xref: /linux/fs/bcachefs/bcachefs_format.h (revision d261f9ebcf424535fe04e720a1cfa023be409f52)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_FORMAT_H
3 #define _BCACHEFS_FORMAT_H
4 
5 /*
6  * bcachefs on disk data structures
7  *
8  * OVERVIEW:
9  *
10  * There are three main types of on disk data structures in bcachefs (this is
11  * reduced from 5 in bcache)
12  *
13  *  - superblock
14  *  - journal
15  *  - btree
16  *
17  * The btree is the primary structure; most metadata exists as keys in the
18  * various btrees. There are only a small number of btrees, they're not
19  * sharded - we have one btree for extents, another for inodes, et cetera.
20  *
21  * SUPERBLOCK:
22  *
23  * The superblock contains the location of the journal, the list of devices in
24  * the filesystem, and in general any metadata we need in order to decide
25  * whether we can start a filesystem or prior to reading the journal/btree
26  * roots.
27  *
28  * The superblock is extensible, and most of the contents of the superblock are
29  * in variable length, type tagged fields; see struct bch_sb_field.
30  *
31  * Backup superblocks do not reside in a fixed location; also, superblocks do
32  * not have a fixed size. To locate backup superblocks we have struct
33  * bch_sb_layout; we store a copy of this inside every superblock, and also
34  * before the first superblock.
35  *
36  * JOURNAL:
37  *
38  * The journal primarily records btree updates in the order they occurred;
39  * journal replay consists of just iterating over all the keys in the open
40  * journal entries and re-inserting them into the btrees.
41  *
42  * The journal also contains entry types for the btree roots, and blacklisted
43  * journal sequence numbers (see journal_seq_blacklist.c).
44  *
45  * BTREE:
46  *
47  * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48  * 128k-256k) and log structured. We use struct btree_node for writing the first
49  * entry in a given node (offset 0), and struct btree_node_entry for all
50  * subsequent writes.
51  *
52  * After the header, btree node entries contain a list of keys in sorted order.
53  * Values are stored inline with the keys; since values are variable length (and
54  * keys effectively are variable length too, due to packing) we can't do random
55  * access without building up additional in memory tables in the btree node read
56  * path.
57  *
58  * BTREE KEYS (struct bkey):
59  *
60  * The various btrees share a common format for the key - so as to avoid
61  * switching in fastpath lookup/comparison code - but define their own
62  * structures for the key values.
63  *
64  * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65  * size is just under 2k. The common part also contains a type tag for the
66  * value, and a format field indicating whether the key is packed or not (and
67  * also meant to allow adding new key fields in the future, if desired).
68  *
69  * bkeys, when stored within a btree node, may also be packed. In that case, the
70  * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71  * be generous with field sizes in the common part of the key format (64 bit
72  * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73  */
74 
75 #include <asm/types.h>
76 #include <asm/byteorder.h>
77 #include <linux/kernel.h>
78 #include <linux/uuid.h>
79 #include <uapi/linux/magic.h>
80 #include "vstructs.h"
81 
82 #ifdef __KERNEL__
83 typedef uuid_t __uuid_t;
84 #endif
85 
86 #define BITMASK(name, type, field, offset, end)				\
87 static const __maybe_unused unsigned	name##_OFFSET = offset;		\
88 static const __maybe_unused unsigned	name##_BITS = (end - offset);	\
89 									\
90 static inline __u64 name(const type *k)					\
91 {									\
92 	return (k->field >> offset) & ~(~0ULL << (end - offset));	\
93 }									\
94 									\
95 static inline void SET_##name(type *k, __u64 v)				\
96 {									\
97 	k->field &= ~(~(~0ULL << (end - offset)) << offset);		\
98 	k->field |= (v & ~(~0ULL << (end - offset))) << offset;		\
99 }
100 
101 #define LE_BITMASK(_bits, name, type, field, offset, end)		\
102 static const __maybe_unused unsigned	name##_OFFSET = offset;		\
103 static const __maybe_unused unsigned	name##_BITS = (end - offset);	\
104 static const __maybe_unused __u##_bits	name##_MAX = (1ULL << (end - offset)) - 1;\
105 									\
106 static inline __u64 name(const type *k)					\
107 {									\
108 	return (__le##_bits##_to_cpu(k->field) >> offset) &		\
109 		~(~0ULL << (end - offset));				\
110 }									\
111 									\
112 static inline void SET_##name(type *k, __u64 v)				\
113 {									\
114 	__u##_bits new = __le##_bits##_to_cpu(k->field);		\
115 									\
116 	new &= ~(~(~0ULL << (end - offset)) << offset);			\
117 	new |= (v & ~(~0ULL << (end - offset))) << offset;		\
118 	k->field = __cpu_to_le##_bits(new);				\
119 }
120 
121 #define LE16_BITMASK(n, t, f, o, e)	LE_BITMASK(16, n, t, f, o, e)
122 #define LE32_BITMASK(n, t, f, o, e)	LE_BITMASK(32, n, t, f, o, e)
123 #define LE64_BITMASK(n, t, f, o, e)	LE_BITMASK(64, n, t, f, o, e)
124 
125 struct bkey_format {
126 	__u8		key_u64s;
127 	__u8		nr_fields;
128 	/* One unused slot for now: */
129 	__u8		bits_per_field[6];
130 	__le64		field_offset[6];
131 };
132 
133 /* Btree keys - all units are in sectors */
134 
135 struct bpos {
136 	/*
137 	 * Word order matches machine byte order - btree code treats a bpos as a
138 	 * single large integer, for search/comparison purposes
139 	 *
140 	 * Note that wherever a bpos is embedded in another on disk data
141 	 * structure, it has to be byte swabbed when reading in metadata that
142 	 * wasn't written in native endian order:
143 	 */
144 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
145 	__u32		snapshot;
146 	__u64		offset;
147 	__u64		inode;
148 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
149 	__u64		inode;
150 	__u64		offset;		/* Points to end of extent - sectors */
151 	__u32		snapshot;
152 #else
153 #error edit for your odd byteorder.
154 #endif
155 } __packed
156 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
157 __aligned(4)
158 #endif
159 ;
160 
161 #define KEY_INODE_MAX			((__u64)~0ULL)
162 #define KEY_OFFSET_MAX			((__u64)~0ULL)
163 #define KEY_SNAPSHOT_MAX		((__u32)~0U)
164 #define KEY_SIZE_MAX			((__u32)~0U)
165 
166 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
167 {
168 	return (struct bpos) {
169 		.inode		= inode,
170 		.offset		= offset,
171 		.snapshot	= snapshot,
172 	};
173 }
174 
175 #define POS_MIN				SPOS(0, 0, 0)
176 #define POS_MAX				SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
177 #define SPOS_MAX			SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
178 #define POS(_inode, _offset)		SPOS(_inode, _offset, 0)
179 
180 /* Empty placeholder struct, for container_of() */
181 struct bch_val {
182 	__u64		__nothing[0];
183 };
184 
185 struct bversion {
186 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
187 	__u64		lo;
188 	__u32		hi;
189 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
190 	__u32		hi;
191 	__u64		lo;
192 #endif
193 } __packed
194 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
195 __aligned(4)
196 #endif
197 ;
198 
199 struct bkey {
200 	/* Size of combined key and value, in u64s */
201 	__u8		u64s;
202 
203 	/* Format of key (0 for format local to btree node) */
204 #if defined(__LITTLE_ENDIAN_BITFIELD)
205 	__u8		format:7,
206 			needs_whiteout:1;
207 #elif defined (__BIG_ENDIAN_BITFIELD)
208 	__u8		needs_whiteout:1,
209 			format:7;
210 #else
211 #error edit for your odd byteorder.
212 #endif
213 
214 	/* Type of the value */
215 	__u8		type;
216 
217 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
218 	__u8		pad[1];
219 
220 	struct bversion	version;
221 	__u32		size;		/* extent size, in sectors */
222 	struct bpos	p;
223 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
224 	struct bpos	p;
225 	__u32		size;		/* extent size, in sectors */
226 	struct bversion	version;
227 
228 	__u8		pad[1];
229 #endif
230 } __packed
231 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
232 /*
233  * The big-endian version of bkey can't be compiled by rustc with the "aligned"
234  * attr since it doesn't allow types to have both "packed" and "aligned" attrs.
235  * So for Rust compatibility, don't include this. It can be included in the LE
236  * version because the "packed" attr is redundant in that case.
237  *
238  * History: (quoting Kent)
239  *
240  * Specifically, when i was designing bkey, I wanted the header to be no
241  * bigger than necessary so that bkey_packed could use the rest. That means that
242  * decently offten extent keys will fit into only 8 bytes, instead of spilling over
243  * to 16.
244  *
245  * But packed_bkey treats the part after the header - the packed section -
246  * as a single multi word, variable length integer. And bkey, the unpacked
247  * version, is just a special case version of a bkey_packed; all the packed
248  * bkey code will work on keys in any packed format, the in-memory
249  * representation of an unpacked key also is just one type of packed key...
250  *
251  * So that constrains the key part of a bkig endian bkey to start right
252  * after the header.
253  *
254  * If we ever do a bkey_v2 and need to expand the hedaer by another byte for
255  * some reason - that will clean up this wart.
256  */
257 __aligned(8)
258 #endif
259 ;
260 
261 struct bkey_packed {
262 	__u64		_data[0];
263 
264 	/* Size of combined key and value, in u64s */
265 	__u8		u64s;
266 
267 	/* Format of key (0 for format local to btree node) */
268 
269 	/*
270 	 * XXX: next incompat on disk format change, switch format and
271 	 * needs_whiteout - bkey_packed() will be cheaper if format is the high
272 	 * bits of the bitfield
273 	 */
274 #if defined(__LITTLE_ENDIAN_BITFIELD)
275 	__u8		format:7,
276 			needs_whiteout:1;
277 #elif defined (__BIG_ENDIAN_BITFIELD)
278 	__u8		needs_whiteout:1,
279 			format:7;
280 #endif
281 
282 	/* Type of the value */
283 	__u8		type;
284 	__u8		key_start[0];
285 
286 	/*
287 	 * We copy bkeys with struct assignment in various places, and while
288 	 * that shouldn't be done with packed bkeys we can't disallow it in C,
289 	 * and it's legal to cast a bkey to a bkey_packed  - so padding it out
290 	 * to the same size as struct bkey should hopefully be safest.
291 	 */
292 	__u8		pad[sizeof(struct bkey) - 3];
293 } __packed __aligned(8);
294 
295 typedef struct {
296 	__le64			lo;
297 	__le64			hi;
298 } bch_le128;
299 
300 #define BKEY_U64s			(sizeof(struct bkey) / sizeof(__u64))
301 #define BKEY_U64s_MAX			U8_MAX
302 #define BKEY_VAL_U64s_MAX		(BKEY_U64s_MAX - BKEY_U64s)
303 
304 #define KEY_PACKED_BITS_START		24
305 
306 #define KEY_FORMAT_LOCAL_BTREE		0
307 #define KEY_FORMAT_CURRENT		1
308 
309 enum bch_bkey_fields {
310 	BKEY_FIELD_INODE,
311 	BKEY_FIELD_OFFSET,
312 	BKEY_FIELD_SNAPSHOT,
313 	BKEY_FIELD_SIZE,
314 	BKEY_FIELD_VERSION_HI,
315 	BKEY_FIELD_VERSION_LO,
316 	BKEY_NR_FIELDS,
317 };
318 
319 #define bkey_format_field(name, field)					\
320 	[BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
321 
322 #define BKEY_FORMAT_CURRENT						\
323 ((struct bkey_format) {							\
324 	.key_u64s	= BKEY_U64s,					\
325 	.nr_fields	= BKEY_NR_FIELDS,				\
326 	.bits_per_field = {						\
327 		bkey_format_field(INODE,	p.inode),		\
328 		bkey_format_field(OFFSET,	p.offset),		\
329 		bkey_format_field(SNAPSHOT,	p.snapshot),		\
330 		bkey_format_field(SIZE,		size),			\
331 		bkey_format_field(VERSION_HI,	version.hi),		\
332 		bkey_format_field(VERSION_LO,	version.lo),		\
333 	},								\
334 })
335 
336 /* bkey with inline value */
337 struct bkey_i {
338 	__u64			_data[0];
339 
340 	struct bkey	k;
341 	struct bch_val	v;
342 };
343 
344 #define POS_KEY(_pos)							\
345 ((struct bkey) {							\
346 	.u64s		= BKEY_U64s,					\
347 	.format		= KEY_FORMAT_CURRENT,				\
348 	.p		= _pos,						\
349 })
350 
351 #define KEY(_inode, _offset, _size)					\
352 ((struct bkey) {							\
353 	.u64s		= BKEY_U64s,					\
354 	.format		= KEY_FORMAT_CURRENT,				\
355 	.p		= POS(_inode, _offset),				\
356 	.size		= _size,					\
357 })
358 
359 static inline void bkey_init(struct bkey *k)
360 {
361 	*k = KEY(0, 0, 0);
362 }
363 
364 #define bkey_bytes(_k)		((_k)->u64s * sizeof(__u64))
365 
366 #define __BKEY_PADDED(key, pad)					\
367 	struct bkey_i key; __u64 key ## _pad[pad]
368 
369 /*
370  * - DELETED keys are used internally to mark keys that should be ignored but
371  *   override keys in composition order.  Their version number is ignored.
372  *
373  * - DISCARDED keys indicate that the data is all 0s because it has been
374  *   discarded. DISCARDs may have a version; if the version is nonzero the key
375  *   will be persistent, otherwise the key will be dropped whenever the btree
376  *   node is rewritten (like DELETED keys).
377  *
378  * - ERROR: any read of the data returns a read error, as the data was lost due
379  *   to a failing device. Like DISCARDED keys, they can be removed (overridden)
380  *   by new writes or cluster-wide GC. Node repair can also overwrite them with
381  *   the same or a more recent version number, but not with an older version
382  *   number.
383  *
384  * - WHITEOUT: for hash table btrees
385  */
386 #define BCH_BKEY_TYPES()				\
387 	x(deleted,		0)			\
388 	x(whiteout,		1)			\
389 	x(error,		2)			\
390 	x(cookie,		3)			\
391 	x(hash_whiteout,	4)			\
392 	x(btree_ptr,		5)			\
393 	x(extent,		6)			\
394 	x(reservation,		7)			\
395 	x(inode,		8)			\
396 	x(inode_generation,	9)			\
397 	x(dirent,		10)			\
398 	x(xattr,		11)			\
399 	x(alloc,		12)			\
400 	x(quota,		13)			\
401 	x(stripe,		14)			\
402 	x(reflink_p,		15)			\
403 	x(reflink_v,		16)			\
404 	x(inline_data,		17)			\
405 	x(btree_ptr_v2,		18)			\
406 	x(indirect_inline_data,	19)			\
407 	x(alloc_v2,		20)			\
408 	x(subvolume,		21)			\
409 	x(snapshot,		22)			\
410 	x(inode_v2,		23)			\
411 	x(alloc_v3,		24)			\
412 	x(set,			25)			\
413 	x(lru,			26)			\
414 	x(alloc_v4,		27)			\
415 	x(backpointer,		28)			\
416 	x(inode_v3,		29)			\
417 	x(bucket_gens,		30)			\
418 	x(snapshot_tree,	31)			\
419 	x(logged_op_truncate,	32)			\
420 	x(logged_op_finsert,	33)			\
421 	x(accounting,		34)
422 
423 enum bch_bkey_type {
424 #define x(name, nr) KEY_TYPE_##name	= nr,
425 	BCH_BKEY_TYPES()
426 #undef x
427 	KEY_TYPE_MAX,
428 };
429 
430 struct bch_deleted {
431 	struct bch_val		v;
432 };
433 
434 struct bch_whiteout {
435 	struct bch_val		v;
436 };
437 
438 struct bch_error {
439 	struct bch_val		v;
440 };
441 
442 struct bch_cookie {
443 	struct bch_val		v;
444 	__le64			cookie;
445 };
446 
447 struct bch_hash_whiteout {
448 	struct bch_val		v;
449 };
450 
451 struct bch_set {
452 	struct bch_val		v;
453 };
454 
455 /* 128 bits, sufficient for cryptographic MACs: */
456 struct bch_csum {
457 	__le64			lo;
458 	__le64			hi;
459 } __packed __aligned(8);
460 
461 struct bch_backpointer {
462 	struct bch_val		v;
463 	__u8			btree_id;
464 	__u8			level;
465 	__u8			data_type;
466 	__u64			bucket_offset:40;
467 	__u32			bucket_len;
468 	struct bpos		pos;
469 } __packed __aligned(8);
470 
471 /* Optional/variable size superblock sections: */
472 
473 struct bch_sb_field {
474 	__u64			_data[0];
475 	__le32			u64s;
476 	__le32			type;
477 };
478 
479 #define BCH_SB_FIELDS()				\
480 	x(journal,			0)	\
481 	x(members_v1,			1)	\
482 	x(crypt,			2)	\
483 	x(replicas_v0,			3)	\
484 	x(quota,			4)	\
485 	x(disk_groups,			5)	\
486 	x(clean,			6)	\
487 	x(replicas,			7)	\
488 	x(journal_seq_blacklist,	8)	\
489 	x(journal_v2,			9)	\
490 	x(counters,			10)	\
491 	x(members_v2,			11)	\
492 	x(errors,			12)	\
493 	x(ext,				13)	\
494 	x(downgrade,			14)
495 
496 #include "alloc_background_format.h"
497 #include "dirent_format.h"
498 #include "disk_accounting_format.h"
499 #include "disk_groups_format.h"
500 #include "extents_format.h"
501 #include "ec_format.h"
502 #include "dirent_format.h"
503 #include "disk_groups_format.h"
504 #include "inode_format.h"
505 #include "journal_seq_blacklist_format.h"
506 #include "logged_ops_format.h"
507 #include "lru_format.h"
508 #include "quota_format.h"
509 #include "reflink_format.h"
510 #include "replicas_format.h"
511 #include "snapshot_format.h"
512 #include "subvolume_format.h"
513 #include "sb-counters_format.h"
514 #include "sb-downgrade_format.h"
515 #include "sb-errors_format.h"
516 #include "sb-members_format.h"
517 #include "xattr_format.h"
518 
519 enum bch_sb_field_type {
520 #define x(f, nr)	BCH_SB_FIELD_##f = nr,
521 	BCH_SB_FIELDS()
522 #undef x
523 	BCH_SB_FIELD_NR
524 };
525 
526 /*
527  * Most superblock fields are replicated in all device's superblocks - a few are
528  * not:
529  */
530 #define BCH_SINGLE_DEVICE_SB_FIELDS		\
531 	((1U << BCH_SB_FIELD_journal)|		\
532 	 (1U << BCH_SB_FIELD_journal_v2))
533 
534 /* BCH_SB_FIELD_journal: */
535 
536 struct bch_sb_field_journal {
537 	struct bch_sb_field	field;
538 	__le64			buckets[];
539 };
540 
541 struct bch_sb_field_journal_v2 {
542 	struct bch_sb_field	field;
543 
544 	struct bch_sb_field_journal_v2_entry {
545 		__le64		start;
546 		__le64		nr;
547 	}			d[];
548 };
549 
550 /* BCH_SB_FIELD_crypt: */
551 
552 struct nonce {
553 	__le32			d[4];
554 };
555 
556 struct bch_key {
557 	__le64			key[4];
558 };
559 
560 #define BCH_KEY_MAGIC					\
561 	(((__u64) 'b' <<  0)|((__u64) 'c' <<  8)|		\
562 	 ((__u64) 'h' << 16)|((__u64) '*' << 24)|		\
563 	 ((__u64) '*' << 32)|((__u64) 'k' << 40)|		\
564 	 ((__u64) 'e' << 48)|((__u64) 'y' << 56))
565 
566 struct bch_encrypted_key {
567 	__le64			magic;
568 	struct bch_key		key;
569 };
570 
571 /*
572  * If this field is present in the superblock, it stores an encryption key which
573  * is used encrypt all other data/metadata. The key will normally be encrypted
574  * with the key userspace provides, but if encryption has been turned off we'll
575  * just store the master key unencrypted in the superblock so we can access the
576  * previously encrypted data.
577  */
578 struct bch_sb_field_crypt {
579 	struct bch_sb_field	field;
580 
581 	__le64			flags;
582 	__le64			kdf_flags;
583 	struct bch_encrypted_key key;
584 };
585 
586 LE64_BITMASK(BCH_CRYPT_KDF_TYPE,	struct bch_sb_field_crypt, flags, 0, 4);
587 
588 enum bch_kdf_types {
589 	BCH_KDF_SCRYPT		= 0,
590 	BCH_KDF_NR		= 1,
591 };
592 
593 /* stored as base 2 log of scrypt params: */
594 LE64_BITMASK(BCH_KDF_SCRYPT_N,	struct bch_sb_field_crypt, kdf_flags,  0, 16);
595 LE64_BITMASK(BCH_KDF_SCRYPT_R,	struct bch_sb_field_crypt, kdf_flags, 16, 32);
596 LE64_BITMASK(BCH_KDF_SCRYPT_P,	struct bch_sb_field_crypt, kdf_flags, 32, 48);
597 
598 /*
599  * On clean shutdown, store btree roots and current journal sequence number in
600  * the superblock:
601  */
602 struct jset_entry {
603 	__le16			u64s;
604 	__u8			btree_id;
605 	__u8			level;
606 	__u8			type; /* designates what this jset holds */
607 	__u8			pad[3];
608 
609 	struct bkey_i		start[0];
610 	__u64			_data[];
611 };
612 
613 struct bch_sb_field_clean {
614 	struct bch_sb_field	field;
615 
616 	__le32			flags;
617 	__le16			_read_clock; /* no longer used */
618 	__le16			_write_clock;
619 	__le64			journal_seq;
620 
621 	struct jset_entry	start[0];
622 	__u64			_data[];
623 };
624 
625 struct bch_sb_field_ext {
626 	struct bch_sb_field	field;
627 	__le64			recovery_passes_required[2];
628 	__le64			errors_silent[8];
629 	__le64			btrees_lost_data;
630 };
631 
632 /* Superblock: */
633 
634 /*
635  * New versioning scheme:
636  * One common version number for all on disk data structures - superblock, btree
637  * nodes, journal entries
638  */
639 #define BCH_VERSION_MAJOR(_v)		((__u16) ((_v) >> 10))
640 #define BCH_VERSION_MINOR(_v)		((__u16) ((_v) & ~(~0U << 10)))
641 #define BCH_VERSION(_major, _minor)	(((_major) << 10)|(_minor) << 0)
642 
643 /*
644  * field 1:		version name
645  * field 2:		BCH_VERSION(major, minor)
646  * field 3:		recovery passess required on upgrade
647  */
648 #define BCH_METADATA_VERSIONS()						\
649 	x(bkey_renumber,		BCH_VERSION(0, 10))		\
650 	x(inode_btree_change,		BCH_VERSION(0, 11))		\
651 	x(snapshot,			BCH_VERSION(0, 12))		\
652 	x(inode_backpointers,		BCH_VERSION(0, 13))		\
653 	x(btree_ptr_sectors_written,	BCH_VERSION(0, 14))		\
654 	x(snapshot_2,			BCH_VERSION(0, 15))		\
655 	x(reflink_p_fix,		BCH_VERSION(0, 16))		\
656 	x(subvol_dirent,		BCH_VERSION(0, 17))		\
657 	x(inode_v2,			BCH_VERSION(0, 18))		\
658 	x(freespace,			BCH_VERSION(0, 19))		\
659 	x(alloc_v4,			BCH_VERSION(0, 20))		\
660 	x(new_data_types,		BCH_VERSION(0, 21))		\
661 	x(backpointers,			BCH_VERSION(0, 22))		\
662 	x(inode_v3,			BCH_VERSION(0, 23))		\
663 	x(unwritten_extents,		BCH_VERSION(0, 24))		\
664 	x(bucket_gens,			BCH_VERSION(0, 25))		\
665 	x(lru_v2,			BCH_VERSION(0, 26))		\
666 	x(fragmentation_lru,		BCH_VERSION(0, 27))		\
667 	x(no_bps_in_alloc_keys,		BCH_VERSION(0, 28))		\
668 	x(snapshot_trees,		BCH_VERSION(0, 29))		\
669 	x(major_minor,			BCH_VERSION(1,  0))		\
670 	x(snapshot_skiplists,		BCH_VERSION(1,  1))		\
671 	x(deleted_inodes,		BCH_VERSION(1,  2))		\
672 	x(rebalance_work,		BCH_VERSION(1,  3))		\
673 	x(member_seq,			BCH_VERSION(1,  4))		\
674 	x(subvolume_fs_parent,		BCH_VERSION(1,  5))		\
675 	x(btree_subvolume_children,	BCH_VERSION(1,  6))		\
676 	x(mi_btree_bitmap,		BCH_VERSION(1,  7))		\
677 	x(bucket_stripe_sectors,	BCH_VERSION(1,  8))		\
678 	x(disk_accounting_v2,		BCH_VERSION(1,  9))
679 
680 enum bcachefs_metadata_version {
681 	bcachefs_metadata_version_min = 9,
682 #define x(t, n)	bcachefs_metadata_version_##t = n,
683 	BCH_METADATA_VERSIONS()
684 #undef x
685 	bcachefs_metadata_version_max
686 };
687 
688 static const __maybe_unused
689 unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work;
690 
691 #define bcachefs_metadata_version_current	(bcachefs_metadata_version_max - 1)
692 
693 #define BCH_SB_SECTOR			8
694 
695 #define BCH_SB_LAYOUT_SIZE_BITS_MAX	16 /* 32 MB */
696 
697 struct bch_sb_layout {
698 	__uuid_t		magic;	/* bcachefs superblock UUID */
699 	__u8			layout_type;
700 	__u8			sb_max_size_bits; /* base 2 of 512 byte sectors */
701 	__u8			nr_superblocks;
702 	__u8			pad[5];
703 	__le64			sb_offset[61];
704 } __packed __aligned(8);
705 
706 #define BCH_SB_LAYOUT_SECTOR	7
707 
708 /*
709  * @offset	- sector where this sb was written
710  * @version	- on disk format version
711  * @version_min	- Oldest metadata version this filesystem contains; so we can
712  *		  safely drop compatibility code and refuse to mount filesystems
713  *		  we'd need it for
714  * @magic	- identifies as a bcachefs superblock (BCHFS_MAGIC)
715  * @seq		- incremented each time superblock is written
716  * @uuid	- used for generating various magic numbers and identifying
717  *                member devices, never changes
718  * @user_uuid	- user visible UUID, may be changed
719  * @label	- filesystem label
720  * @seq		- identifies most recent superblock, incremented each time
721  *		  superblock is written
722  * @features	- enabled incompatible features
723  */
724 struct bch_sb {
725 	struct bch_csum		csum;
726 	__le16			version;
727 	__le16			version_min;
728 	__le16			pad[2];
729 	__uuid_t		magic;
730 	__uuid_t		uuid;
731 	__uuid_t		user_uuid;
732 	__u8			label[BCH_SB_LABEL_SIZE];
733 	__le64			offset;
734 	__le64			seq;
735 
736 	__le16			block_size;
737 	__u8			dev_idx;
738 	__u8			nr_devices;
739 	__le32			u64s;
740 
741 	__le64			time_base_lo;
742 	__le32			time_base_hi;
743 	__le32			time_precision;
744 
745 	__le64			flags[7];
746 	__le64			write_time;
747 	__le64			features[2];
748 	__le64			compat[2];
749 
750 	struct bch_sb_layout	layout;
751 
752 	struct bch_sb_field	start[0];
753 	__le64			_data[];
754 } __packed __aligned(8);
755 
756 /*
757  * Flags:
758  * BCH_SB_INITALIZED	- set on first mount
759  * BCH_SB_CLEAN		- did we shut down cleanly? Just a hint, doesn't affect
760  *			  behaviour of mount/recovery path:
761  * BCH_SB_INODE_32BIT	- limit inode numbers to 32 bits
762  * BCH_SB_128_BIT_MACS	- 128 bit macs instead of 80
763  * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
764  *			   DATA/META_CSUM_TYPE. Also indicates encryption
765  *			   algorithm in use, if/when we get more than one
766  */
767 
768 LE16_BITMASK(BCH_SB_BLOCK_SIZE,		struct bch_sb, block_size, 0, 16);
769 
770 LE64_BITMASK(BCH_SB_INITIALIZED,	struct bch_sb, flags[0],  0,  1);
771 LE64_BITMASK(BCH_SB_CLEAN,		struct bch_sb, flags[0],  1,  2);
772 LE64_BITMASK(BCH_SB_CSUM_TYPE,		struct bch_sb, flags[0],  2,  8);
773 LE64_BITMASK(BCH_SB_ERROR_ACTION,	struct bch_sb, flags[0],  8, 12);
774 
775 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE,	struct bch_sb, flags[0], 12, 28);
776 
777 LE64_BITMASK(BCH_SB_GC_RESERVE,		struct bch_sb, flags[0], 28, 33);
778 LE64_BITMASK(BCH_SB_ROOT_RESERVE,	struct bch_sb, flags[0], 33, 40);
779 
780 LE64_BITMASK(BCH_SB_META_CSUM_TYPE,	struct bch_sb, flags[0], 40, 44);
781 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE,	struct bch_sb, flags[0], 44, 48);
782 
783 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT,	struct bch_sb, flags[0], 48, 52);
784 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT,	struct bch_sb, flags[0], 52, 56);
785 
786 LE64_BITMASK(BCH_SB_POSIX_ACL,		struct bch_sb, flags[0], 56, 57);
787 LE64_BITMASK(BCH_SB_USRQUOTA,		struct bch_sb, flags[0], 57, 58);
788 LE64_BITMASK(BCH_SB_GRPQUOTA,		struct bch_sb, flags[0], 58, 59);
789 LE64_BITMASK(BCH_SB_PRJQUOTA,		struct bch_sb, flags[0], 59, 60);
790 
791 LE64_BITMASK(BCH_SB_HAS_ERRORS,		struct bch_sb, flags[0], 60, 61);
792 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
793 
794 LE64_BITMASK(BCH_SB_BIG_ENDIAN,		struct bch_sb, flags[0], 62, 63);
795 
796 LE64_BITMASK(BCH_SB_STR_HASH_TYPE,	struct bch_sb, flags[1],  0,  4);
797 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1],  4,  8);
798 LE64_BITMASK(BCH_SB_INODE_32BIT,	struct bch_sb, flags[1],  8,  9);
799 
800 LE64_BITMASK(BCH_SB_128_BIT_MACS,	struct bch_sb, flags[1],  9, 10);
801 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE,	struct bch_sb, flags[1], 10, 14);
802 
803 /*
804  * Max size of an extent that may require bouncing to read or write
805  * (checksummed, compressed): 64k
806  */
807 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
808 					struct bch_sb, flags[1], 14, 20);
809 
810 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ,	struct bch_sb, flags[1], 20, 24);
811 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ,	struct bch_sb, flags[1], 24, 28);
812 
813 LE64_BITMASK(BCH_SB_PROMOTE_TARGET,	struct bch_sb, flags[1], 28, 40);
814 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET,	struct bch_sb, flags[1], 40, 52);
815 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET,	struct bch_sb, flags[1], 52, 64);
816 
817 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO,
818 					struct bch_sb, flags[2],  0,  4);
819 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES,	struct bch_sb, flags[2],  4, 64);
820 
821 LE64_BITMASK(BCH_SB_ERASURE_CODE,	struct bch_sb, flags[3],  0, 16);
822 LE64_BITMASK(BCH_SB_METADATA_TARGET,	struct bch_sb, flags[3], 16, 28);
823 LE64_BITMASK(BCH_SB_SHARD_INUMS,	struct bch_sb, flags[3], 28, 29);
824 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
825 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
826 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
827 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
828 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
829 LE64_BITMASK(BCH_SB_NOCOW,		struct bch_sb, flags[4], 33, 34);
830 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE,	struct bch_sb, flags[4], 34, 54);
831 LE64_BITMASK(BCH_SB_VERSION_UPGRADE,	struct bch_sb, flags[4], 54, 56);
832 
833 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60);
834 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI,
835 					struct bch_sb, flags[4], 60, 64);
836 
837 LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE,
838 					struct bch_sb, flags[5],  0, 16);
839 
840 static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb)
841 {
842 	return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4);
843 }
844 
845 static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
846 {
847 	SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v);
848 	SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4);
849 }
850 
851 static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb)
852 {
853 	return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) |
854 		(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4);
855 }
856 
857 static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
858 {
859 	SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v);
860 	SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4);
861 }
862 
863 /*
864  * Features:
865  *
866  * journal_seq_blacklist_v3:	gates BCH_SB_FIELD_journal_seq_blacklist
867  * reflink:			gates KEY_TYPE_reflink
868  * inline_data:			gates KEY_TYPE_inline_data
869  * new_siphash:			gates BCH_STR_HASH_siphash
870  * new_extent_overwrite:	gates BTREE_NODE_NEW_EXTENT_OVERWRITE
871  */
872 #define BCH_SB_FEATURES()			\
873 	x(lz4,				0)	\
874 	x(gzip,				1)	\
875 	x(zstd,				2)	\
876 	x(atomic_nlink,			3)	\
877 	x(ec,				4)	\
878 	x(journal_seq_blacklist_v3,	5)	\
879 	x(reflink,			6)	\
880 	x(new_siphash,			7)	\
881 	x(inline_data,			8)	\
882 	x(new_extent_overwrite,		9)	\
883 	x(incompressible,		10)	\
884 	x(btree_ptr_v2,			11)	\
885 	x(extents_above_btree_updates,	12)	\
886 	x(btree_updates_journalled,	13)	\
887 	x(reflink_inline_data,		14)	\
888 	x(new_varint,			15)	\
889 	x(journal_no_flush,		16)	\
890 	x(alloc_v2,			17)	\
891 	x(extents_across_btree_nodes,	18)
892 
893 #define BCH_SB_FEATURES_ALWAYS				\
894 	((1ULL << BCH_FEATURE_new_extent_overwrite)|	\
895 	 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
896 	 (1ULL << BCH_FEATURE_btree_updates_journalled)|\
897 	 (1ULL << BCH_FEATURE_alloc_v2)|\
898 	 (1ULL << BCH_FEATURE_extents_across_btree_nodes))
899 
900 #define BCH_SB_FEATURES_ALL				\
901 	(BCH_SB_FEATURES_ALWAYS|			\
902 	 (1ULL << BCH_FEATURE_new_siphash)|		\
903 	 (1ULL << BCH_FEATURE_btree_ptr_v2)|		\
904 	 (1ULL << BCH_FEATURE_new_varint)|		\
905 	 (1ULL << BCH_FEATURE_journal_no_flush))
906 
907 enum bch_sb_feature {
908 #define x(f, n) BCH_FEATURE_##f,
909 	BCH_SB_FEATURES()
910 #undef x
911 	BCH_FEATURE_NR,
912 };
913 
914 #define BCH_SB_COMPAT()					\
915 	x(alloc_info,				0)	\
916 	x(alloc_metadata,			1)	\
917 	x(extents_above_btree_updates_done,	2)	\
918 	x(bformat_overflow_done,		3)
919 
920 enum bch_sb_compat {
921 #define x(f, n) BCH_COMPAT_##f,
922 	BCH_SB_COMPAT()
923 #undef x
924 	BCH_COMPAT_NR,
925 };
926 
927 /* options: */
928 
929 #define BCH_VERSION_UPGRADE_OPTS()	\
930 	x(compatible,		0)	\
931 	x(incompatible,		1)	\
932 	x(none,			2)
933 
934 enum bch_version_upgrade_opts {
935 #define x(t, n) BCH_VERSION_UPGRADE_##t = n,
936 	BCH_VERSION_UPGRADE_OPTS()
937 #undef x
938 };
939 
940 #define BCH_REPLICAS_MAX		4U
941 
942 #define BCH_BKEY_PTRS_MAX		16U
943 
944 #define BCH_ERROR_ACTIONS()		\
945 	x(continue,		0)	\
946 	x(fix_safe,		1)	\
947 	x(panic,		2)	\
948 	x(ro,			3)
949 
950 enum bch_error_actions {
951 #define x(t, n) BCH_ON_ERROR_##t = n,
952 	BCH_ERROR_ACTIONS()
953 #undef x
954 	BCH_ON_ERROR_NR
955 };
956 
957 #define BCH_STR_HASH_TYPES()		\
958 	x(crc32c,		0)	\
959 	x(crc64,		1)	\
960 	x(siphash_old,		2)	\
961 	x(siphash,		3)
962 
963 enum bch_str_hash_type {
964 #define x(t, n) BCH_STR_HASH_##t = n,
965 	BCH_STR_HASH_TYPES()
966 #undef x
967 	BCH_STR_HASH_NR
968 };
969 
970 #define BCH_STR_HASH_OPTS()		\
971 	x(crc32c,		0)	\
972 	x(crc64,		1)	\
973 	x(siphash,		2)
974 
975 enum bch_str_hash_opts {
976 #define x(t, n) BCH_STR_HASH_OPT_##t = n,
977 	BCH_STR_HASH_OPTS()
978 #undef x
979 	BCH_STR_HASH_OPT_NR
980 };
981 
982 #define BCH_CSUM_TYPES()			\
983 	x(none,				0)	\
984 	x(crc32c_nonzero,		1)	\
985 	x(crc64_nonzero,		2)	\
986 	x(chacha20_poly1305_80,		3)	\
987 	x(chacha20_poly1305_128,	4)	\
988 	x(crc32c,			5)	\
989 	x(crc64,			6)	\
990 	x(xxhash,			7)
991 
992 enum bch_csum_type {
993 #define x(t, n) BCH_CSUM_##t = n,
994 	BCH_CSUM_TYPES()
995 #undef x
996 	BCH_CSUM_NR
997 };
998 
999 static const __maybe_unused unsigned bch_crc_bytes[] = {
1000 	[BCH_CSUM_none]				= 0,
1001 	[BCH_CSUM_crc32c_nonzero]		= 4,
1002 	[BCH_CSUM_crc32c]			= 4,
1003 	[BCH_CSUM_crc64_nonzero]		= 8,
1004 	[BCH_CSUM_crc64]			= 8,
1005 	[BCH_CSUM_xxhash]			= 8,
1006 	[BCH_CSUM_chacha20_poly1305_80]		= 10,
1007 	[BCH_CSUM_chacha20_poly1305_128]	= 16,
1008 };
1009 
1010 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
1011 {
1012 	switch (type) {
1013 	case BCH_CSUM_chacha20_poly1305_80:
1014 	case BCH_CSUM_chacha20_poly1305_128:
1015 		return true;
1016 	default:
1017 		return false;
1018 	}
1019 }
1020 
1021 #define BCH_CSUM_OPTS()			\
1022 	x(none,			0)	\
1023 	x(crc32c,		1)	\
1024 	x(crc64,		2)	\
1025 	x(xxhash,		3)
1026 
1027 enum bch_csum_opts {
1028 #define x(t, n) BCH_CSUM_OPT_##t = n,
1029 	BCH_CSUM_OPTS()
1030 #undef x
1031 	BCH_CSUM_OPT_NR
1032 };
1033 
1034 #define BCH_COMPRESSION_TYPES()		\
1035 	x(none,			0)	\
1036 	x(lz4_old,		1)	\
1037 	x(gzip,			2)	\
1038 	x(lz4,			3)	\
1039 	x(zstd,			4)	\
1040 	x(incompressible,	5)
1041 
1042 enum bch_compression_type {
1043 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1044 	BCH_COMPRESSION_TYPES()
1045 #undef x
1046 	BCH_COMPRESSION_TYPE_NR
1047 };
1048 
1049 #define BCH_COMPRESSION_OPTS()		\
1050 	x(none,		0)		\
1051 	x(lz4,		1)		\
1052 	x(gzip,		2)		\
1053 	x(zstd,		3)
1054 
1055 enum bch_compression_opts {
1056 #define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1057 	BCH_COMPRESSION_OPTS()
1058 #undef x
1059 	BCH_COMPRESSION_OPT_NR
1060 };
1061 
1062 /*
1063  * Magic numbers
1064  *
1065  * The various other data structures have their own magic numbers, which are
1066  * xored with the first part of the cache set's UUID
1067  */
1068 
1069 #define BCACHE_MAGIC							\
1070 	UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca,				\
1071 		  0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
1072 #define BCHFS_MAGIC							\
1073 	UUID_INIT(0xc68573f6, 0x66ce, 0x90a9,				\
1074 		  0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
1075 
1076 #define BCACHEFS_STATFS_MAGIC		BCACHEFS_SUPER_MAGIC
1077 
1078 #define JSET_MAGIC		__cpu_to_le64(0x245235c1a3625032ULL)
1079 #define BSET_MAGIC		__cpu_to_le64(0x90135c78b99e07f5ULL)
1080 
1081 static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
1082 {
1083 	__le64 ret;
1084 
1085 	memcpy(&ret, &sb->uuid, sizeof(ret));
1086 	return ret;
1087 }
1088 
1089 static inline __u64 __jset_magic(struct bch_sb *sb)
1090 {
1091 	return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
1092 }
1093 
1094 static inline __u64 __bset_magic(struct bch_sb *sb)
1095 {
1096 	return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
1097 }
1098 
1099 /* Journal */
1100 
1101 #define JSET_KEYS_U64s	(sizeof(struct jset_entry) / sizeof(__u64))
1102 
1103 #define BCH_JSET_ENTRY_TYPES()			\
1104 	x(btree_keys,		0)		\
1105 	x(btree_root,		1)		\
1106 	x(prio_ptrs,		2)		\
1107 	x(blacklist,		3)		\
1108 	x(blacklist_v2,		4)		\
1109 	x(usage,		5)		\
1110 	x(data_usage,		6)		\
1111 	x(clock,		7)		\
1112 	x(dev_usage,		8)		\
1113 	x(log,			9)		\
1114 	x(overwrite,		10)		\
1115 	x(write_buffer_keys,	11)		\
1116 	x(datetime,		12)
1117 
1118 enum bch_jset_entry_type {
1119 #define x(f, nr)	BCH_JSET_ENTRY_##f	= nr,
1120 	BCH_JSET_ENTRY_TYPES()
1121 #undef x
1122 	BCH_JSET_ENTRY_NR
1123 };
1124 
1125 static inline bool jset_entry_is_key(struct jset_entry *e)
1126 {
1127 	switch (e->type) {
1128 	case BCH_JSET_ENTRY_btree_keys:
1129 	case BCH_JSET_ENTRY_btree_root:
1130 	case BCH_JSET_ENTRY_write_buffer_keys:
1131 		return true;
1132 	}
1133 
1134 	return false;
1135 }
1136 
1137 /*
1138  * Journal sequence numbers can be blacklisted: bsets record the max sequence
1139  * number of all the journal entries they contain updates for, so that on
1140  * recovery we can ignore those bsets that contain index updates newer that what
1141  * made it into the journal.
1142  *
1143  * This means that we can't reuse that journal_seq - we have to skip it, and
1144  * then record that we skipped it so that the next time we crash and recover we
1145  * don't think there was a missing journal entry.
1146  */
1147 struct jset_entry_blacklist {
1148 	struct jset_entry	entry;
1149 	__le64			seq;
1150 };
1151 
1152 struct jset_entry_blacklist_v2 {
1153 	struct jset_entry	entry;
1154 	__le64			start;
1155 	__le64			end;
1156 };
1157 
1158 #define BCH_FS_USAGE_TYPES()			\
1159 	x(reserved,		0)		\
1160 	x(inodes,		1)		\
1161 	x(key_version,		2)
1162 
1163 enum bch_fs_usage_type {
1164 #define x(f, nr)	BCH_FS_USAGE_##f	= nr,
1165 	BCH_FS_USAGE_TYPES()
1166 #undef x
1167 	BCH_FS_USAGE_NR
1168 };
1169 
1170 struct jset_entry_usage {
1171 	struct jset_entry	entry;
1172 	__le64			v;
1173 } __packed;
1174 
1175 struct jset_entry_data_usage {
1176 	struct jset_entry	entry;
1177 	__le64			v;
1178 	struct bch_replicas_entry_v1 r;
1179 } __packed;
1180 
1181 struct jset_entry_clock {
1182 	struct jset_entry	entry;
1183 	__u8			rw;
1184 	__u8			pad[7];
1185 	__le64			time;
1186 } __packed;
1187 
1188 struct jset_entry_dev_usage_type {
1189 	__le64			buckets;
1190 	__le64			sectors;
1191 	__le64			fragmented;
1192 } __packed;
1193 
1194 struct jset_entry_dev_usage {
1195 	struct jset_entry	entry;
1196 	__le32			dev;
1197 	__u32			pad;
1198 
1199 	__le64			_buckets_ec;		/* No longer used */
1200 	__le64			_buckets_unavailable;	/* No longer used */
1201 
1202 	struct jset_entry_dev_usage_type d[];
1203 };
1204 
1205 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
1206 {
1207 	return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
1208 		sizeof(struct jset_entry_dev_usage_type);
1209 }
1210 
1211 struct jset_entry_log {
1212 	struct jset_entry	entry;
1213 	u8			d[];
1214 } __packed __aligned(8);
1215 
1216 struct jset_entry_datetime {
1217 	struct jset_entry	entry;
1218 	__le64			seconds;
1219 } __packed __aligned(8);
1220 
1221 /*
1222  * On disk format for a journal entry:
1223  * seq is monotonically increasing; every journal entry has its own unique
1224  * sequence number.
1225  *
1226  * last_seq is the oldest journal entry that still has keys the btree hasn't
1227  * flushed to disk yet.
1228  *
1229  * version is for on disk format changes.
1230  */
1231 struct jset {
1232 	struct bch_csum		csum;
1233 
1234 	__le64			magic;
1235 	__le64			seq;
1236 	__le32			version;
1237 	__le32			flags;
1238 
1239 	__le32			u64s; /* size of d[] in u64s */
1240 
1241 	__u8			encrypted_start[0];
1242 
1243 	__le16			_read_clock; /* no longer used */
1244 	__le16			_write_clock;
1245 
1246 	/* Sequence number of oldest dirty journal entry */
1247 	__le64			last_seq;
1248 
1249 
1250 	struct jset_entry	start[0];
1251 	__u64			_data[];
1252 } __packed __aligned(8);
1253 
1254 LE32_BITMASK(JSET_CSUM_TYPE,	struct jset, flags, 0, 4);
1255 LE32_BITMASK(JSET_BIG_ENDIAN,	struct jset, flags, 4, 5);
1256 LE32_BITMASK(JSET_NO_FLUSH,	struct jset, flags, 5, 6);
1257 
1258 #define BCH_JOURNAL_BUCKETS_MIN		8
1259 
1260 /* Btree: */
1261 
1262 enum btree_id_flags {
1263 	BTREE_ID_EXTENTS	= BIT(0),
1264 	BTREE_ID_SNAPSHOTS	= BIT(1),
1265 	BTREE_ID_SNAPSHOT_FIELD	= BIT(2),
1266 	BTREE_ID_DATA		= BIT(3),
1267 };
1268 
1269 #define BCH_BTREE_IDS()								\
1270 	x(extents,		0,	BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\
1271 	  BIT_ULL(KEY_TYPE_whiteout)|						\
1272 	  BIT_ULL(KEY_TYPE_error)|						\
1273 	  BIT_ULL(KEY_TYPE_cookie)|						\
1274 	  BIT_ULL(KEY_TYPE_extent)|						\
1275 	  BIT_ULL(KEY_TYPE_reservation)|					\
1276 	  BIT_ULL(KEY_TYPE_reflink_p)|						\
1277 	  BIT_ULL(KEY_TYPE_inline_data))					\
1278 	x(inodes,		1,	BTREE_ID_SNAPSHOTS,			\
1279 	  BIT_ULL(KEY_TYPE_whiteout)|						\
1280 	  BIT_ULL(KEY_TYPE_inode)|						\
1281 	  BIT_ULL(KEY_TYPE_inode_v2)|						\
1282 	  BIT_ULL(KEY_TYPE_inode_v3)|						\
1283 	  BIT_ULL(KEY_TYPE_inode_generation))					\
1284 	x(dirents,		2,	BTREE_ID_SNAPSHOTS,			\
1285 	  BIT_ULL(KEY_TYPE_whiteout)|						\
1286 	  BIT_ULL(KEY_TYPE_hash_whiteout)|					\
1287 	  BIT_ULL(KEY_TYPE_dirent))						\
1288 	x(xattrs,		3,	BTREE_ID_SNAPSHOTS,			\
1289 	  BIT_ULL(KEY_TYPE_whiteout)|						\
1290 	  BIT_ULL(KEY_TYPE_cookie)|						\
1291 	  BIT_ULL(KEY_TYPE_hash_whiteout)|					\
1292 	  BIT_ULL(KEY_TYPE_xattr))						\
1293 	x(alloc,		4,	0,					\
1294 	  BIT_ULL(KEY_TYPE_alloc)|						\
1295 	  BIT_ULL(KEY_TYPE_alloc_v2)|						\
1296 	  BIT_ULL(KEY_TYPE_alloc_v3)|						\
1297 	  BIT_ULL(KEY_TYPE_alloc_v4))						\
1298 	x(quotas,		5,	0,					\
1299 	  BIT_ULL(KEY_TYPE_quota))						\
1300 	x(stripes,		6,	0,					\
1301 	  BIT_ULL(KEY_TYPE_stripe))						\
1302 	x(reflink,		7,	BTREE_ID_EXTENTS|BTREE_ID_DATA,		\
1303 	  BIT_ULL(KEY_TYPE_reflink_v)|						\
1304 	  BIT_ULL(KEY_TYPE_indirect_inline_data)|				\
1305 	  BIT_ULL(KEY_TYPE_error))						\
1306 	x(subvolumes,		8,	0,					\
1307 	  BIT_ULL(KEY_TYPE_subvolume))						\
1308 	x(snapshots,		9,	0,					\
1309 	  BIT_ULL(KEY_TYPE_snapshot))						\
1310 	x(lru,			10,	0,					\
1311 	  BIT_ULL(KEY_TYPE_set))						\
1312 	x(freespace,		11,	BTREE_ID_EXTENTS,			\
1313 	  BIT_ULL(KEY_TYPE_set))						\
1314 	x(need_discard,		12,	0,					\
1315 	  BIT_ULL(KEY_TYPE_set))						\
1316 	x(backpointers,		13,	0,					\
1317 	  BIT_ULL(KEY_TYPE_backpointer))					\
1318 	x(bucket_gens,		14,	0,					\
1319 	  BIT_ULL(KEY_TYPE_bucket_gens))					\
1320 	x(snapshot_trees,	15,	0,					\
1321 	  BIT_ULL(KEY_TYPE_snapshot_tree))					\
1322 	x(deleted_inodes,	16,	BTREE_ID_SNAPSHOT_FIELD,		\
1323 	  BIT_ULL(KEY_TYPE_set))						\
1324 	x(logged_ops,		17,	0,					\
1325 	  BIT_ULL(KEY_TYPE_logged_op_truncate)|					\
1326 	  BIT_ULL(KEY_TYPE_logged_op_finsert))					\
1327 	x(rebalance_work,	18,	BTREE_ID_SNAPSHOT_FIELD,		\
1328 	  BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie))			\
1329 	x(subvolume_children,	19,	0,					\
1330 	  BIT_ULL(KEY_TYPE_set))						\
1331 	x(accounting,		20,	BTREE_ID_SNAPSHOT_FIELD,		\
1332 	  BIT_ULL(KEY_TYPE_accounting))						\
1333 
1334 enum btree_id {
1335 #define x(name, nr, ...) BTREE_ID_##name = nr,
1336 	BCH_BTREE_IDS()
1337 #undef x
1338 	BTREE_ID_NR
1339 };
1340 
1341 /*
1342  * Maximum number of btrees that we will _ever_ have under the current scheme,
1343  * where we refer to them with 64 bit bitfields - and we also need a bit for
1344  * the interior btree node type:
1345  */
1346 #define BTREE_ID_NR_MAX		63
1347 
1348 static inline bool btree_id_is_alloc(enum btree_id id)
1349 {
1350 	switch (id) {
1351 	case BTREE_ID_alloc:
1352 	case BTREE_ID_backpointers:
1353 	case BTREE_ID_need_discard:
1354 	case BTREE_ID_freespace:
1355 	case BTREE_ID_bucket_gens:
1356 		return true;
1357 	default:
1358 		return false;
1359 	}
1360 }
1361 
1362 #define BTREE_MAX_DEPTH		4U
1363 
1364 /* Btree nodes */
1365 
1366 /*
1367  * Btree nodes
1368  *
1369  * On disk a btree node is a list/log of these; within each set the keys are
1370  * sorted
1371  */
1372 struct bset {
1373 	__le64			seq;
1374 
1375 	/*
1376 	 * Highest journal entry this bset contains keys for.
1377 	 * If on recovery we don't see that journal entry, this bset is ignored:
1378 	 * this allows us to preserve the order of all index updates after a
1379 	 * crash, since the journal records a total order of all index updates
1380 	 * and anything that didn't make it to the journal doesn't get used.
1381 	 */
1382 	__le64			journal_seq;
1383 
1384 	__le32			flags;
1385 	__le16			version;
1386 	__le16			u64s; /* count of d[] in u64s */
1387 
1388 	struct bkey_packed	start[0];
1389 	__u64			_data[];
1390 } __packed __aligned(8);
1391 
1392 LE32_BITMASK(BSET_CSUM_TYPE,	struct bset, flags, 0, 4);
1393 
1394 LE32_BITMASK(BSET_BIG_ENDIAN,	struct bset, flags, 4, 5);
1395 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
1396 				struct bset, flags, 5, 6);
1397 
1398 /* Sector offset within the btree node: */
1399 LE32_BITMASK(BSET_OFFSET,	struct bset, flags, 16, 32);
1400 
1401 struct btree_node {
1402 	struct bch_csum		csum;
1403 	__le64			magic;
1404 
1405 	/* this flags field is encrypted, unlike bset->flags: */
1406 	__le64			flags;
1407 
1408 	/* Closed interval: */
1409 	struct bpos		min_key;
1410 	struct bpos		max_key;
1411 	struct bch_extent_ptr	_ptr; /* not used anymore */
1412 	struct bkey_format	format;
1413 
1414 	union {
1415 	struct bset		keys;
1416 	struct {
1417 		__u8		pad[22];
1418 		__le16		u64s;
1419 		__u64		_data[0];
1420 
1421 	};
1422 	};
1423 } __packed __aligned(8);
1424 
1425 LE64_BITMASK(BTREE_NODE_ID_LO,	struct btree_node, flags,  0,  4);
1426 LE64_BITMASK(BTREE_NODE_LEVEL,	struct btree_node, flags,  4,  8);
1427 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
1428 				struct btree_node, flags,  8,  9);
1429 LE64_BITMASK(BTREE_NODE_ID_HI,	struct btree_node, flags,  9, 25);
1430 /* 25-32 unused */
1431 LE64_BITMASK(BTREE_NODE_SEQ,	struct btree_node, flags, 32, 64);
1432 
1433 static inline __u64 BTREE_NODE_ID(struct btree_node *n)
1434 {
1435 	return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4);
1436 }
1437 
1438 static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v)
1439 {
1440 	SET_BTREE_NODE_ID_LO(n, v);
1441 	SET_BTREE_NODE_ID_HI(n, v >> 4);
1442 }
1443 
1444 struct btree_node_entry {
1445 	struct bch_csum		csum;
1446 
1447 	union {
1448 	struct bset		keys;
1449 	struct {
1450 		__u8		pad[22];
1451 		__le16		u64s;
1452 		__u64		_data[0];
1453 	};
1454 	};
1455 } __packed __aligned(8);
1456 
1457 #endif /* _BCACHEFS_FORMAT_H */
1458