount; /* time_t */ 550 551 __le64 flags; 552 __le32 iops[4]; 553 __le64 errors[BCH_MEMBER_ERROR_NR]; 554 __le64 errors_at_reset[BCH_MEMBER_ERROR_NR]; 555 __le64 errors_reset_time; 556 __le64 seq; 557 }; 558 559 #define BCH_MEMBER_V1_BYTES 56 560 561 LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags, 0, 4) 562 /* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */ 563 LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags, 14, 15) 564 LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags, 15, 20) 565 LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags, 20, 28) 566 LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags, 28, 30) 567 LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED, 568 struct bch_member, flags, 30, 31) 569 570 #if 0 571 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); 572 LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); 573 #endif 574 575 #define BCH_MEMBER_STATES() \ 576 x(rw, 0) \ 577 x(ro, 1) \ 578 x(failed, 2) \ 579 x(spare, 3) 580 581 enum bch_member_state { 582 #define x(t, n) BCH_MEMBER_STATE_##t = n, 583 BCH_MEMBER_STATES() 584 #undef x 585 BCH_MEMBER_STATE_NR 586 }; 587 588 struct bch_sb_field_members_v1 { 589 struct bch_sb_field field; 590 struct bch_member _members[]; //Members are now variable size 591 }; 592 593 struct bch_sb_field_members_v2 { 594 struct bch_sb_field field; 595 __le16 member_bytes; //size of single member entry 596 u8 pad[6]; 597 struct bch_member _members[]; 598 }; 599 600 /* BCH_SB_FIELD_crypt: */ 601 602 struct nonce { 603 __le32 d[4]; 604 }; 605 606 struct bch_key { 607 __le64 key[4]; 608 }; 609 610 #define BCH_KEY_MAGIC \ 611 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \ 612 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \ 613 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \ 614 ((__u64) 'e' << 48)|((__u64) 'y' << 56)) 615 616 struct bch_encrypted_key { 617 __le64 magic; 618 struct bch_key key; 619 }; 620 621 /* 622 * If this field is present in the superblock, it stores an encryption key which 623 * is used encrypt all other data/metadata. The key will normally be encrypted 624 * with the key userspace provides, but if encryption has been turned off we'll 625 * just store the master key unencrypted in the superblock so we can access the 626 * previously encrypted data. 627 */ 628 struct bch_sb_field_crypt { 629 struct bch_sb_field field; 630 631 __le64 flags; 632 __le64 kdf_flags; 633 struct bch_encrypted_key key; 634 }; 635 636 LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); 637 638 enum bch_kdf_types { 639 BCH_KDF_SCRYPT = 0, 640 BCH_KDF_NR = 1, 641 }; 642 643 /* stored as base 2 log of scrypt params: */ 644 LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); 645 LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); 646 LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); 647 648 /* BCH_SB_FIELD_replicas: */ 649 650 #define BCH_DATA_TYPES() \ 651 x(free, 0) \ 652 x(sb, 1) \ 653 x(journal, 2) \ 654 x(btree, 3) \ 655 x(user, 4) \ 656 x(cached, 5) \ 657 x(parity, 6) \ 658 x(stripe, 7) \ 659 x(need_gc_gens, 8) \ 660 x(need_discard, 9) 661 662 enum bch_data_type { 663 #define x(t, n) BCH_DATA_##t, 664 BCH_DATA_TYPES() 665 #undef x 666 BCH_DATA_NR 667 }; 668 669 static inline bool data_type_is_empty(enum bch_data_type type) 670 { 671 switch (type) { 672 case BCH_DATA_free: 673 case BCH_DATA_need_gc_gens: 674 case BCH_DATA_need_discard: 675 return true; 676 default: 677 return false; 678 } 679 } 680 681 static inline bool data_type_is_hidden(enum bch_data_type type) 682 { 683 switch (type) { 684 case BCH_DATA_sb: 685 case BCH_DATA_journal: 686 return true; 687 default: 688 return false; 689 } 690 } 691 692 struct bch_replicas_entry_v0 { 693 __u8 data_type; 694 __u8 nr_devs; 695 __u8 devs[]; 696 } __packed; 697 698 struct bch_sb_field_replicas_v0 { 699 struct bch_sb_field field; 700 struct bch_replicas_entry_v0 entries[]; 701 } __packed __aligned(8); 702 703 struct bch_replicas_entry_v1 { 704 __u8 data_type; 705 __u8 nr_devs; 706 __u8 nr_required; 707 __u8 devs[]; 708 } __packed; 709 710 #define replicas_entry_bytes(_i) \ 711 (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs) 712 713 struct bch_sb_field_replicas { 714 struct bch_sb_field field; 715 struct bch_replicas_entry_v1 entries[]; 716 } __packed __aligned(8); 717 718 /* BCH_SB_FIELD_disk_groups: */ 719 720 #define BCH_SB_LABEL_SIZE 32 721 722 struct bch_disk_group { 723 __u8 label[BCH_SB_LABEL_SIZE]; 724 __le64 flags[2]; 725 } __packed __aligned(8); 726 727 LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1) 728 LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6) 729 LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24) 730 731 struct bch_sb_field_disk_groups { 732 struct bch_sb_field field; 733 struct bch_disk_group entries[]; 734 } __packed __aligned(8); 735 736 /* 737 * On clean shutdown, store btree roots and current journal sequence number in 738 * the superblock: 739 */ 740 struct jset_entry { 741 __le16 u64s; 742 __u8 btree_id; 743 __u8 level; 744 __u8 type; /* designates what this jset holds */ 745 __u8 pad[3]; 746 747 struct bkey_i start[0]; 748 __u64 _data[]; 749 }; 750 751 struct bch_sb_field_clean { 752 struct bch_sb_field field; 753 754 __le32 flags; 755 __le16 _read_clock; /* no longer used */ 756 __le16 _write_clock; 757 __le64 journal_seq; 758 759 struct jset_entry start[0]; 760 __u64 _data[]; 761 }; 762 763 struct journal_seq_blacklist_entry { 764 __le64 start; 765 __le64 end; 766 }; 767 768 struct bch_sb_field_journal_seq_blacklist { 769 struct bch_sb_field field; 770 struct journal_seq_blacklist_entry start[]; 771 }; 772 773 struct bch_sb_field_errors { 774 struct bch_sb_field field; 775 struct bch_sb_field_error_entry { 776 __le64 v; 777 __le64 last_error_time; 778 } entries[]; 779 }; 780 781 LE64_BITMASK(BCH_SB_ERROR_ENTRY_ID, struct bch_sb_field_error_entry, v, 0, 16); 782 LE64_BITMASK(BCH_SB_ERROR_ENTRY_NR, struct bch_sb_field_error_entry, v, 16, 64); 783 784 struct bch_sb_field_ext { 785 struct bch_sb_field field; 786 __le64 recovery_passes_required[2]; 787 __le64 errors_silent[8]; 788 }; 789 790 struct bch_sb_field_downgrade_entry { 791 __le16 version; 792 __le64 recovery_passes[2]; 793 __le16 nr_errors; 794 __le16 errors[] __counted_by(nr_errors); 795 } __packed __aligned(2); 796 797 struct bch_sb_field_downgrade { 798 struct bch_sb_field field; 799 struct bch_sb_field_downgrade_entry entries[]; 800 }; 801 802 /* Superblock: */ 803 804 /* 805 * New versioning scheme: 806 * One common version number for all on disk data structures - superblock, btree 807 * nodes, journal entries 808 */ 809 #define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10)) 810 #define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10))) 811 #define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0) 812 813 /* 814 * field 1: version name 815 * field 2: BCH_VERSION(major, minor) 816 * field 3: recovery passess required on upgrade 817 */ 818 #define BCH_METADATA_VERSIONS() \ 819 x(bkey_renumber, BCH_VERSION(0, 10)) \ 820 x(inode_btree_change, BCH_VERSION(0, 11)) \ 821 x(snapshot, BCH_VERSION(0, 12)) \ 822 x(inode_backpointers, BCH_VERSION(0, 13)) \ 823 x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \ 824 x(snapshot_2, BCH_VERSION(0, 15)) \ 825 x(reflink_p_fix, BCH_VERSION(0, 16)) \ 826 x(subvol_dirent, BCH_VERSION(0, 17)) \ 827 x(inode_v2, BCH_VERSION(0, 18)) \ 828 x(freespace, BCH_VERSION(0, 19)) \ 829 x(alloc_v4, BCH_VERSION(0, 20)) \ 830 x(new_data_types, BCH_VERSION(0, 21)) \ 831 x(backpointers, BCH_VERSION(0, 22)) \ 832 x(inode_v3, BCH_VERSION(0, 23)) \ 833 x(unwritten_extents, BCH_VERSION(0, 24)) \ 834 x(bucket_gens, BCH_VERSION(0, 25)) \ 835 x(lru_v2, BCH_VERSION(0, 26)) \ 836 x(fragmentation_lru, BCH_VERSION(0, 27)) \ 837 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \ 838 x(snapshot_trees, BCH_VERSION(0, 29)) \ 839 x(major_minor, BCH_VERSION(1, 0)) \ 840 x(snapshot_skiplists, BCH_VERSION(1, 1)) \ 841 x(deleted_inodes, BCH_VERSION(1, 2)) \ 842 x(rebalance_work, BCH_VERSION(1, 3)) \ 843 x(member_seq, BCH_VERSION(1, 4)) 844 845 enum bcachefs_metadata_version { 846 bcachefs_metadata_version_min = 9, 847 #define x(t, n) bcachefs_metadata_version_##t = n, 848 BCH_METADATA_VERSIONS() 849 #undef x 850 bcachefs_metadata_version_max 851 }; 852 853 static const __maybe_unused 854 unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work; 855 856 #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) 857 858 #define BCH_SB_SECTOR 8 859 #define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ 860 861 struct bch_sb_layout { 862 __uuid_t magic; /* bcachefs superblock UUID */ 863 __u8 layout_type; 864 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ 865 __u8 nr_superblocks; 866 __u8 pad[5]; 867 __le64 sb_offset[61]; 868 } __packed __aligned(8); 869 870 #define BCH_SB_LAYOUT_SECTOR 7 871 872 /* 873 * @offset - sector where this sb was written 874 * @version - on disk format version 875 * @version_min - Oldest metadata version this filesystem contains; so we can 876 * safely drop compatibility code and refuse to mount filesystems 877 * we'd need it for 878 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC) 879 * @seq - incremented each time superblock is written 880 * @uuid - used for generating various magic numbers and identifying 881 * member devices, never changes 882 * @user_uuid - user visible UUID, may be changed 883 * @label - filesystem label 884 * @seq - identifies most recent superblock, incremented each time 885 * superblock is written 886 * @features - enabled incompatible features 887 */ 888 struct bch_sb { 889 struct bch_csum csum; 890 __le16 version; 891 __le16 version_min; 892 __le16 pad[2]; 893 __uuid_t magic; 894 __uuid_t uuid; 895 __uuid_t user_uuid; 896 __u8 label[BCH_SB_LABEL_SIZE]; 897 __le64 offset; 898 __le64 seq; 899 900 __le16 block_size; 901 __u8 dev_idx; 902 __u8 nr_devices; 903 __le32 u64s; 904 905 __le64 time_base_lo; 906 __le32 time_base_hi; 907 __le32 time_precision; 908 909 __le64 flags[7]; 910 __le64 write_time; 911 __le64 features[2]; 912 __le64 compat[2]; 913 914 struct bch_sb_layout layout; 915 916 struct bch_sb_field start[0]; 917 __le64 _data[]; 918 } __packed __aligned(8); 919 920 /* 921 * Flags: 922 * BCH_SB_INITALIZED - set on first mount 923 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect 924 * behaviour of mount/recovery path: 925 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits 926 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 927 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides 928 * DATA/META_CSUM_TYPE. Also indicates encryption 929 * algorithm in use, if/when we get more than one 930 */ 931 932 LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); 933 934 LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); 935 LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); 936 LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); 937 LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); 938 939 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); 940 941 LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); 942 LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); 943 944 LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); 945 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); 946 947 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); 948 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); 949 950 LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); 951 LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); 952 LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); 953 LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); 954 955 LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); 956 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62); 957 958 LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63); 959 960 LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); 961 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8); 962 LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); 963 964 LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); 965 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); 966 967 /* 968 * Max size of an extent that may require bouncing to read or write 969 * (checksummed, compressed): 64k 970 */ 971 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, 972 struct bch_sb, flags[1], 14, 20); 973 974 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); 975 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); 976 977 LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); 978 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); 979 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); 980 981 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO, 982 struct bch_sb, flags[2], 0, 4); 983 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); 984 985 LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); 986 LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28); 987 LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29); 988 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30); 989 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62); 990 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63); 991 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32); 992 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33); 993 LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34); 994 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54); 995 LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56); 996 997 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60); 998 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI, 999 struct bch_sb, flags[4], 60, 64); 1000 1001 LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE, 1002 struct bch_sb, flags[5], 0, 16); 1003 1004 static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb) 1005 { 1006 return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4); 1007 } 1008 1009 static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 1010 { 1011 SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v); 1012 SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4); 1013 } 1014 1015 static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb) 1016 { 1017 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) | 1018 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4); 1019 } 1020 1021 static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 1022 { 1023 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v); 1024 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4); 1025 } 1026 1027 /* 1028 * Features: 1029 * 1030 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist 1031 * reflink: gates KEY_TYPE_reflink 1032 * inline_data: gates KEY_TYPE_inline_data 1033 * new_siphash: gates BCH_STR_HASH_siphash 1034 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE 1035 */ 1036 #define BCH_SB_FEATURES() \ 1037 x(lz4, 0) \ 1038 x(gzip, 1) \ 1039 x(zstd, 2) \ 1040 x(atomic_nlink, 3) \ 1041 x(ec, 4) \ 1042 x(journal_seq_blacklist_v3, 5) \ 1043 x(reflink, 6) \ 1044 x(new_siphash, 7) \ 1045 x(inline_data, 8) \ 1046 x(new_extent_overwrite, 9) \ 1047 x(incompressible, 10) \ 1048 x(btree_ptr_v2, 11) \ 1049 x(extents_above_btree_updates, 12) \ 1050 x(btree_updates_journalled, 13) \ 1051 x(reflink_inline_data, 14) \ 1052 x(new_varint, 15) \ 1053 x(journal_no_flush, 16) \ 1054 x(alloc_v2, 17) \ 1055 x(extents_across_btree_nodes, 18) 1056 1057 #define BCH_SB_FEATURES_ALWAYS \ 1058 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \ 1059 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\ 1060 (1ULL << BCH_FEATURE_btree_updates_journalled)|\ 1061 (1ULL << BCH_FEATURE_alloc_v2)|\ 1062 (1ULL << BCH_FEATURE_extents_across_btree_nodes)) 1063 1064 #define BCH_SB_FEATURES_ALL \ 1065 (BCH_SB_FEATURES_ALWAYS| \ 1066 (1ULL << BCH_FEATURE_new_siphash)| \ 1067 (1ULL << BCH_FEATURE_btree_ptr_v2)| \ 1068 (1ULL << BCH_FEATURE_new_varint)| \ 1069 (1ULL << BCH_FEATURE_journal_no_flush)) 1070 1071 enum bch_sb_feature { 1072 #define x(f, n) BCH_FEATURE_##f, 1073 BCH_SB_FEATURES() 1074 #undef x 1075 BCH_FEATURE_NR, 1076 }; 1077 1078 #define BCH_SB_COMPAT() \ 1079 x(alloc_info, 0) \ 1080 x(alloc_metadata, 1) \ 1081 x(extents_above_btree_updates_done, 2) \ 1082 x(bformat_overflow_done, 3) 1083 1084 enum bch_sb_compat { 1085 #define x(f, n) BCH_COMPAT_##f, 1086 BCH_SB_COMPAT() 1087 #undef x 1088 BCH_COMPAT_NR, 1089 }; 1090 1091 /* options: */ 1092 1093 #define BCH_VERSION_UPGRADE_OPTS() \ 1094 x(compatible, 0) \ 1095 x(incompatible, 1) \ 1096 x(none, 2) 1097 1098 enum bch_version_upgrade_opts { 1099 #define x(t, n) BCH_VERSION_UPGRADE_##t = n, 1100 BCH_VERSION_UPGRADE_OPTS() 1101 #undef x 1102 }; 1103 1104 #define BCH_REPLICAS_MAX 4U 1105 1106 #define BCH_BKEY_PTRS_MAX 16U 1107 1108 #define BCH_ERROR_ACTIONS() \ 1109 x(continue, 0) \ 1110 x(ro, 1) \ 1111 x(panic, 2) 1112 1113 enum bch_error_actions { 1114 #define x(t, n) BCH_ON_ERROR_##t = n, 1115 BCH_ERROR_ACTIONS() 1116 #undef x 1117 BCH_ON_ERROR_NR 1118 }; 1119 1120 #define BCH_STR_HASH_TYPES() \ 1121 x(crc32c, 0) \ 1122 x(crc64, 1) \ 1123 x(siphash_old, 2) \ 1124 x(siphash, 3) 1125 1126 enum bch_str_hash_type { 1127 #define x(t, n) BCH_STR_HASH_##t = n, 1128 BCH_STR_HASH_TYPES() 1129 #undef x 1130 BCH_STR_HASH_NR 1131 }; 1132 1133 #define BCH_STR_HASH_OPTS() \ 1134 x(crc32c, 0) \ 1135 x(crc64, 1) \ 1136 x(siphash, 2) 1137 1138 enum bch_str_hash_opts { 1139 #define x(t, n) BCH_STR_HASH_OPT_##t = n, 1140 BCH_STR_HASH_OPTS() 1141 #undef x 1142 BCH_STR_HASH_OPT_NR 1143 }; 1144 1145 #define BCH_CSUM_TYPES() \ 1146 x(none, 0) \ 1147 x(crc32c_nonzero, 1) \ 1148 x(crc64_nonzero, 2) \ 1149 x(chacha20_poly1305_80, 3) \ 1150 x(chacha20_poly1305_128, 4) \ 1151 x(crc32c, 5) \ 1152 x(crc64, 6) \ 1153 x(xxhash, 7) 1154 1155 enum bch_csum_type { 1156 #define x(t, n) BCH_CSUM_##t = n, 1157 BCH_CSUM_TYPES() 1158 #undef x 1159 BCH_CSUM_NR 1160 }; 1161 1162 static const __maybe_unused unsigned bch_crc_bytes[] = { 1163 [BCH_CSUM_none] = 0, 1164 [BCH_CSUM_crc32c_nonzero] = 4, 1165 [BCH_CSUM_crc32c] = 4, 1166 [BCH_CSUM_crc64_nonzero] = 8, 1167 [BCH_CSUM_crc64] = 8, 1168 [BCH_CSUM_xxhash] = 8, 1169 [BCH_CSUM_chacha20_poly1305_80] = 10, 1170 [BCH_CSUM_chacha20_poly1305_128] = 16, 1171 }; 1172 1173 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) 1174 { 1175 switch (type) { 1176 case BCH_CSUM_chacha20_poly1305_80: 1177 case BCH_CSUM_chacha20_poly1305_128: 1178 return true; 1179 default: 1180 return false; 1181 } 1182 } 1183 1184 #define BCH_CSUM_OPTS() \ 1185 x(none, 0) \ 1186 x(crc32c, 1) \ 1187 x(crc64, 2) \ 1188 x(xxhash, 3) 1189 1190 enum bch_csum_opts { 1191 #define x(t, n) BCH_CSUM_OPT_##t = n, 1192 BCH_CSUM_OPTS() 1193 #undef x 1194 BCH_CSUM_OPT_NR 1195 }; 1196 1197 #define BCH_COMPRESSION_TYPES() \ 1198 x(none, 0) \ 1199 x(lz4_old, 1) \ 1200 x(gzip, 2) \ 1201 x(lz4, 3) \ 1202 x(zstd, 4) \ 1203 x(incompressible, 5) 1204 1205 enum bch_compression_type { 1206 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n, 1207 BCH_COMPRESSION_TYPES() 1208 #undef x 1209 BCH_COMPRESSION_TYPE_NR 1210 }; 1211 1212 #define BCH_COMPRESSION_OPTS() \ 1213 x(none, 0) \ 1214 x(lz4, 1) \ 1215 x(gzip, 2) \ 1216 x(zstd, 3) 1217 1218 enum bch_compression_opts { 1219 #define x(t, n) BCH_COMPRESSION_OPT_##t = n, 1220 BCH_COMPRESSION_OPTS() 1221 #undef x 1222 BCH_COMPRESSION_OPT_NR 1223 }; 1224 1225 /* 1226 * Magic numbers 1227 * 1228 * The various other data structures have their own magic numbers, which are 1229 * xored with the first part of the cache set's UUID 1230 */ 1231 1232 #define BCACHE_MAGIC \ 1233 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ 1234 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) 1235 #define BCHFS_MAGIC \ 1236 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ 1237 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) 1238 1239 #define BCACHEFS_STATFS_MAGIC 0xca451a4e 1240 1241 #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) 1242 #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) 1243 1244 static inline __le64 __bch2_sb_magic(struct bch_sb *sb) 1245 { 1246 __le64 ret; 1247 1248 memcpy(&ret, &sb->uuid, sizeof(ret)); 1249 return ret; 1250 } 1251 1252 static inline __u64 __jset_magic(struct bch_sb *sb) 1253 { 1254 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); 1255 } 1256 1257 static inline __u64 __bset_magic(struct bch_sb *sb) 1258 { 1259 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); 1260 } 1261 1262 /* Journal */ 1263 1264 #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) 1265 1266 #define BCH_JSET_ENTRY_TYPES() \ 1267 x(btree_keys, 0) \ 1268 x(btree_root, 1) \ 1269 x(prio_ptrs, 2) \ 1270 x(blacklist, 3) \ 1271 x(blacklist_v2, 4) \ 1272 x(usage, 5) \ 1273 x(data_usage, 6) \ 1274 x(clock, 7) \ 1275 x(dev_usage, 8) \ 1276 x(log, 9) \ 1277 x(overwrite, 10) \ 1278 x(write_buffer_keys, 11) 1279 1280 enum { 1281 #define x(f, nr) BCH_JSET_ENTRY_##f = nr, 1282 BCH_JSET_ENTRY_TYPES() 1283 #undef x 1284 BCH_JSET_ENTRY_NR 1285 }; 1286 1287 static inline bool jset_entry_is_key(struct jset_entry *e) 1288 { 1289 switch (e->type) { 1290 case BCH_JSET_ENTRY_btree_keys: 1291 case BCH_JSET_ENTRY_btree_root: 1292 case BCH_JSET_ENTRY_overwrite: 1293 case BCH_JSET_ENTRY_write_buffer_keys: 1294 return true; 1295 } 1296 1297 return false; 1298 } 1299 1300 /* 1301 * Journal sequence numbers can be blacklisted: bsets record the max sequence 1302 * number of all the journal entries they contain updates for, so that on 1303 * recovery we can ignore those bsets that contain index updates newer that what 1304 * made it into the journal. 1305 * 1306 * This means that we can't reuse that journal_seq - we have to skip it, and 1307 * then record that we skipped it so that the next time we crash and recover we 1308 * don't think there was a missing journal entry. 1309 */ 1310 struct jset_entry_blacklist { 1311 struct jset_entry entry; 1312 __le64 seq; 1313 }; 1314 1315 struct jset_entry_blacklist_v2 { 1316 struct jset_entry entry; 1317 __le64 start; 1318 __le64 end; 1319 }; 1320 1321 #define BCH_FS_USAGE_TYPES() \ 1322 x(reserved, 0) \ 1323 x(inodes, 1) \ 1324 x(key_version, 2) 1325 1326 enum { 1327 #define x(f, nr) BCH_FS_USAGE_##f = nr, 1328 BCH_FS_USAGE_TYPES() 1329 #undef x 1330 BCH_FS_USAGE_NR 1331 }; 1332 1333 struct jset_entry_usage { 1334 struct jset_entry entry; 1335 __le64 v; 1336 } __packed; 1337 1338 struct jset_entry_data_usage { 1339 struct jset_entry entry; 1340 __le64 v; 1341 struct bch_replicas_entry_v1 r; 1342 } __packed; 1343 1344 struct jset_entry_clock { 1345 struct jset_entry entry; 1346 __u8 rw; 1347 __u8 pad[7]; 1348 __le64 time; 1349 } __packed; 1350 1351 struct jset_entry_dev_usage_type { 1352 __le64 buckets; 1353 __le64 sectors; 1354 __le64 fragmented; 1355 } __packed; 1356 1357 struct jset_entry_dev_usage { 1358 struct jset_entry entry; 1359 __le32 dev; 1360 __u32 pad; 1361 1362 __le64 _buckets_ec; /* No longer used */ 1363 __le64 _buckets_unavailable; /* No longer used */ 1364 1365 struct jset_entry_dev_usage_type d[]; 1366 }; 1367 1368 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u) 1369 { 1370 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) / 1371 sizeof(struct jset_entry_dev_usage_type); 1372 } 1373 1374 struct jset_entry_log { 1375 struct jset_entry entry; 1376 u8 d[]; 1377 } __packed __aligned(8); 1378 1379 /* 1380 * On disk format for a journal entry: 1381 * seq is monotonically increasing; every journal entry has its own unique 1382 * sequence number. 1383 * 1384 * last_seq is the oldest journal entry that still has keys the btree hasn't 1385 * flushed to disk yet. 1386 * 1387 * version is for on disk format changes. 1388 */ 1389 struct jset { 1390 struct bch_csum csum; 1391 1392 __le64 magic; 1393 __le64 seq; 1394 __le32 version; 1395 __le32 flags; 1396 1397 __le32 u64s; /* size of d[] in u64s */ 1398 1399 __u8 encrypted_start[0]; 1400 1401 __le16 _read_clock; /* no longer used */ 1402 __le16 _write_clock; 1403 1404 /* Sequence number of oldest dirty journal entry */ 1405 __le64 last_seq; 1406 1407 1408 struct jset_entry start[0]; 1409 __u64 _data[]; 1410 } __packed __aligned(8); 1411 1412 LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); 1413 LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); 1414 LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6); 1415 1416 #define BCH_JOURNAL_BUCKETS_MIN 8 1417 1418 /* Btree: */ 1419 1420 enum btree_id_flags { 1421 BTREE_ID_EXTENTS = BIT(0), 1422 BTREE_ID_SNAPSHOTS = BIT(1), 1423 BTREE_ID_SNAPSHOT_FIELD = BIT(2), 1424 BTREE_ID_DATA = BIT(3), 1425 }; 1426 1427 #define BCH_BTREE_IDS() \ 1428 x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\ 1429 BIT_ULL(KEY_TYPE_whiteout)| \ 1430 BIT_ULL(KEY_TYPE_error)| \ 1431 BIT_ULL(KEY_TYPE_cookie)| \ 1432 BIT_ULL(KEY_TYPE_extent)| \ 1433 BIT_ULL(KEY_TYPE_reservation)| \ 1434 BIT_ULL(KEY_TYPE_reflink_p)| \ 1435 BIT_ULL(KEY_TYPE_inline_data)) \ 1436 x(inodes, 1, BTREE_ID_SNAPSHOTS, \ 1437 BIT_ULL(KEY_TYPE_whiteout)| \ 1438 BIT_ULL(KEY_TYPE_inode)| \ 1439 BIT_ULL(KEY_TYPE_inode_v2)| \ 1440 BIT_ULL(KEY_TYPE_inode_v3)| \ 1441 BIT_ULL(KEY_TYPE_inode_generation)) \ 1442 x(dirents, 2, BTREE_ID_SNAPSHOTS, \ 1443 BIT_ULL(KEY_TYPE_whiteout)| \ 1444 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1445 BIT_ULL(KEY_TYPE_dirent)) \ 1446 x(xattrs, 3, BTREE_ID_SNAPSHOTS, \ 1447 BIT_ULL(KEY_TYPE_whiteout)| \ 1448 BIT_ULL(KEY_TYPE_cookie)| \ 1449 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1450 BIT_ULL(KEY_TYPE_xattr)) \ 1451 x(alloc, 4, 0, \ 1452 BIT_ULL(KEY_TYPE_alloc)| \ 1453 BIT_ULL(KEY_TYPE_alloc_v2)| \ 1454 BIT_ULL(KEY_TYPE_alloc_v3)| \ 1455 BIT_ULL(KEY_TYPE_alloc_v4)) \ 1456 x(quotas, 5, 0, \ 1457 BIT_ULL(KEY_TYPE_quota)) \ 1458 x(stripes, 6, 0, \ 1459 BIT_ULL(KEY_TYPE_stripe)) \ 1460 x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \ 1461 BIT_ULL(KEY_TYPE_reflink_v)| \ 1462 BIT_ULL(KEY_TYPE_indirect_inline_data)) \ 1463 x(subvolumes, 8, 0, \ 1464 BIT_ULL(KEY_TYPE_subvolume)) \ 1465 x(snapshots, 9, 0, \ 1466 BIT_ULL(KEY_TYPE_snapshot)) \ 1467 x(lru, 10, 0, \ 1468 BIT_ULL(KEY_TYPE_set)) \ 1469 x(freespace, 11, BTREE_ID_EXTENTS, \ 1470 BIT_ULL(KEY_TYPE_set)) \ 1471 x(need_discard, 12, 0, \ 1472 BIT_ULL(KEY_TYPE_set)) \ 1473 x(backpointers, 13, 0, \ 1474 BIT_ULL(KEY_TYPE_backpointer)) \ 1475 x(bucket_gens, 14, 0, \ 1476 BIT_ULL(KEY_TYPE_bucket_gens)) \ 1477 x(snapshot_trees, 15, 0, \ 1478 BIT_ULL(KEY_TYPE_snapshot_tree)) \ 1479 x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \ 1480 BIT_ULL(KEY_TYPE_set)) \ 1481 x(logged_ops, 17, 0, \ 1482 BIT_ULL(KEY_TYPE_logged_op_truncate)| \ 1483 BIT_ULL(KEY_TYPE_logged_op_finsert)) \ 1484 x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \ 1485 BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) 1486 1487 enum btree_id { 1488 #define x(name, nr, ...) BTREE_ID_##name = nr, 1489 BCH_BTREE_IDS() 1490 #undef x 1491 BTREE_ID_NR 1492 }; 1493 1494 #define BTREE_MAX_DEPTH 4U 1495 1496 /* Btree nodes */ 1497 1498 /* 1499 * Btree nodes 1500 * 1501 * On disk a btree node is a list/log of these; within each set the keys are 1502 * sorted 1503 */ 1504 struct bset { 1505 __le64 seq; 1506 1507 /* 1508 * Highest journal entry this bset contains keys for. 1509 * If on recovery we don't see that journal entry, this bset is ignored: 1510 * this allows us to preserve the order of all index updates after a 1511 * crash, since the journal records a total order of all index updates 1512 * and anything that didn't make it to the journal doesn't get used. 1513 */ 1514 __le64 journal_seq; 1515 1516 __le32 flags; 1517 __le16 version; 1518 __le16 u64s; /* count of d[] in u64s */ 1519 1520 struct bkey_packed start[0]; 1521 __u64 _data[]; 1522 } __packed __aligned(8); 1523 1524 LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); 1525 1526 LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); 1527 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, 1528 struct bset, flags, 5, 6); 1529 1530 /* Sector offset within the btree node: */ 1531 LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32); 1532 1533 struct btree_node { 1534 struct bch_csum csum; 1535 __le64 magic; 1536 1537 /* this flags field is encrypted, unlike bset->flags: */ 1538 __le64 flags; 1539 1540 /* Closed interval: */ 1541 struct bpos min_key; 1542 struct bpos max_key; 1543 struct bch_extent_ptr _ptr; /* not used anymore */ 1544 struct bkey_format format; 1545 1546 union { 1547 struct bset keys; 1548 struct { 1549 __u8 pad[22]; 1550 __le16 u64s; 1551 __u64 _data[0]; 1552 1553 }; 1554 }; 1555 } __packed __aligned(8); 1556 1557 LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4); 1558 LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); 1559 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, 1560 struct btree_node, flags, 8, 9); 1561 LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25); 1562 /* 25-32 unused */ 1563 LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); 1564 1565 static inline __u64 BTREE_NODE_ID(struct btree_node *n) 1566 { 1567 return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4); 1568 } 1569 1570 static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v) 1571 { 1572 SET_BTREE_NODE_ID_LO(n, v); 1573 SET_BTREE_NODE_ID_HI(n, v >> 4); 1574 } 1575 1576 struct btree_node_entry { 1577 struct bch_csum csum; 1578 1579 union { 1580 struct bset keys; 1581 struct { 1582 __u8 pad[22]; 1583 __le16 u64s; 1584 __u64 _data[0]; 1585 }; 1586 }; 1587 } __packed __aligned(8); 1588 1589 #endif /* _BCACHEFS_FORMAT_H */ 1590