1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_FORMAT_H 3 #define _BCACHEFS_FORMAT_H 4 5 /* 6 * bcachefs on disk data structures 7 * 8 * OVERVIEW: 9 * 10 * There are three main types of on disk data structures in bcachefs (this is 11 * reduced from 5 in bcache) 12 * 13 * - superblock 14 * - journal 15 * - btree 16 * 17 * The btree is the primary structure; most metadata exists as keys in the 18 * various btrees. There are only a small number of btrees, they're not 19 * sharded - we have one btree for extents, another for inodes, et cetera. 20 * 21 * SUPERBLOCK: 22 * 23 * The superblock contains the location of the journal, the list of devices in 24 * the filesystem, and in general any metadata we need in order to decide 25 * whether we can start a filesystem or prior to reading the journal/btree 26 * roots. 27 * 28 * The superblock is extensible, and most of the contents of the superblock are 29 * in variable length, type tagged fields; see struct bch_sb_field. 30 * 31 * Backup superblocks do not reside in a fixed location; also, superblocks do 32 * not have a fixed size. To locate backup superblocks we have struct 33 * bch_sb_layout; we store a copy of this inside every superblock, and also 34 * before the first superblock. 35 * 36 * JOURNAL: 37 * 38 * The journal primarily records btree updates in the order they occurred; 39 * journal replay consists of just iterating over all the keys in the open 40 * journal entries and re-inserting them into the btrees. 41 * 42 * The journal also contains entry types for the btree roots, and blacklisted 43 * journal sequence numbers (see journal_seq_blacklist.c). 44 * 45 * BTREE: 46 * 47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically 48 * 128k-256k) and log structured. We use struct btree_node for writing the first 49 * entry in a given node (offset 0), and struct btree_node_entry for all 50 * subsequent writes. 51 * 52 * After the header, btree node entries contain a list of keys in sorted order. 53 * Values are stored inline with the keys; since values are variable length (and 54 * keys effectively are variable length too, due to packing) we can't do random 55 * access without building up additional in memory tables in the btree node read 56 * path. 57 * 58 * BTREE KEYS (struct bkey): 59 * 60 * The various btrees share a common format for the key - so as to avoid 61 * switching in fastpath lookup/comparison code - but define their own 62 * structures for the key values. 63 * 64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max 65 * size is just under 2k. The common part also contains a type tag for the 66 * value, and a format field indicating whether the key is packed or not (and 67 * also meant to allow adding new key fields in the future, if desired). 68 * 69 * bkeys, when stored within a btree node, may also be packed. In that case, the 70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can 71 * be generous with field sizes in the common part of the key format (64 bit 72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. 73 */ 74 75 #include <asm/types.h> 76 #include <asm/byteorder.h> 77 #include <linux/kernel.h> 78 #include <linux/uuid.h> 79 #include "vstructs.h" 80 81 #ifdef __KERNEL__ 82 typedef uuid_t __uuid_t; 83 #endif 84 85 #define BITMASK(name, type, field, offset, end) \ 86 static const __maybe_unused unsigned name##_OFFSET = offset; \ 87 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 88 \ 89 static inline __u64 name(const type *k) \ 90 { \ 91 return (k->field >> offset) & ~(~0ULL << (end - offset)); \ 92 } \ 93 \ 94 static inline void SET_##name(type *k, __u64 v) \ 95 { \ 96 k->field &= ~(~(~0ULL << (end - offset)) << offset); \ 97 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \ 98 } 99 100 #define LE_BITMASK(_bits, name, type, field, offset, end) \ 101 static const __maybe_unused unsigned name##_OFFSET = offset; \ 102 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 103 static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\ 104 \ 105 static inline __u64 name(const type *k) \ 106 { \ 107 return (__le##_bits##_to_cpu(k->field) >> offset) & \ 108 ~(~0ULL << (end - offset)); \ 109 } \ 110 \ 111 static inline void SET_##name(type *k, __u64 v) \ 112 { \ 113 __u##_bits new = __le##_bits##_to_cpu(k->field); \ 114 \ 115 new &= ~(~(~0ULL << (end - offset)) << offset); \ 116 new |= (v & ~(~0ULL << (end - offset))) << offset; \ 117 k->field = __cpu_to_le##_bits(new); \ 118 } 119 120 #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) 121 #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) 122 #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) 123 124 struct bkey_format { 125 __u8 key_u64s; 126 __u8 nr_fields; 127 /* One unused slot for now: */ 128 __u8 bits_per_field[6]; 129 __le64 field_offset[6]; 130 }; 131 132 /* Btree keys - all units are in sectors */ 133 134 struct bpos { 135 /* 136 * Word order matches machine byte order - btree code treats a bpos as a 137 * single large integer, for search/comparison purposes 138 * 139 * Note that wherever a bpos is embedded in another on disk data 140 * structure, it has to be byte swabbed when reading in metadata that 141 * wasn't written in native endian order: 142 */ 143 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 144 __u32 snapshot; 145 __u64 offset; 146 __u64 inode; 147 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 148 __u64 inode; 149 __u64 offset; /* Points to end of extent - sectors */ 150 __u32 snapshot; 151 #else 152 #error edit for your odd byteorder. 153 #endif 154 } __packed 155 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 156 __aligned(4) 157 #endif 158 ; 159 160 #define KEY_INODE_MAX ((__u64)~0ULL) 161 #define KEY_OFFSET_MAX ((__u64)~0ULL) 162 #define KEY_SNAPSHOT_MAX ((__u32)~0U) 163 #define KEY_SIZE_MAX ((__u32)~0U) 164 165 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot) 166 { 167 return (struct bpos) { 168 .inode = inode, 169 .offset = offset, 170 .snapshot = snapshot, 171 }; 172 } 173 174 #define POS_MIN SPOS(0, 0, 0) 175 #define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0) 176 #define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX) 177 #define POS(_inode, _offset) SPOS(_inode, _offset, 0) 178 179 /* Empty placeholder struct, for container_of() */ 180 struct bch_val { 181 __u64 __nothing[0]; 182 }; 183 184 struct bversion { 185 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 186 __u64 lo; 187 __u32 hi; 188 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 189 __u32 hi; 190 __u64 lo; 191 #endif 192 } __packed 193 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 194 __aligned(4) 195 #endif 196 ; 197 198 struct bkey { 199 /* Size of combined key and value, in u64s */ 200 __u8 u64s; 201 202 /* Format of key (0 for format local to btree node) */ 203 #if defined(__LITTLE_ENDIAN_BITFIELD) 204 __u8 format:7, 205 needs_whiteout:1; 206 #elif defined (__BIG_ENDIAN_BITFIELD) 207 __u8 needs_whiteout:1, 208 format:7; 209 #else 210 #error edit for your odd byteorder. 211 #endif 212 213 /* Type of the value */ 214 __u8 type; 215 216 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 217 __u8 pad[1]; 218 219 struct bversion version; 220 __u32 size; /* extent size, in sectors */ 221 struct bpos p; 222 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 223 struct bpos p; 224 __u32 size; /* extent size, in sectors */ 225 struct bversion version; 226 227 __u8 pad[1]; 228 #endif 229 } __packed 230 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 231 /* 232 * The big-endian version of bkey can't be compiled by rustc with the "aligned" 233 * attr since it doesn't allow types to have both "packed" and "aligned" attrs. 234 * So for Rust compatibility, don't include this. It can be included in the LE 235 * version because the "packed" attr is redundant in that case. 236 * 237 * History: (quoting Kent) 238 * 239 * Specifically, when i was designing bkey, I wanted the header to be no 240 * bigger than necessary so that bkey_packed could use the rest. That means that 241 * decently offten extent keys will fit into only 8 bytes, instead of spilling over 242 * to 16. 243 * 244 * But packed_bkey treats the part after the header - the packed section - 245 * as a single multi word, variable length integer. And bkey, the unpacked 246 * version, is just a special case version of a bkey_packed; all the packed 247 * bkey code will work on keys in any packed format, the in-memory 248 * representation of an unpacked key also is just one type of packed key... 249 * 250 * So that constrains the key part of a bkig endian bkey to start right 251 * after the header. 252 * 253 * If we ever do a bkey_v2 and need to expand the hedaer by another byte for 254 * some reason - that will clean up this wart. 255 */ 256 __aligned(8) 257 #endif 258 ; 259 260 struct bkey_packed { 261 __u64 _data[0]; 262 263 /* Size of combined key and value, in u64s */ 264 __u8 u64s; 265 266 /* Format of key (0 for format local to btree node) */ 267 268 /* 269 * XXX: next incompat on disk format change, switch format and 270 * needs_whiteout - bkey_packed() will be cheaper if format is the high 271 * bits of the bitfield 272 */ 273 #if defined(__LITTLE_ENDIAN_BITFIELD) 274 __u8 format:7, 275 needs_whiteout:1; 276 #elif defined (__BIG_ENDIAN_BITFIELD) 277 __u8 needs_whiteout:1, 278 format:7; 279 #endif 280 281 /* Type of the value */ 282 __u8 type; 283 __u8 key_start[0]; 284 285 /* 286 * We copy bkeys with struct assignment in various places, and while 287 * that shouldn't be done with packed bkeys we can't disallow it in C, 288 * and it's legal to cast a bkey to a bkey_packed - so padding it out 289 * to the same size as struct bkey should hopefully be safest. 290 */ 291 __u8 pad[sizeof(struct bkey) - 3]; 292 } __packed __aligned(8); 293 294 typedef struct { 295 __le64 lo; 296 __le64 hi; 297 } bch_le128; 298 299 #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) 300 #define BKEY_U64s_MAX U8_MAX 301 #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) 302 303 #define KEY_PACKED_BITS_START 24 304 305 #define KEY_FORMAT_LOCAL_BTREE 0 306 #define KEY_FORMAT_CURRENT 1 307 308 enum bch_bkey_fields { 309 BKEY_FIELD_INODE, 310 BKEY_FIELD_OFFSET, 311 BKEY_FIELD_SNAPSHOT, 312 BKEY_FIELD_SIZE, 313 BKEY_FIELD_VERSION_HI, 314 BKEY_FIELD_VERSION_LO, 315 BKEY_NR_FIELDS, 316 }; 317 318 #define bkey_format_field(name, field) \ 319 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) 320 321 #define BKEY_FORMAT_CURRENT \ 322 ((struct bkey_format) { \ 323 .key_u64s = BKEY_U64s, \ 324 .nr_fields = BKEY_NR_FIELDS, \ 325 .bits_per_field = { \ 326 bkey_format_field(INODE, p.inode), \ 327 bkey_format_field(OFFSET, p.offset), \ 328 bkey_format_field(SNAPSHOT, p.snapshot), \ 329 bkey_format_field(SIZE, size), \ 330 bkey_format_field(VERSION_HI, version.hi), \ 331 bkey_format_field(VERSION_LO, version.lo), \ 332 }, \ 333 }) 334 335 /* bkey with inline value */ 336 struct bkey_i { 337 __u64 _data[0]; 338 339 struct bkey k; 340 struct bch_val v; 341 }; 342 343 #define POS_KEY(_pos) \ 344 ((struct bkey) { \ 345 .u64s = BKEY_U64s, \ 346 .format = KEY_FORMAT_CURRENT, \ 347 .p = _pos, \ 348 }) 349 350 #define KEY(_inode, _offset, _size) \ 351 ((struct bkey) { \ 352 .u64s = BKEY_U64s, \ 353 .format = KEY_FORMAT_CURRENT, \ 354 .p = POS(_inode, _offset), \ 355 .size = _size, \ 356 }) 357 358 static inline void bkey_init(struct bkey *k) 359 { 360 *k = KEY(0, 0, 0); 361 } 362 363 #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) 364 365 #define __BKEY_PADDED(key, pad) \ 366 struct bkey_i key; __u64 key ## _pad[pad] 367 368 /* 369 * - DELETED keys are used internally to mark keys that should be ignored but 370 * override keys in composition order. Their version number is ignored. 371 * 372 * - DISCARDED keys indicate that the data is all 0s because it has been 373 * discarded. DISCARDs may have a version; if the version is nonzero the key 374 * will be persistent, otherwise the key will be dropped whenever the btree 375 * node is rewritten (like DELETED keys). 376 * 377 * - ERROR: any read of the data returns a read error, as the data was lost due 378 * to a failing device. Like DISCARDED keys, they can be removed (overridden) 379 * by new writes or cluster-wide GC. Node repair can also overwrite them with 380 * the same or a more recent version number, but not with an older version 381 * number. 382 * 383 * - WHITEOUT: for hash table btrees 384 */ 385 #define BCH_BKEY_TYPES() \ 386 x(deleted, 0) \ 387 x(whiteout, 1) \ 388 x(error, 2) \ 389 x(cookie, 3) \ 390 x(hash_whiteout, 4) \ 391 x(btree_ptr, 5) \ 392 x(extent, 6) \ 393 x(reservation, 7) \ 394 x(inode, 8) \ 395 x(inode_generation, 9) \ 396 x(dirent, 10) \ 397 x(xattr, 11) \ 398 x(alloc, 12) \ 399 x(quota, 13) \ 400 x(stripe, 14) \ 401 x(reflink_p, 15) \ 402 x(reflink_v, 16) \ 403 x(inline_data, 17) \ 404 x(btree_ptr_v2, 18) \ 405 x(indirect_inline_data, 19) \ 406 x(alloc_v2, 20) \ 407 x(subvolume, 21) \ 408 x(snapshot, 22) \ 409 x(inode_v2, 23) \ 410 x(alloc_v3, 24) \ 411 x(set, 25) \ 412 x(lru, 26) \ 413 x(alloc_v4, 27) \ 414 x(backpointer, 28) \ 415 x(inode_v3, 29) \ 416 x(bucket_gens, 30) \ 417 x(snapshot_tree, 31) \ 418 x(logged_op_truncate, 32) \ 419 x(logged_op_finsert, 33) 420 421 enum bch_bkey_type { 422 #define x(name, nr) KEY_TYPE_##name = nr, 423 BCH_BKEY_TYPES() 424 #undef x 425 KEY_TYPE_MAX, 426 }; 427 428 struct bch_deleted { 429 struct bch_val v; 430 }; 431 432 struct bch_whiteout { 433 struct bch_val v; 434 }; 435 436 struct bch_error { 437 struct bch_val v; 438 }; 439 440 struct bch_cookie { 441 struct bch_val v; 442 __le64 cookie; 443 }; 444 445 struct bch_hash_whiteout { 446 struct bch_val v; 447 }; 448 449 struct bch_set { 450 struct bch_val v; 451 }; 452 453 /* 128 bits, sufficient for cryptographic MACs: */ 454 struct bch_csum { 455 __le64 lo; 456 __le64 hi; 457 } __packed __aligned(8); 458 459 struct bch_backpointer { 460 struct bch_val v; 461 __u8 btree_id; 462 __u8 level; 463 __u8 data_type; 464 __u64 bucket_offset:40; 465 __u32 bucket_len; 466 struct bpos pos; 467 } __packed __aligned(8); 468 469 /* LRU btree: */ 470 471 struct bch_lru { 472 struct bch_val v; 473 __le64 idx; 474 } __packed __aligned(8); 475 476 #define LRU_ID_STRIPES (1U << 16) 477 478 /* Optional/variable size superblock sections: */ 479 480 struct bch_sb_field { 481 __u64 _data[0]; 482 __le32 u64s; 483 __le32 type; 484 }; 485 486 #define BCH_SB_FIELDS() \ 487 x(journal, 0) \ 488 x(members_v1, 1) \ 489 x(crypt, 2) \ 490 x(replicas_v0, 3) \ 491 x(quota, 4) \ 492 x(disk_groups, 5) \ 493 x(clean, 6) \ 494 x(replicas, 7) \ 495 x(journal_seq_blacklist, 8) \ 496 x(journal_v2, 9) \ 497 x(counters, 10) \ 498 x(members_v2, 11) \ 499 x(errors, 12) \ 500 x(ext, 13) \ 501 x(downgrade, 14) 502 503 #include "alloc_background_format.h" 504 #include "extents_format.h" 505 #include "reflink_format.h" 506 #include "ec_format.h" 507 #include "inode_format.h" 508 #include "dirent_format.h" 509 #include "xattr_format.h" 510 #include "quota_format.h" 511 #include "logged_ops_format.h" 512 #include "snapshot_format.h" 513 #include "subvolume_format.h" 514 #include "sb-counters_format.h" 515 516 enum bch_sb_field_type { 517 #define x(f, nr) BCH_SB_FIELD_##f = nr, 518 BCH_SB_FIELDS() 519 #undef x 520 BCH_SB_FIELD_NR 521 }; 522 523 /* 524 * Most superblock fields are replicated in all device's superblocks - a few are 525 * not: 526 */ 527 #define BCH_SINGLE_DEVICE_SB_FIELDS \ 528 ((1U << BCH_SB_FIELD_journal)| \ 529 (1U << BCH_SB_FIELD_journal_v2)) 530 531 /* BCH_SB_FIELD_journal: */ 532 533 struct bch_sb_field_journal { 534 struct bch_sb_field field; 535 __le64 buckets[]; 536 }; 537 538 struct bch_sb_field_journal_v2 { 539 struct bch_sb_field field; 540 541 struct bch_sb_field_journal_v2_entry { 542 __le64 start; 543 __le64 nr; 544 } d[]; 545 }; 546 547 /* BCH_SB_FIELD_members_v1: */ 548 549 #define BCH_MIN_NR_NBUCKETS (1 << 6) 550 551 #define BCH_IOPS_MEASUREMENTS() \ 552 x(seqread, 0) \ 553 x(seqwrite, 1) \ 554 x(randread, 2) \ 555 x(randwrite, 3) 556 557 enum bch_iops_measurement { 558 #define x(t, n) BCH_IOPS_##t = n, 559 BCH_IOPS_MEASUREMENTS() 560 #undef x 561 BCH_IOPS_NR 562 }; 563 564 #define BCH_MEMBER_ERROR_TYPES() \ 565 x(read, 0) \ 566 x(write, 1) \ 567 x(checksum, 2) 568 569 enum bch_member_error_type { 570 #define x(t, n) BCH_MEMBER_ERROR_##t = n, 571 BCH_MEMBER_ERROR_TYPES() 572 #undef x 573 BCH_MEMBER_ERROR_NR 574 }; 575 576 struct bch_member { 577 __uuid_t uuid; 578 __le64 nbuckets; /* device size */ 579 __le16 first_bucket; /* index of first bucket used */ 580 __le16 bucket_size; /* sectors */ 581 __u8 btree_bitmap_shift; 582 __u8 pad[3]; 583 __le64 last_mount; /* time_t */ 584 585 __le64 flags; 586 __le32 iops[4]; 587 __le64 errors[BCH_MEMBER_ERROR_NR]; 588 __le64 errors_at_reset[BCH_MEMBER_ERROR_NR]; 589 __le64 errors_reset_time; 590 __le64 seq; 591 __le64 btree_allocated_bitmap; 592 }; 593 594 /* 595 * This limit comes from the bucket_gens array - it's a single allocation, and 596 * kernel allocation are limited to INT_MAX 597 */ 598 #define BCH_MEMBER_NBUCKETS_MAX (INT_MAX - 64) 599 600 #define BCH_MEMBER_V1_BYTES 56 601 602 LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags, 0, 4) 603 /* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */ 604 LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags, 14, 15) 605 LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags, 15, 20) 606 LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags, 20, 28) 607 LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags, 28, 30) 608 LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED, 609 struct bch_member, flags, 30, 31) 610 611 #if 0 612 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); 613 LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); 614 #endif 615 616 #define BCH_MEMBER_STATES() \ 617 x(rw, 0) \ 618 x(ro, 1) \ 619 x(failed, 2) \ 620 x(spare, 3) 621 622 enum bch_member_state { 623 #define x(t, n) BCH_MEMBER_STATE_##t = n, 624 BCH_MEMBER_STATES() 625 #undef x 626 BCH_MEMBER_STATE_NR 627 }; 628 629 struct bch_sb_field_members_v1 { 630 struct bch_sb_field field; 631 struct bch_member _members[]; //Members are now variable size 632 }; 633 634 struct bch_sb_field_members_v2 { 635 struct bch_sb_field field; 636 __le16 member_bytes; //size of single member entry 637 u8 pad[6]; 638 struct bch_member _members[]; 639 }; 640 641 /* BCH_SB_FIELD_crypt: */ 642 643 struct nonce { 644 __le32 d[4]; 645 }; 646 647 struct bch_key { 648 __le64 key[4]; 649 }; 650 651 #define BCH_KEY_MAGIC \ 652 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \ 653 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \ 654 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \ 655 ((__u64) 'e' << 48)|((__u64) 'y' << 56)) 656 657 struct bch_encrypted_key { 658 __le64 magic; 659 struct bch_key key; 660 }; 661 662 /* 663 * If this field is present in the superblock, it stores an encryption key which 664 * is used encrypt all other data/metadata. The key will normally be encrypted 665 * with the key userspace provides, but if encryption has been turned off we'll 666 * just store the master key unencrypted in the superblock so we can access the 667 * previously encrypted data. 668 */ 669 struct bch_sb_field_crypt { 670 struct bch_sb_field field; 671 672 __le64 flags; 673 __le64 kdf_flags; 674 struct bch_encrypted_key key; 675 }; 676 677 LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); 678 679 enum bch_kdf_types { 680 BCH_KDF_SCRYPT = 0, 681 BCH_KDF_NR = 1, 682 }; 683 684 /* stored as base 2 log of scrypt params: */ 685 LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); 686 LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); 687 LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); 688 689 /* BCH_SB_FIELD_replicas: */ 690 691 #define BCH_DATA_TYPES() \ 692 x(free, 0) \ 693 x(sb, 1) \ 694 x(journal, 2) \ 695 x(btree, 3) \ 696 x(user, 4) \ 697 x(cached, 5) \ 698 x(parity, 6) \ 699 x(stripe, 7) \ 700 x(need_gc_gens, 8) \ 701 x(need_discard, 9) 702 703 enum bch_data_type { 704 #define x(t, n) BCH_DATA_##t, 705 BCH_DATA_TYPES() 706 #undef x 707 BCH_DATA_NR 708 }; 709 710 static inline bool data_type_is_empty(enum bch_data_type type) 711 { 712 switch (type) { 713 case BCH_DATA_free: 714 case BCH_DATA_need_gc_gens: 715 case BCH_DATA_need_discard: 716 return true; 717 default: 718 return false; 719 } 720 } 721 722 static inline bool data_type_is_hidden(enum bch_data_type type) 723 { 724 switch (type) { 725 case BCH_DATA_sb: 726 case BCH_DATA_journal: 727 return true; 728 default: 729 return false; 730 } 731 } 732 733 struct bch_replicas_entry_v0 { 734 __u8 data_type; 735 __u8 nr_devs; 736 __u8 devs[]; 737 } __packed; 738 739 struct bch_sb_field_replicas_v0 { 740 struct bch_sb_field field; 741 struct bch_replicas_entry_v0 entries[]; 742 } __packed __aligned(8); 743 744 struct bch_replicas_entry_v1 { 745 __u8 data_type; 746 __u8 nr_devs; 747 __u8 nr_required; 748 __u8 devs[]; 749 } __packed; 750 751 #define replicas_entry_bytes(_i) \ 752 (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs) 753 754 struct bch_sb_field_replicas { 755 struct bch_sb_field field; 756 struct bch_replicas_entry_v1 entries[]; 757 } __packed __aligned(8); 758 759 /* BCH_SB_FIELD_disk_groups: */ 760 761 #define BCH_SB_LABEL_SIZE 32 762 763 struct bch_disk_group { 764 __u8 label[BCH_SB_LABEL_SIZE]; 765 __le64 flags[2]; 766 } __packed __aligned(8); 767 768 LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1) 769 LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6) 770 LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24) 771 772 struct bch_sb_field_disk_groups { 773 struct bch_sb_field field; 774 struct bch_disk_group entries[]; 775 } __packed __aligned(8); 776 777 /* 778 * On clean shutdown, store btree roots and current journal sequence number in 779 * the superblock: 780 */ 781 struct jset_entry { 782 __le16 u64s; 783 __u8 btree_id; 784 __u8 level; 785 __u8 type; /* designates what this jset holds */ 786 __u8 pad[3]; 787 788 struct bkey_i start[0]; 789 __u64 _data[]; 790 }; 791 792 struct bch_sb_field_clean { 793 struct bch_sb_field field; 794 795 __le32 flags; 796 __le16 _read_clock; /* no longer used */ 797 __le16 _write_clock; 798 __le64 journal_seq; 799 800 struct jset_entry start[0]; 801 __u64 _data[]; 802 }; 803 804 struct journal_seq_blacklist_entry { 805 __le64 start; 806 __le64 end; 807 }; 808 809 struct bch_sb_field_journal_seq_blacklist { 810 struct bch_sb_field field; 811 struct journal_seq_blacklist_entry start[]; 812 }; 813 814 struct bch_sb_field_errors { 815 struct bch_sb_field field; 816 struct bch_sb_field_error_entry { 817 __le64 v; 818 __le64 last_error_time; 819 } entries[]; 820 }; 821 822 LE64_BITMASK(BCH_SB_ERROR_ENTRY_ID, struct bch_sb_field_error_entry, v, 0, 16); 823 LE64_BITMASK(BCH_SB_ERROR_ENTRY_NR, struct bch_sb_field_error_entry, v, 16, 64); 824 825 struct bch_sb_field_ext { 826 struct bch_sb_field field; 827 __le64 recovery_passes_required[2]; 828 __le64 errors_silent[8]; 829 __le64 btrees_lost_data; 830 }; 831 832 struct bch_sb_field_downgrade_entry { 833 __le16 version; 834 __le64 recovery_passes[2]; 835 __le16 nr_errors; 836 __le16 errors[] __counted_by(nr_errors); 837 } __packed __aligned(2); 838 839 struct bch_sb_field_downgrade { 840 struct bch_sb_field field; 841 struct bch_sb_field_downgrade_entry entries[]; 842 }; 843 844 /* Superblock: */ 845 846 /* 847 * New versioning scheme: 848 * One common version number for all on disk data structures - superblock, btree 849 * nodes, journal entries 850 */ 851 #define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10)) 852 #define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10))) 853 #define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0) 854 855 /* 856 * field 1: version name 857 * field 2: BCH_VERSION(major, minor) 858 * field 3: recovery passess required on upgrade 859 */ 860 #define BCH_METADATA_VERSIONS() \ 861 x(bkey_renumber, BCH_VERSION(0, 10)) \ 862 x(inode_btree_change, BCH_VERSION(0, 11)) \ 863 x(snapshot, BCH_VERSION(0, 12)) \ 864 x(inode_backpointers, BCH_VERSION(0, 13)) \ 865 x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \ 866 x(snapshot_2, BCH_VERSION(0, 15)) \ 867 x(reflink_p_fix, BCH_VERSION(0, 16)) \ 868 x(subvol_dirent, BCH_VERSION(0, 17)) \ 869 x(inode_v2, BCH_VERSION(0, 18)) \ 870 x(freespace, BCH_VERSION(0, 19)) \ 871 x(alloc_v4, BCH_VERSION(0, 20)) \ 872 x(new_data_types, BCH_VERSION(0, 21)) \ 873 x(backpointers, BCH_VERSION(0, 22)) \ 874 x(inode_v3, BCH_VERSION(0, 23)) \ 875 x(unwritten_extents, BCH_VERSION(0, 24)) \ 876 x(bucket_gens, BCH_VERSION(0, 25)) \ 877 x(lru_v2, BCH_VERSION(0, 26)) \ 878 x(fragmentation_lru, BCH_VERSION(0, 27)) \ 879 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \ 880 x(snapshot_trees, BCH_VERSION(0, 29)) \ 881 x(major_minor, BCH_VERSION(1, 0)) \ 882 x(snapshot_skiplists, BCH_VERSION(1, 1)) \ 883 x(deleted_inodes, BCH_VERSION(1, 2)) \ 884 x(rebalance_work, BCH_VERSION(1, 3)) \ 885 x(member_seq, BCH_VERSION(1, 4)) \ 886 x(subvolume_fs_parent, BCH_VERSION(1, 5)) \ 887 x(btree_subvolume_children, BCH_VERSION(1, 6)) \ 888 x(mi_btree_bitmap, BCH_VERSION(1, 7)) 889 890 enum bcachefs_metadata_version { 891 bcachefs_metadata_version_min = 9, 892 #define x(t, n) bcachefs_metadata_version_##t = n, 893 BCH_METADATA_VERSIONS() 894 #undef x 895 bcachefs_metadata_version_max 896 }; 897 898 static const __maybe_unused 899 unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work; 900 901 #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) 902 903 #define BCH_SB_SECTOR 8 904 #define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ 905 906 #define BCH_SB_LAYOUT_SIZE_BITS_MAX 16 /* 32 MB */ 907 908 struct bch_sb_layout { 909 __uuid_t magic; /* bcachefs superblock UUID */ 910 __u8 layout_type; 911 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ 912 __u8 nr_superblocks; 913 __u8 pad[5]; 914 __le64 sb_offset[61]; 915 } __packed __aligned(8); 916 917 #define BCH_SB_LAYOUT_SECTOR 7 918 919 /* 920 * @offset - sector where this sb was written 921 * @version - on disk format version 922 * @version_min - Oldest metadata version this filesystem contains; so we can 923 * safely drop compatibility code and refuse to mount filesystems 924 * we'd need it for 925 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC) 926 * @seq - incremented each time superblock is written 927 * @uuid - used for generating various magic numbers and identifying 928 * member devices, never changes 929 * @user_uuid - user visible UUID, may be changed 930 * @label - filesystem label 931 * @seq - identifies most recent superblock, incremented each time 932 * superblock is written 933 * @features - enabled incompatible features 934 */ 935 struct bch_sb { 936 struct bch_csum csum; 937 __le16 version; 938 __le16 version_min; 939 __le16 pad[2]; 940 __uuid_t magic; 941 __uuid_t uuid; 942 __uuid_t user_uuid; 943 __u8 label[BCH_SB_LABEL_SIZE]; 944 __le64 offset; 945 __le64 seq; 946 947 __le16 block_size; 948 __u8 dev_idx; 949 __u8 nr_devices; 950 __le32 u64s; 951 952 __le64 time_base_lo; 953 __le32 time_base_hi; 954 __le32 time_precision; 955 956 __le64 flags[7]; 957 __le64 write_time; 958 __le64 features[2]; 959 __le64 compat[2]; 960 961 struct bch_sb_layout layout; 962 963 struct bch_sb_field start[0]; 964 __le64 _data[]; 965 } __packed __aligned(8); 966 967 /* 968 * Flags: 969 * BCH_SB_INITALIZED - set on first mount 970 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect 971 * behaviour of mount/recovery path: 972 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits 973 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 974 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides 975 * DATA/META_CSUM_TYPE. Also indicates encryption 976 * algorithm in use, if/when we get more than one 977 */ 978 979 LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); 980 981 LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); 982 LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); 983 LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); 984 LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); 985 986 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); 987 988 LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); 989 LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); 990 991 LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); 992 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); 993 994 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); 995 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); 996 997 LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); 998 LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); 999 LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); 1000 LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); 1001 1002 LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); 1003 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62); 1004 1005 LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63); 1006 1007 LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); 1008 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8); 1009 LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); 1010 1011 LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); 1012 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); 1013 1014 /* 1015 * Max size of an extent that may require bouncing to read or write 1016 * (checksummed, compressed): 64k 1017 */ 1018 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, 1019 struct bch_sb, flags[1], 14, 20); 1020 1021 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); 1022 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); 1023 1024 LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); 1025 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); 1026 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); 1027 1028 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO, 1029 struct bch_sb, flags[2], 0, 4); 1030 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); 1031 1032 LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); 1033 LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28); 1034 LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29); 1035 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30); 1036 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62); 1037 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63); 1038 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32); 1039 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33); 1040 LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34); 1041 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54); 1042 LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56); 1043 1044 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60); 1045 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI, 1046 struct bch_sb, flags[4], 60, 64); 1047 1048 LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE, 1049 struct bch_sb, flags[5], 0, 16); 1050 1051 static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb) 1052 { 1053 return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4); 1054 } 1055 1056 static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 1057 { 1058 SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v); 1059 SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4); 1060 } 1061 1062 static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb) 1063 { 1064 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) | 1065 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4); 1066 } 1067 1068 static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 1069 { 1070 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v); 1071 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4); 1072 } 1073 1074 /* 1075 * Features: 1076 * 1077 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist 1078 * reflink: gates KEY_TYPE_reflink 1079 * inline_data: gates KEY_TYPE_inline_data 1080 * new_siphash: gates BCH_STR_HASH_siphash 1081 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE 1082 */ 1083 #define BCH_SB_FEATURES() \ 1084 x(lz4, 0) \ 1085 x(gzip, 1) \ 1086 x(zstd, 2) \ 1087 x(atomic_nlink, 3) \ 1088 x(ec, 4) \ 1089 x(journal_seq_blacklist_v3, 5) \ 1090 x(reflink, 6) \ 1091 x(new_siphash, 7) \ 1092 x(inline_data, 8) \ 1093 x(new_extent_overwrite, 9) \ 1094 x(incompressible, 10) \ 1095 x(btree_ptr_v2, 11) \ 1096 x(extents_above_btree_updates, 12) \ 1097 x(btree_updates_journalled, 13) \ 1098 x(reflink_inline_data, 14) \ 1099 x(new_varint, 15) \ 1100 x(journal_no_flush, 16) \ 1101 x(alloc_v2, 17) \ 1102 x(extents_across_btree_nodes, 18) 1103 1104 #define BCH_SB_FEATURES_ALWAYS \ 1105 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \ 1106 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\ 1107 (1ULL << BCH_FEATURE_btree_updates_journalled)|\ 1108 (1ULL << BCH_FEATURE_alloc_v2)|\ 1109 (1ULL << BCH_FEATURE_extents_across_btree_nodes)) 1110 1111 #define BCH_SB_FEATURES_ALL \ 1112 (BCH_SB_FEATURES_ALWAYS| \ 1113 (1ULL << BCH_FEATURE_new_siphash)| \ 1114 (1ULL << BCH_FEATURE_btree_ptr_v2)| \ 1115 (1ULL << BCH_FEATURE_new_varint)| \ 1116 (1ULL << BCH_FEATURE_journal_no_flush)) 1117 1118 enum bch_sb_feature { 1119 #define x(f, n) BCH_FEATURE_##f, 1120 BCH_SB_FEATURES() 1121 #undef x 1122 BCH_FEATURE_NR, 1123 }; 1124 1125 #define BCH_SB_COMPAT() \ 1126 x(alloc_info, 0) \ 1127 x(alloc_metadata, 1) \ 1128 x(extents_above_btree_updates_done, 2) \ 1129 x(bformat_overflow_done, 3) 1130 1131 enum bch_sb_compat { 1132 #define x(f, n) BCH_COMPAT_##f, 1133 BCH_SB_COMPAT() 1134 #undef x 1135 BCH_COMPAT_NR, 1136 }; 1137 1138 /* options: */ 1139 1140 #define BCH_VERSION_UPGRADE_OPTS() \ 1141 x(compatible, 0) \ 1142 x(incompatible, 1) \ 1143 x(none, 2) 1144 1145 enum bch_version_upgrade_opts { 1146 #define x(t, n) BCH_VERSION_UPGRADE_##t = n, 1147 BCH_VERSION_UPGRADE_OPTS() 1148 #undef x 1149 }; 1150 1151 #define BCH_REPLICAS_MAX 4U 1152 1153 #define BCH_BKEY_PTRS_MAX 16U 1154 1155 #define BCH_ERROR_ACTIONS() \ 1156 x(continue, 0) \ 1157 x(ro, 1) \ 1158 x(panic, 2) 1159 1160 enum bch_error_actions { 1161 #define x(t, n) BCH_ON_ERROR_##t = n, 1162 BCH_ERROR_ACTIONS() 1163 #undef x 1164 BCH_ON_ERROR_NR 1165 }; 1166 1167 #define BCH_STR_HASH_TYPES() \ 1168 x(crc32c, 0) \ 1169 x(crc64, 1) \ 1170 x(siphash_old, 2) \ 1171 x(siphash, 3) 1172 1173 enum bch_str_hash_type { 1174 #define x(t, n) BCH_STR_HASH_##t = n, 1175 BCH_STR_HASH_TYPES() 1176 #undef x 1177 BCH_STR_HASH_NR 1178 }; 1179 1180 #define BCH_STR_HASH_OPTS() \ 1181 x(crc32c, 0) \ 1182 x(crc64, 1) \ 1183 x(siphash, 2) 1184 1185 enum bch_str_hash_opts { 1186 #define x(t, n) BCH_STR_HASH_OPT_##t = n, 1187 BCH_STR_HASH_OPTS() 1188 #undef x 1189 BCH_STR_HASH_OPT_NR 1190 }; 1191 1192 #define BCH_CSUM_TYPES() \ 1193 x(none, 0) \ 1194 x(crc32c_nonzero, 1) \ 1195 x(crc64_nonzero, 2) \ 1196 x(chacha20_poly1305_80, 3) \ 1197 x(chacha20_poly1305_128, 4) \ 1198 x(crc32c, 5) \ 1199 x(crc64, 6) \ 1200 x(xxhash, 7) 1201 1202 enum bch_csum_type { 1203 #define x(t, n) BCH_CSUM_##t = n, 1204 BCH_CSUM_TYPES() 1205 #undef x 1206 BCH_CSUM_NR 1207 }; 1208 1209 static const __maybe_unused unsigned bch_crc_bytes[] = { 1210 [BCH_CSUM_none] = 0, 1211 [BCH_CSUM_crc32c_nonzero] = 4, 1212 [BCH_CSUM_crc32c] = 4, 1213 [BCH_CSUM_crc64_nonzero] = 8, 1214 [BCH_CSUM_crc64] = 8, 1215 [BCH_CSUM_xxhash] = 8, 1216 [BCH_CSUM_chacha20_poly1305_80] = 10, 1217 [BCH_CSUM_chacha20_poly1305_128] = 16, 1218 }; 1219 1220 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) 1221 { 1222 switch (type) { 1223 case BCH_CSUM_chacha20_poly1305_80: 1224 case BCH_CSUM_chacha20_poly1305_128: 1225 return true; 1226 default: 1227 return false; 1228 } 1229 } 1230 1231 #define BCH_CSUM_OPTS() \ 1232 x(none, 0) \ 1233 x(crc32c, 1) \ 1234 x(crc64, 2) \ 1235 x(xxhash, 3) 1236 1237 enum bch_csum_opts { 1238 #define x(t, n) BCH_CSUM_OPT_##t = n, 1239 BCH_CSUM_OPTS() 1240 #undef x 1241 BCH_CSUM_OPT_NR 1242 }; 1243 1244 #define BCH_COMPRESSION_TYPES() \ 1245 x(none, 0) \ 1246 x(lz4_old, 1) \ 1247 x(gzip, 2) \ 1248 x(lz4, 3) \ 1249 x(zstd, 4) \ 1250 x(incompressible, 5) 1251 1252 enum bch_compression_type { 1253 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n, 1254 BCH_COMPRESSION_TYPES() 1255 #undef x 1256 BCH_COMPRESSION_TYPE_NR 1257 }; 1258 1259 #define BCH_COMPRESSION_OPTS() \ 1260 x(none, 0) \ 1261 x(lz4, 1) \ 1262 x(gzip, 2) \ 1263 x(zstd, 3) 1264 1265 enum bch_compression_opts { 1266 #define x(t, n) BCH_COMPRESSION_OPT_##t = n, 1267 BCH_COMPRESSION_OPTS() 1268 #undef x 1269 BCH_COMPRESSION_OPT_NR 1270 }; 1271 1272 /* 1273 * Magic numbers 1274 * 1275 * The various other data structures have their own magic numbers, which are 1276 * xored with the first part of the cache set's UUID 1277 */ 1278 1279 #define BCACHE_MAGIC \ 1280 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ 1281 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) 1282 #define BCHFS_MAGIC \ 1283 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ 1284 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) 1285 1286 #define BCACHEFS_STATFS_MAGIC 0xca451a4e 1287 1288 #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) 1289 #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) 1290 1291 static inline __le64 __bch2_sb_magic(struct bch_sb *sb) 1292 { 1293 __le64 ret; 1294 1295 memcpy(&ret, &sb->uuid, sizeof(ret)); 1296 return ret; 1297 } 1298 1299 static inline __u64 __jset_magic(struct bch_sb *sb) 1300 { 1301 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); 1302 } 1303 1304 static inline __u64 __bset_magic(struct bch_sb *sb) 1305 { 1306 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); 1307 } 1308 1309 /* Journal */ 1310 1311 #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) 1312 1313 #define BCH_JSET_ENTRY_TYPES() \ 1314 x(btree_keys, 0) \ 1315 x(btree_root, 1) \ 1316 x(prio_ptrs, 2) \ 1317 x(blacklist, 3) \ 1318 x(blacklist_v2, 4) \ 1319 x(usage, 5) \ 1320 x(data_usage, 6) \ 1321 x(clock, 7) \ 1322 x(dev_usage, 8) \ 1323 x(log, 9) \ 1324 x(overwrite, 10) \ 1325 x(write_buffer_keys, 11) \ 1326 x(datetime, 12) 1327 1328 enum bch_jset_entry_type { 1329 #define x(f, nr) BCH_JSET_ENTRY_##f = nr, 1330 BCH_JSET_ENTRY_TYPES() 1331 #undef x 1332 BCH_JSET_ENTRY_NR 1333 }; 1334 1335 static inline bool jset_entry_is_key(struct jset_entry *e) 1336 { 1337 switch (e->type) { 1338 case BCH_JSET_ENTRY_btree_keys: 1339 case BCH_JSET_ENTRY_btree_root: 1340 case BCH_JSET_ENTRY_overwrite: 1341 case BCH_JSET_ENTRY_write_buffer_keys: 1342 return true; 1343 } 1344 1345 return false; 1346 } 1347 1348 /* 1349 * Journal sequence numbers can be blacklisted: bsets record the max sequence 1350 * number of all the journal entries they contain updates for, so that on 1351 * recovery we can ignore those bsets that contain index updates newer that what 1352 * made it into the journal. 1353 * 1354 * This means that we can't reuse that journal_seq - we have to skip it, and 1355 * then record that we skipped it so that the next time we crash and recover we 1356 * don't think there was a missing journal entry. 1357 */ 1358 struct jset_entry_blacklist { 1359 struct jset_entry entry; 1360 __le64 seq; 1361 }; 1362 1363 struct jset_entry_blacklist_v2 { 1364 struct jset_entry entry; 1365 __le64 start; 1366 __le64 end; 1367 }; 1368 1369 #define BCH_FS_USAGE_TYPES() \ 1370 x(reserved, 0) \ 1371 x(inodes, 1) \ 1372 x(key_version, 2) 1373 1374 enum bch_fs_usage_type { 1375 #define x(f, nr) BCH_FS_USAGE_##f = nr, 1376 BCH_FS_USAGE_TYPES() 1377 #undef x 1378 BCH_FS_USAGE_NR 1379 }; 1380 1381 struct jset_entry_usage { 1382 struct jset_entry entry; 1383 __le64 v; 1384 } __packed; 1385 1386 struct jset_entry_data_usage { 1387 struct jset_entry entry; 1388 __le64 v; 1389 struct bch_replicas_entry_v1 r; 1390 } __packed; 1391 1392 struct jset_entry_clock { 1393 struct jset_entry entry; 1394 __u8 rw; 1395 __u8 pad[7]; 1396 __le64 time; 1397 } __packed; 1398 1399 struct jset_entry_dev_usage_type { 1400 __le64 buckets; 1401 __le64 sectors; 1402 __le64 fragmented; 1403 } __packed; 1404 1405 struct jset_entry_dev_usage { 1406 struct jset_entry entry; 1407 __le32 dev; 1408 __u32 pad; 1409 1410 __le64 _buckets_ec; /* No longer used */ 1411 __le64 _buckets_unavailable; /* No longer used */ 1412 1413 struct jset_entry_dev_usage_type d[]; 1414 }; 1415 1416 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u) 1417 { 1418 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) / 1419 sizeof(struct jset_entry_dev_usage_type); 1420 } 1421 1422 struct jset_entry_log { 1423 struct jset_entry entry; 1424 u8 d[]; 1425 } __packed __aligned(8); 1426 1427 struct jset_entry_datetime { 1428 struct jset_entry entry; 1429 __le64 seconds; 1430 } __packed __aligned(8); 1431 1432 /* 1433 * On disk format for a journal entry: 1434 * seq is monotonically increasing; every journal entry has its own unique 1435 * sequence number. 1436 * 1437 * last_seq is the oldest journal entry that still has keys the btree hasn't 1438 * flushed to disk yet. 1439 * 1440 * version is for on disk format changes. 1441 */ 1442 struct jset { 1443 struct bch_csum csum; 1444 1445 __le64 magic; 1446 __le64 seq; 1447 __le32 version; 1448 __le32 flags; 1449 1450 __le32 u64s; /* size of d[] in u64s */ 1451 1452 __u8 encrypted_start[0]; 1453 1454 __le16 _read_clock; /* no longer used */ 1455 __le16 _write_clock; 1456 1457 /* Sequence number of oldest dirty journal entry */ 1458 __le64 last_seq; 1459 1460 1461 struct jset_entry start[0]; 1462 __u64 _data[]; 1463 } __packed __aligned(8); 1464 1465 LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); 1466 LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); 1467 LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6); 1468 1469 #define BCH_JOURNAL_BUCKETS_MIN 8 1470 1471 /* Btree: */ 1472 1473 enum btree_id_flags { 1474 BTREE_ID_EXTENTS = BIT(0), 1475 BTREE_ID_SNAPSHOTS = BIT(1), 1476 BTREE_ID_SNAPSHOT_FIELD = BIT(2), 1477 BTREE_ID_DATA = BIT(3), 1478 }; 1479 1480 #define BCH_BTREE_IDS() \ 1481 x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\ 1482 BIT_ULL(KEY_TYPE_whiteout)| \ 1483 BIT_ULL(KEY_TYPE_error)| \ 1484 BIT_ULL(KEY_TYPE_cookie)| \ 1485 BIT_ULL(KEY_TYPE_extent)| \ 1486 BIT_ULL(KEY_TYPE_reservation)| \ 1487 BIT_ULL(KEY_TYPE_reflink_p)| \ 1488 BIT_ULL(KEY_TYPE_inline_data)) \ 1489 x(inodes, 1, BTREE_ID_SNAPSHOTS, \ 1490 BIT_ULL(KEY_TYPE_whiteout)| \ 1491 BIT_ULL(KEY_TYPE_inode)| \ 1492 BIT_ULL(KEY_TYPE_inode_v2)| \ 1493 BIT_ULL(KEY_TYPE_inode_v3)| \ 1494 BIT_ULL(KEY_TYPE_inode_generation)) \ 1495 x(dirents, 2, BTREE_ID_SNAPSHOTS, \ 1496 BIT_ULL(KEY_TYPE_whiteout)| \ 1497 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1498 BIT_ULL(KEY_TYPE_dirent)) \ 1499 x(xattrs, 3, BTREE_ID_SNAPSHOTS, \ 1500 BIT_ULL(KEY_TYPE_whiteout)| \ 1501 BIT_ULL(KEY_TYPE_cookie)| \ 1502 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1503 BIT_ULL(KEY_TYPE_xattr)) \ 1504 x(alloc, 4, 0, \ 1505 BIT_ULL(KEY_TYPE_alloc)| \ 1506 BIT_ULL(KEY_TYPE_alloc_v2)| \ 1507 BIT_ULL(KEY_TYPE_alloc_v3)| \ 1508 BIT_ULL(KEY_TYPE_alloc_v4)) \ 1509 x(quotas, 5, 0, \ 1510 BIT_ULL(KEY_TYPE_quota)) \ 1511 x(stripes, 6, 0, \ 1512 BIT_ULL(KEY_TYPE_stripe)) \ 1513 x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \ 1514 BIT_ULL(KEY_TYPE_reflink_v)| \ 1515 BIT_ULL(KEY_TYPE_indirect_inline_data)| \ 1516 BIT_ULL(KEY_TYPE_error)) \ 1517 x(subvolumes, 8, 0, \ 1518 BIT_ULL(KEY_TYPE_subvolume)) \ 1519 x(snapshots, 9, 0, \ 1520 BIT_ULL(KEY_TYPE_snapshot)) \ 1521 x(lru, 10, 0, \ 1522 BIT_ULL(KEY_TYPE_set)) \ 1523 x(freespace, 11, BTREE_ID_EXTENTS, \ 1524 BIT_ULL(KEY_TYPE_set)) \ 1525 x(need_discard, 12, 0, \ 1526 BIT_ULL(KEY_TYPE_set)) \ 1527 x(backpointers, 13, 0, \ 1528 BIT_ULL(KEY_TYPE_backpointer)) \ 1529 x(bucket_gens, 14, 0, \ 1530 BIT_ULL(KEY_TYPE_bucket_gens)) \ 1531 x(snapshot_trees, 15, 0, \ 1532 BIT_ULL(KEY_TYPE_snapshot_tree)) \ 1533 x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \ 1534 BIT_ULL(KEY_TYPE_set)) \ 1535 x(logged_ops, 17, 0, \ 1536 BIT_ULL(KEY_TYPE_logged_op_truncate)| \ 1537 BIT_ULL(KEY_TYPE_logged_op_finsert)) \ 1538 x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \ 1539 BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \ 1540 x(subvolume_children, 19, 0, \ 1541 BIT_ULL(KEY_TYPE_set)) 1542 1543 enum btree_id { 1544 #define x(name, nr, ...) BTREE_ID_##name = nr, 1545 BCH_BTREE_IDS() 1546 #undef x 1547 BTREE_ID_NR 1548 }; 1549 1550 static inline bool btree_id_is_alloc(enum btree_id id) 1551 { 1552 switch (id) { 1553 case BTREE_ID_alloc: 1554 case BTREE_ID_backpointers: 1555 case BTREE_ID_need_discard: 1556 case BTREE_ID_freespace: 1557 case BTREE_ID_bucket_gens: 1558 return true; 1559 default: 1560 return false; 1561 } 1562 } 1563 1564 #define BTREE_MAX_DEPTH 4U 1565 1566 /* Btree nodes */ 1567 1568 /* 1569 * Btree nodes 1570 * 1571 * On disk a btree node is a list/log of these; within each set the keys are 1572 * sorted 1573 */ 1574 struct bset { 1575 __le64 seq; 1576 1577 /* 1578 * Highest journal entry this bset contains keys for. 1579 * If on recovery we don't see that journal entry, this bset is ignored: 1580 * this allows us to preserve the order of all index updates after a 1581 * crash, since the journal records a total order of all index updates 1582 * and anything that didn't make it to the journal doesn't get used. 1583 */ 1584 __le64 journal_seq; 1585 1586 __le32 flags; 1587 __le16 version; 1588 __le16 u64s; /* count of d[] in u64s */ 1589 1590 struct bkey_packed start[0]; 1591 __u64 _data[]; 1592 } __packed __aligned(8); 1593 1594 LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); 1595 1596 LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); 1597 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, 1598 struct bset, flags, 5, 6); 1599 1600 /* Sector offset within the btree node: */ 1601 LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32); 1602 1603 struct btree_node { 1604 struct bch_csum csum; 1605 __le64 magic; 1606 1607 /* this flags field is encrypted, unlike bset->flags: */ 1608 __le64 flags; 1609 1610 /* Closed interval: */ 1611 struct bpos min_key; 1612 struct bpos max_key; 1613 struct bch_extent_ptr _ptr; /* not used anymore */ 1614 struct bkey_format format; 1615 1616 union { 1617 struct bset keys; 1618 struct { 1619 __u8 pad[22]; 1620 __le16 u64s; 1621 __u64 _data[0]; 1622 1623 }; 1624 }; 1625 } __packed __aligned(8); 1626 1627 LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4); 1628 LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); 1629 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, 1630 struct btree_node, flags, 8, 9); 1631 LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25); 1632 /* 25-32 unused */ 1633 LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); 1634 1635 static inline __u64 BTREE_NODE_ID(struct btree_node *n) 1636 { 1637 return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4); 1638 } 1639 1640 static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v) 1641 { 1642 SET_BTREE_NODE_ID_LO(n, v); 1643 SET_BTREE_NODE_ID_HI(n, v >> 4); 1644 } 1645 1646 struct btree_node_entry { 1647 struct bch_csum csum; 1648 1649 union { 1650 struct bset keys; 1651 struct { 1652 __u8 pad[22]; 1653 __le16 u64s; 1654 __u64 _data[0]; 1655 }; 1656 }; 1657 } __packed __aligned(8); 1658 1659 #endif /* _BCACHEFS_FORMAT_H */ 1660